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Abstract. We consider the connected component of the partial duplication model
for a random graph, a model which was introduced by Bhan, Galas and Dewey as a
model for gene expression networks. The most rigorous results are due to Hermann
and Pfaffelhuber (2016), who show a phase transition between a subcritical case
where in the limit almost all vertices are isolated and a supercritical case where the
proportion of the vertices which are connected is bounded away from zero.

We study the connected component in the subcritical case, and show that, when
the duplication parameter p < e−1, the degree distribution of the connected com-
ponent has a limit, which we can describe in terms of the stationary distribution
of a certain Markov chain and which follows an approximately power law tail, with
the power law index predicted by Ispolatov et al. (2005). Our methods involve
analysing the quasi-stationary distribution of a certain continuous time Markov
chain associated with the evolution of the graph.

1. Introduction

The partial duplication model is a model for a growing random graph introduced
by Bhan et al. (2002) as a model for gene expression networks, and further studied
by Chung et al. (2003), Bebek et al. (2006), Ispolatov et al. (2005), modelling
protein-protein interaction networks, Li et al. (2013) and Hermann and Pfaffelhuber
(2016). The model is that the graph evolves in discrete time and that at each time
point, a single vertex is chosen uniformly at random to “duplicate”. This means
that a new vertex, which we can think of as an offspring or mutant of the chosen
vertex, is added to the graph, and is connected to the neighbours of the chosen
vertex, each with probability p (independently of each other) where p ∈ (0, 1] is a
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parameter of the model. Note that in our model the new vertex is not connected
to the vertex it was duplicated from. The case where p = 1 is referred to as full
duplication and has some special properties, while the cases where p < 1 are referred
to as partial duplication.

In this model, it is clear that if a vertex v has degree zero then it will continue to
do so for all time, and furthermore that any vertex duplicated from v will also have
degree zero. This suggests the possibility that if p is small enough then in the limit
almost all vertices will have degree zero. Hermann and Pfaffelhuber (2016) show
that this situation occurs if p ≤ pc, where pc is the unique root of pep = 1, while
if p > pc there is no non-defective limiting degree distribution. They also obtain a
number of results concerning the asymptotics of the numbers of cliques and stars
of different sizes in the graph.

In the case where almost all vertices have degree zero, a natural question is to
consider the degree distribution of the connected component of the graph, assuming
that the initial graph is connected. This was explored by Ispolatov et al. (2005)
using non-rigorous methods, suggesting a power-law distribution for the degrees
with index given by the solution to −3 + β + pβ−2 = 0 when p < e−1, and index 2
when e−1 ≤ p < 1

2 ; it is also considered in Section 2 of Hermann and Pfaffelhuber
(2016), where the conjecture that the connected component satisfies a power law
degree distribution is mentioned.

The aim of this paper is to discuss the behaviour of degrees in this connected
component in more detail, using a method involving a quasi-stationary distribution
of a certain continuous time Markov chain. We will show that, for p < e−1, the
expected number of vertices of a particular degree, when normalised appropriately,
converges to a non-degenerate limit and that the degree distribution of the con-
nected component converges in probability to this distribution. We can describe
this limit in terms of the stationary distribution of a related Markov chain, and we
will also show that this distribution has tail behaviour close to that of a power law
of the index suggested in Ispolatov et al. (2005). Our proofs have some similarity
with the discrete time Markov chain methods used in Jordan (2011) for a different
model.

It is observed non-rigorously in Ispolatov et al. (2005) that considering the be-
haviour of the connected component and letting p → 0 gives the preferential at-
tachment mechanism of Barabási and Albert (1999), and as is well-known (first
rigorously proved by Bollobás et al., 2001) that model gives a degree distribution
which is asympotically a power law with tail index 3. We will see that the tail
indices of the distributions in our model converge to 3 as p→ 0.

As an illustration of the sort of graphs which the model produces and how the
density of edges increases with p, simulations of the model with 500 vertices in
the connected component and three values of p, each starting from a ring of five
vertices, are displayed in Figure 1.1.

1.1. Other duplication models. Although the growth to 1 of the proportion of degree
zero vertices can be seen as a natural feature of the model, with these vertices
reflecting unsuccessful mutants which have lost all their interactions, we note that
there are also variants of the duplication model which avoid it. One idea is for
the new vertex to additionally connect to vertices which were not neighbours of
its parent with some small probability; this is considered by Pastor-Satorras et al.
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Figure 1.1. Example simulations of the connected component,
with 500 vertices and p = 0.05, 0.2 and 0.36 (left to right), each
starting from a ring of five vertices. The colours of the vertices
reflect which of the five ancestor vertices they are descended from.

(2003), and is also studied by Bebek et al. (2007), Kim et al. (2002) and Raval
(2003). These extra edges can be seen as due to mutations causing the new vertex
to interact with vertices which its parent did not.

Another idea, which is considered in chapter 4 of Chung and Lu (2006), is to
always maintain a connected graph (assuming that the initial graph is connected)
by the new vertex always connecting to the vertex it was duplicated from. This
model appears to have been rediscovered by Li et al. (2015) where it is suggested as
a model for social networks, a context where the connection to the parent vertex is
natural. The results in Chung and Lu (2006) suggest that for p < pc (the same pc
as for our model) the expected degree distribution converges to a limit which has a
power law type tail, with index depending on p, but not the same index as in our
results.

A different family of duplication graph models is introduced by Backhausz and
Móri (2015), and extended by Thörnblad (2015). In the models of Backhausz
and Móri (2015), two vertices are selected at each time step. One is duplicated
with full duplication, so that all its edges become edges of the new vertex, and
one has its edges deleted (but is not deleted itself). For these models, Backhausz
and Móri (2015) shows almost sure convergence to a particular degree distribution,
which has a stretched exponential tail. In the extended model of Thörnblad (2015),
also studied by Backhausz and Móri (2016), at each time step a single vertex is
chosen, and duplicated with probability θ and its edges deleted with probability
1− θ. For this model, Thörnblad (2015) shows almost sure convergence to a degree
distribution which has a phase transition from exponential to power law decay at
θ = 1/2. At θ = 1/2 itself the behaviour is like that of the model in Backhausz
and Móri (2015). The analyses in these papers rely on the clique structure of the
graph, which is associated with the full duplication.

We briefly mention two more extensions. Hamdi et al. (2014), also motivated by
social networks, introduce a variant where the probabilities that a vertex is deleted
and that when a duplication step takes place that the new vertex connects to each
neighbour of its parent are dependent on the state of an underlying Markov chain.
Finally, a model where the duplication probabilities are proportional to the degree
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instead of uniform is considered in Cohen et al. (2010), but rigorous results are only
obtained for the case of full duplication.

2. Definitions and results

The model we consider can be defined in discrete time as in Hermann and Pfaf-
felhuber (2016). We define a parameter p ∈ (0, 1]. We start at time n0 with an
undirected graph Gn0

, which has n0 > 1 vertices, labelled 1, 2, . . . , n0, and which
we assume to be connected. For n ≥ n0, and given Gn, which has n vertices,
we form Gn+1 by picking a random vertex u, and adding a new vertex (which we
will label as n + 1) which is connected to each neighbour of u with probability p,
independently of each other, and to no other vertices.

Let Un be the degree of a vertex chosen uniformly at random from the graph at
time n. We consider the distribution of Un without conditioning on the graph, and
show the following result.

Theorem 2.1. Assume 0 < p < e−1.

(1) For each k ≥ 1, there exists ak such that limn→∞ P(Un = k|Un 6= 0) = ak,
and furthermore limn→∞ P(Un = k|Gm, Un 6= 0) = ak for any m.

(2) The proportion of vertices of the connected component of Gn which have
degree k converges to ak as n→∞, in probability.

(3) Let β(p) be the solution to −3 + β + pβ−2 = 0. Then the tail behaviour
of ak is close to a power law of index β(p), in the sense that as k → ∞,
ak/k

−q → 0 if q < β(p) and ak/k
−q →∞ if q > β(p).

In Section 3, we will show how to derive the distribution given by the ak as a
quasi-stationary distribution of a certain continuous time Markov chain, and we
will use Foster-Lyapunov methods to get indications of the tail behaviour, which
will give part (c) of Theorem 2.1. We will then complete the proof of part (a) in
Section 4, and the proof of part (b) in Section 5.

We will make frequent use of the following embedding of our model in continuous
time. We start at time zero with a fixed connected graph Γ0 with n0 > 1 vertices,
and define a continuous time Markov chain (Γt)t≥0 on the state space of graphs
by saying that each vertex duplicates at times given by a Poisson process of rate
1, independently of everything else, with the rules for the addition of a new vertex
when a duplication happens being as before. We will define Nt to be the number of
vertices in Γt, and will maintain the above labelling of the vertices: the vertices of
Γ0 are labelled 1, 2, . . . , n0, and the later vertices are numbered in order of arrival
so that the most recent vertex at time t is labelled Nt. We observe that the process
(Nt)t≥0, which gives the number of vertices in the system, follows the well-known
Yule process introduced by Yule (1924). We also note that a different continuous
time embedding of the process, with vertices in a graph with Nt vertices duplicating
at rate 1 + 1/Nt, was used by Hermann and Pfaffelhuber (2016).

3. Vertex tracking and the quasi-stationary distribution

In the continuous time version of our process, we define a tracked vertex (Vt)t≥0
as follows. We start by choosing V0 uniformly at random from the vertices of Γ0,
and then say that the process (Vt)t≥0 will have a jump at time t if and only if the
vertex Vt− is duplicated at time t, in which case it will jump to the new vertex. Let
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the degree of Vt be Dt; then (Dt)t≥0 is a continuous time Markov chain on N0 and
from j jumps to j+1 when a neighbour of the currently tracked vertex is duplicated
and the edge retained (rate jp) and to k < j when the currently tracked vertex is
duplicated together with k of its edges. The generator Q of this continuous time
Markov chain with state space N0 is thus given by

qj,j+1 = jp

qj,k =

(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1

qj,j = −(jp+ 1− pj).

As expected, 0 is an absorbing state here: if at some time t the tracked vertex has
degree zero then this will remain the case at all later times.

If we consider a specific vertex v and a time t, then we note that the events
that Vt = v and that degGt

(v) = d are independent; this is because the changes in
degree of vertex v happen at times when its neighbours duplicate, whereas whether
it is tracked depends on when v itself duplicates, and in the continuous time model
duplications of vertex v and its neighbours are independent. We will see later, in
Lemma 4.1, that Vt has a distribution close to that of a vertex from the graph
chosen uniformly at random.

We will be interested in Dt, the degree of our tracked vertex, conditional on it
not being zero, that is on it being part of the connected component. To investigate
this, we will use the theory of quasi-stationary distributions of Markov chains, for
which we will follow Pollett (1988), which considers quasi-stationary distributions
for continuous time Markov chains on countable state spaces. A quasi-stationary
distribution in this context is a left eigenvector of the generator matrix, excluding
the row and column corresponding to state 0, which sums to 1 and has all entries
non-negative. The eigenvalue is necessarily negative, and we will write it as −λ.
Under certain conditions the distribution of the state of the chain conditional on
not having hit zero will converge to a quasi-stationary distribution.

A quasi-stationary distribution with eigenvalue −λ for a chain with the generator
Q will satisfy

ak−1(k − 1)p+

∞∑
j=k+1

aj

(
j

k

)
pk(1− p)j−k − ak(1− λ+ kp− pk) = 0, (3.1)

for k ∈ N, from which we obtain
∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k = ak(1− λ+ kp)− ak−1(k − 1)p.

In Section 3 of Pollett (1988), a λ-invariant measure is defined to be a positive
left eigenvectorm ofQ restricted to N with eigenvalue−λ, so that a quasi-stationary
distribution is a λ-invariant measure which sums to 1, and a λ-invariant vector is
defined to be a positive right eigenvector x of Q restricted to N with eigenvalue λ.

Also in Pollett (1988), given the existence of a λ-invariant vector and measure,
two generator matrices for continuous time Markov chains are defined on (in our
context) N. Given a λ-invariant measure m for Q, the λ-reverse of Q with respect
to m is a generator matrix Q∗ defined by letting

q∗jk = mk(qkj + λδjk)/mj ,
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and given a λ-invariant vector x for Q the λ-dual of Q with respect to x is a
generator matrix Q̄ defined by letting

q̄jk = (qjk + λδjk)xk/xj .

The following result suggests that if we are to have a quasi-stationary distribution
with finite mean we should expect λ = 1− 2p.

Proposition 3.1. Assume that a is a quasi-stationary distribution of p with eigen-
value −λ, and that a has a finite mean. Then λ = 1− 2p.

Proof : We follow the ideas in Chapter 4 of Chung and Lu (2006) for a related model
and work with the generating function of the distribution a, F (z) =

∑∞
j=1 ajz

j .

Note that (setting a0 = 0)

F (pz + 1− p) =

∞∑
k=0

zk
∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k

=

∞∑
k=1

zk
∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k +

∞∑
j=1

aj(1− p)j

=

∞∑
k=1

(
ak(1− λ)zk + kpakz

k − (k − 1)ak−1pz
k
)

+ F (1− p).

Hence we get

F (pz + 1− p) = (1− λ)F (z) + p(z − z2)F ′(z) + F (1− p). (3.2)

Considering F (1) = 1, this gives F (1−p) = λ, as we assume a finite mean. We can
also see that

F ′(z) =
F (pz + 1− p)− (1− λ)F (z)− F (1− p)

p(z − z2)
,

and taking limits as z ↑ 1, again assuming the limit exists, we get F ′(1) =
1
−pF

′(1)(p− (1− λ)) and hence λ = 1− 2p. �

It turns out that in our setting it is easy to identify a (1− 2p)-invariant vector.

Lemma 3.2. Let p < 1
2 . A (1− 2p)-invariant vector for Q is given by xk = k, and

this is unique up to a multiplicative constant.

Proof : The equations for a (1− 2p)-invariant vector for Q are, for j ≥ 1,

jpxj+1 − (jp+ 1)xj +

j∑
k=1

(
j

k

)
pk(1− p)j−kxk = (2p− 1)xj ,

giving

jpxj+1 = (2 + j)pxj −
j∑

k=1

(
j

k

)
pk(1− p)j−kxk,

and if we set x1 = r then solving the equations inductively gives xk = rk. �

Using Lemma 3.2, the (1− 2p)-dual of Q, Q̄, with respect to x is given by

q̄jk =


(
j−1
k−1
)
pk(1− p)j−k 1 < k < j

(j + 1)p k = j + 1
pj − (2 + j)p k = j.
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An interpretation of this generator matrix is of a Yule-type birth process, with
each particle reproducing at rate 1, with two modifications. One modification is
that there is an extra non-standard particle which is not included in the count but
reproduces like the standard particles; the other is that there are death events at
rate 1 where each standard particle dies with probability p, but the non-standard
particle cannot die.

We can now use this to identify our quasi-stationary distribution in the case
where Q̄ defines a positive recurrent Markov chain; later in the paper we will
investigate the condition that Q̄ does indeed define such a chain and show that it
applies when p < e−1.

Proposition 3.3. If Q̄ defines a positive recurrent Markov chain, then there exists
a quasi-stationary distribution a with eigenvalue −(1− 2p) for Q.

Proof : First of all, it is clear that in our setting both Q̄ and Q∗ are irreducible.
From Pollett (1988), both Q∗ and Q̄ have the same stationary measure, given by
u with uj = mjxj . As we know xk = k for our Q and λ = 1 − 2p, we can thus
get a quasi-stationary distribution of Q with λ = 1 − 2p by defining u to be the
unique stationary distribution for Q̄, letting mk = uk/k and then normalising so
that aj = mj/

∑∞
i=1mi. �

We note that this cannot give a quasi-stationary distribution with an infinite
mean, as then u would not give a probability distribution.

This now allows us to use results on convergence to quasi-stationary distributions
to show that the distribution of the degree of our tracked vertex converges.

Proposition 3.4. If Q̄ defines a positive recurrent Markov chain, then for any j
and k we have that

lim
t→∞

P(Dt = k|D0 = j)e(1−2p)t = jmk,

and furthermore that

P(Dt = k|Dt ≥ 1)→ ak as t→∞.

Proof : By Lemma 3.3(a)(ii) of Pollett (1988) and using Lemma 3.2, we have that

P(Dt = k|D0 = j) =
j

k
e−(1−2p)tP(Xt = k|X0 = j),

where (Xt)t≥0 is a continuous time Markov chain with generator Q̄, and the first
part follows on taking limits as t → ∞ and recalling the definition of mk = uk/k.
For the second part,

P(Dt ≥ 1|D0 = j)e(1−2p)t = jE
(

1

Xt
|X0 = j

)
.

We can also calculate

P(Dt = k|D0 = j,Dt ≥ 1) =
P(Xt = k|X0 = j)

kE
(

1
Xt
|X0 = j

) .

As we are assuming (Xt)t≥0 is positive recurrent, P(Xt = k|X0 = j) → uk as

t→∞, and furthermore E
(

1
Xt
|X0 = j

)
→
∑∞
i=1

ui

i =
∑∞
i=1mi as t→∞. Hence

lim
t→∞

P(Dt = k|D0 = j,Dt ≥ 1) =
mk∑∞
i=1mi

= ak
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for any j, giving the result. �

Our aim now is to find when Q̄ is positive recurrent, and to find out more
about our quasi-stationary distribution a when it is. We will do this via a Foster-
Lyapunov approach to investigating the tail of a stationary distribution and whether
one exists. Given a test function V , the drift of V (Xt) when Xt = x is given by
∆V (x) = Q̄V (x), which is

p(x+ 1)V (x+ 1)− p(x+ 2)V (x) + pE(V (1 + Y )), (3.3)

where Y ∼ Bin(x− 1, p).

Proposition 3.5. Let q > 0.

(1) If −1+q+pq < 0 then Q̄ is positive recurrent and its stationary distribution
has a qth moment.

(2) If pq = 1− q, p < e−1 and r > 0 then Q̄ is positive recurrent and a random
variable X with its stationary distribution has E(Xq(log(X + 1))−(r+1))
finite.

Proof : We apply Theorem 4.2 of Meyn and Tweedie (1993), which in our setting
with state space equal to N tells us that, given a function f : N → [1,∞), if there
exists a function V : N→ R+ such that

∆V (x) ≤ −c1f(x) + c2

then the Markov chain is positive recurrent and that a random variable X with its
stationary distribution has E(f(X)) finite.

For f(x) = xq, set V (x) = f(x) = xq. Then (3.3) becomes

∆V (x) = p((x+ 1)q+1 − (x+ 2)xq + E((1 + Y )q)).

For large x the concentration of the Binomial around its mean will give E((1 +
Y )q)) ∼ (1 + (x− 1)p)q, giving, as x→∞,

∆V (x) ∼ p(x+ 1)q
(

(x+ 1)− (x+ 2)

(
x

x+ 1

)q
+

(
1 + (x− 1)p

x+ 1

)q)
∼ p(x+ 1)q

(
(x+ 1)− (x+ 2)

(
1− q

x+ 1

)
+ pq

)
∼ p(x+ 1)q(−1 + q + pq).

Hence, if −1 + q + pq < 0, then we will have ∆V (x) ≤ −c1f(x) + c2 as required,
showing that the stationary distribution has a qth moment.

Now let f(x) = (x+ 1)q(log(x+ 1))−(r+1) with q such that pq = 1− q, and let

V (x) = xq(log(x+ 1))−r.
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Then, similarly to the above, we get

∆V (x) ∼ p(x+ 1)q

(log(x+ 2))r

(
(x+ 1)− (x+ 2)

(
x

x+ 1

)q (
log(x+ 2)

log(x+ 1)

)r
+

(
1 + (x− 1)p

x+ 1

)q (
log(x+ 2)

log(2 + p(x− 1))

)r)
∼ p(x+ 1)q

(log(x+ 2))r

(
−1 + q − r x+ 2

(x+ 1) log(x+ 1)
+ pq

(
log(x+ 2)

log(2 + p(x− 1))

)r)
∼ p(x+ 1)q

(log(x+ 1))r
(1− q)

(
−1− r

(1− q) log(x+ 1)
+

(
log(x+ 2)

log(2 + p(x− 1))

)r)
∼ p(x+ 1)q(1− q)

(log(x+ 1))r

(
−1− r

(1− q) log(x+ 1)
+ 1− r log p

log p+ log x

)
∼ p(x+ 1)q(1− q)

(log(x+ 1))r
r

log x

(
− log p− 1

1− q

)
∼ (x+ 1)q

(log(x+ 1))r+1
p(1− q)r

(
− log p− 1

1− q

)
.

As pq = 1 − q, we have log p = log(1−q)
q and thus, as − log(1−q)

q − 1
1−q < 0, we

will have ∆V (x) ≤ −c1f(x) + c2, and hence that a random variable X with the
stationary distribution of Q̄ has E(f(X)) finite. �

Corollary 3.6. If p < e−1 then Q̄ is positive recurrent.

Proof : This follows from Proposition 3.5 and the fact that −1 + q + pq < 0 for
sufficiently small q > 0 if p < e−1. �

By similar arguments, we can also obtain some negative results.

Proposition 3.7. If p > e−1 then Q̄ is transient.

Proof : By Theorem 7.2.2 of Menshikov et al. (2017), it will be enough to find a
threshold x0 ∈ N and bounded function V : N → R+ such that ∆V (x) < 0 for
x ≥ x0 and V (y) < infx<x0

V (x) for some y ≥ x0.
Consider the non-negative bounded test function V (x) = x−q, for some q > 0.

Then

∆V (x) = p((x+ 1)(x+ 1)−q − (x+ 2)x−q + E((1 + Y )−q)),

and

lim
x→∞

xq∆V (x) = −p(1 + q − p−q),

which is negative for some q > 0 if and only if p > e−1. Hence, if p > e−1 we can
choose q so that ∆V (x) < 0 for x sufficiently large, which gives the result. �

Proposition 3.8. Let q > 0 with −1+q+pq ≥ 0. Then the stationary distribution
of Q̄, if it exists, does not have a qth moment.

Proof : Let V (x) = xq, and first consider the case where −1 + q + pq > 0. Then,
as in Proposition 3.5 here we have ∆V (x) ∼ p(x+ 1)q(−1 + q+ pq) as x→∞, but
here this is positive. Hence there exists x0 such that E((max(Xt, x0))q), if it exists,
is strictly increasing in t, which means a stationary distribution of Q̄ cannot have
a qth moment.
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If −1 + q + pq = 0, then again consider V (x) = xq. We have

∆V (x) ∼ p(x+ 1)q
(
x+ 1− (x+ 2)

(
1− 1

x+ 1

)q
+

(
1 + p(x− 1)

x+ 1

)q)
∼ p(x+ 1)q

(
x+ 1− (x+ 2)

(
1− 1

x+ 1

)q
+ pq

(
1 +

1/p− 2

x+ 1

)q)
= p(x+ 1)q

(
−1 + q

x+ 2

x+ 1
− q(q − 1)(x+ 2)

2(x+ 1)2
+ pq + pq

q(1/p− 2)

x+ 1
+O

(
x−2

))
∼ p(x+ 1)q−1

(
q + q(1− q)

(
1

p
− 3

2

))
.

As p < e−1, this again will be strictly positive for x sufficiently large. �

Given the relationship between our quasi-stationary distribution a and the sta-
tionary distribution u of Q̄, a will have a (q + 1)th moment if and only if u has a
qth moment. Hence the criterion in Proposition 3.5 becomes −3 + β + pβ−2 < 0
for a to have a (β − 1)th moment, so a has tail behaviour close to that of a power
law with index β where −3 + β + pβ−2 = 0 in the sense that it is lighter than any
heavier tailed power law and heavier than any lighter tailed power law. The second
part of Proposition 3.5 and the −1 + q + pq case of Proposition 3.8 give stronger
conditions on the tail.

Remark 3.9. The results above do not give the recurrence properties of Q̄ in the
case p = e−1. However, Proposition 3.8 does show that if a stationary distribution
exists in this case it must have a heavier tail than any power law.

Remark 3.10. In the case where Q̄ is transient (or indeed null recurrent) an applica-
tion of Lemma 3.3(a)(ii) of Pollett (1988) tells us that P(Dt = k|D0 = j)e(1−2p)t →
0 as t→∞. This suggests that e(1−2p)t may no longer be the correct scaling. It is
possible that further analysis of the transient Markov chain may give more infor-
mation; it is also possible that a different quasi-stationary distribution may exist
with a different eigenvalue −λ and that there might then exist a positive recurrent
λ-dual, meaning that the scaling would be different. We leave these possibilities to
future work.

4. Convergence of conditional probabilities

In this section we complete the proof of parts (a) and (c) of Theorem 2.1. We note
that under the assumptions of the theorem Corollary 3.6 tells us that Q̄ is positive
recurrent and hence that Proposition 3.4 applies, meaning that the probability
that in the continuous time model the tracked vertex Vt has degree d at time t,
conditional on its degree being non-zero, is ad. It remains to prove that this also
applies to a randomly chosen vertex.

We define a continuous time process (Ut)t≥0 by, each time a vertex is added to
the graph, moving to a vertex chosen uniformly at random from the vertices of the
new graph. This ensures that P(Ut = v|Nt = n) = 1/n for v ≤ n. Let D̄t be the
degree of Ut in Γt.
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Lemma 4.1. Given ε > 0, there exists vε such that for v ≥ vε 1 ≤ P(Vt=v)
P(Ut=v)

≤ 1 + ε

Proof : First of all we note that we can consider the tracking process in the discrete
time model, letting Ṽn be the tracked vertex at time n. We show by induction on
n that, at time n > n0, for any non-initial vertex v > n0 we have P(Ṽn = v) = 1

n−1
and that for an initial vertex v ≤ n0 we have P(Ṽn = v) = n0−1

n0(n−1) . For the initial

step, at time n = n0+1 there is only one non-initial vertex, labelled n0+1, and this
will be the tracked vertex precisely if the vertex originally tracked was duplicated,
which happens with probability 1

n0
= 1

n−1 , while an initial vertex v will be the
tracked vertex precisely if it was the original tracked vertex and was not the first
vertex duplicated, which has probability 1

n0
· n0−1

n0
= n0−1

n0(n−1) as required. For the

inductive step, a non-initial vertex v will be tracked at time n if and only if it
was tracked at time n− 1 (with probability 1

n−2 by the induction hypothesis) and

not duplicated between times n − 1 and n, which has probability n−2
n−1 ; hence the

probability that it is tracked at time n is 1
n−2 ·

n−2
n−1 = 1

n−1 as required. For an

initial vertex v, replace 1
n−2 by n0−1

n0(n−2) , giving the probability of it being tracked

at time n as n0−1
n0(n−1) , again as required.

In the continuous time model, the sequence of changes of tracking is independent
of the times of the duplication events, so we can conclude that

P(Vt = v|Nt = n) =

{ 1
n−1 n0 < v ≤ n
n0−1

n0(n−1) v ≤ n0

Given a specific time t, the number of vertices in Γt is Negative Binomial with
parameters n0 and e−t (which can be deduced from Yule, 1924), so, for v > n0,

P(Vt = v) =

∞∑
n=v

1

n− 1

(
n

n0

)
e−n0t(1− e−t)n−n0 .

Similarly

P(Ut = v) =

∞∑
n=v

1

n

(
n

n0

)
e−n0t(1− e−t)n−n0 .

Hence, given ε > 0, there exists vε such that for v ≥ vε 1 ≤ P(Vt=v)
P(Ut=v)

≤ 1 + ε. �

In the continuous time model, both the events that Vt = v and Ut = v are
independent of the degree of v, and P(Vt < vε)→ 0 as t→∞. Hence we have that

P(Dt = k)

P(D̄t = k)
→ 1

and

P(Dt > 0)

P(D̄t > 0)
→ 1

as t→∞, which completes the proof that P(Un = k|Un 6= 0) = ak, and, to complete
the proof of part (a) of Theorem 2.1, note that if conditioning on Gm we can simply
relabel Gm as Γ0. Part (c) then follows from Propositions 3.5 and 3.8.
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5. Convergence in probability

In this section we will complete the proof of part (b) of Theorem 2.1. We will be
working with the continuous time embedding (Γt)t≥0, and for now we will assume
that the initial graph Γ0 is two vertices connected by a single edge, so that n0 = 2.

Let Et be the number of edges of Γt at time t; then Et = e2ptWt where (Wt)t≥0 is
a non-negative martingale, and by Theorem 2.9 of Hermann and Pfaffelhuber (2016)
we know that Wt converges in L2 to a limit W . We first show a slight strengthening
of the part of Theorem 2.9 of Hermann and Pfaffelhuber (2016) which refers to the
number of edges.

Lemma 5.1. We have that P(W = 0) = 0.

Proof : Almost surely, there will be s such that Γs has two edges i and j which do
not share a vertex. For t > 0, we can then consider the subgraphs of Γs+t, which

we will refer to as G
(i)
t and G

(j)
t , descended from the edges i and j, and the fact

that the edges do not share an endpoint means that these two graph processes are

independent. Let E
(i)
t and E

(j)
t be the numbers of edges in the two subgraphs and

let W
(i)
t and W

(j)
t be the corresponding martingales, with limits W (i) and W (j).

Then P(W = 0) ≤ P(W (i) = 0)P(W (j) = 0), so P(W = 0) is either 0 or 1, but it is
shown in Hermann and Pfaffelhuber (2016) that P(W = 0) < 1. �

Consider the graph at time s, when it has Es = e2psWs edges. We use a similar
idea as in the proof of Lemma 5.1, decomposing the graph Γt for t > s as a union of

graphs Γ
(1)
t−s,Γ

(2)
t−s, . . . ,Γ

(Es)
t−s , where Γ

(i)
t−s descends from edge i of Γs, which clearly

then each have the same distribution as Γt−s. Let the number of vertices of degree

k of Γ
(i)
t at time t be N

(i)
t,k .

We note that the processes (Γ
(i)
t )t≥0 and (Γ

(j)
t )t≥0 depend only on duplication

events at the vertices of edges i and j and their descendants and so are independent
if edges i and j do not have a vertex in common; furthermore we note that the
number of pairs of edges which do have a vertex in common is given by the number
of 2-stars Ss in the graph Γs, which by the second part of Theorem 2.9 of Hermann

and Pfaffelhuber (2016) we know is equal to e(2p+p
2)sS̃s where (S̃t) → S almost

surely for some limiting random variable S.
For fixed s and t > s, consider the random variable

N̂t,k =

Es∑
i=1

N
(i)
t−s,k,

which can be thought of as the total number of degree k vertices at time t− s in all
the subgraphs descended from each edge of the graph at time s when considered
separately. (This differs from Nt,k in that a vertex may be in more than one of

these subgraphs, and for N̂t,k we consider its degree in each subgraph separately.)
Then

E(e−2ptN̂t,k|Fs) = WsE(e−2p(t−s)Nt−s,k),

and we have

Var
(
e−2ptN̂t,k|Fs

)
= e−4ps Var

(
b∑
i=1

e−2p(t−s)N
(i)
t−s,k

)
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on the event Es = b, and thus

Var
(
e−2ptN̂t,k|Fs

)
≤ e−4ps[Wse

2ps + 2e(2p+p
2)sS̃s] Var(e−2p(t−s)Nt−s,k), (5.1)

and as e−2ptNt,k < e−2ptEt = Wt we know that Var(e−2p(t−s)Nt−s,k) is bounded

as t → ∞. The convergence results for Ws and S̃s tell us that e−4ps[Wse
2ps +

2e(2p+p
2)sS̃s]→ 0 almost surely as s→∞, and hence (5.1) gives that for any u > 0

Var
(
e−2p(s+u)N̂s+u,k|Fs

)
→ 0 almost surely as s→∞, and hence

Var(e−2p(s+u)N̂s+u,k −WsE(e−2puNu,k))→ 0.

As we assume that Γ0 consists of two vertices connected by a single edge, the
initial degrees are 1, so using Lemma 4.1 and the first part of Proposition 3.4, we
have that e(1−2p)tP(D̃t = k) → mk as t → ∞. As the number of vertices at time

t is Negative Binomial with parameters 2 and e−t, E(Nt,k) = 2etP(D̃t = k) and so
e−2ptE(Nt,k) → 2mk as t → ∞. Using Ws → W in L2 and E(e−2puNu,k) → 2mk

as u→∞, we have e−2ptN̂t,k → 2mkW in L2 as t→∞.

It remains to show that N̂t,k is close to Nt,k. To do this, consider a vertex v in
Γs with degree j, and consider starting a tracked vertex process from this vertex.
As well as the Markov chain Dt which starts from j at time s giving the degree of

the tracked vertex, we can also consider Markov chains D
(i)
t which start from 1 and

whose values are the degree of the tracked vertex in the subgraph descended from
edge i, where i is one of the edges incident on v. Then Proposition 3.4 shows that

lim
t→∞

P(Dt ≥ 1)e(1−2p)(t−s) = jmk,

and that

lim
t→∞

P(D
(i)
t ≥ 1)e(1−2p)(t−s) = mk.

Hence the probability that more than one of the D
(i)
t is positive is o(e(1−2p)t) as

t→∞, and hence E|N̂t,k −Nt,k| = o(e2pt).
We can apply the same argument to the total number of vertices with positive

degree at time t,
∑∞
k=1Nt,k, showing that when scaled by e−2pt it converges in L1

to 2
∑∞
k=1mkW . Hence we can conclude that e−2ptNt,k converges in L1 to 2mkW

as t → ∞ and that e−2pt
∑∞
k=1Nt,k converges in L1 to 2W

∑∞
k=1mk as t → ∞;

hence the proportion of vertices in the connected component which have degree k
converges to mk/

∑∞
k=1mk = ak in probability as t→∞.

Finally, if we start with a more general graph Γ0 we can apply the above argument
to the subgraphs descended from each edge, and use the same idea as above to
obtain the behaviour of the graph as a whole. This completes the proof.

Remark 5.2. For the continuous time model, the above argument shows that the
number of vertices in the connected component of Γt,

∑∞
k=1Nt,k, grows at order

e2pt, with the constant of proportionality related to the random variable W . This
can be compared with the growth rate of the total number of vertices in Γt, which
by standard birth process results grows at order et. Hence the proportion of vertices
in the connected component decays at a rate of order e(2p−1)t; recall that 2p− 1 is
the eigenvalue associated to our quasi-stationary distribution.
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