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Abstract. This paper is a further investigation of the problem studied in Xue
(2015). We are concerned with the contact process with random vertex weights on
the oriented lattice. Our main result gives the asymptotic behavior of the survival
probability of the process conditioned on only one vertex being infected at t = 0 as
the dimension grows to infinity. A SIR model and a branching process with random
vertex weights are the main auxiliary tools for the proof of the main result.

1. Introduction

In this paper we are concerned with the contact process with random vertex
weights on the oriented lattice Z‘j_ for d sufficiently large, where Z, = {0,1,2,...}.
This paper is a further investigation of the problem studied in Xue (2015), which
deals with the critical value of the aforesaid process. First we introduce some
notations and definitions. For x = (z1,...,zq) € Z%, we define

d
|zl = =
j=1

as the {1 norm of . For 1 < j < d, we use e; to denote the jth elementary unit
vector of Z‘_f_, ie.,

e :(o,...,o,j%h,o,...,O).
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We use O to denote the origin of Zi. For z,y € Z‘L we write z — y when and
only when

Y—T =¢;
for some j € {1,2,...,d}.

Let p be a random variable such that P(p € [0, M]) = 1 for some M € (0, +00)
and P(p > 0) > 0, then we assign an independent copy p(z) of p on each vertex
z € Z%. p(x) is called the vertex weight of 2. We assume all these vertex weights
are independent. After the vertex weights are given, the contact process {Ci}i>0
on Z4 with vertex weights {P(x)}zezi is a continuous time Markov process with
state space

. d
X={A: ACz%}

and transition rates function given by

Ci\{z} atratelifz e C,
CooyaUl) atrated T p@p)lyecy frg G 0

y: y—>(17
where A is a positive constant called the infection rate while 14 is the indicator
function of the event A.

Intuitively, the process describes the spread of an epidemic on Z‘i. Vertices in
C; are infected while vertices out of C; are healthy. An infected vertex waits for an
exponential time with rate one to become healthy while a healthy vertex x may be
infected by an infected vertex y when and only when y — x. The infection occurs
at a rate proportional to the product of the weights on these two vertices.

The (classic) contact process is introduced by Harris (1974), where p = 1 and
infection occurs between nearest (un-oriented) neighbors. For a detailed survey of
the classic contact process, see Chapter 6 of Liggett (1985) and Part 1 of Liggett
(1999).

The contact process with random vertex weights is first introduced in Peterson
(2011) on the complete graph K,, by Peterson, where a phase transition consistent
with the mean-field analysis is shown. In detail, the infection dies out in O(logn)
units of time with high probability when A < ﬁ or survives for exp{O(n)} units
of time with high probability when A > ﬁ. In Xue (2015), Xue studies this
process on the oriented lattice and gives the asymptotic behavior of the critical
value of the process as the dimension d grows to infinity. When P(p = 1) = p =
1—P(p = 0) for some p € (0,1), the model reduces to the contact process on clusters
of the site percolation, which is a special case of the model introduced in Bertacchi
et al. (2011) with n = 1. In Bertacchi et al. (2011), Bertacchi, Lanchier and Zucca
study the contact process on G x K,, where G is the infinite open cluster of the
site percolation while K, is the complete graph with n vertices. Criteria judging
whether the process survives are given.

If the i.i.d. weights are assigned on the edges instead of on the vertices, the model
turns into the contact process with random edge weights, which is first introduced
by Yao and Chen (2012), where a complete convergence theorem is shown.

2. Main results

In this section we give our main results. First we introduce some notations
and definitions. We assume that {p(:ﬂ)}IGZd+ are defined under the probability
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space (Qq,Fa, ftd). The expectation with respect to pq is denoted by E,,. For
w € g, we denote by P\, the probability measure of our model with vertex
weights {p(z, W)}xezi . Py, is called the quenched measure. The expectation with
respect to P, is denoted by E) . We define

Poa() = By [Pro()] = / Pro() pa(deo),

which is called the annealed measure. The expectation with respect to Py 4 is
denoted by E) 4.
For any A C Z<4, we write C; as Cj* when Cy = A. If A = {«} for some z € Z%,
we write C;* as C7 instead of Ct{m}.
For \ > ﬁ, where F is the expectation with respect to p, there is a unique
solution 6 > 0 to the equation
\p?

=1. 2.1
Now we give the main result of this paper.
Theorem 2.1. For any A > ﬁ and 0 defined as in Equation (2.1),
Apl )
14+ M’

Theorem 2.1 gives the asymptotic behavior of the survival probability of the
process conditioned on O being the unique initially infected vertex as the dimension
d grows to infinity. The theorem only deals with the case where A > ﬁ because

dLiTOOPA,d(CtO #0,¥t>0)=E(

lim P o >0) =
i \a(CF #0,¥Vt>0)=0

for any A < ﬁ according to the main theorem given in Xue (2015), which shows

that the critical value of the infection rate of the model converges to E(;z) as

d — +00.
When p = 1, we have the following direct corollary.

Corollary 2.2. If p=1 and A > 1, then

o A—1
1 > -
dhm P>\7d(C't #* (Z),v t O) N

The counterpart of Corollary 2.2 for the classic contact process on the lattice is
given in Schonmann and Vares (1986). An independent proof for the same result
is given in Xue (2017a), the author of which was unware of reference Schonmann
and Vares (1986).

The counterpart of Theorem 2.1 for the contact process with random edges
weights on the (un-oriented) lattice is given in Xue (2017b). It is claimed in Xue
(2017h) that
AEp —1

AEp
for the process with edge weights which are independent copies of p and infection
rate A > E%;'

As an auxiliary tool for the proof of Theorem 2.1, we introduce a SIR, (susceptible-
infected-recovered) model with random vertex weights on Z‘j_.

: o
dgrfm Pra(CP #0,Vt>0) =
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After the vertex weights {P(m)}wezi are given, the SIR model {(S, I;)}i>0 is a
continuous-time Markov process with state space

Xo={(8,1): S,;1czq, S(I=0}

and transition rates function given by

(S, It \ {z}) at rate 1 if x € I,
Bel) =1 S\ () LUGRY) atrate 3 5 p(@)pw)Liyeny iz € 5, 32

For the SIR model, an infected vertex waits for an exponential time with rate
one to become recovered while a recovered vertex can never be infected again.

We write (S, I;) as (S, Ij*) when (Sp, In) = (Z1\ A, A), then it is easy to check
that

Pra(IP #0,Y t>0) < Py q(CP #0,Y t>0).

One way to check this inequality is to utilize the basic coupling of Markov processes
(see Section 3.1 of Liggett (1985)), we omit the details. As a result, to prove
Theorem 2.1, we only need to show that

Apb
1+ Apb

lim nf Pra(IP #0, t>0) > E( ) (2.3)

and

1;12i1£PA,d(Ct #0,vt>0) SE(1+>\p9). (2.4)

The proof of Theorem 2.1 is divided into three sections. In Section 3, we in-
troduce a branching process {W,, },,>0 with random vertex weights on the oriented
rooted tree T¢. We will show that the probability that the branching process sur-
vives converges to E( 1J’>§(9p9) as d — +oo.

In Section 4, we give the proof of Equation (2.3). The proof relies on a cou-
pling relationship between the branching process and the SIR model. A technique
introduced in Xue (2015) is utilized.

In Section 5, we give the proof of Equation (2.4). The proof relies on a coupling
relationship between the three aforesaid processes.

3. A branching process with vertex weights

In this section we introduce a branching process with random vertex weights
on the oriented rooted tree. We denote by T¢ the rooted tree that the root has d
neighbors while any other vertex on the tree has d + 1 neighbors. We denote by T
the root of the tree. There is a function f : T¢ — {0,1,2,...} which satisfies the
following conditions.

(1) f(T) =0.

(2) f(x) =1 for each neighbor x of Y.

(3) For any y # T, there is one neighbor u of y such that f(u) = f(y) — 1 while
there are d neighbors v of y such that f(v) = f(y) + 1.

For z,y € T¢, we write = y when and only when = and y are neighbors and
fly) = fz)+1.

Intuitively, YT is the ancestor of a family and has d sons. Each other individual
in this family has one father and d sons. = = y when and only when y is a son of x.
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We assume that {p(x)},cpae are i.i.d. copies of the random variable p, which is
defined as in Section 1. After the vertex weights are given, we assume that Y (x) is
an exponential time with rate one for each x € T¢ while U(z,y) is an exponential
time with rate %p(m)p(y) for any x,y € T such that 2 = y. We assume that all
these exponential times are independent under the given vertex weights. Then, the
branching process {W,, },>¢ is defined as follows.

(1) Wy ="7.

(2) For n >0, W41 = {y: 2=y and U(z,y) < Y(x) for some z € W, }.

{W,}n>0 describes the spread of a SIR epidemic on T¢. Initially, Y is infected. A
healthy vertex may only be infected by its father. If  is infected, then x waits for an
exponential time with rate one to become recovered while waits for an exponential
time with rate 3 p(z)p(y) to infect the son y. The infection really occurs when and
only when y is infected before the moment when z is recovered, i.e., U(x,y) < Y (z).

Similar with what we have done in Section 2, we denote by 13>\’w the quenched
measure of the branching process with respect to the random environment w in
the space where {p(x)},cra are defined. We denote by 13,\ 4 the annealed measure.
Note that according to our definition, for z = y = z, U(:z: y) and Uy, z) are
independent under P,\ « while positively correlated under PA d-

The branching process {W,,}n>0 with random vertex weights on the oriented
tree T? is first introduced in Pan et al. (2017). Some results obtained in Pan et al.
(2017) will be directly utilized in this section.

The following lemma is crucial for us to prove Theorem 2.1.

Lemma 3.1. For any A > BT and 0 defined as in Equation (2.1),

E(p
. =~ Apbl

The remainder of this section is devoted to the proof of Lemma 3.1. From now
on we assume that A > E( 7y Let M be defined as in Section 1. For any s € [0, M],
we define

Fy(s) = ﬁk,d(Wn = () for some n > O‘p(T) = 5>,
then the following two lemmas are crucial for us to prove Lemma 3.1.

Lemma 3.2. If {d;};>1 is a subsequence of 1,2,3, ... such that

l~1>l+moo Fdl( )
exists for any s € [0, M], then
1
lim Fy
Am Fa®) = 1755

for any s € [0, M].
Lemma 3.3. Ford>1and0<s<t< M,
|Eq(s) — Fy(t)| < At — s)M.

We first show how to utilize Lemmas 3.2 and 3.3 to prove Lemma 3.1. The proofs
of Lemmas 3.2 and 3.3 are given at the end of this section.
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Proof of Lemma 5.1: If Lemma 3.1 does not hold, then there are a constant ¢y > 0
and a subsequence {a;};>1 of 1,2,3,... such that

B 0) = P55

)| > eo, (3.1)

since R

Pra(Wn #0,Y n>0)=1—E(Fu(p)).
Since 0 < Fy(+) < 1, according to a classic procedure of picking subsequences, there
is a subsequence {d;};>1 of {a;};>1 such that

lim Fy,(r)

Jj—+oo
exists for any 7 € Q. We use Fa(r) to denote lim;_, o Fy,(r). It is obvious that
F4(s) is decreasing with s for each d > 1, then
Fd(rl) 2 Fd(s) Z Fd(’l’g) and FA(Tl) Z FA(TQ)
for any r < s < rg,r1,72 € Q. As a result, it is reasonable to define

FX(s) = ME,%Q Fa(r) and FX(s) = wgi,rrne(@ Fa(r)

for any s ¢ Q and hence
limsup Fy, (s) < F5 (s) while liminf Fy,(s) > Fi (s).

j—+oo Jj—+oo
By Lemma 3.3,
|Fa(r1) — Fa(rz)] < AM(rg — 1)
for ry < s <rg,71,72 € Q. Therefore, let 71 T s and 5 | s,
Fx(s) = Fx(s)

and
lim Fy,(s) = Fx (s) = FX(s)

Jj—+oo
for any s ¢ Q. For s ¢ Q, we use Fa(s) to denote Fx (s), which equals FX{(s). As
a result,
lim Fy,(s)

Jj—4o00
exists for any s € [0, M] and
lim Fy, (s) = Fa(s)

Jj—+o0

for any s € [0, M]. Then, by Lemma 3.2,

1
Fal9) = 137550
for any s € [0, M] and hence
. 1
i B (F ) = Bl )

However, this is contradictory with Equation (3.1) since {d;};>1 is a subsequence
of {a;};>1. As a result, Lemma 3.1 holds and the proof is complete.
O

At last we give the proof of Lemmas 3.2 and 3.3.
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Proof of Lemma 3.2: For T = y, conditioned on Y (T), p(T), p(y), the probability
that Y infects y is

— 1 _ e~ 3r(Mp@Y(T)

If {W,}n>o dies out, then for any y such that T infects y, the epidemic on the
subtree consisted of y and its descendant must die out, the probability of which is
Fa(p(y)). As a result,

E;Hd [Wn = () for some n > 0[p(Y), Y (Y),{p(y): T = y}}

- 11 (Fd(p(y))(l — e aP(MpWY (D) 4 ef%pmp(y)vm)

y: Y=y

and hence

Fy( E)\d

H (Fd sp(y)y(r))Jregsp(y)Y(T))],

y: Y=y

Since {p(y) : T = y} are independent,

Fu(s) = Brg (Hd(Y(T))>d —E (Hd(YO))d , (3.2)

where
Hq(t) = E<Fd(p)(l —e” dstp) + e—gstp>

for any t > 0 and Y} is an exponential time with rate one defined under some space
we do not care. For s € [0, M], we use F(s) to denote lim;_, ;o Fy, (s), which exists
according the assumption of Lemma 3.2. Then,

lim d;[1— Fy(p)][1 - e_dAzStp] = Xstp(1— F(p))

l—+o0
while
d[1 = Fa(p)] [1 — e~ 3] < 2\stp < 2AstM

for any d > 1. Hence, according to the dominated convergence theorem,
lim dy(Hy (t) — 1) = —/\stE<p(1 - F(p))). (3.3)
=400

According to the theory of calculus, if aq — 0,c¢q — +o00 and agqcq — ¢, then
(1+ agq) — e°. Therefore, by Equation (3.3),

lim (Hdl (Yb))dl _ e*)\sYoE(P(lfF(p))) .

l—=+o0
For each d > 1,
(Hd(Yo))d <(1- e AP efﬁ&t")d =1
Then, according to the dominated convergence theorem,
1

T il _ —AsYol _
Jim Fy(s) = lim B[ (Ha(10))"] = Be sl
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where 6 = E(p(1—=F(p))). As a result, F(s) = 1+1A35 for any s and we only need

to show that 6 = 6. According to the definition of 5,
~ 1 /\p2§
0=E(p(1-F =E(p(1 - <)) =FE =)
(o= F o) =B (o1~ = 2)) =B )

Therefore, to prove 6 = 0 we only need to show that ] # 0. This fact follows
directly from the fact that

limsup E(Fy(p)) <1
d——+o00
when A > ﬁ, which is proved in Pan et al. (2017).
(]

Proof of Lemma 5.5: We denote by {W,?},,>0 the branching process conditioned on
p(T) = s and denote by {W}},>0 the branching process conditioned on p(Y) = ¢.
We couple these two branching processes in a same probability space as follows.
For any = € T?, we assume that these two processes utilize the same exponential
time Y'(x) with rate one. For any z # T and = = z, we assume that these two
processes utilize the same exponential time U(z, 2) with rate 4 p(z)p(z). For each
y that T = y, we assume that {W?},>o utilizes an exponential time Uy (T, y) with
rate 5sp(y) while {W!},>0 utilizes an exponential time

Ut(T’ y) = inf {Ué(T’ y)7 Ut—s(Tv y)}:

where Uy_4(Y, y) is an exponential time with rate %(tfs)p(y) and is independent of
Us(T,y),Y(Y) under the quenched measure. Therefore, U (T, y) is an exponential
time with rate 4tp(y). According to the coupling of {W;3},>0 and {W}},>0,

|Fa(t) — Fa(s)| = Pra({W!}nz0 survives while {W3},50 dies out)
< ﬁ)\,d(Wls # W)
= ﬁ,\,d(Ut,s('ﬂy) <Y(Y) < Us(Y,y) for some y)
< Z ﬁA,d(Ut—S(T7y) <Y(Y) <Uy(T,y))

y:T=y
= Z E d[e_%Sp(y)Y(T) — e—%tp(y)Y(T)}

y: Y=y
= E)\,d —_

yéy [1 +3sply) 1+ %tp(y)}

3t —s)p
_dE[ A Y }Sd*(t—S)MZ)\(t—s)M
(1+ 2321+ 2)

and the proof is complete.

4. Proof of Equation (2.3)

In this section we give the proof of Equation (2.3). Throughout this section we

assume that
1 1

>
> E(p?) = M*
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where M is defined as in Section 1. For later use, we assume that there exists € > 0
that

P(szorpE [e,M}) =1. (4.1)
This assumption is without loss of generality according to the following analysis.
For p not satisfying (4.1), we let p,,, = pl{,>1/m}, then p > p,, and p,, — p as
m — +oo. It is obvious that p,, satisfies (4.1) while the process with weights given
by p has larger probability to survive than that with weights given by p,,. As a
result, if Equation (2.3) holds under assumption (4.1), then

L+ Apmbm
for any sufficiently large m, where P, 4, is the annealed measure of the process
with vertex weights which are i.i.d copies of p while 0,,, satisfies

A o) I o)
Bgirc}ofPA’dw(It #@,VtZO) Zblgigfp)\’d’pm(ft #@,VtZO) ZE(

( )\p%z
1+ Apimbm,
and it is easy to check that lim,, oo 0, = 0. Let m — 400, then Equation (2.3)
holds for general p.
First we give a sketch of the proof, which is inspired by the approach introduced
in Xue (2017b). We divide Z¢ into two parts I'y and I's such that

D172 = {x : |l2]| = oo logd]},
where o is a positive constant. The first step is to show that with probability at
least F( 1i§€76) +o(1) there exists O (57 (llcz)ggdd)) vertices on I'; (| I’ which have been
infected by O through paths on I';. The second step is to show that conditioned

on O(%) vertices being initially infected on I'y [\ T2, the SIR model on I'y
survives with high probability. To prove the first step, we construct a coupling
between the SIR on Zi and the branching process introduced in Section 3.

To give our proof, we introduce some definitions and notations. For sufficiently
large d, we define N(d) = log(logd),j(d) = d — Lﬁj + 1. Let o9 be a fixed

constant such that

)=1

70 € (0 510arnare))”

then we define

Iy ={o = (@1,22,...,20) € Z4 s 0| < |oologd] },
Iy = {m ezt |al > Laologdj}.

For n > 0, we define
Vn:{er‘i:||x||:nandweltoforsometEO}

as the set of vertices which have ever been infected with [; norm n. Since in
the SIR model, infection can not occur repeatedly between neighbors, {V},}n>0
can be defined equivalently as the following way. For each x € Zi, let 57(1‘) be
an exponential time with rate one. For any z,y that z — y, let ﬁ(x,y) be an
exponential time with rate 3p(z)p(y). We assume that all these exponential times
are independent under the quenched measure with respect to the given edge weights,
then
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(1) Vo ={O}.
(2) For each n > 0,
Vo1 ={y €Z% : 2 -y and U(z,y) < Y (z) for some z € Vi .

The intuitive explanation of the above definition is similar with that of the
branching process introduced in Section 3. Y (z) is time x waits for to become
recovered after x is infected while U(z,y) is the time x waits for to infect y.

Let
B e _  bovlogd
b = ST aepy M K = L N(d) I

then we have the following lemma.

Lemma 4.1.

. Apb
ggligp)\,dOVLUologd” > K(d)) > E(l —|—)\p9)’
where |VL<70 log d” is the cardinality of V|, 10gd] -
The proof of Lemma 4.1 is given in Subsection 4.2. As a preparation of this

proof, we give a coupling of {W,,},>0 and {V, },>0 in Subsection 4.1.
To execute the second step as we have introduced, we define

m(d) = inf{PA,d(ItA # () for all ¢t > O‘p(:r) =eforall z € A) :

ACT (T2 and |A] K(d)},

then we have the following lemma.

Lemma 4.2.
lim m(d) =1.

d—4o00
The proof of Lemma 4.2 is given in Subsection 4.3.

Now we show how to utilize Lemmas 4.1 and 4.2 to prove Equation (2.3).

Proof of Equation (2.3): For z,y € Z‘i, we write x = y when there exists
L1,T2,...,Tm

for some integer m > 1 such that . = z9g —» 21 = 29 = ... = Ty, = Typg1 = Y
and U(zj,xj41) < Y(x;) for all 0 < j < m. Then, according to the meaning of the
exponential times U(+,-) and Y(+),

UIA:AU{y:zjyforsomexeA}.
t>0

Since each infected vertex becomes recovered in an exponential time with rate one,
the infected vertices never die out when and only when there are infinitely many
vertices which have ever been infected. Therefore,

{ItA#@,VtEO}:{|{y:xjyforsomez€A}|:+oo} (4.2)
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for any finite A. According to the definition of V|4 1054, O = z for any z €
Vioologd|- As a result,

{y:x:;yfor some € VLUOlOng} - {y:ij} C UItO, (4.3)
>0

since O = y when O = x and « = y. By Equations (4.2) and (4.3),
P,\7d(\{y cx =3y for some z € Vg 10g4) } = +oo> <Pa(IP #0,Y1>0). (4.4)
According to the conditional probability formula,
P>\7d(\{y sz =y for some x € Vigi10g4)} = —|—oo> (4.5)
> P,\’d<|{y sz =y for some x € Vigi10g4)} = —l—oo“VLao logdj‘ > K(d))
X P,\,d(fVLgo logd| > K(d))-
We define h(d) as
h(d) = {A : ACT, (T and |A| > K(d)},
then by Equation (4.2),
Pra([{y s 2=ty for some o € Vig, 1og s} = +00||[Vigy ogay]| = K (@)  (4:6)

= Z P,\,d(|{y:m:iyf0r some = € Vg 10gal }| = +00,
Aeh(d)

Vieologd| = A“Vm logd| > K(d))

= 3 P A0 forall ¢ > 0|Vigyga) = A)
Aeh(d)

X P)\,d (VLUO logd| — A‘ ’VLUO log d] ‘ > K(d)>

For any 2 € V| 10g4], p(z) > 0 since x can be infected. Then, by Assumption
(4.1), p(x) > € for any = € V51054 As a result,

Pra (I;“ £ 0 for all { > o‘vm logd] = A) (4.7)

> PM(I{‘ £ for all £ > 0|V, 1oga) = A, p(x) = € for all € A).

Conditioned on {p(z) = ¢ for all z € A} for some A € h(d), the event {1 #
0 for all t > 0} is independent of {V| 4 10ga) = A}, since {I*};>0 only depends on

p1 = {ﬁ(w,y) c weAor |z|| > [oglogd],z — y} U {}N/(gc) c weTy}
and V|4, 10gq) only depends on

p2 = {U(x,y) : |all < loologd|,z =y} | J{Y(2): |l2] < loologd]}

while p; and s are independent when the values of {p(x)}.c4 are given.
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Therefore,
PA,d@A £ 0 for all £ > o’vm logd] = A, p(z) = ¢ for all z € A) (4.8)

=PI # 0 for all £ > 0

p(z) =cfor all x € A).
It is obvious that
Py g4 (ItA # () for all t > O‘p(x) =cforall x € A)
> Pya (ItB # () for all ¢t > O‘p(x) =c¢forall z € B)
for BC ACT (T2 As a result,
Py 4 (ItA # () for all t > O‘p(x) =eforall z € A) > m(d) (4.9)

for any A € h(d), since cach A € h(d) has a subset with cardinality K(d). By
Equations (4.7), (4.8) and (4.9),

Pra (I;‘ £ 0 for all { > o‘vm logd] = A) > m(d) (4.10)
for each A € h(d). Then, by Equation (4.6),
P)\yd(|{y sz =y for some x € Vigi10g4)} = —|—oo> (4.11)
>m(d) Y PA,d(‘/\_ao logd) = A||[Vicotogd)| = K(d)) = m(d).

Ach(d)
By Equations (4.4), (4.5) and (4.11),

Pra(IP #0,¥ ¢ >0) > m(d)P,\,d(|VLao logd)| = K(d))

and Equation (2.3) follows directly from Lemmas 4.1 and 4.2.
O

4.1. The coupling between {Wy}n>1 and {V,}n>1. In this section, we give a cou-
pling between the SIR model {V,,},>0 on Zi and the branching process {W,, }n>0
on T

We let {p(m)}eri be i.i.d copies of p as defined in Section 1. We let {Y(x)}xem

and {(NJ(ac,y)}x_w be exponential times with respect to {P(l’)}zezi as defined at

the beginning of this section. We let {V;, },>0 be the SIR model with respect to ¥ (-)
and U (+,-) as defined at the beginning of this section. Now we give the evolution
of {W,, }n>0 by induction.

We let Wo = T, p(T) = p(0) and Y (Y) = Y (O), where O is the origin of Z4.
For the d sons denoted by ny,na, ... ,ng of T, we let p(n;) = ple;),Y (n;) = Y(e;)
and U(Y,n;) = U(O,e;) for each 1 < i < d, where ¢; is the elementary unit
vector of Z‘i as defined in Section 1. Then Wj is defined according to the values of
{U(Y,n;) }1<i<a and Y(T) as in Section 3.

For n > 1, if |V,| = |W,| and there is a bijection g, : V;, — W,, such that
p(gn(x)) = p(z) and Y(gn(z)) = Y(x) for each z € V,, then we say that our
coupling is successful at step n. It is obvious that our coupling is successful at step
n = 1 since g1 can be defined as g1(e;) = n; for any e; € V4.
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If {Wy,}m<n is well defined and the coupling is successful at step m for all
1 <m < n, then W, is defined as follows. For any = € V,,, we define

q(a?):{y:x—>yandz—>yforsomez€Vn\{x}},

U(@)={y:z =y} \al2)
and h(x) = d — |q(z)|, then | (z)| = h(z). For each x € V,,, we arbitrarily choose
h(z) sons of g,(x) € Wy, which are denoted by w1, ws, ..., wy). Giving the h(z)
elements in ¢ (z) an arbitrary order y1,y2,...,y,.,,, then we let p(w;) = p(y;),

Y (w;) = Y (y;) and U(gn(z), w;) = U(z, ;) for each 1 < i < h(x). For any son u of
gn(x) which is not in {wy,wa, ..., W)}, let Y (u) be an exponential time with rate
one and p(u) be an independent copy of p such that Y (u) and p(u) are independent
of the aforesaid exponential times and vertex weights while let U(gy(z),u) be an
exponential time with rate %p(gn(l’))p(u). Then, W,,1; is defined according to the
values of {Y (9,.())}zev, and {U(gn(z), w)}zev, g, (2)=w as in Section 3.

If n is the first step that the coupling is not successful, then we let {Wy, }m>nt1
evolve independently of {V,, }m>nt1-

From now on we assume that {W,, },>0 and {V,,},,>0 are defined under the same
probability space. The annealed measure is still denoted by P 4.

The remainder of this subsection is devoted to the proof of the following lemma.

Lemma 4.3. We denote by B(d) the event that the coupling of {V,}n>0 on Z<
and {Wy, Yn>o on T? is successful at step m for all

1<m < |oglogd],

then
dEI—iI-loo P)\7d (B(d)) =1.

Proof of Lemma /.5: First we claim that

d=0-1AM2
02) < .
Pra(|Vinl > d°%) < S (4.12)
for each 0 < m < |oglogd]|. Equation (4.12) follows from the following analysis.

—

For a given oriented path | : O =29 > 21 — ... = =, On Zi,

Pyq (ﬁ(xj,:er) < ?(1’]) forall0 <j<m— 1) < <2M2>m,

since }7() is an exponential time with rate one while U (+,-) is an exponential time
with rate at most %M 2, The number of oriented paths starting at O with length
m on Z;r is d™. As a result,

Ex.d|Vin| < (2M2)mdm = (A\M?)",

since x € V;;, when and only when there exists an oriented path [:0= Ty — 1 —
coo = Ty, = x that U(zj,2j41) <Y(z;) forall 0 < j <m —1.

Then, according to the Chebyshev’s inequality and the fact that oglog(AM?) <
1

10
oo log d] oo logd] —0.1 2
m _d AM
P ( > |V d0'2) <d** Y (w)" < S
Ad P Vil > > — ( ) = AM2 -1

and Equation (4.12) follows from which directly.
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For 1 <m < |oglogd]|, we use B(d, m) to denote the event that the coupling of
{Va}n>0 on Zi and {W,, },>0 on T? is successful at step [ for all 1 <1 < m. Then
B(d) = B(d, |oglogd]) and Py 4(B(d,1)) = 1.

For d > 2 and 1 < m < |oglogd| — 1, we denote by J(d,m) the event
that U(z,y) > Y(x) for any z € V,, and any y € q(z). We use J(d) to de-
note ﬂ};fillog d)=1 J(d,m), ie., J(d) is the event that U(z,y) > Y(x) for any
x € Ugiéog =1y, and any y € q(z).

It is easy to check that there exists a vertex y satisfying x — y, z — y for given
x,z € Vi, when and only when z — z = ¢; — ¢; for some 1 <4,j < d and such y is
unique that y = x 4+ e; = z + ¢;. Hence,

lg(@)] < [Vin| =1 < [Vin] (4.13)

for any « € V,,,. For k < |oglogd], conditioned on B(d, k), the coupling will be
successful at step k+ 1 if J(d, k) occurs and U(gx(z),y) > Y (gx(x)) for any x € Vj,
and any y that gi(z) = y while y # w1, wa, ..., wy). Then, by Equation (4.13)
and the fact that Y (-),Y () are exponential times with rates 1 while U(-,-), U(-, ")
are exponential times with rates at most %M 2,

2
PM(B(d, k+ 1)‘B(d, k), |Vi| < d0~2) > 1002w 22 g o500,
(4.14)
By Equations (4.12) and (4.14),
Pra(B(d:k+1)) >Pra(B(d. k+ 1), B(d, k), Vi < d"?)
>Py,a(B(d, k+1)|B(d, k), |Vi| < d?)
x [Pra(B(dB) = P(| > d*2)]
=01 \M?
>(1— 2406 S .
>(1- 220270 [Pra(B@d.K)) - o] (419)

By Equation (4.15),

(1 — 2AM2d~06)q0
2(\M2 — 1)

Pra(B(d.k+1) +

(1 _ 2)\M2d_0'6)d0'5}

> (1 — 2)\M2d_0'6) [P/\,d (B(d, k)) + 200M?2 — 1)

and hence

1— 2)\M2d—0.6>d0.5:|

Pra(B(d. 1) 2(1 = 200%700) " 1 4 : 2(A\MZ — 1)
(1 o 2)\M2d70.6)d0.5
S (4.16)

for 1 < k < |oglogd], since Py 4(B(d,1)) = 1.
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Lemma 4.3 follows from Equation (4.16) directly since B(d) = B(d, |o¢logd])
and
1— 2)\M2d_0'6)d0'5

2(AM? - 1)

lim {(1 — 2)\M2d—0.6)L00 log d]—1 {1 i (

d— o0

(1 _ 2)\M2d_0'6)d0‘5 _
2(AM?2 —1) -

O

4.2. Proof of Lemma /.1. In this subsection we give the proof of Lemma 4.1. As a
preparation, we introduce some notations and definitions. For sufficiently large d,
let N(d) = log(logd) as we have introduced. For each x € T?, we give the d sons
of z an order z(1),x(2),...,z(d), i.e., z(i) is the ith son of . Then, we define

(1) Wo = T.

(2) For each n > 0,

ﬁ/\n_H ={y : there exists = € W, that y = x (i)
d

for some ¢ < d — LWJ and U(z,y) < Y(z)}.

It is obvious that Wn C W, for each n > 0. We define

loo logd]—1

D= {y : there exists x € U W
m=0

such that y = z(i) for some i > j(d) and U(z,y) <Y (z)},

where j(d) = d— L%J + 1 as we have introduced. The proof of Lemma 4.1 relies

heavily on Lemma 4.3 and the following lemma.

Lemma 4.4.

Viogd |—
WJ Wl_o’o logd]—1 7é @> =1

lim PA,d(|ﬁ| > |
d——+o00
Note that we use P, 4 instead of ﬁ)\,d in Lemma 4.4 since we have already coupled
{Wy}n>1 with {V;,},>1. The proof of Lemma 4.4 is given in the next subsection.
Now we give the proof of Lemma 4.1.

Proof of Lemma /.1: For each u € T¢, we denote by T, the subtree of T¢ rooted at
u and consisted of u and its descendants. We denote by x(u) the indicator function
of the event that the infected vertices in the SIR model confined on T, with u
being initially infected while others being initially susceptible never die out. For
each u € ﬁ, since u has been infected by T through a path from T to u, p(u) > 0
and hence p(u) > € according to Assumption 4.1. For any u,v € ﬁ, it is easy to
check that
T,NT, =0 and T,N ( U W,) = 0.
n<|oologd|—1

Therefore, conditioned on /WLUO logd)—1 7 0 while |13| > Lvﬁ?g)dj, > ued X(u) is

stochastic dominated from below by a random variable D(d) following from the
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binomial distribution B(| Al,c(’i)dj, 1 — Fy4(e)), where

Fi(e) = Py g (Wn = () for some n > O‘p(T) = e)

defined as in Section 3. According to the proof of Lemma 3.1,

el
li 1-—F, =
Jm 1= Fal€) = 5755
and hence _
D(d)N(d)  Xeb

li =
e Viogd (1+ Xed)

in probability by the law of large numbers. As a result,

_ . Jlogd
tnint Pya( D2 1) 2 K(@)|Wio,oga1 # 0,101 2 17551 (4.17)
ueD
e \/log ~ Viegd
- > >
= liminf P, d< Z;)X(U) > L2(1+)\€9) ‘Wl_aglogdj 1#0,1D] > | N(d) J)
ue

=1

e Viogd
> lim inf P(D(d) > 5+ 2e0) N(@) )

For any u € D7 if x(u) = 1, since u has been infected while the distance between
T and u is at most |0 log d], then there exists at least one vertex z € T, such that
the distance between Y and z is |0 logd] while z has been infected, i.e.,

PSS W\_Uolong.
Since T, N T, = 0 for any u,v € D,

{ Z x(u) > K(d)} C{|Wisg10ga)| = K(d)}.

uéﬁ
Then, by Equation (4.17),

Vlogd
11m1an,\d(|WLoolong‘ > K(d ’WLgolong LA0,|D| > | N(Cgl) J) —1. (4.18)
Then, by Lemma 4.4 and Equation (4.18),
lim inf PA,d(}WLUU loga)| > K(d)‘WLag logd)—1 7 V)) (4.19)

. log
> BinirgPA’d<|WLoolong} > K(d), |D| > L J’WLUolong 1 # (/))

. = ~ Vdogd
= ggigpx,dowmlogdﬂ > K(d)’WLaologdjq #0,|D] > | N J)

=~ Viogd
* Pra(1D] 2 LR [Wiouosa -1 #0)

=1.
According to the definition of {/V[?n}nzo, {Wn}nzo on T¢ with infection rate A can
be identified with {W,,},>0 on T4 v with infection rate
_ d— LLJ
A(d) = A=
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For given A\, € (E(lpz) , )\),

Md) > A
for sufficiently large d. Hence, by Lemma 3.1,

Bglgg Px\,d(WLao logd—1] 7 @) > Egigf PA’d(Wn # () for all n > 0)

= gg_‘i_{gpx(d),dftﬁJ (W, # 0 for all n > 0)
> liminf Py 4 | _a J(Wn # () for all n > 0) = E(Lpﬁ)’
d—+o0 ) 14+ Aipby
where 61 = 6;()\1) is the unique solution of
Aip?
(1 + Apbh ) -
It is easy to check that limy, 1y 61 = 6 while
. A1p04 Apb
Jim By e = P e)
Hence, let A1 T A\, we have
liminf Py g (W0 1oga) 1 # 0) > B(—20 ). (4.20)
d—4oo0 1+ M\pf
By Equations (4.19), (4.20) and the conditional probability formula,
lim inf P)\,d<|Wl_Ug logd)| > K(d)> > E(l ipfpe)- (4.21)

By Equation (4.21), Lemma 4.3 and the fact that |V|,;10g4d]| = [W|og10gaj| On the
event B(d),

limin Pra([Vioytogas | 2 K(d)) = limint Py (|Viggoga)| > K(d), B(@))
= Bgliglof P,\,d(fWLgo logd| > K(d)vB(d))
> liminf Pra(|Wioytogay| = K(d)) = lim_Pra(B(d)°)

d——+o0
Apb B Apf
- (1+)\p9) T (1 +)\p9)
and the proof is complete.

O

4.3. Proof of Lemma /./. In this section we give the proof of Lemma 4.4. First we
introduce some notations and definitions.
We let Yo, ..., Y|5,10gd)—1 De exponential times with rate one while

A07 cee 5A|_00 logd|—1
be exponential times with rate A\M?2. For 0 <i < |oglogd] —1and 1 < j < Lﬁj,

let p;; be an independent copy of p while ﬁij is an exponential time with rate %epij,
where € is defined as in Equation (4.1). According to the basic technique of measure
theory, we can assume that {p;; : 0 < ¢ < |oglogd| — 1,1 < j < Lﬁj} and
{p(z)}yere are defined under the same space and independent under the annealed
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measure Py 4 while we assume that U(, -),ﬁ..,Y(),?,A. are defined under the
same space and independent under the quenched measure P .

| n&y )
Lemma 4.5. Let & = Zl Lig,<v) for0<i<|oglogd] —1, then

j=

~ lo
PA,d(|D| > I_\/T ‘WLUO logd|—1 7& (Z)) (422)
loo logd] 1
Viogd |«
> P ;> 1 -1
> A,d( ; &> | N(d)J ogd| )
and
L N@) loglogd]—1
lim E) d( = loglogd] — 1) (4.23)
d—+o00 -

exists for any s > 0. Furthermore, we use O(s) to denote

N loglogd]—1

“STogd Z
lim FE, d( # 3=0
d—4o00

then limg_, 1 o, O(s) = 0.

< |oplogd| — 1),

We give the proof of Lemma 4.5 at the end of this subsection. Now we show how
to utilize Lemma 4.5 to prove Lemma 4.4.

Proof of Lemma /./: By Chebyshev’s inequality, for any s > 0,
loo logd]—1

Viogd |5
< _
PA,d( ;:0 &< | Nd) | < |oplogd] 1)
leglogd]—
I\x/;log JN(d) si\:}f{dd) Olzd '
g e N(d) 4 Togd EA,d( j=0 < Lo’o log dJ - 1)

Then, according to Equation (4.23),

loo logd]—1

. Viogd |5
lzlfgigfp)\,d< ; &< | N(d) < |oglogd|— ) < O(s)

for any s > 0, since limg_, 4 oo (L%J ﬁédd)) =

Let s — +o00, since lim;_, 4~ ©(s) = 0, we have

loo logd]—1
. Vlogd
1 P, i < 1 -1
i Pra( Zi:o &< Ly U7 < lowloga) =1) =0.
(4.24)
Lemma 4.4 follows from Equations (4.22) and (4.24) directly.
O

To give the proof of Lemma 4.5, we define a total order < on W\n for each n > 1.
For any u,v € Wn,u # v, there exists a unique common ancestor z of u,v such
that u € T, ;) while v € Ty for some 1 < i # j < d— L%J We write u < v
when and only when i < j. Now we give the proof of Lemma 4.5.



The high-dimensional contact process with random vertex weights 67

Proof of Lemma /.5: Equation (4.22) follows from the following analysis. Condi-
tioned on tholong_l # 0, there are T = Xo = X1 = ... = X|slogaj—1 such
that X; € I//V\i for 0 < i < [oglogd| — 1. We choose X1,..., X|s10g4]—1 as fol-
lows. We let X |, 10g4)—1 be the smallest one of WI_UU logd)—1 under the partial <.
Then, T = Xg = X1 = ... = X|_<70 logd|—1 18 the unique path on T? from O to
X oo log d|—1 With length [og logd] — 1.

For 0 <i < |oglogd] — 1, let

LNL(jld)J Lﬁd)J
G = 1 and n; = 15 1
' = {U(Xi, Xi(j+d—\_%J))<Y(Xi)} ! ; {Ui;<Y(Xi)}
then
N loo logd]—1
2/ (4.25)
i=0

according to our definition of D. Note that X;(j) is the jth son of X; according to
the notations which we have introduced.

Since X; € W, p(X;) > 0 and hence p(X;) > € by assumption (4.1). As
a result, U(X;, X;(j +d — Lﬁj)) is an exponential time with rate at least
Sep(Xi(j+d— L%J)), where p(X;(j +d— LN(d)J)) is an independent copy of p.
Therefore, U (X;, X;(j +d— LWD) is stochastic dominated from above by ﬁij
and 7; is dominated from above by (;. Hence,

loo logd]—1

P/\,d< Z <z = L log J‘WLO'O logd]—1 7& (Z)) (426)
=0
loo logd]—1 10
> PA-,d( Z i > L g ’WLaologdj 1 7é ®>
=0

For any path 0= lo=1l=...=l5y10gd), We use v(l_j to denote

PAd( =1, for all 1 < i < [oglogd] — 1|W oy toga)—1 7 0)).

Then,
loo logd]—1
Vlogd =
P/\,d( Z = |_ g ‘WLO'(] logd|—1 7é @) Z’Y(Z)PA,d( (427)
i=0 T
loo logd]—1
V1
>z 1Y Og J’X — i forall 1 <i < [oplogd] — 1, W gy toga) 1 %0)
i=0
where
\.N{(id)J
ni(l) = Lo, <vaoy
j=1

The condition {X; =; for all 1 <37 < |oglogd], WLUO logd) 7 0} in Equation (4.27)
is concerned with the values of Y'(I ) and {U(l;, 1;(j)) :1<j<d- Lﬁj} for
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=

@]
Oq

Ql

0<i<|oglogd| —1. A worse condition for SIL708 U1y (1§ > |

N D) | to occur
is that

: . . d
V() <inf {U (L, Li(j):1<j<d— LN(d)J}
for all 0 <i < |oglogd| — 1, i.e.,
loo logd]—1 Tozd
P;Hd< Z ni() > \_ log ‘X =1; forall 1 <i< |oglogd]| —1,
=0
/W\I_O'o logd|—1 7£ [Z)) >
loo logd]—1
= \/log . ) d
Pa( Y w1 ‘Y )<t (U L) 12 < d= L))
=0
for all 0 <i < |oglogd| — 1). (4.28)

Note that Y(I;) is with the same distribution as that of ¥; while n;(I) is with the
same distribution as that of &;. Further more, inf {U (I;, [;(j)) : 1 < j < d— \_ﬁj}
is an exponential time with rate at most
d A
(d— LWJ)EMQ < AM?,
which is the rate of A;. Then,
loo logd]—1

P Y w00 <int (UG 1) 15 < d - L) -1}
i=0
for all 1 <i < |oglogd] 71>
loo logd]—1 Tozd
ZPA,d( Z &> | l?g)
=0

Therefore, by Equation (4.28),

< |oologd| — 1).

loologd]—1
= \/10
PA’d( Z ni (1) > L g ‘X =1; for all i < |oglogd], WLaolong 17 (Z))
i=0
loo logd]—1
Vlo
ZP)\,d( Z fsz (g)J
i=0

By Equations (4.27) and (4.29),

loo logd]—1
Vlogd
PA,d( >oni> L g

=0

< |oplogd| — 1) (4.29)

‘WLUO logd| -1 7 (Z)) (4.30)

loologd]—1

ZZW(f)PA,d( Y &> K@Y
U

< |oologd| — 1)

=0
loo logd]—1

:P)\,d( Z &> K(d)]Y;

i=0

< |oglogd| — 1),
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-

since ) ;v(l) = 1. Equation (4.22) follows directly from Equations (4.25), (4.26)
and (4.30).

Equation (4.23) follows from the following analysis. According to the assumption
of independence of the exponential times,

loglogd|—1

N(d)
“STogd > IFAPN .
Em(e = Y, < A, for all 0 < i < |oologd] — 1)
oo log d]
N |
= |Byg <e—slogdﬁﬂ Y, < A0> (4.31)
By direct calculation,
N | ~ ~
E)\,d <€_Sm€0 Yo < AO) = E(E(YQ, S, d)’Yo < Ao),
where
N(d) Atep Atep Lﬁj
=E(t,s,d) = E(e_élogd(l—(f T )+e )]
Then, by Equation (4.31),
E,\d(e = Y, < A, for all 0 < i < |oologd] — 1)
oo log d]
- E(E(?O,s,d)’YO < Ao)l (4.32)

By direct calculation, it is not difficult to check that
lim |oglogd] (E(t, s,d) — 1) = —soAteEp.
d——+o00

for any t > 0. As a result,

O(s) = lim

d—+oo

‘| LUO Iog dJ

E(E(i}o, S, d) ’}/}0 < Ao) = E(G_SUA?DSE’O}?O < A()) .
(4.33)
Note that here we still utilize the fact that (14 aq)° — e when agq — 0,cq — +00
and agcqg — c¢. Equation (4.23) follows directly from Equations (4.32) and (4.33).
O

4.4. Proof of Lemma 4.2. In this subsection we give the proof of Lemma 4.2. The
proof is inspired a lot by the approach introduced in Xue (2015). First we introduce
some definitions and notations. We let {0,,},>0 be the oriented random walk on
Z<4 such that

1
P(ﬁn+1 —19n = €i) = E

for each n > 0 and 1 < ¢ < d. We let {r,,},,>0 be an independent copy of {¥,, }n>0.
From now on, we denote by P the probability measure of {,}n>0 and {vy}n>0
while denote by E the expectation with respect to P. When we need to point out
the dimension d of the lattice, we write P and E as P; and E;. We write ¥, (resp.
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Vy) as 9% (resp. v¥) when g = x (resp. vy = z). For z,y € Z% satisfying = # y
and ||z|| = ||ly||, we define

Tw,y:inf{kzlt i:ug}.

That is to say, 7, is the first moment when {9%},>0 and {v¥},>o collide. For

z,y € Z4 satisfying |z|| = ||ly||, we introduce the following random variables. We
define
oy _ 0 ifx =y,
T )
Tey fTFy.
We let

Ty _ Ty . g
Y =inf {n>75": 9L =v¥ 9% =i},
kyY =inf{n > 9L =08 0% #F v ),
Ty _ Ty . g
Y =inf {n > k7Y L =vY 0% =i},
ky? =inf {n >7: 9L =v¥ 9% F v},
oY =inf{n >k 9 =090 =vY ),
! -1° n+1 = Vnt1
kY =inf {n>7"Y: 9L =v¥ 9% #F v},

That is to say, 77" is the first moment n such that ¥}, = v¥ and 97, = v . For
1 >1, /@l ;Y is the first moment n after 7Y such that 9% = v¥ and 193”“ # v
while 7,74 is the first moment 7 after &, 2 that 97 = v¥ and ¥}, =v) .

We define

T(zy) sup{l>0:7"Y < +oo} if 75"¥ < +oo0,
x,y) = I
Y 0 if 7Y = +oo.

In this subsection we assume that d > 4 such that T'(x,y) < +oo with probability
one according to the conclusion given in Cox and Durrett (1983) about the collision
times of two independent oriented random walks.

For 1 <1< T(x,y), we define

hz Y= = K Ty Tlx’y.

We let

Ity = HEplgy—1 <1 <730y U0 = Vi)

fT(m y) ’{n > I{T(:c y) ° : - n}|

)
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where |.A| is the cardinality of the set A as we have introduced. Then, for x,y that
]| = [lyll, we define

R(m,y) =

Ty Ty Ty Ty
T(xy)+ > f7Y AT(zy)+2 3 h7¥+4 X f7Y 6T (zy)+4 3 f77
2 i=0 i=1 i=0 M i=0

(1+2F)
T(z,y)

T(z,y)
Y\ > RV 3T(zy)+2 X fi(zy)
() 5 ()"

when 75"Y > 0 while define

R(z,y) =
Tt 2 g iryrr’ 8 hEva 5 e 6T 5 5
)+ )+ L o )+ s _
2 Yy = i (1 + )\](\142) Yy “= i = k3 M Yy = i
5 hp T2 3 i) -2
P )+ i(Z,Y)—
AE(p2)) & 2 PYTE 2
6( p i=1 E(p ) i=1
when 73°Y = 71"Y = 0 and define
R(z,y) =
Tt 5 1 TAEREID SR TN R S SR Y ERO RN R S
z,y)+ i z,y)+ i+ DY = z,y)+ Y _
2 Yy = i (1 + )\J(\iJZ) Yy = i =0 k3 M Yy = i
T(z,y) T(z,y)

> hyY 3T(zy)+2 3 filwy)—2

2B\ & =

( C(lp )) =1 (E(p2)> =0

when 0 = 73°Y < 77°Y. The following three lemmas are crucial for us to prove
Lemma 4.2.

Lemma 4.6. There exists ¢c; > 0 which does not depend on d such that

c
]Pd(Tw,y < —I—oo) < d—;
for any d >4 and x,y € Z% satisfying x # y, ||z| = ||y|-
Lemma 4.7. For given A > ﬁ, there exist dg > 4 and co > 0 which does not
depend on d such that

Eq (R(a:,y)’r(a:,y) < —i—oo) <
for any d > dy and x,y € Z} satisfying ||z|| = ||y||.
Lemma 4.8. For A C Z7 satisfying ||z| = ||y for any z,y € A,

1
Pra(If # 0.9 ¢ 2 0[p(e) = ¢ for all w € 4) > A7 > % Ea(R(z,y))’

reEAyYeA

The proofs of Lemmas 4.6-4.8 will be given later. Now we give the proof of
Lemma 4.2.

Proof of Lemma /J.2: For z,y € Z4 satisfying z # y, ||z|| = |y, according to the
definition of R(z,y), R(z,y) = 1 when 7, = +oo. Therefore, by Lemmas 4.6
and 4.7,

C1C2

Eq (R(‘T7 y)) =Py (Tw,y = +OO) +Eq (R(‘T7 y)l{‘rz,y<+oo}) <1+ ? (434)



72 X. Xue

for any d > do and z,y € Z4 satisfying « # y, ||lz|| = |ly|. By Lemma 4.7 and
Equation (4.34),
cie
S 3 Ea(R(e.w) < |Ales + (AP — AL+ ) (435)

reAycA
for any A C Z4 satisfying |z|| = ||y|| for any z,y € A. By Lemma 4.8 and Equation
(4.35),
A7
(A2 = [ADQ + 552) + [Alea
(4.36)
for any d > dy and A C Z4 satisfying ||z|| = ||y|| for any z,y € A. Note that ||z| =

— LK ()|
loglogd] for any = € T'y [\ T'2. Hence, let m(d) = TR@PTR@N (L T TR @

PA7d(ItA +£0,Vt> O‘p(x) =cforall z € A) >

then limg—, 4 oo m(d) = 1 while
P>\7d<It‘4 #0,Vt>0|p(x)=cforalze A) > m(d)

for any A satisfying A C T'y [\ T's, |A| = K(d) by Equation (4.36) and the proof is
complete.
(I

Now we give the proof of Lemma 4.6.

Proof of Lemma /.0: Let

T

O)O:inf{nZI:ﬁgzyg},

then by the conclusion given in Cox and Durrett (1983), there exists ¢5 > 0 which

does not depend on d such that

1 C3
Py(70.0 < +00) < -tz (4.37)

for all d > 4. Since Py (TOYO = 1) = %, according to the spatial homogeneity of Zi,

1 C3
(1- g)Pd(Tei,ej < +oo) = ]P’d(2 <Too < +oo) < 7] (4.38)
for any d > 4,1 <i < j <d. For z,y that x # y and ||z|| = ||y, ||z — y|| is an even
number, which is at least two. Let

7/:%2/ =inf{n > 0: ||9], — Vil = 2},

then, according to the strong Markov property,

Py(Tary < +00) = Pu(Fay < +00)Py(Tey,er < +00) < ﬁ, (4.39)
since |07 1 — vl || — |95 — v¥|| € {0,—2,2} for each n.
For d > 4,
C3 263
Gt
dd—1) " @

Let ¢; = 2¢3 and the proof is complete.

Now we give the proof of Lemma 4.7.
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Proof of Lemma /J.7: According to the definition of R(-,-), for any z,y € Zj,

R(z,y) < (4.40)
Tt 5 fe 2 dT@a 42 5 s S Ty S
c52 i=o "' (1 + %) =1 =0 " M i=o *
T(x,y) T(x,y ?

(mw)) PO (E(p2)>3T(’”vy)+2 p ' fa(aw)

where c¢5 > 0 is a constant which depends on M, E(p?), Ep, \, e and does not de-
pend on d. According to the strong Markov property, for any positive integers

T {h }2 17{fi}?:0;
P, (T(m,y) = T, b = hy, 7Y = f for 0<i <T

Tay < +00) (4.41)

)fo+z?:<fi+1>+fT ( )ZL hi
d

gPd(2§70’0<+oo L =1

)

where 7, , is defined as in the proof of Lemma 4.6. By Equations (4.38) and (4.41),

]IDd(T(:c, y) =T, hY = hi,ff’y — fifor0<i<T

( )=

By Equations (4.40) and (4.42),

Eq4 (R(J; Y)|Tay < —l—oo) (4.43)

+oo 400 +oo +oo 4o 1

o XSS5 S S (R T

T=0 fo=1 f1=1 fr=1h1=1

Tay < +00) (4.42)

fo=1+37T, fitT
()

T+Z fi a2y AT+2 Z hi+4 Z fi o 6T+4 Z fi
M i=0

2 = (1+20)

T T
(AE(p ))E1 '“( )STHEOL'

Tzz 3 (et

X

205 (1422 )4 pp

2 2
where ¢5 = MY (d) = 2 EENME gy = 26 0ENEMY g
(E(P2)) d? (E(p2)) d2 (E(pz))
242
co(d) = 1 _d (1+ )\MQ)Q = (L+25)
d AE(p?) d \E(p?)

Since A\ > ﬁ, there exists cig € (0,1), which does not depend on d, such that

- 3M*
cs; < 7652 and Cg(d) < c10

(E(p?))
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for sufficiently large d. For sufficiently large d,
} and C7(d)Cg(d> C10 S i
2 1-— Cs(d) 1-— C10 10

since limy_, 4 oo ¢7(d) = limg_ 4o cs(d) = 0. As a result, by Equation (4.43),

]Ed (R(:L'>y)
1 3M*%es = cs(d) Cclo0 \T
1= es(d) (B(p?))* TZ:O (07((1)?8(01) 1- C10)

6Mic; <X 1,
<——5 ) (=) =
(B0 2,10

for sufficiently large d. Let

cg(d) <

Toy < +oo)

20M4C5
3(E(p2))

- 20M4C5

T o o2
3(E(2))
and the proof is complete.

At the end of this subsection, we give the proof of Lemma 4.8.

Proof of Lemma /.5: For given A C Z4 satisfying ||z|| = ||y|| for any =,y € A, we
use P q(-) to denote the conditional probability measure

P,\7d(- ‘p(x) =eforallz e A).
We use E,\,d to denote the expectation with respect to ﬁ,\7d.
For each m > 1 and each x € A, we define
Ly (x) = {9?: (0, @1,y X)) t To = X, T —> Ty for all 0 <4 < m — 1}

as the set of oriented paths starting at x with length m.
For each Z = (z,21,...,2m) € Ly (x), we denote by 7z the event that

[7(.171', .171'_;,_1) < ?(JEZ)
for all 0 <7 < m — 1, then for each x € Z}',
m—1
Pra(mz) = Bpa( T Pro(Oi2i1) < V(1)) ’p(a:) )
i=0

m—1

Aep(zy) 3o(x:)p(wig1) ) (4.44)

1+ Zep(ar) 11 L+ 2p(2i)p(ivr)

i=1

:Eﬂd(

m—1

- F %601 %pipi-&-l
B 14 2 H 14 290, ’
+ d€p1 i=0 + szPerl

where p1, ..., pm are independent copies of p. For z,y € A and & = (z,x1,...,Zm)
€ Lm(.’f), :J: (y7y13 v 7ym) S Lm(y)7

m
Py q (Mﬂ@) = EA,d(HG(xz—hyz—u 1, y)

=1

p(x) = ply) = 6> , (4.45)
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where
G(z,y;u,v) = Py (Ij'(x,u) < ?(x),ﬁ(y,v) < f’(y))

for x - w and y — v.
By direct calculation, for z,y that ||z| = |ly||,

2 p(@)p(u)
1+5p(z)p(u)
227 2 (2)p(u)p(v)
= 1+ %p(aé)p(u)] (142 p(z)p(v)]
2z p(@)p(y)p® (u)
(142 p(=) p(w)][1+ 5 p(y) p(w)]

A
. 2z p(@)p(y)p(u)p(v) .
= @@l 3rme] 1T Fyanduzo.

ifx =y and u=w,

if x =y and u # v,

G(z, y;u,v) (4.46)

ifx#yand u=nwv,

According to the definition of the SIR model, for x € A, if 7z occurs for some
Z=(x,21,...,Tm) € Ly(x), then

Tm € U I
>0

As a result, on the event (7%, U, c 4 Uzer,.(
which have ever been infected and hence

) T there are infinite many vertices

+oo
Pt #oviz0)=Pu( U U =) (4.47)

m=1x€AZ€L,,(z)

We use xz to denote the indicator function of 7z, then by the Cauchy-Schwartz’s
inequality and the dominated convergence theorem,

ﬁx,d(ﬁou U Wf)Zngllﬁ,\,d(U U )

m=1z€AFEL,,(x) TEAFE L (z)

:Tlni,rznlﬁ)\’d(z Z X5>0)

TEAFE Ly (z)

2
[E,\,d ( 2 weA ZfeLm(l’) Xf)]

> limsup
m——+o0 ~

Ex.a [( 2veA 2T L () Xf) 21

[ DS E,d(wf)]

. TEATEL, (T)
= lim sup

m——+oo Z Z Z Z -IBA,d (7’(;2‘ ﬂﬂﬁ) '

TEAYEAZE Ly (z) FELm (y)
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By Equation (4.44), for given m > 1 and & € L,,(x), ﬁ,\,d(wfg) does not depend on
the choice of Z and z. Therefore, according to the fact that | L, (z)| = d™,

ﬁA,d(ﬁOU U 7T:E’) (4.48)

m=1x€AZEL,,(z)

- 1 (enss)
Pya(mzNmy
liminf o= Y Z > D L AR LV
m——+00 ‘ zEA E cL, ( )Q’ELm(y) dz P)\,d (ﬂ'w) ( )
We use 97, to denote the random path (9%,...,9%) while use 7%, to denote the

path (v§,...,vY), then by Equation (4.48),

R,d(ﬁou U )= ! T . (4.49)

)
m=12EA FELn, (z) ( g ok )
Jimm inf i EAEAE“ Pralrg, )Pra(m,y)
>\ d(7r n D'q ) . .
We bound = from above according to the following procedure.

(T sy )Pk,d(‘ﬂ'g%)
For the denommator

Pra(my, )Pralm,, ) =

m—1 by m—1 A
3P(Wi)p(Yit1) 3Pvi)p(vis1)
E d ’p Po) =¢€)E d ‘p vp) =€),
w5000t 00 = B UL 500 0 =)
if I > 1 satisfies that ¥¢ = v/, then

Ep(ﬂf)P(ﬁleﬂ) > dp(ﬁI)P(ﬂlJﬂ)
14+ 3 p(97)p(97, ) 1+3Mm2
. ; )

%p(l/lJ)p(Vlerl) %p(’/ly)p(l’ly+1)
1+%P(Vly)p(’/ly+1) - 1+%M2 ’
2P(7_1)p(97) 2p(97_1)p(97)
1+3p(07_)p(97) = 1+5M2
e Do) 2o )p(n)
30 Dewf) = 1+3M?

For [ =0,
Xp(5)p(0%)  _ Aep(v3) Ap(§)p(vd)  _ Aep(vf)
aP\Vo)P\Vy s dP\V1 and aP\Vo )Py > Py
T+ 2p(03)p(05) ~ 1+ 3012 L+ 2p()p(vf) = 1+ M2

For the numerator JSA’d(ng ﬂﬂﬁy ) with expression given by Equation (4.45),

G(9} U 779f+1a’/l+1) > %p(ﬁx)f’(ﬁfﬂ)

if 9 = v/ and U, = l/l+1,
G(F, v 7791+1’1’ly+1) > dz (ﬁf)p(ﬁﬁﬁp(”?ﬂ)
if 97 = v/ and 97, | # v/,
G(ﬁfvyly919f+1al’ly+1) < %p(ﬁf)P(V?)PQ(ﬁfﬂ)

if 9f # v} and 9}, = Vly-i-l'

ﬁ)\,d(ﬂgm ﬂﬂ#l)
ﬁx,d(ﬂw )ISA,d(T"D;;n)

by an upper bound R,,(z,y). According to our assumption of the independence

is bounded from above

According to the aforesaid inequalities,
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between the exponential times, the expression of R,,(z,y) can be simplified by
canceling common factors in the numerator and denominator. For example, if
I < k that 97 = v/ and 9 = v} while 97 # v¥ for any I < j < k, then both the
numerator and denominator have the factor

k—l—1 2
(E( Hi:1 p% ) >
k—1—2
Hi:1 (1 + %pipiJrl)
that can be canceled, where p1, ..., px_1_; are independent copies of p. As a result,

it is not difficult to check that
lim Ry, (z,y) = R(z,y)

m——+oo
and hence
Pa( U U 1
P/\,d( Wf) > — T
m=1x€A ZEL,,(x) mLHEOO |A]? ng y% Ed (Rm(x,y))
1
= (4.50)
rcAycA

according to Equation (4.49). Lemma 4.8 follows directly from Equations (4.47)
and (4.50).
]

5. Proof of Equation (2.4)

In this section we give the proof of Equation (2.4). We still assume that the vertex
weight p satisfies (4.1). The assumption is without loss of generality according to
the following analysis. For general p not satisfying (4.1), we let

. pifp>o,
Pm = 1 . 1
m if p < "o
then p,, > p and lim,,_, o P = p. Therefore,
Prap(CP #0,¥t>0) < Prap, (C2#0,Yt>0).
If Equation (2.4) holds under assumption (4.1), which p,, satisfies, then

limsup Py q,,(CY # 0,Y t > 0)

d—+oo
<limsup Py 4,5, (C’to £0,Vt> O) < E(M),
where é\m satisfies
~9
B(—2Pm ) _
14+ ApmbBm

o~

and it is easy to check that lim,, o0 0, = 0. Let m — 400, then Equation (2.4)
holds for general p.
For each n > 0, we define

5n:{x€Z‘i:H:r||:nandx€UCtO}
>0



78 X. Xue

as the vertices with {; norm n which have ever been infected in the contact process
with O as the unique initially infected vertex.

The infection never dies out when and only when there are infinitely many ver-
tices that have ever been infected. Furthermore, since x infects y only if z — v,

{CP #0,Yt>0}={B,#0for all n>0}. (5.1)

The proof of Equation (2.4) relies heavily on Equation (5.1) and the following
two lemmas.

Lemma 5.1. Let {W,,},>0 be the branching process with random vertex weights
defined as in Section 3 and oo € (0, W) defined as in Section /, then

. . D 1
Bgﬁg PA,d(W\_Uo logd] = Q]) = E(l + )\pe)’

where ﬁA,d is the annealed measure of the branching process defined as in Section 5.

Lemma 5.2. Let {V, },>0 be defined as in Section /, then

S [Px,d(ﬂtoo togd) = 0) = Pra(Vioo oga) = m =0

The proof of Lemma 5.1 is given in Subsection 5.1. The core idea of the proof is
to show that the branching process survives with high probability conditioned on
Wisotogd] 7# (). The proof of Lemma 5.2 is given in Subsection 5.2. The core idea of
the proof is to construct a coupling of {3, }n>0 and {V, }n>0 such that £, 10g4) =
V0o 1ogd) With high probability. Now we show how to utilize Lemmas 5.1 and 5.2
to prove Equation (2.4).

Proof of Equation (2.4): We couple {W, },>0 and {V, },>0 under the same proba-
bility space as what we have done in Subsection 4.1. Recalling that we define B(d)
as the event that the coupling is successful at step m for all m < |oglogd], then

Vl_ag logd| — Wl_ao log d|
on the event B(d). Therefore, by Lemma 4.3,

‘ﬁk,d(W\ﬁ'o ogd) =0) = Pr.a(Viootogd) = 9)’ < 2Py 4(B(d)?) — 0

as d — +o00o and hence
1

tim inf Pra(Viewiog ) =0) 2 B /\pﬂ)
according to Lemma 5.1. Then, by Lemma 5.2,
1
. —0 >
Bgl_’l_gpk,d(ﬁ\_oologdj @) —E(1+)\p9)
and hence
lim inf Py (B = 0 for some n > 0) > B({— Apa)' (5.2)
By Equation (5.2),
lim sup Py ¢ (B, # 0 for all n > 0) < E( Apf ). (5.3)
rivieake == 2T

Equation (2.4) follows from Equations (5.1) and (5.3) directly.
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5.1. Proof of Lemma 5.1. In this subsection, we give the proof of Lemma 5.1. Let
{Wy}n>0 be defined as in Subsection 4.2, then {W,, },>¢ is a branching process

d
with random vertex weights on a subtree of T which is isomorphic to T4 L5@ ] as

we have introduced. For each n > 0, /Wn C W,,. The following lemma is crucial for
us to prove Lemma 5.1.

Lemma 5.3. For any o € (0, W);

dETmPA,d<Wn 20 for all n > 0[W g 105a)-1 # (Z)) — 1.

We give the proof of Lemma 5.3 at the end of this subsection. Now we show how
to utilize Lemma 5.3 to prove Lemma 5.1.

Proof of Lemma 5.1: By the conditional probability formula,
Pya(W,, # 0 for all n > 0)
> Pra((Wa #0 for all n > 0[W g 1001 # 0) Pra(Wiotogai 1 # ).

Then, by Lemmas 3.1 and 5.3,

o Apf
limsup Py (Wi 1oga)1 # 0) < E
msup Pya(Wigoa)-1 # 0) < B(775)
and hence
L. ~ —~ L ~ —~ 1
lim inf Pra(Wiotoga) = 0) 2 iminf Pra(Wiorog a1 =0) 2 B(7755)  (5:4)

for any o S (O, W)
For given A\ > ﬁ and og € (0, W), we choose arbitrary A € (A, +00)
and o € (0,0¢). For sufficiently large d, we define

~ k
=inflk: k—|——|>
d=inf{k: k LN(k)J > d},
then it is easy to check that limg_, 4 g =1 and hence
XA ~
z > p while ologd < oglogd (5.5)

for sufficiently large d. As we have introduced, {Wn}nZO on T4 can be identified
d—| —d_
with {W,},>0 on T @/ with a scaling of the infection rate A. As a result, by
Equation (5.5),
P iW p10ed) = 9) < Pra(Wisg10ga) = 0) (5.6)
for sufficiently large d. By Equations (5.4) and (5.6),
1
1+ Xp@

lim inf Py g (Wa oga) = 0) > liminf By (W, 5 = 0) > B( ), (5.7)

d—+o0

where 0 satisfies

\p?
1+ Aph
and it is easy to check that lims . | 9=0.

E(

) =1
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Let A — A, then Lemma 5.1 follows directly from Equation (5.7).

(Il
At the end of this subsection we give the proof of Lemma 5.3.
Proof of Lemma 5.53: Let
lologd]—1
D, = {y : there exists x € U W
m=0
such that y = x(i) for some i > j(d) and U(z,y) <Y (x)},
ie, D defined in Subsection 4.2 equals Da0~ According to Lemma 4.4,
\/lo
i Pa(1De] = ) Wiy #0) = 1. (5.8)

Note that although oq is fixed in Lemma 4.4, the analysis leading to Lemma 4.4

holds for any o < W. According to Equation (4.17),

dgrfoop)\d( Z x(w) = L (1+)\69)

ueD,

log

J‘Wl_ologdj 1 7é (Z)

By Equations (5.8), (5.9) and the conditional probability formula,

Aef) I
dgffooPA d( > x(u) = L2(1—|—6)\60) Viogd ‘W[alogdj 1 #(Zl) =1.  (5.10)

ueﬁo

If x(u) =1 for some u € 13(,, then infinitely many vertices have ever been infected.
Therefore,

{ug x(u) > L( +)\69)\/%J}C{Wnyﬁ@foralln>0}.

As a result, Lemma 5.3 follows from Equation (5.10) directly.

O

5.2. Proof of Lemma 5.2. In this subsection we give the proof of Lemma 5.2. First
we couple {5y, }n>0 and {V, },>0 under the same probability space. Let {Y(x)}zezi

and {ﬁ(m,y)}xezi,gg_,y be defined as in Section 4, then {V,},>¢ is defined as in
Section 4 according to the values of {?(z)}mezi and {U (z, y)}rezi’m_w. For any

x,y € Z+, T — vy, let Us (z,y) be an independent copy of ﬁ(m, y) under the quenched
measure. We assume that all these exponential times are independent under the
quenched measure. For the contact process, we let 17(33) be the time x waits for
to become healthy after the first moment when z is infected. We let 17(33, y) be
the time x waits for to infect y after the first moment when x is infected. If
U(z,y) < Y (x), then after the first infection from z to y, « waits for Us(z, y) units
of time to infect y again, i.e., z infects y at least twice before becoming healthy when
Uz, y) + Us(z,y) < Y (). Followmg the above definitions, {V}, },>0 and {8, }n>0
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are coupled under the same probability space and it is obvious that V,, C (3, for
each n > 0. _ B

Let J(d) be defined as in Section 4, i.e., the event that U(x,y) > Y (z) and
ﬁ(z,y) > }7(2) for any z,y,z that z,z € U%’igjgdkl Vin and x,z — y. On the
event J(d), if Vs 10gd] 7# Blogloga), then there must exist repeated infection from
some z to y that x — y for the contact process, i.e.,

Ux,y) + Ua(w,y) < Y(2).
For each m > 1, L,,(O) is the set of oriented paths on fo_ starting at O with length

m defined as in Section 4. Foreach [: O =1y =1y — Iy — ... — 1,, in L, (0), we
denote by Ay the event that U(ls,l;41) < Y (l;) for all 0 <4 <m — 2 and

Ul = 1, 1) + Uz (Ip—1, b)) < Y (1),

then according to the aforesaid analysis,

oo log d]
P)\,d(VLag log d| 7é BLJO log d]» J(d)) < Z Z P/\,d(Af)' (511)
m=0  jer,,

Now we give the proof of Lemma 5.2.

Proof of Lemma 5.2: For each | € Ly, since U(-,-),Us(-,-) are exponential times

with rate at most )‘TMZ while }N’() is an exponential time with rate one, it is easy
to check that

~ AM? 1  AM? o AL p2mr2
P)x,d( f)g( d ) ( d ) = dm+1

Since |Ly,| = d™ and o¢ <

m, by Equation (5.11),

loo log d] _
- )\m+1M2m+2 )\2M4d 0.9
Pra(Vioytoad] 7 Blogloga)s J(d)) < mZ::O T S Tar_1

(5.12)

By Equation (5.12),
|Pra(Blogtogd) =0) = Pra(Viegroga) = 9)| (5.13)
< 2Py a(Blogr0gd) # Vieologd))
< 2Py a(Blogr0gd) # Vieologd)s J(d)) + 2P a(J(d)°)

2)\2M4d70.9 .
=~ W + QP)\vd(J(d) )
We claim that
Jim Pya(J(d)) = 1. (5.14)

Equation (5.14) follows from the following analysis, which we have utilized in the
proof of Lemma 4.3. For each 0 < m < |oglogd| — 1, according to the fact that
Y (-) is an exponential time with rate 1 while U(-,-) is an exponential time with
rate at most M2 and |q(z)| < |V;,| for any € Vi,,,

A
Pra (J(d, m)‘Vm < d“) > 1 - d™? x d*25M2 = 1AM,
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Then, by Equation (4.12),
Pra(J(dm)) = (1= AM2d=00) (1= 1o —

for all 0 < m < |oglogd] — 1 and hence

2 7-0.6 d—!
PA,d<J(d)) > 1— [oglogd] {1 — (1= AMd™0) (1 - m)}
and Equation (5.14) follows from which directly.
Lemma 5.2 follows directly from Equations (5.13) and (5.14). O
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