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Abstract. Our model consists of a Brownian particle X moving in R, where a
Poissonian field of moving traps is present. Each trap is a ball with constant
radius, centered at a trap point, and each trap point moves under a Brownian
motion independently of others and of the motion of X. Here, we investigate the
‘speed’ of X on the time interval [0, t] and on ‘microscopic’ time scales given that
X avoids the trap field up to time t. Firstly, following the earlier work of Athreya
et al. (2017), we obtain bounds on the maximal displacement of X from the origin.
Our upper bound is an improvement of the corresponding bound therein. Then, we
prove a result showing how the speed on microscopic time scales affect the overall
macroscopic subdiffusivity on [0, t]. Finally, we show that X moves subdiffusively
even on certain microscopic time scales, in the bulk of [0, t]. The results are stated
so that each gives an ‘optimal survival strategy’ for the system. We conclude by
giving several related open problems.

1. Introduction

Brownian motion among a moving Poissonian trap field attached to Rd has been
studied recently in Peres et al. (2013). The discrete analogue of this model, that
is, random walk among a Poisson system of moving traps attached to the discrete
lattice Zd, has been studied concurrently in Drewitz et al. (2012). Both works gave
results on the large time asymptotics of the survival probability of the randomly
moving particle, where one defines survival up to time t to be the event that the
particle has not hit the traps until that time. Another important problem on this
model is that of optimal survival: How must have the system, which is composed of
the randomly moving particle and the field of traps, behaved (what strategy must
it have followed) given that the particle has avoided the traps up to time t? In the
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discrete setting, Athreya et al. (2017) addressed this issue, where they considered
the one-dimensional model on Z and focused on the maximal displacement of the
random walk from origin. Conditioned on survival, in order to avoid the traps, it is
natural to expect the particle to go not as far from origin as it otherwise would in
the absence of traps. In Athreya et al. (2017), Athreya et al. indeed showed that for
large t, with overwhelming probability, the random walk behaves subdiffusively in
order to avoid traps. In the present work, we extend their result to the continuous
case of Brownian motion among a Poissonian trap field on R, with an improvement
on the upper bound of maximal displacement from origin. Moreover, we show that
if the particle is ‘too slow’ or ‘too fast’ when traversing distances on the order of
its maximal displacement, its overall subdiffusivity is strengthened; therefore, in
particular the way in which X reaches the point of its maximal displacement also
matters. Finally, we consider microscopic time scales and show that the Brownian
particle must behave subdiffusively even on certain time scales of order o(t).

1.1. Formulation of the problem. The setting of a Brownian particle among a mov-
ing random trap field is formed as follows. Let X be a Brownian particle and let
X = (Xs)s≥0 represent its path on R, where we take X0 = 0. Note that we use
X both as the name of the particle and as the random variable representing its
sample path. Let PX and EX denote respectively the probability law and corre-
sponding expectation for X. Create a random environment on R via a ‘dynamic’
Poisson point process (PPP) Π = (Πs)s≥0 as follows. Let Π0 = {xi}i be a PPP
with constant intensity λ > 0, placed on R at time t = 0. Here, we refer to the
points of the PPP as trap points. Now let each trap point xi at t = 0 move under
a Brownian motion Y i = (Y is )s≥0 independently of all others and of X so that
Πs :=

{
xi + Y is

}
i

is the point process after each xi has moved for time s. Applying
the mapping theorem for Poisson processes, it can be shown that for each s > 0, Πs

is also a PPP with the initial intensity λ (see van den Berg et al., 1997 for details).
By a ‘trap’ associated to a trap point at x ∈ R, we mean a closed ball of fixed
radius a > 0 centered at x (in d = 1, note that this is just a closed interval). Then,
the moving (random) trap field K = (Ks)s≥0 is given by

Ks :=
⋃

xi∈ supp(Π0)

B̄(xi + Y is , a),

where B(x, a) denotes the open ball centered at x with radius a, and Ā denotes the
closure of a set A ⊆ R. Let P and E denote respectively the probability law and
corresponding expectation for the moving trap field, that is, for Π = (Πs)s≥0.

In this work, the Brownian particle X is assumed to live in R with the trap field
K attached to it. Let R(X) = (Rt(X))t≥0 represent the range process of X, where
Rt(X) := {Xs : 0 ≤ s ≤ t} is the set of all points in R that X visits up to time t.
Define T = inf {s ≥ 0 : Rs(X) ∩Ks 6= ∅} to be the first time that X hits a trap,
and {T > t} to be the event of survival up to time t.

The probability measure of interest is (E× PX)( · | T > t), the annealed proba-
bility conditioned on survival of X up to time t. By an optimal survival strategy,
we mean a collection of events {At}t>0 indexed by t such that

lim
t→∞

(E× PX) (At | T > t) = 1.
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We look for optimal survival strategies concerning the ‘speed’ of X, where by speed,
we refer to the Lebesgue measure of the range per unit time over a given time
interval. Our main result, Theorem 2.1, is on the maximal displacement of X from
origin up to time t, similar to Athreya et al. (2017, Thm.1.2). We emphasize that
this is a result on a ‘macroscopic’ time scale as it gives a strategy over the entire
interval [0, t]. Theorem 2.2 studies the effect of a certain ‘microscopic’ speed on
the maximal displacement over [0, t], which is a measure of the macroscopic speed.
Lastly, in Theorem 2.3, we show that trap-avoiding forces X to move subdiffusively
on certain microscopic time scales as well.

1.2. History. Trapping problems in the context of a single randomly moving parti-
cle among a (Poissonian) random field of traps have a long history. In the continu-
ous setting of a Brownian particle among frozen (static) Poissonian traps in Rd, the
large time survival asymptotics were studied in Donsker and Varadhan (1975) and
Sznitman (1998), and optimal survival strategies were studied in Schmock (1990),
Sznitman (1991) and Povel (1999) in dimensions d = 1, d = 2 and d ≥ 3, re-
spectively. Survival asymptotics involving a moving (dynamic) field of traps were
studied in Peres et al. (2013); however, as far as we know, there is no corresponding
work on optimal survival strategies. In the discrete setting, where the continuum
Rd is replaced by the integer lattice Zd, the survival asymptotics of a random walk
among frozen Bernoulli traps were studied in Donsker and Varadhan (1979) and
Antal (1995). We note that in the discrete setting, as long as hard-killing rule is
applied, where the system is killed instantly the first time it hits a trap, there is no
difference between the cases of Bernoulli traps and Poissonian traps provided that
the traps are frozen.

In the discrete setting, a dynamic version of the model studied in Antal (1995)
was introduced in Drewitz et al. (2012) as follows. At t = 0, the random walker
X is placed at the origin, and the environment is composed of a trap field on Z
with each integer site having a random number of trap points, which are i.i.d. with
a Poisson distribution. The dynamics of each trap point and X are governed by
independent random walks, where trap points have a common jump rate, and X
has a different jump rate. In Drewitz et al. (2012), both the annealed and quenched
survival asymptotics were studied under a soft-killing rule, where the particle X is
killed at a rate proportional to the number of trap points present at the site visited
and to an interaction parameter γ ≥ 0. (Note that by taking γ = ∞, one may
switch to hard-killing rule.) In Athreya et al. (2017), Athreya et al. studied the
optimal survival problem on the model introduced in Drewitz et al. (2012), and
found bounds on maximal displacement of X from origin conditioned on survival
up to time t. The current work originated from Athreya et al. (2017) in search for
an extension of the results therein to the continuous setting, and for a better upper
bound on the maximal displacement of X.

The organization of the paper is as follows. In Section 2, we present our results.
In Section 3, we develop the preparation needed for the proofs of the results. Sec-
tion 4 is devoted to the proof of Theorem 2.1, which is our main result. The proofs
of Theorem 2.2 and Theorem 2.3 are given in Section 5. Finally, we briefly mention
some open problems related to our model in Section 6.
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2. Results

We introduce further notation in order to state our results. Let

Mt(X) := sup
s≤t

Xs, mt(X) := inf
s≤t

Xs,

and define ‖X‖t := max {Mt(X),−mt(X)} to be the maximal displacement of X
from origin up to time t. We write P := E×PX as the annealed probability measure
for ease of notation.

We now present our main result, which identifies an optimal survival strategy for
X among the moving field of traps described in the introduction. The result below
concerns the macroscopic behavior of X conditioned on survival up to time t.

Theorem 2.1. There exist constants c1 > 0 and c2 > 0 such that

lim
t→∞

P
(
‖X‖t ∈ (c1 t

1/3, c2 t
5/11) | T > t

)
= 1. (2.1)

We emphasize that Theorem 2.1 is an extension of and improvement on the
corresponding result in Athreya et al. (2017). It extends the corresponding result
in Athreya et al. (2017) to continuous setting, and it is an improvement in that
the epsilon in the exponent of t in the upper bound therein is lost, and that the
exponent of t in the upper bound is improved from 11/24 to 5/11.

The next result addresses the following question: How does X behave on its way
to the point of maximal displacement from origin, given that it avoids the trap field
up to time t? As the following theorem shows, if X moves ‘too fast’ or ‘too slow’
when traversing distances on the order of its maximal displacement from origin,
then its overall subdiffusivity on [0, t] is strengthened.

Theorem 2.2. Let 0 < ε < 1, 0 < κ < 1, and k > 0. Define τ1 := argmaxs∈[0,t]Xs

and suppose that Xτ1 = ‖X‖t. Define S := {s ∈ [0, t] : Xs ∈ (κ‖X‖t, ‖X‖t)}, and
the events

A1
t :=

{
∃ τ2 ∈ [0, t], Xτ2 = κ‖X‖t, |τ1 − τ2| ≤ k((1− κ)‖X‖t)2

}
,

A2
t := {|S| ≥ εt} ,

and let At = A1
t ∪A2

t . Then there exists a constant c3 > 0 such that

lim
t→∞

P
(
At, ‖X‖t ≥ c3 t4/9 | T > t

)
= 0.

Note that At in the theorem above is the event that X traverses the spatial
interval (κ‖X‖t, ‖X‖t) at least diffusively fast or stays inside this interval for a
total time of length at least εt. In Theorem 2.2, we suppose that X reaches its
point of maximal displacement from origin at its running maximum. It is clear
by symmetry of Brownian motion that the other case can be treated similarly by
setting τ3 := argmins∈[0,t]Xs and supposing that Xτ3 = −‖X‖t.

We compare Theorem 2.2 to Theorem 2.1, and see that the exponent in the upper
bound for ‖X‖t in Theorem 2.1 decreases from 5/11 to 4/9 in Theorem 2.2, which
means that traversing distances on the order of maximal displacement from origin
diffusively (too fast in this case) or spending too much time far away from origin
tends to confine X to a smaller interval around origin, conditional on survival
from traps. This could be heuristically explained as follows. When X traverses
large distances without being trapped, the trap points are swept out of the way
(actually, the trap points move out of the way, away from X, at least as fast as
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X moves) and piled up near the boundary of the range of X, but this sweeping
away becomes probabilistically too costly if the distance traversed by X diffusively
is as large as t4/9 up to a large enough constant. On the other hand, the trap
points that are already piled up near the boundary of the range, while X was on its
way to maximal displacement, will catch up with X if X is too slow moving back
towards origin. Therefore if X spends too much time at distances on the order of its
maximal displacement without being trapped, it can move at most t4/9 away from
origin up to a large enough constant. A larger displacement would mean piling up
of too many trap points near the boundary of the range so that at least one catches
up with X with overwhelming probability.

The next result concerns the microscopic behavior of X conditioned on survival
up to time t. By ‘microscopic’, we mean over time scales of order o(t) as t→∞.

Theorem 2.3. Let ε > 0, k > 0, and f : R+ → R+ be a function such that
f(t) → ∞ and f(t) = o(t1/3) as t → ∞. For n = 1, 2, . . . ,

⌈
εt1/3/f(t)

⌉
, let In(t)

be pairwise disjoint intervals in [0, t], where |In| = t2/3f(t) for each n. Let RIn :=
{Xs : s ∈ In}. Define the event

Bt :=
{
|RIn | ≥ kt1/3

√
f(t) for n = 1, 2, . . . ,

⌈
εt1/3/f(t)

⌉}
.

Then,
lim
t→∞

P (Bt | T > t) = 0.

Note that Bt in the theorem above is the event that X is at least diffusively
fast on at least εt1/3/f(t) many pairwise disjoint intervals in [0, t] of length t2/3f(t)
each.

Theorem 2.3 says that conditioned on survival up to time t, with overwhelming
probability, X is not diffusive on time scales of order higher than t2/3 in the ‘bulk’
of [0, t] for large t. Hence, X is subdiffusive not only on the macroscopic scale of t
but also on microscopic time scales as long as they are higher order than t2/3.

3. Preparations

In this section, we aim at obtaining a suitable expression that will serve as an
upper bound for

P (X ∈ · | T > t).

The line of argument will be similar to the one in Athreya et al. (2017). For an
upper bound, we write

P (X ∈ · | T > t) =
P (T > t, X ∈ · )

P (T > t)
, (3.1)

rewrite the numerator by ‘integrating out’ the Poisson field Π, and bound the
denominator from below via a survival strategy that is not too costly.

Henceforth, c, c1, c2, etc. will denote generic constants, whose values may change
from line to line. The notation c(κ) will be used to mean that the constant c depends
on the parameter κ. Furthermore, we will use B = (Bs)s≥0 to denote a generic
standard Brownian motion, and Px to denote the law of B started at position
x ∈ R. When random variables such as Rt, Mt, etc. are written without regard to
a particular Brownian motion, they are to be understood as functions of B. We will
use 1E as the indicator function for an event E, and |A| as the Lebesgue measure
of a set A ⊂ R.
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The survival probability of Brownian motion among a Poissonian trap field is
closely related to a particular functional of the Brownian path, namely the ‘Wiener
sausage’. Let Y = (Ys)s≥0 be the path of a Brownian particle Y . Then the Wiener
sausage associated to Y up to time t is defined as

W0(t) :=
⋃
s≤t

B(Ys, a).

If f : [0,∞)→ R is a deterministic function, letting f(s) = fs, the Wiener sausage
associated to Y with drift f up to time t can be defined as

Wf (t) :=
⋃
s≤t

B(Ys + fs, a).

Then, by a standard application of Fubini’s theorem, one can integrate out the
Poisson field and show as in Peres et al. (2013, Lemma 2.1) that

P(T > t | X) = exp
(
−λ EY [ |WX(t)| | X]

)
, (3.2)

where Y is independent of X, and P(· | X) denotes the conditional probability
given X. Thanks to (3.2), instead of dealing with the entire trap field Π and X,
it is enough to deal with two independent Brownian motions X and Y . Then, the
numerator in (3.1) can be written as

P (T > t, X ∈ · ) = (EX × E)[1{X∈ · }1{T>t}]

= EX [1{X∈ · }P(T > t | X)]

= EX [1{X∈ · } exp
(
−λ EY [ |WX(t)| | X]

)
]. (3.3)

Next, we obtain a lower bound for the denominator in (3.1). Let r = r(t)
with r(t) → ∞ as t → ∞. One way for X to survive is to be confined to the
ball B(0, r) while B(0, r + a) stays free of trap points up to time t. Recall that
Rt(X) = {Xs : 0 ≤ s ≤ t}. By a standard result (see for example Port and Stone,
1978) on the probability of confinement of a Brownian particle in a ball, for all
t > 0,

P (Rt(X) ⊆ B(0, r)) ≥ cd e−
ρd
r2
t, (3.4)

where ρd is the principal Dirichlet eigenvalue for the open unit ball in Rd and cd is a
constant that depends on dimension. Since d = 1 throughout this work, we suppress
the dependence on dimension. Define TB(0,r) := inf {s ≥ 0 : B(0, r) ∩Ks 6= ∅} to
be the first time that the trap field hits B(0, r). By an extension of (3.2), it is easy
to see that (Peres et al., 2013, Remark 2.3)

P(TB(0,r) > t) = exp

−λ EY
 ∣∣∣∣⋃

s≤t

B(Ys, r + a)

∣∣∣∣
 . (3.5)

Now let ε > 0 and write⋃
s≤t

B(Ys, r + a) = r
⋃
s≤t

B(Ys/r, 1 + a/r) (3.6)

so that for all large t, since r(t)→∞, we have

B(Ys/r, 1 + a/r) ⊂ B(Ys/r, 1 + ε) (3.7)
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for all s. Then, by Brownian scaling, it follows from (3.6) and (3.7) that for all
large t,

EY
 ∣∣∣∣⋃

s≤t

B(Ys, r + a)

∣∣∣∣
 ≤ rEY

 ∣∣∣∣ ⋃
u≤t/r2

B(Yu, 1 + ε)

∣∣∣∣


= r
(
EY
[
|Rt/r2(Y )|

]
+ 2(1 + ε)

)
= EY [ |Rt(Y )| ] + 2r(1 + ε), (3.8)

where the last equality follows from (1.4) in Feller (1951). Then, choosing r(t) =
t1/3 for optimality, it follows from (3.4), (3.5) and (3.8) that there exists a constant
c(λ) such that for all large t,

P (T > t) ≥ e−c(λ)t1/3 exp
{
−λ EY [ |Rt(Y )| ]

}
. (3.9)

Finally, using (3.3) and (3.9), and noting that |WX(t)| = |Rt(Y +X)|+2a, it follows
from (3.1) that

P (X ∈ · | T > t) ≤ ec(λ)t1/3EX
[
1{X∈ ·} exp

{
−λ EY [ |Rt(Y +X)| − |Rt(Y )| | X]

}]
(3.10)

for all large t. This will be the starting point in the proof of Theorem 2.1, which is
given in two parts in the next section.

4. Proof of Theorem 2.1

Proof of lower bound
From Tanré and Vallois (2006, Prop.4.4), we have the following asymptotics as
t→∞ for the range of B: for a > 0,

P0(|Rt| < a) = 8π2 t

a2
e−

π2

2
t
a2 (1 + o(1)).

Hence for any c > 0, we have

P0(|Rt| < ct1/3) =
8π2

c2
t1/3e−

π2

2c2
t1/3(1 + o(1)). (4.1)

Now consider the second expectation on the right-hand side of (3.10). Since both
X and Y have continuous sample paths almost surely, with PX -probability 1,

EY [ |Rt(Y +X)| − |Rt(Y )| ]

= EY
[
sup
s≤t

(Ys +Xs)− inf
s≤t

(Ys +Xs)− sup
s≤t

(Ys) + inf
s≤t

(Ys)

]
= EY

[
sup
s≤t

(Ys +Xs) + sup
s≤t

(−Ys −Xs)− 2 sup
s≤t

(Ys)

]
= EY

[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ 0 (4.2)

for all t ≥ 0, where we have used the symmetry of Y in passing to the second and
third equalities, and concluded that the expression is non-negative since the first
two suprema on the right-hand side could be opened at the argument maximum of
Y for a lower bound. Noting that PX(‖X‖t < ct1/3) ≤ P0(|Rt| < 2ct1/3), it follows
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from (3.10), (4.1) and (4.2) that

P (‖X‖t < ct1/3 | T > t) ≤ ec(λ)t1/3PX(‖X‖t < ct1/3)

≤ ec(λ)t1/3e−
π2

8c2
t1/3(1+o(1)),

where o(1) is used for the behavior as t→∞. This implies that if c <
√

π2

8c(λ) , then

P (‖X‖t < ct1/3 | T > t)→ 0 as t→∞.

Proof of upper bound
Let us recall (4.2) to start the proof:

EY [ |Rt(Y +X)| − |Rt(Y )| ] = EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
.

Let 0 < d < 1/2 be a number. Let c > 0 and σ(X) := argmaxs∈[0,t]Xs. Condition

X on the event
{
‖X‖t ≥ ctd

}
. Since X is Brownian, by symmetry, we may suppose

without loss of generality that Xσ(X) ≥ ctd. Define

τ := sup

{
s ≤ σ(X) : Xσ(X) −Xs =

ctd

2

}
so that 0 < τ < σ(X), and τ is a random variable depending only on X. Note
that for s ∈ [τ, σ(X)], we have Xs ≥ ctd/2. Let α ∈ (2d, 1). For each t ≥ 0, either
σ(X)− τ ≥ tα or σ(X)− τ ≤ tα.

Case 1: Suppose that σ(X)− τ ≥ tα. Then, for any t ≥ 0,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ EY

[(
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

)
1{Yσ(Y )≤ctd/3}1{σ(Y )∈[τ,σ(X)]}

]
≥ EY

[(
Xσ(Y ) − Yσ(Y )

)
1{Yσ(Y )≤ctd/3}1{σ(Y )∈[τ,σ(X)]}

]
≥
(
ctd/2− ctd/3

)
PY
(
Yσ(Y ) ≤ ctd/3, σ(Y ) ∈ [τ, σ(X)]

)
, (4.3)

where we have used the non-negativity of the expression inside the expectation on
the first line of (4.3) in passing to the first inequality, and the second supremum on
the second line is opened at s = 0 for a lower bound. It is well known that the joint
density of the running maximum Mt and the argument maximum σt of Brownian
motion is given by

P0 (Mt ∈ dm, σt ∈ du) =
m

π

1

u3/2
√
t− u

e−m
2/(2u)dm du, m ∈ [0,∞), u ∈ (0, t).

(4.4)
Since σ(X) − τ ≥ tα and α ∈ (2d, 1), integrating (4.4) over u ∈ [τ, σ(X)] and
m ∈ [0, ctd/3], it is easy to show that for each κ > 0 there exists c > 1 and t1 such
that

PY
(
Yσ(Y ) ≤ ctd/3 , σ(Y ) ∈ [τ, σ(X)]

)
≥ κ tα+2d−2 (4.5)

for all t ≥ t1. (Note that as κ increases, c increases as well so that we may and do
choose c > 1 in order to bound the first factor on the right-hand side of (4.3) from
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below.) Then, it follows from (4.3) that for each κ > 0, there exists c > 0 and t1
such that conditional on the event

{
‖X‖t ≥ ctd

}
, for all t ≥ t1,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ κtα+3d−2. (4.6)

Case 2: Suppose that σ(X)− τ ≤ tα. Define the interval

It := [(σ(X)− tα) ∨ 0, (σ(X) + tα) ∧ t] ,

where we use a ∨ b and a ∧ b to denote, respectively, the maximum and minimum
of the numbers a and b. Note that both σ(X) and τ fall inside It, and that since
α < 1, |It| ≥ tα for t > 1. Then, for any t ≥ 0,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ EY

[(
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

)
× 1{2Yσ(Y )−Yσ(X)−Yτ≤ctd/3}1{σ(Y )∈It}

]
≥ EY

[ (
(Xσ(X) −Xτ )− (2Yσ(Y ) − Yσ(X) − Yτ )

)
× 1{2Yσ(Y )−Yσ(X)−Yτ≤ctd/3}1{σ(Y )∈It}

]
≥
(
ctd/2− ctd/3

)
PY
(
2Yσ(Y ) − Yσ(X) − Yτ ≤ ctd/3, σ(Y ) ∈ It

)
, (4.7)

where the first supremum is opened at s = σ(X) and the second supremum is
opened at s = τ for a lower bound. Write

PY
(
2Yσ(Y ) − Yσ(X) − Yτ ≤ ctd/3, σ(Y ) ∈ It

)
=

∫
It

PY
(
2Yσ(Y ) − Yσ(X) − Yτ ≤ ctd/3 | σ(Y ) = r

)
PY (σ(Y ) ∈ dr) . (4.8)

It is well known that the argument maximum σt of Brownian motion has the
arcsine distribution given by

P (σt ∈ du) =
1

π
√
u(t− u)

du, u ∈ (0, t).

Since |It| ≥ tα for t > 1, it follows that for any t > 1,

PY (σ(Y ) ∈ It) ≥
2

πt
tα =

2

π
tα−1, (4.9)

where 2/(πt) is the minimum of the arcsine distribution on (0, t).
Next, it remains to find a lower bound for

PY
(
2Yσ(Y ) − Yσ(X) − Yτ ≤ ctd/3 | σ(Y ) = r

)
(4.10)

uniformly over r ∈ It. Since the probability in (4.10) decreases as |σ(Y )−σ(X)| and
|σ(Y )− τ | increase, and since |It| ≤ 2tα, implying that conditional on {σ(Y ) ∈ It}
both |σ(Y )−σ(X)| and |σ(Y )−τ | are at most 2tα, from the time-reversal symmetry
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of Brownian motion, we have for r ∈ It and t large enough (so that t > 2tα),

PY
(
2Yσ(Y ) − Yσ(X) − Yτ ≤ ctd/3 | σ(Y ) = r

)
≥ inf
r≤t−2tα

PY
(
Yσ(Y ) − Yσ(Y )+2tα ≤ ctd/6 | σ(Y ) = r

)
.

(4.11)

Observe that conditional on {σ(Y ) = r}, the process (Yσ(Y )+s − Yσ(Y ))s∈[0,t−r] is
a Brownian motion starting at 0, and conditioned to avoid [0,∞). Let τA =
inf {s > 0 : Ys ∈ A} be the first hitting time of the set A ⊂ R by Y . Set τ0 :=
τ(−∞,0]. It then follows by symmetry that for all large t, (4.10) is bounded from
below by

inf
r≤t−2tα

PY
(
Y2tα ≤ ctd/6 | τ0 > t− r

)
. (4.12)

To avoid working with an event that has zero probability (the event {τ0 > t− r}
is as such), suppose that Y is started at 1 instead of 0. Note that Y started at
any 0 < x < ctd/6 instead of 0 can only decrease the probability in (4.12). Let
PYy be the law of Y started at y. For 0 < s < t, the transition probability density
for Brownian motion started at x > 0 at time 0 and arriving at y > 0 at time s,
and that is conditioned to stay positive up to time t, is given by (see for instance
Katori, 2015, ex.1.14(ii))

pt(s, y | x) :=
1√
2πs

[
e−(x−y)2/(2s) − e−(x+y)2/(2s)

] Py(τ0 > t− s)
Px(τ0 > t)

, y ∈ (0,∞),

where Px is, as introduced before, the law of Brownian motion started at x. It
follows that for t large enough and r ≤ t− 2tα,

PY
(
Y2tα ≤ ctd/6 | τ0 > t− r

)
≥ 1√

4πtα

∫ ctd/6
0

[
e−(1−y)2/(4tα) − e−(1+y)2/(4tα)

]
PYy (τ0 > t− r − 2tα) dy

PY1 (τ0 > t− r)

≥ 1√
4πtα

PYctd/7 (τ0 > t− r − 2tα)

PY1 (τ0 > t− r)

∫ ctd/6

ctd/7

[
e−(1−y)2/(4tα) − e−(1+y)2/(4tα)

]
dy,

(4.13)

where in passing to the last inequality, firstly the lower limit of integration was
shifted from 0 to ctd/7 since the integrand is positive, and then PYy (τ0 > t− r − 2tα)

was taken outside the integral by setting y = ctd/7 for a lower bound. Recall that
the probability density of first hitting time of zero for a Brownian motion started
at x > 0 is given by

Px (τ0 ∈ du) =
xe−x

2/(2u)

√
2πu3

du, u ∈ (0,∞).

It follows that for all large t and r ≤ t− 2tα,

PYctd/7 (τ0 > t− r − 2tα)

PY1 (τ0 > t− r)
=
ctd

7

∫∞
t−r−2tα

1
u3/2 exp[−(ctd/7)2/(2u)]du∫∞

t−r
1

u3/2 exp[−1/(2u)]du

≥ ctd

7

∫∞
t−r

1
u3/2 exp[−(ctd/7)2/(2u)]du∫∞
t−r

1
u3/2 exp[−1/(2u)]du

.

≥ ctd

14
. (4.14)
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In passing to the last inequality, we have used that for all large t,
exp[−(ctd/7)2/(2u)] ≥ 1/2 uniformly in u ∈ [t − r,∞) since u ≥ t − r ≥ 2tα

and α > 2d, and that exp[−1/(2u)] ≤ 1. Furthermore, it is easy to see that for
each κ > 0 there exists c > 1 and t2 such that∫ ctd/6

ctd/7

[
e−(1−y)2/(4tα) − e−(1+y)2/(4tα)

]
dy ≥ κt2d−α

for all t ≥ t2, and hence by (4.13) and (4.14) that

PY
(
Y2tα ≤ ctd/6 | τ0 > t− r

)
≥ κt3d−3α/2 (4.15)

for all t ≥ t2 uniformly in r ≤ t− 2tα. Combining this with (4.7)-(4.9) and (4.11),
it follows that for each κ > 0, there exist c > 0 and t2 such that conditional on the
event

{
‖X‖t ≥ ctd

}
, for all t ≥ t2,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ κt4d−1−α/2. (4.16)

Recall that the choice of α ∈ (2d, 1) was arbitrary. Optimizing the lower bounds
in (4.6) and (4.16) over α gives α = 2(d+ 1)/3, which in turn gives for both cases
σ(X)− τ ≥ tα and σ(X)− τ ≤ tα the following result: for each κ > 0, there exists
c > 0 and t0 such that conditional on the event

{
‖X‖t ≥ ctd

}
, for all t ≥ t0,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ κt 11d

3 −
4
3 . (4.17)

Since κ in (4.17) can be arbitrarily large, in view of (3.10) and (4.2), to prove the
upper bound in (2.1), it suffices that 11d

3 −
4
3 = 1

3 , which yields d = 5/11. This
completes the proof.

5. Proof of Theorem 2.2 and Theorem 2.3

5.1. Proof of Theorem 2.2. Let 0 < ε < 1 and 0 < κ < 1 be fixed. Consider
A2
t , which is the event that S := {s ∈ [0, t] : Xs ∈ (κ‖X‖t, ‖X‖t)} has Lebesgue

measure ≥ εt, so that conditioned on A2
t , X stays inside (κ‖X‖t, ‖X‖t) for a total

time of length at least εt. Let c3 > 1 be a constant which will depend on κ and ε.
Then, conditional on A2

t and ‖X‖t ≥ c3 t4/9,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ EY

[(
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

)
× 1{Yσ(Y )≤κc3t4/9/2}1{σ(Y )∈S}

]
≥ EY

[(
Xσ(Y ) − Yσ(Y )

)
1{Yσ(Y )≤κc3t4/9/2}1{σ(Y )∈S}

]
≥
(
κc3t

4/9 − κc3t4/9/2
)
PY
(
Yσ(Y ) ≤ κc3t4/9/2, σ(Y ) ∈ S

)
(5.1)

for any t ≥ 0. One can show similarly to the argument that follows (4.3) that for
every c4 > 0, there exists c3 > 1 such that

PY
(
Yσ(Y ) ≤ κc3t4/9/2 , σ(Y ) ∈ S

)
≥ c4 t−1/9



44 M. Öz

for all large t. This completes the first part of the proof in view of (3.10), (4.2) and
(5.1). (Note that the argument here is the extension of case 1 in the proof of the
upper bound of Theorem 2.1 to α = 1.)

Now let k > 0 and consider A1
t , which is the event that there exist times τ1, τ2 ∈

[0, t] with Xτ1 = ‖X‖t and Xτ2 = κ‖X‖t such that |τ1 − τ2| ≤ k((1− κ)‖X‖t)2, so
that conditioned on A1

t , X traverses the interval (κ‖X‖t, ‖X‖t) at least diffusively
fast. Let c3 > 1 be a constant which will depend on κ and k. Then, conditional on
A1
t and ‖X‖t ≥ c3 t4/9,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ EY

[(
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

)
× 1{2Yσ(Y )−Yτ1−Yτ2≤(1−κ)‖X‖t/2}1{σ(Y )∈U}

]
≥ EY

[
((Xτ2 −Xτ1)− (2YσY − Yτ1 − Yτ2))

× 1{2Yσ(Y )−Yτ1−Yτ2≤(1−κ)‖X‖t/2}1{σ(Y )∈U}

]
≥
(

(1− κ)c3t
4/9/2

)
PY
(
2Yσ(Y ) − Yτ1 − Yτ2 ≤ (1− κ)‖X‖t/2, σ(Y ) ∈ U

)
(5.2)

for any t ≥ 0, where the interval U is chosen such that [τ1, τ2] ⊆ U ⊆ [0, t] and
|U | ≥ min

{
(‖X‖t)2, t

}
. Since |U | ≥ c3t8/9, one can show similarly to the argument

that follows (4.8) that for every c4 > 0, there exists c3 > 1 such that conditional
on A1

t and ‖X‖t ≥ c3 t4/9,

PY
(
2Yσ(Y ) − Yτ1 − Yτ2 ≤ (1− κ)‖X‖t/2 , σ(Y ) ∈ U

)
≥ c4 t−1/9

for all large t. This completes the proof in view of (3.10), (4.2) and (5.2).

5.2. Proof of Theorem 2.3. Let ε > 0 and k > 0 be fixed, and f : R+ → R+

be a function such that f(t) → ∞ and f(t) = o(t1/3) as t → ∞. Let In(t),
n = 1, 2, . . . ,

⌈
εt1/3/f(t)

⌉
be pairwise disjoint intervals in [0, t], each of length |In| =

t2/3f(t). In the rest of the proof, n runs from 1 to
⌈
εt1/3/f(t)

⌉
, and phrases such

as ‘for all n’ will mean for 1 ≤ n ≤
⌈
εt1/3/f(t)

⌉
. Let RIn := {Xs : s ∈ In} and

Bt be the event that |RIn | ≥ kt1/3
√
f(t) for all n, so that conditioned on Bt, X

is diffusive on at least εt1/3/f(t) many pairwise disjoint intervals in [0, t] of length
t2/3f(t) each.

Let S = ∪nIn. Then, conditional on Bt, for any t ≥ 0,

EY
[
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

]
≥ EY

[(
sup
s≤t

(Ys +Xs) + sup
s≤t

(Ys −Xs)− 2 sup
s≤t

(Ys)

)
(5.3)

× 1{
2Yσ(Y )−Yu−Yv≤kt1/3

√
f(t)/2

}1{σ(Y )∈S}

]
≥ EY

[
(Xu −Xv)−

(
2Yσ(Y ) − Yu − Yv

)
1{

2Yσ(Y )−Yu−Yv≤kt1/3
√
f(t)/2

}1{σ(Y )∈S}

]
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≥
(
kt1/3

√
f(t)− kt1/3

√
f(t)/2

)
PY
(

2Yσ(Y )−Yu−Yv ≤ kt1/3
√
f(t)/2, σ(Y ) ∈ S

)
,

(5.4)

where u and v are chosen from the interval Ij into which σ(Y ) falls, in such a way

that Xu−Xv ≥ kt1/3
√
f(t). Note that since we condition on Bt, by definition of Bt,

it is possible to find such a pair u, v in each In. Since maxw∈{u,v} {|σ(Y )− w|} ≤
t2/3f(t) and |S| ≥ εt, the second factor on the right-hand side of (5.4) can be
bounded from below by a positive constant c(ε, k) for all large t by using a method
similar to the one used in the proof of Theorem 2.1 starting with (4.8). This
completes the proof in view of (3.10) and (4.2).

6. Open problems

We conclude by giving several open problems related to our model.
1. Sharp upper bound on maximal displacement in d = 1: Here, we do not claim

that our upper bound in (2.1) is sharp. Further work is needed to either show that
the exponent 5/11 is sharp or find a better upper bound. We note that in Athreya
et al. (2017), it was conjectured that the fluctuations of X are on the scale of t1/3,
which would mean that the exponent 5/11 in (2.1) could be lowered to 1/3.

2. Maximal displacement in higher dimensions: The current work, in particular
Theorem 2.1, is for d = 1. The maximal displacement of X from origin in d ≥ 2
conditioned on survival stands as an open problem. In d = 1, we are able to express
|WX(t)|, that is, the volume of the Wiener sausage ‘perturbed by’ X, in terms of
the running maximum and running minimum of Brownian motions, on which the
entire analysis is based. In d ≥ 2, this nice connection to running extrema is lost,
therefore a different approach is needed.

3. Other kinds of optimal survival strategies: Finer questions could be asked
about the optimal survival strategy followed by the Brownian particle X. For
instance, what proportions of the time interval [0, t] does X spend ‘near’ origin and
‘far away’ from origin?

Strategies involving the trap field are also of interest. Our system is composed
of X and the trap field, and we have considered the strategies involving X only.
A natural question is: Does the trap field leave out space-time clearings (trap-
free regions) in all or part of [0, t] with overwhelming probability, given that X
avoids traps up to time t? Recall that in Section 3, in order to find a lower bound
for P (T > t), we have used a strategy where the trap field avoids B(0, t1/3 + a)
throughout [0, t]. Is this strategy optimal or does clearing a ball with radius o(t1/3)
in some or all of [0, t] a better strategy for survival (possibly coupled with a strategy
followed by X)?

4. Survival asymptotics in d ≥ 3: To the best of our knowledge, an exact value
for

− lim
t→∞

1

t
log(E× PX)(T > t) in d ≥ 3

has not been found. One can show using a subadditivity argument that this Lya-
punov exponent exists and is positive, and can bound it from below using Jensen’s
inequality and from above using Pascal’s principle (see Peres and Sousi, 2012). We
conjecture that the upper bound coming from Pascal’s principle coincides with the
actual value of the exponent, however we are unable to prove it. We note that the
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analogous question in the discrete version of the current problem was also left open
in Drewitz et al. (2012).
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E. Tanré and P. Vallois. Range of Brownian motion with drift. J. Theoret. Probab.
19 (1), 45–69 (2006). MR2256479.

http://www.ams.org/mathscinet-getitem?mr=MR2256479

	1. Introduction
	1.1. Formulation of the problem
	1.2. History

	2. Results
	3. Preparations
	4. Proof of Theorem 2.1
	5. Proof of Theorem 2.2 and Theorem 2.3 
	5.1. Proof of Theorem 2.2
	5.2. Proof of Theorem 2.3

	6. Open problems
	Acknowledgements
	References

