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Abstract. This paper is a further investigation of the problem studied in Xue
(2015). We are concerned with the contact process with random vertex weights on
the oriented lattice. Our main result gives the asymptotic behavior of the survival
probability of the process conditioned on only one vertex being infected at t = 0 as
the dimension grows to infinity. A SIR model and a branching process with random
vertex weights are the main auxiliary tools for the proof of the main result.

1. Introduction

In this paper we are concerned with the contact process with random vertex
weights on the oriented lattice Zd+ for d sufficiently large, where Z+ = {0, 1, 2, . . .}.
This paper is a further investigation of the problem studied in Xue (2015), which
deals with the critical value of the aforesaid process. First we introduce some
notations and definitions. For x = (x1, . . . , xd) ∈ Zd+, we define

‖x‖ =

d∑
j=1

xj

as the l1 norm of x. For 1 ≤ j ≤ d, we use ej to denote the jth elementary unit
vector of Zd+, i.e.,

ej = (0, . . . , 0, 1
jth
, 0, . . . , 0).
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We use O to denote the origin of Zd+. For x, y ∈ Zd+, we write x → y when and
only when

y − x = ej

for some j ∈ {1, 2, . . . , d}.
Let ρ be a random variable such that P

(
ρ ∈ [0,M ]

)
= 1 for some M ∈ (0,+∞)

and P (ρ > 0) > 0, then we assign an independent copy ρ(x) of ρ on each vertex
x ∈ Zd+. ρ(x) is called the vertex weight of x. We assume all these vertex weights
are independent. After the vertex weights are given, the contact process {Ct}t≥0

on Zd+ with vertex weights {ρ(x)}x∈Zd+ is a continuous time Markov process with

state space

X =
{
A : A ⊆ Zd+

}
and transition rates function given by

Ct →

Ct \ {x} at rate 1 if x ∈ Ct,
Ct
⋃
{x} at rate λ

d

∑
y: y→x

ρ(x)ρ(y)1{y∈Ct} if x 6∈ Ct, (1.1)

where λ is a positive constant called the infection rate while 1A is the indicator
function of the event A.

Intuitively, the process describes the spread of an epidemic on Zd+. Vertices in
Ct are infected while vertices out of Ct are healthy. An infected vertex waits for an
exponential time with rate one to become healthy while a healthy vertex x may be
infected by an infected vertex y when and only when y → x. The infection occurs
at a rate proportional to the product of the weights on these two vertices.

The (classic) contact process is introduced by Harris (1974), where ρ ≡ 1 and
infection occurs between nearest (un-oriented) neighbors. For a detailed survey of
the classic contact process, see Chapter 6 of Liggett (1985) and Part 1 of Liggett
(1999).

The contact process with random vertex weights is first introduced in Peterson
(2011) on the complete graph Kn by Peterson, where a phase transition consistent
with the mean-field analysis is shown. In detail, the infection dies out in O(log n)
units of time with high probability when λ < 1

E(ρ2) or survives for exp{O(n)} units

of time with high probability when λ > 1
E(ρ2) . In Xue (2015), Xue studies this

process on the oriented lattice and gives the asymptotic behavior of the critical
value of the process as the dimension d grows to infinity. When P (ρ = 1) = p =
1−P (ρ = 0) for some p ∈ (0, 1), the model reduces to the contact process on clusters
of the site percolation, which is a special case of the model introduced in Bertacchi
et al. (2011) with n = 1. In Bertacchi et al. (2011), Bertacchi, Lanchier and Zucca
study the contact process on G × Kn, where G is the infinite open cluster of the
site percolation while Kn is the complete graph with n vertices. Criteria judging
whether the process survives are given.

If the i.i.d. weights are assigned on the edges instead of on the vertices, the model
turns into the contact process with random edge weights, which is first introduced
by Yao and Chen (2012), where a complete convergence theorem is shown.

2. Main results

In this section we give our main results. First we introduce some notations
and definitions. We assume that {ρ(x)}x∈Zd+ are defined under the probability
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space (Ωd,Fd, µd). The expectation with respect to µd is denoted by Eµd . For
ω ∈ Ωd, we denote by Pλ,ω the probability measure of our model with vertex
weights {ρ(x, ω)}x∈Zd+ . Pλ,ω is called the quenched measure. The expectation with

respect to Pλ,ω is denoted by Eλ,ω. We define

Pλ,d(·) = Eµd
[
Pλ,ω(·)

]
=

∫
Pλ,ω(·) µd(dω),

which is called the annealed measure. The expectation with respect to Pλ,d is
denoted by Eλ,d.

For any A ⊆ Zd+, we write Ct as CAt when C0 = A. If A = {x} for some x ∈ Zd+,

we write CAt as Cxt instead of C
{x}
t .

For λ > 1
E(ρ2) , where E is the expectation with respect to ρ, there is a unique

solution θ > 0 to the equation

E
( λρ2

1 + λρθ

)
= 1. (2.1)

Now we give the main result of this paper.

Theorem 2.1. For any λ > 1
E(ρ2) and θ defined as in Equation (2.1),

lim
d→+∞

Pλ,d
(
COt 6= ∅,∀ t ≥ 0

)
= E

( λρθ

1 + λρθ

)
.

Theorem 2.1 gives the asymptotic behavior of the survival probability of the
process conditioned on O being the unique initially infected vertex as the dimension
d grows to infinity. The theorem only deals with the case where λ > 1

E(ρ2) because

lim
d→+∞

Pλ,d
(
COt 6= ∅,∀ t ≥ 0

)
= 0

for any λ < 1
E(ρ2) according to the main theorem given in Xue (2015), which shows

that the critical value of the infection rate of the model converges to 1
E(ρ2) as

d→ +∞.
When ρ ≡ 1, we have the following direct corollary.

Corollary 2.2. If ρ ≡ 1 and λ > 1, then

lim
d→+∞

Pλ,d
(
COt 6= ∅,∀ t ≥ 0

)
=
λ− 1

λ
.

The counterpart of Corollary 2.2 for the classic contact process on the lattice is
given in Schonmann and Vares (1986). An independent proof for the same result
is given in Xue (2017a), the author of which was unware of reference Schonmann
and Vares (1986).

The counterpart of Theorem 2.1 for the contact process with random edges
weights on the (un-oriented) lattice is given in Xue (2017b). It is claimed in Xue
(2017b) that

lim
d→+∞

Pλ,d
(
COt 6= ∅,∀ t ≥ 0

)
=
λEρ− 1

λEρ

for the process with edge weights which are independent copies of ρ and infection
rate λ > 1

Eρ .

As an auxiliary tool for the proof of Theorem 2.1, we introduce a SIR (susceptible-
infected-recovered) model with random vertex weights on Zd+.
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After the vertex weights {ρ(x)}x∈Zd+ are given, the SIR model {(St, It)}t≥0 is a

continuous-time Markov process with state space

X2 =
{

(S, I) : S, I ⊆ Zd+, S
⋂
I = ∅

}
and transition rates function given by

(St, It)→

(St, It \ {x}) at rate 1 if x ∈ It,
(St \ {x}, It

⋃
{x}) at rate λ

d

∑
y:y→x

ρ(x)ρ(y)1{y∈It} if x ∈ St. (2.2)

For the SIR model, an infected vertex waits for an exponential time with rate
one to become recovered while a recovered vertex can never be infected again.

We write (St, It) as (SAt , I
A
t ) when (S0, I0) = (Zd+ \A,A), then it is easy to check

that

Pλ,d
(
IOt 6= ∅,∀ t ≥ 0

)
≤ Pλ,d

(
COt 6= ∅,∀ t ≥ 0

)
.

One way to check this inequality is to utilize the basic coupling of Markov processes
(see Section 3.1 of Liggett (1985)), we omit the details. As a result, to prove
Theorem 2.1, we only need to show that

lim inf
d→+∞

Pλ,d
(
IOt 6= ∅,∀ t ≥ 0

)
≥ E

( λρθ

1 + λρθ

)
(2.3)

and

lim sup
d→+∞

Pλ,d
(
COt 6= ∅,∀ t ≥ 0

)
≤ E

( λρθ

1 + λρθ

)
. (2.4)

The proof of Theorem 2.1 is divided into three sections. In Section 3, we in-
troduce a branching process {Wn}n≥0 with random vertex weights on the oriented
rooted tree Td. We will show that the probability that the branching process sur-
vives converges to E

(
λρθ

1+λρθ

)
as d→ +∞.

In Section 4, we give the proof of Equation (2.3). The proof relies on a cou-
pling relationship between the branching process and the SIR model. A technique
introduced in Xue (2015) is utilized.

In Section 5, we give the proof of Equation (2.4). The proof relies on a coupling
relationship between the three aforesaid processes.

3. A branching process with vertex weights

In this section we introduce a branching process with random vertex weights
on the oriented rooted tree. We denote by Td the rooted tree that the root has d
neighbors while any other vertex on the tree has d+ 1 neighbors. We denote by Υ
the root of the tree. There is a function f : Td → {0, 1, 2, . . .} which satisfies the
following conditions.

(1) f(Υ) = 0.
(2) f(x) = 1 for each neighbor x of Υ.
(3) For any y 6= Υ, there is one neighbor u of y such that f(u) = f(y)− 1 while

there are d neighbors v of y such that f(v) = f(y) + 1.
For x, y ∈ Td, we write x ⇒ y when and only when x and y are neighbors and

f(y) = f(x) + 1.
Intuitively, Υ is the ancestor of a family and has d sons. Each other individual

in this family has one father and d sons. x⇒ y when and only when y is a son of x.
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We assume that {ρ(x)}x∈Td are i.i.d. copies of the random variable ρ, which is
defined as in Section 1. After the vertex weights are given, we assume that Y (x) is
an exponential time with rate one for each x ∈ Td while U(x, y) is an exponential
time with rate λ

dρ(x)ρ(y) for any x, y ∈ Td such that x ⇒ y. We assume that all
these exponential times are independent under the given vertex weights. Then, the
branching process {Wn}n≥0 is defined as follows.

(1) W0 = Υ.
(2) For n ≥ 0, Wn+1 =

{
y : x⇒ y and U(x, y) < Y (x) for some x ∈Wn

}
.

{Wn}n≥0 describes the spread of a SIR epidemic on Td. Initially, Υ is infected. A
healthy vertex may only be infected by its father. If x is infected, then x waits for an
exponential time with rate one to become recovered while waits for an exponential
time with rate λ

dρ(x)ρ(y) to infect the son y. The infection really occurs when and
only when y is infected before the moment when x is recovered, i.e., U(x, y) < Y (x).

Similar with what we have done in Section 2, we denote by P̂λ,ω the quenched
measure of the branching process with respect to the random environment ω in

the space where {ρ(x)}x∈Td are defined. We denote by P̂λ,d the annealed measure.
Note that according to our definition, for x ⇒ y ⇒ z, U(x, y) and U(y, z) are

independent under P̂λ,ω while positively correlated under P̂λ,d.
The branching process {Wn}n≥0 with random vertex weights on the oriented

tree Td is first introduced in Pan et al. (2017). Some results obtained in Pan et al.
(2017) will be directly utilized in this section.

The following lemma is crucial for us to prove Theorem 2.1.

Lemma 3.1. For any λ > 1
E(ρ2) and θ defined as in Equation (2.1),

lim
d→+∞

P̂λ,d
(
Wn 6= ∅,∀ n ≥ 0

)
= E

( λρθ

1 + λρθ

)
.

The remainder of this section is devoted to the proof of Lemma 3.1. From now
on we assume that λ > 1

E(ρ2) . Let M be defined as in Section 1. For any s ∈ [0,M ],

we define

Fd(s) = P̂λ,d

(
Wn = ∅ for some n ≥ 0

∣∣∣ρ(Υ) = s
)
,

then the following two lemmas are crucial for us to prove Lemma 3.1.

Lemma 3.2. If {dl}l≥1 is a subsequence of 1, 2, 3, . . . such that

lim
l→+∞

Fdl(s)

exists for any s ∈ [0,M ], then

lim
l→+∞

Fdl(s) =
1

1 + λsθ

for any s ∈ [0,M ].

Lemma 3.3. For d ≥ 1 and 0 ≤ s < t ≤M ,

|Fd(s)− Fd(t)| ≤ λ(t− s)M.

We first show how to utilize Lemmas 3.2 and 3.3 to prove Lemma 3.1. The proofs
of Lemmas 3.2 and 3.3 are given at the end of this section.
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Proof of Lemma 3.1: If Lemma 3.1 does not hold, then there are a constant ε0 > 0
and a subsequence {al}l≥1 of 1, 2, 3, . . . such that

|E
(
Fal(ρ)

)
− E

( 1

1 + λρθ

)
| > ε0, (3.1)

since

P̂λ,d
(
Wn 6= ∅,∀ n ≥ 0

)
= 1− E

(
Fd(ρ)

)
.

Since 0 ≤ Fd(·) ≤ 1, according to a classic procedure of picking subsequences, there
is a subsequence {dj}j≥1 of {al}l≥1 such that

lim
j→+∞

Fdj (r)

exists for any r ∈ Q. We use F∆(r) to denote limj→+∞ Fdj (r). It is obvious that
Fd(s) is decreasing with s for each d ≥ 1, then

Fd(r1) ≥ Fd(s) ≥ Fd(r2) and F∆(r1) ≥ F∆(r2)

for any r1 < s < r2, r1, r2 ∈ Q. As a result, it is reasonable to define

F−∆ (s) = lim
r↑s,r∈Q

F∆(r) and F+
∆ (s) = lim

r↓s,r∈Q
F∆(r)

for any s 6∈ Q and hence

lim sup
j→+∞

Fdj (s) ≤ F−∆ (s) while lim inf
j→+∞

Fdj (s) ≥ F−∆ (s).

By Lemma 3.3,

|F∆(r1)− F∆(r2)| ≤ λM(r2 − r1)

for r1 < s < r2, r1, r2 ∈ Q. Therefore, let r1 ↑ s and r2 ↓ s,

F−∆ (s) = F+
∆ (s)

and

lim
j→+∞

Fdj (s) = F−∆ (s) = F+
∆ (s)

for any s 6∈ Q. For s 6∈ Q, we use F∆(s) to denote F−∆ (s), which equals F+
∆ (s). As

a result,

lim
j→+∞

Fdj (s)

exists for any s ∈ [0,M ] and

lim
j→+∞

Fdj (s) = F∆(s)

for any s ∈ [0,M ]. Then, by Lemma 3.2,

F∆(s) =
1

1 + λsθ

for any s ∈ [0,M ] and hence

lim
j→+∞

E
(
Fdj (ρ)

)
= E

( 1

1 + λρθ

)
.

However, this is contradictory with Equation (3.1) since {dj}j≥1 is a subsequence
of {al}l≥1. As a result, Lemma 3.1 holds and the proof is complete.

�

At last we give the proof of Lemmas 3.2 and 3.3.
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Proof of Lemma 3.2: For Υ ⇒ y, conditioned on Y (Υ), ρ(Υ), ρ(y), the probability
that Υ infects y is

P̂λ,d
(
U(Υ, y) < Y (Υ)

∣∣ρ(Υ), Y (Υ), ρ(y)
)

= 1− e−λd ρ(Υ)ρ(y)Y (Υ).

If {Wn}n≥0 dies out, then for any y such that Υ infects y, the epidemic on the
subtree consisted of y and its descendant must die out, the probability of which is
Fd(ρ(y)). As a result,

Êλ,d

[
Wn = ∅ for some n ≥ 0

∣∣∣ρ(Υ), Y (Υ), {ρ(y) : Υ⇒ y}
]

=
∏

y:Υ⇒y

(
Fd(ρ(y))(1− e−λd ρ(Υ)ρ(y)Y (Υ)) + e−

λ
d ρ(Υ)ρ(y)Y (Υ)

)
and hence

Fd(s) = Êλ,d

[ ∏
y:Υ⇒y

(
Fd(ρ(y))(1− e−λd sρ(y)Y (Υ)) + e−

λ
d sρ(y)Y (Υ)

)]
.

Since {ρ(y) : Υ⇒ y} are independent,

Fd(s) = Êλ,d

[(
Hd(Y (Υ))

)d]
= E

[(
Hd(Y0)

)d]
, (3.2)

where

Hd(t) = E
(
Fd(ρ)(1− e−λd stρ) + e−

λ
d stρ

)
for any t ≥ 0 and Y0 is an exponential time with rate one defined under some space
we do not care. For s ∈ [0,M ], we use F (s) to denote liml→+∞ Fdl(s), which exists
according the assumption of Lemma 3.2. Then,

lim
l→+∞

dl
[
1− Fdl(ρ)

][
1− e−

λ
dl
stρ]

= λstρ
(
1− F (ρ)

)
while

d
[
1− Fd(ρ)

][
1− e−λd stρ

]
≤ 2λstρ ≤ 2λstM

for any d ≥ 1. Hence, according to the dominated convergence theorem,

lim
l→+∞

dl(Hdl(t)− 1) = −λstE
(
ρ(1− F (ρ))

)
. (3.3)

According to the theory of calculus, if ad → 0, cd → +∞ and adcd → c, then
(1 + ad)

cd → ec. Therefore, by Equation (3.3),

lim
l→+∞

(
Hdl(Y0)

)dl = e
−λsY0E

(
ρ(1−F (ρ))

)
.

For each d ≥ 1, (
Hd(Y0)

)d ≤ (1− e−λd stρ + e−
λ
d stρ

)d
= 1.

Then, according to the dominated convergence theorem,

lim
l→+∞

Fdl(s) = lim
l→+∞

E
[(
Hdl(Y0)

)dl] = Ee−λsY0θ̃ =
1

1 + λsθ̃
, (3.4)
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where θ̃ = E
(
ρ(1− F (ρ))

)
. As a result, F (s) = 1

1+λsθ̃
for any s and we only need

to show that θ̃ = θ. According to the definition of θ̃,

θ̃ = E
(
ρ(1− F (ρ))

)
= E

(
ρ(1− 1

1 + λρθ̃
)
)

= E
( λρ2θ̃

1 + λρθ̃

)
.

Therefore, to prove θ = θ̃ we only need to show that θ̃ 6= 0. This fact follows
directly from the fact that

lim sup
d→+∞

E
(
Fd(ρ)

)
< 1

when λ > 1
E(ρ2) , which is proved in Pan et al. (2017).

�

Proof of Lemma 3.3: We denote by {W s
n}n≥0 the branching process conditioned on

ρ(Υ) = s and denote by {W t
n}n≥0 the branching process conditioned on ρ(Υ) = t.

We couple these two branching processes in a same probability space as follows.
For any x ∈ Td, we assume that these two processes utilize the same exponential
time Y (x) with rate one. For any x 6= Υ and x ⇒ z, we assume that these two
processes utilize the same exponential time U(x, z) with rate λ

dρ(x)ρ(z). For each
y that Υ⇒ y, we assume that {W s

n}s≥0 utilizes an exponential time Us(Υ, y) with

rate λ
d sρ(y) while {W t

n}t≥0 utilizes an exponential time

Ut(Υ, y) = inf
{
Us(Υ, y), Ut−s(Υ, y)

}
,

where Ut−s(Υ, y) is an exponential time with rate λ
d (t−s)ρ(y) and is independent of

Us(Υ, y), Y (Υ) under the quenched measure. Therefore, Ut(Υ, y) is an exponential
time with rate λ

d tρ(y). According to the coupling of {W s
n}n≥0 and {W t

n}n≥0,

|Fd(t)− Fd(s)| = P̂λ,d
(
{W t

n}n≥0 survives while {W s
n}n≥0 dies out

)
≤ P̂λ,d(W s

1 6= W t
1)

= P̂λ,d
(
Ut−s(Υ, y) < Y (Υ) < Us(Υ, y) for some y

)
≤
∑
y:Υ⇒y

P̂λ,d
(
Ut−s(Υ, y) < Y (Υ) < Us(Υ, y)

)
=
∑
y:Υ⇒y

Êλ,d

[
e−

λ
d sρ(y)Y (Υ) − e−λd tρ(y)Y (Υ)

]
=
∑
y:Υ⇒y

Êλ,d

[ 1

1 + λ
d sρ(y)

− 1

1 + λ
d tρ(y)

]
= dE

[ λ
d (t− s)ρ

(1 + λsρ
d )(1 + λtρ

d )

]
≤ dλ

d
(t− s)M = λ(t− s)M

and the proof is complete.
�

4. Proof of Equation (2.3)

In this section we give the proof of Equation (2.3). Throughout this section we
assume that

λ >
1

E(ρ2)
≥ 1

M2
,
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where M is defined as in Section 1. For later use, we assume that there exists ε > 0
that

P
(
ρ = 0 or ρ ∈ [ε,M ]

)
= 1. (4.1)

This assumption is without loss of generality according to the following analysis.
For ρ not satisfying (4.1), we let ρm = ρ1{ρ≥1/m}, then ρ ≥ ρm and ρm → ρ as
m→ +∞. It is obvious that ρm satisfies (4.1) while the process with weights given
by ρ has larger probability to survive than that with weights given by ρm. As a
result, if Equation (2.3) holds under assumption (4.1), then

lim inf
d→+∞

Pλ,d,ρ
(
IOt 6= ∅,∀ t ≥ 0

)
≥ lim inf

d→+∞
Pλ,d,ρm

(
IOt 6= ∅,∀ t ≥ 0

)
≥ E

( λρmθm
1 + λρmθm

)
for any sufficiently large m, where Pλ,d,ρ is the annealed measure of the process
with vertex weights which are i.i.d copies of ρ while θm satisfies

E
( λρ2

m

1 + λρmθm

)
= 1

and it is easy to check that limm→+∞ θm = θ. Let m→ +∞, then Equation (2.3)
holds for general ρ.

First we give a sketch of the proof, which is inspired by the approach introduced
in Xue (2017b). We divide Zd+ into two parts Γ1 and Γ2 such that

Γ1

⋂
Γ2 = {x : ‖x‖ = bσ0 log dc},

where σ0 is a positive constant. The first step is to show that with probability at

least E
(

λρθ
1+λρθ

)
+ o(1) there exists O(

√
log d

log(log d) ) vertices on Γ1

⋂
Γ2 which have been

infected by O through paths on Γ1. The second step is to show that conditioned

on O(
√

log d
log(log d) ) vertices being initially infected on Γ1

⋂
Γ2, the SIR model on Γ2

survives with high probability. To prove the first step, we construct a coupling
between the SIR on Zd+ and the branching process introduced in Section 3.

To give our proof, we introduce some definitions and notations. For sufficiently
large d, we define N(d) = log(log d), j(d) = d − b d

N(d)c + 1. Let σ0 be a fixed

constant such that

σ0 ∈
(
0,

1

10 log(λM2)

)
,

then we define

Γ1 =
{
x = (x1, x2, . . . , xd) ∈ Zd+ : ‖x‖ ≤ bσ0 log dc

}
,

Γ2 =
{
x ∈ Zd+ : ‖x‖ ≥ bσ0 log dc

}
.

For n ≥ 0, we define

Vn =
{
x ∈ Zd+ : ‖x‖ = n and x ∈ IOt for some t ≥ 0

}
as the set of vertices which have ever been infected with l1 norm n. Since in
the SIR model, infection can not occur repeatedly between neighbors, {Vn}n≥0

can be defined equivalently as the following way. For each x ∈ Zd+, let Ỹ (x) be

an exponential time with rate one. For any x, y that x → y, let Ũ(x, y) be an
exponential time with rate λ

dρ(x)ρ(y). We assume that all these exponential times
are independent under the quenched measure with respect to the given edge weights,
then
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(1) V0 = {O}.
(2) For each n ≥ 0,

Vn+1 =
{
y ∈ Zd+ : x→ y and Ũ(x, y) < Ỹ (x) for some x ∈ Vn

}
.

The intuitive explanation of the above definition is similar with that of the

branching process introduced in Section 3. Ỹ (x) is time x waits for to become

recovered after x is infected while Ũ(x, y) is the time x waits for to infect y.
Let

b0 =
λεθ

2(1 + λεθ)
and K(d) =

⌊b0√log d

N(d)

⌋
,

then we have the following lemma.

Lemma 4.1.

lim inf
d→+∞

Pλ,d

(∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
≥ E

( λρθ

1 + λρθ

)
,

where
∣∣Vbσ0 log dc

∣∣ is the cardinality of Vbσ0 log dc.

The proof of Lemma 4.1 is given in Subsection 4.2. As a preparation of this
proof, we give a coupling of {Wn}n≥0 and {Vn}n≥0 in Subsection 4.1.

To execute the second step as we have introduced, we define

m(d) = inf

{
Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)

:

A ⊆ Γ1

⋂
Γ2 and |A| = K(d)

}
,

then we have the following lemma.

Lemma 4.2.

lim
d→+∞

m(d) = 1.

The proof of Lemma 4.2 is given in Subsection 4.3.
Now we show how to utilize Lemmas 4.1 and 4.2 to prove Equation (2.3).

Proof of Equation (2.3): For x, y ∈ Zd+, we write x⇒ y when there exists

x1, x2, . . . , xm

for some integer m ≥ 1 such that x = x0 → x1 → x2 → . . . → xm → xm+1 = y

and Ũ(xj , xj+1) < Ỹ (xj) for all 0 ≤ j ≤ m. Then, according to the meaning of the

exponential times Ũ(·, ·) and Ỹ (·),⋃
t≥0

IAt = A ∪
{
y : x⇒ y for some x ∈ A

}
.

Since each infected vertex becomes recovered in an exponential time with rate one,
the infected vertices never die out when and only when there are infinitely many
vertices which have ever been infected. Therefore,{

IAt 6= ∅,∀ t ≥ 0
}

=
{
|{y : x⇒ y for some x ∈ A}| = +∞

}
(4.2)
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for any finite A. According to the definition of Vbσ0 log dc, O ⇒ x for any x ∈
Vbσ0 log dc. As a result,{

y : x⇒ y for some x ∈ Vbσ0 log dc

}
⊆
{
y : O ⇒ y

}
⊆
⋃
t≥0

IOt , (4.3)

since O ⇒ y when O ⇒ x and x⇒ y. By Equations (4.2) and (4.3),

Pλ,d

(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞

)
≤ Pλ,d

(
IOt 6= ∅,∀ t ≥ 0

)
. (4.4)

According to the conditional probability formula,

Pλ,d

(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞

)
(4.5)

≥ Pλ,d
(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞

∣∣∣∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
× Pλ,d

(∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
.

We define h̃(d) as

h̃(d) =
{
A : A ⊆ Γ1

⋂
Γ2 and |A| ≥ K(d)

}
,

then by Equation (4.2),

Pλ,d

(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞

∣∣∣∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
(4.6)

=
∑

A∈h̃(d)

Pλ,d

(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞,

Vbσ0 log dc = A
∣∣∣∣∣Vbσ0 log dc

∣∣ ≥ K(d)
)

=
∑

A∈h̃(d)

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣Vbσ0 log dc = A
)

× Pλ,d
(
Vbσ0 log dc = A

∣∣∣∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
.

For any x ∈ Vbσ0 log dc, ρ(x) > 0 since x can be infected. Then, by Assumption
(4.1), ρ(x) ≥ ε for any x ∈ Vbσ0 log dc. As a result,

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣Vbσ0 log dc = A
)

(4.7)

≥ Pλ,d
(
IAt 6= ∅ for all t ≥ 0

∣∣∣Vbσ0 log dc = A, ρ(x) = ε for all x ∈ A
)
.

Conditioned on {ρ(x) = ε for all x ∈ A} for some A ∈ h̃(d), the event {IAt 6=
∅ for all t ≥ 0} is independent of {Vbσ0 log dc = A}, since {IAt }t≥0 only depends on

℘1 =
{
Ũ(x, y) : x ∈ A or ‖x‖ > bσ0 log dc, x→ y

}⋃{
Ỹ (x) : x ∈ Γ2

}
and Vbσ0 log dc only depends on

℘2 =
{
Ũ(x, y) : ‖x‖ < bσ0 log dc, x→ y

}⋃{
Ỹ (x) : ‖x‖ < bσ0 log dc

}
while ℘1 and ℘2 are independent when the values of {ρ(x)}x∈A are given.
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Therefore,

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣Vbσ0 log dc = A, ρ(x) = ε for all x ∈ A
)

(4.8)

= Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)
.

It is obvious that

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)

≥ Pλ,d
(
IBt 6= ∅ for all t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ B
)

for B ⊆ A ⊆ Γ1

⋂
Γ2. As a result,

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)
≥ m(d) (4.9)

for any A ∈ h̃(d), since each A ∈ h̃(d) has a subset with cardinality K(d). By
Equations (4.7), (4.8) and (4.9),

Pλ,d

(
IAt 6= ∅ for all t ≥ 0

∣∣∣Vbσ0 log dc = A
)
≥ m(d) (4.10)

for each A ∈ h̃(d). Then, by Equation (4.6),

Pλ,d

(
|{y : x⇒ y for some x ∈ Vbσ0 log dc}| = +∞

)
(4.11)

≥ m(d)
∑

A∈h̃(d)

Pλ,d

(
Vbσ0 log dc = A

∣∣∣∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
= m(d).

By Equations (4.4), (4.5) and (4.11),

Pλ,d
(
IOt 6= ∅,∀ t ≥ 0

)
≥ m(d)Pλ,d

(∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
and Equation (2.3) follows directly from Lemmas 4.1 and 4.2.

�

4.1. The coupling between {Wn}n≥1 and {Vn}n≥1. In this section, we give a cou-
pling between the SIR model {Vn}n≥0 on Zd+ and the branching process {Wn}n≥0

on Td.
We let {ρ(x)}x∈Zd+ be i.i.d copies of ρ as defined in Section 1. We let {Ỹ (x)}x∈Zd+

and {Ũ(x, y)}x→y be exponential times with respect to {ρ(x)}x∈Zd+ as defined at

the beginning of this section. We let {Vn}n≥0 be the SIR model with respect to Ỹ (·)
and Ũ(·, ·) as defined at the beginning of this section. Now we give the evolution
of {Wn}n≥0 by induction.

We let W0 = Υ, ρ(Υ) = ρ(O) and Y (Υ) = Ỹ (O), where O is the origin of Zd+.

For the d sons denoted by n1, n2, . . . , nd of Υ, we let ρ(ni) = ρ(ei), Y (ni) = Ỹ (ei)

and U(Υ, ni) = Ũ(O, ei) for each 1 ≤ i ≤ d, where ei is the elementary unit
vector of Zd+ as defined in Section 1. Then W1 is defined according to the values of
{U(Υ, ni)}1≤i≤d and Y (Υ) as in Section 3.

For n ≥ 1, if |Vn| = |Wn| and there is a bijection gn : Vn → Wn such that

ρ(gn(x)) = ρ(x) and Y (gn(x)) = Ỹ (x) for each x ∈ Vn, then we say that our
coupling is successful at step n. It is obvious that our coupling is successful at step
n = 1 since g1 can be defined as g1(ei) = ni for any ei ∈ V1.
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If {Wm}m≤n is well defined and the coupling is successful at step m for all
1 ≤ m ≤ n, then Wn+1 is defined as follows. For any x ∈ Vn, we define

q(x) =
{
y : x→ y and z → y for some z ∈ Vn \ {x}

}
,

ψ(x) =
{
y : x→ y

}
\ q(x)

and h(x) = d − |q(x)|, then |ψ(x)| = h(x). For each x ∈ Vn, we arbitrarily choose
h(x) sons of gn(x) ∈ Wn, which are denoted by w1, w2, . . . , wh(x). Giving the h(x)
elements in ψ(x) an arbitrary order y1, y2, . . . , yh(x) , then we let ρ(wi) = ρ(yi),

Y (wi) = Ỹ (yi) and U(gn(x), wi) = Ũ(x, yi) for each 1 ≤ i ≤ h(x). For any son u of
gn(x) which is not in {w1, w2, . . . , wh(x)}, let Y (u) be an exponential time with rate
one and ρ(u) be an independent copy of ρ such that Y (u) and ρ(u) are independent
of the aforesaid exponential times and vertex weights while let U(gn(x), u) be an
exponential time with rate λ

dρ(gn(x))ρ(u). Then, Wn+1 is defined according to the
values of {Y (gn(x))}x∈Vn and {U(gn(x), w)}x∈Vn,gn(x)⇒w as in Section 3.

If n is the first step that the coupling is not successful, then we let {Wm}m≥n+1

evolve independently of {Vm}m≥n+1.
From now on we assume that {Wn}n≥0 and {Vn}n≥0 are defined under the same

probability space. The annealed measure is still denoted by Pλ,d.
The remainder of this subsection is devoted to the proof of the following lemma.

Lemma 4.3. We denote by B(d) the event that the coupling of {Vn}n≥0 on Zd+
and {Wn}n≥0 on Td is successful at step m for all

1 ≤ m ≤ bσ0 log dc,
then

lim
d→+∞

Pλ,d
(
B(d)

)
= 1.

Proof of Lemma 4.3: First we claim that

Pλ,d

(
|Vm| > d0.2

)
≤ d−0.1λM2

λM2 − 1
(4.12)

for each 0 ≤ m ≤ bσ0 log dc. Equation (4.12) follows from the following analysis.

For a given oriented path ~l : O = x0 → x1 → . . .→ xm on Zd+,

Pλ,d

(
Ũ(xj , xj+1) < Ỹ (xj) for all 0 ≤ j ≤ m− 1

)
≤
(λ
d
M2
)m

,

since Ỹ (·) is an exponential time with rate one while Ũ(·, ·) is an exponential time
with rate at most λ

dM
2. The number of oriented paths starting at O with length

m on Z+
d is dm. As a result,

Eλ,d|Vm| ≤
(λ
d
M2
)m

dm =
(
λM2

)m
,

since x ∈ Vm when and only when there exists an oriented path ~l : O = x0 → x1 →
. . .→ xm = x that Ũ(xj , xj+1) < Ỹ (xj) for all 0 ≤ j ≤ m− 1.

Then, according to the Chebyshev’s inequality and the fact that σ0 log(λM2) <
1
10 ,

Pλ,d

( bσ0 log dc∑
m=0

|Vm| > d0.2
)
≤ d−0.2

bσ0 log dc∑
m=0

(
λM2

)m ≤ d−0.1λM2

λM2 − 1
,

and Equation (4.12) follows from which directly.
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For 1 ≤ m ≤ bσ0 log dc, we use B(d,m) to denote the event that the coupling of
{Vn}n≥0 on Zd+ and {Wn}n≥0 on Td is successful at step l for all 1 ≤ l ≤ m. Then

B(d) = B(d, bσ0 log dc) and Pλ,d
(
B(d, 1)

)
= 1.

For d ≥ 2 and 1 ≤ m ≤ bσ0 log dc − 1, we denote by J(d,m) the event

that Ũ(x, y) > Ỹ (x) for any x ∈ Vm and any y ∈ q(x). We use J(d) to de-

note
⋂bσ0 log dc−1
m=1 J(d,m), i.e., J(d) is the event that Ũ(x, y) > Ỹ (x) for any

x ∈
⋃bσ0 log dc−1
m=0 Vm and any y ∈ q(x).

It is easy to check that there exists a vertex y satisfying x→ y, z → y for given
x, z ∈ Vm when and only when x− z = ei − ej for some 1 ≤ i, j ≤ d and such y is
unique that y = x+ ej = z + ei. Hence,

|q(x)| ≤ |Vm| − 1 < |Vm| (4.13)

for any x ∈ Vm. For k < bσ0 log dc, conditioned on B(d, k), the coupling will be
successful at step k+ 1 if J(d, k) occurs and U(gk(x), y) > Y

(
gk(x)

)
for any x ∈ Vk

and any y that gk(x) ⇒ y while y 6= w1, w2, . . . , wh(x). Then, by Equation (4.13)

and the fact that Ỹ (·), Y (·) are exponential times with rates 1 while Ũ(·, ·), U(·, ·)
are exponential times with rates at most λ

dM
2,

Pλ,d

(
B(d, k + 1)

∣∣∣B(d, k), |Vk| ≤ d0.2
)
≥ 1− 2d0.2 × d0.2λM

2

d
= 1− 2λM2d−0.6.

(4.14)
By Equations (4.12) and (4.14),

Pλ,d

(
B(d, k + 1)

)
≥Pλ,d

(
B(d, k + 1), B(d, k), |Vk| ≤ d0.2

)
≥Pλ,d

(
B(d, k + 1)

∣∣∣B(d, k), |Vk| ≤ d0.2
)

×
[
Pλ,d

(
B(d, k)

)
− P

(
|Vk| > d0.2

)]
≥
(
1− 2λM2d−0.6

)[
Pλ,d

(
B(d, k)

)
− d−0.1λM2

λM2 − 1

]
. (4.15)

By Equation (4.15),

Pλ,d

(
B(d, k + 1)

)
+

(1− 2λM2d−0.6)d0.5

2(λM2 − 1)

≥
(
1− 2λM2d−0.6

)[
Pλ,d

(
B(d, k)

)
+

(1− 2λM2d−0.6)d0.5

2(λM2 − 1)

]
and hence

Pλ,d

(
B(d, k)

)
≥
(
1− 2λM2d−0.6

)k−1
[
1 +

(1− 2λM2d−0.6)d0.5

2(λM2 − 1)

]
− (1− 2λM2d−0.6)d0.5

2(λM2 − 1)
(4.16)

for 1 ≤ k ≤ bσ0 log dc, since Pλ,d
(
B(d, 1)

)
= 1.
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Lemma 4.3 follows from Equation (4.16) directly since B(d) = B(d, bσ0 log dc)
and

lim
d→+∞

{(
1− 2λM2d−0.6

)bσ0 log dc−1
[
1 +

(1− 2λM2d−0.6)d0.5

2(λM2 − 1)

]
− (1− 2λM2d−0.6)d0.5

2(λM2 − 1)

}
= 1.

�

4.2. Proof of Lemma 4.1. In this subsection we give the proof of Lemma 4.1. As a
preparation, we introduce some notations and definitions. For sufficiently large d,
let N(d) = log(log d) as we have introduced. For each x ∈ Td, we give the d sons
of x an order x(1), x(2), . . . , x(d), i.e., x(i) is the ith son of x. Then, we define

(1) Ŵ0 = Υ.
(2) For each n ≥ 0,

Ŵn+1 =
{
y : there exists x ∈ Ŵn that y = x(i)

for some i ≤ d− b d

N(d)
c and U(x, y) < Y (x)

}
.

It is obvious that Ŵn ⊆Wn for each n ≥ 0. We define

D̂ =
{
y : there exists x ∈

bσ0 log dc−1⋃
m=0

Ŵm

such that y = x(i) for some i ≥ j(d) and U(x, y) < Y (x)
}
,

where j(d) = d− b d
N(d)c+ 1 as we have introduced. The proof of Lemma 4.1 relies

heavily on Lemma 4.3 and the following lemma.

Lemma 4.4.

lim
d→+∞

Pλ,d

(
|D̂| ≥ b

√
log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
= 1.

Note that we use Pλ,d instead of P̂λ,d in Lemma 4.4 since we have already coupled
{Wn}n≥1 with {Vn}n≥1. The proof of Lemma 4.4 is given in the next subsection.
Now we give the proof of Lemma 4.1.

Proof of Lemma 4.1: For each u ∈ Td, we denote by Tu the subtree of Td rooted at
u and consisted of u and its descendants. We denote by χ(u) the indicator function
of the event that the infected vertices in the SIR model confined on Tu with u
being initially infected while others being initially susceptible never die out. For

each u ∈ D̂, since u has been infected by Υ through a path from Υ to u, ρ(u) > 0

and hence ρ(u) ≥ ε according to Assumption 4.1. For any u, v ∈ D̂, it is easy to
check that

Tu ∩ Tv = ∅ and Tu ∩
( ⋃
n≤bσ0 log dc−1

Ŵn

)
= ∅.

Therefore, conditioned on Ŵbσ0 log dc−1 6= ∅ while |D̂| ≥ b
√

log d
N(d) c,

∑
u∈D̂ χ(u) is

stochastic dominated from below by a random variable D̃(d) following from the
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binomial distribution B(b
√

log d
N(d) c, 1− Fd(ε)), where

Fd(ε) = Pλ,d

(
Wn = ∅ for some n ≥ 0

∣∣∣ρ(Υ) = ε
)

defined as in Section 3. According to the proof of Lemma 3.1,

lim
d→+∞

1− Fd(ε) =
λεθ

(1 + λεθ)

and hence

lim
d→∞

D̃(d)N(d)√
log d

=
λεθ

(1 + λεθ)

in probability by the law of large numbers. As a result,

lim inf
d→+∞

Pλ,d

(∑
u∈D̂

χ(u) ≥ K(d)
∣∣∣Ŵbσ0 log dc−1 6= ∅, |D̂| ≥ b

√
log d

N(d)
c
)

(4.17)

= lim inf
d→+∞

Pλ,d

(∑
u∈D̂

χ(u) ≥ b λεθ

2(1 + λεθ)

√
log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅, |D̂| ≥ b

√
log d

N(d)
c
)

≥ lim inf
d→+∞

P
(
D̃(d) ≥ b λεθ

2(1 + λεθ)

√
log d

N(d)
c
)

= 1.

For any u ∈ D̂, if χ(u) = 1, since u has been infected while the distance between
Υ and u is at most bσ0 log dc, then there exists at least one vertex z ∈ Tu such that
the distance between Υ and z is bσ0 log dc while z has been infected, i.e.,

z ∈Wbσ0 log dc.

Since Tu ∩ Tv = ∅ for any u, v ∈ D̂,{∑
u∈D̂

χ(u) ≥ K(d)
}
⊆
{∣∣Wbσ0 log dc

∣∣ ≥ K(d)
}
.

Then, by Equation (4.17),

lim inf
d→+∞

Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d)

∣∣∣Ŵbσ0 log dc−1 6= ∅, |D̂| ≥ b
√

log d

N(d)
c
)

= 1. (4.18)

Then, by Lemma 4.4 and Equation (4.18),

lim inf
d→+∞

Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d)

∣∣∣Ŵbσ0 log dc−1 6= ∅
)

(4.19)

≥ lim inf
d→+∞

Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d), |D̂| ≥ b

√
log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
= lim inf

d→+∞
Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d)

∣∣∣Ŵbσ0 log dc−1 6= ∅, |D̂| ≥ b
√

log d

N(d)
c
)

× Pλ,d
(
|D̂| ≥ b

√
log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
= 1.

According to the definition of {Ŵn}n≥0, {Ŵn}n≥0 on Td with infection rate λ can

be identified with {Wn}n≥0 on Td−b
d

N(d)
c with infection rate

λ̃(d) = λ
d− b d

N(d)c
d

.
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For given λ1 ∈
(

1
E(ρ2) , λ

)
,

λ̃(d) ≥ λ1

for sufficiently large d. Hence, by Lemma 3.1,

lim inf
d→+∞

Pλ,d
(
Ŵbσ0 log d−1c 6= ∅

)
≥ lim inf

d→+∞
Pλ,d

(
Ŵn 6= ∅ for all n ≥ 0

)
= lim inf

d→+∞
Pλ̃(d),d−b d

N(d)
c
(
Wn 6= ∅ for all n ≥ 0

)
≥ lim inf

d→+∞
Pλ1,d−b d

N(d)
c
(
Wn 6= ∅ for all n ≥ 0

)
= E

( λ1ρθ1

1 + λ1ρθ1

)
,

where θ1 = θ1(λ1) is the unique solution of

E
( λ1ρ

2

1 + λ1ρθ1

)
= 1.

It is easy to check that limλ1↑λ θ1 = θ while

lim
λ1↑λ

E
( λ1ρθ1

1 + λ1ρθ1

)
= E

( λρθ

1 + λρθ

)
.

Hence, let λ1 ↑ λ, we have

lim inf
d→+∞

Pλ,d
(
Ŵbσ0 log dc−1 6= ∅

)
≥ E

( λρθ

1 + λρθ

)
. (4.20)

By Equations (4.19), (4.20) and the conditional probability formula,

lim inf
d→+∞

Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d)

)
≥ E

( λρθ

1 + λρθ

)
. (4.21)

By Equation (4.21), Lemma 4.3 and the fact that |Vbσ0 log dc| = |Wbσ0 log dc| on the
event B(d),

lim inf
d→+∞

Pλ,d

(∣∣Vbσ0 log dc
∣∣ ≥ K(d)

)
≥ lim inf

d→+∞
Pλ,d

(∣∣Vbσ0 log dc
∣∣ ≥ K(d), B(d)

)
= lim inf

d→+∞
Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d), B(d)

)
≥ lim inf

d→+∞
Pλ,d

(∣∣Wbσ0 log dc
∣∣ ≥ K(d)

)
− lim
d→+∞

Pλ,d
(
B(d)c

)
≥ E

( λρθ

1 + λρθ

)
− 0 = E

( λρθ

1 + λρθ

)
and the proof is complete.

�

4.3. Proof of Lemma 4.4. In this section we give the proof of Lemma 4.4. First we
introduce some notations and definitions.

We let Ŷ0, . . . , Ŷbσ0 log dc−1 be exponential times with rate one while

Λ0, . . . ,Λbσ0 log dc−1

be exponential times with rate λM2. For 0 ≤ i ≤ bσ0 log dc−1 and 1 ≤ j ≤ b d
N(d)c,

let ρij be an independent copy of ρ while Ûij is an exponential time with rate λ
d ερij ,

where ε is defined as in Equation (4.1). According to the basic technique of measure
theory, we can assume that {ρij : 0 ≤ i ≤ bσ0 log dc − 1, 1 ≤ j ≤ b d

N(d)c} and

{ρ(x)}x∈Td are defined under the same space and independent under the annealed
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measure Pλ,d while we assume that U(·, ·), Û··, Y (·), Ŷ·,Λ· are defined under the
same space and independent under the quenched measure Pλ,ω.

Lemma 4.5. Let ξi =
b d
N(d)

c∑
j=1

1{Ûij<Ŷi} for 0 ≤ i ≤ bσ0 log dc − 1, then

Pλ,d

(
|D̂| ≥ b

√
log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
(4.22)

≥ Pλ,d
( bσ0 log dc−1∑

i=0

ξi ≥ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)
,

and

lim
d→+∞

Eλ,d

(
e
−sN(d)

log d

bσ0 log dc−1∑
j=0

ξj ∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1
)

(4.23)

exists for any s > 0. Furthermore, we use Θ(s) to denote

lim
d→+∞

Eλ,d

(
e
−sN(d)

log d

bσ0 log dc−1∑
j=0

ξj ∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1
)
,

then lims→+∞Θ(s) = 0.

We give the proof of Lemma 4.5 at the end of this subsection. Now we show how
to utilize Lemma 4.5 to prove Lemma 4.4.

Proof of Lemma 4.4: By Chebyshev’s inequality, for any s > 0,

Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≤ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)

≤ esb
√

log d
N(d)

cN(d)
log d Eλ,d

(
e
−sN(d)

log d

bσ0 log dc−1∑
j=0

ξj ∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1
)
.

Then, according to Equation (4.23),

lim sup
d→+∞

Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≤ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc−1

)
≤ Θ(s)

for any s > 0, since limd→+∞

(
b
√

log d
N(d) c

N(d)
log d

)
= 0.

Let s→ +∞, since lims→+∞Θ(s) = 0, we have

lim
d→+∞

Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≤ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)
= 0.

(4.24)
Lemma 4.4 follows from Equations (4.22) and (4.24) directly.

�

To give the proof of Lemma 4.5, we define a total order ≺ on Ŵn for each n ≥ 1.

For any u, v ∈ Ŵn, u 6= v, there exists a unique common ancestor x of u, v such
that u ∈ Tx(i) while v ∈ Tx(j) for some 1 ≤ i 6= j ≤ d − b d

N(d)c. We write u ≺ v

when and only when i < j. Now we give the proof of Lemma 4.5.
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Proof of Lemma 4.5: Equation (4.22) follows from the following analysis. Condi-

tioned on Ŵbσ0 log dc−1 6= ∅, there are Υ = X0 ⇒ X1 ⇒ . . . ⇒ Xbσ0 log dc−1 such

that Xi ∈ Ŵi for 0 ≤ i ≤ bσ0 log dc − 1. We choose X1, . . . , Xbσ0 log dc−1 as fol-

lows. We let Xbσ0 log dc−1 be the smallest one of Ŵbσ0 log dc−1 under the partial ≺.

Then, Υ = X0 ⇒ X1 ⇒ . . . ⇒ Xbσ0 log dc−1 is the unique path on Td from O to
Xbσ0 log dc−1 with length bσ0 log dc − 1.

For 0 ≤ i ≤ bσ0 log dc − 1, let

ζi =

b d
N(d)

c∑
j=1

1{
U
(
Xi, Xi(j+d−b d

N(d)
c)
)
<Y (Xi)

} and ηi =

b d
N(d)

c∑
j=1

1{Ûij<Y (Xi)},

then

|D̂| ≥
bσ0 log dc−1∑

i=0

ζi (4.25)

according to our definition of D̂. Note that Xi(j) is the jth son of Xi according to
the notations which we have introduced.

Since Xi ∈ Ŵi, ρ(Xi) > 0 and hence ρ(Xi) ≥ ε by assumption (4.1). As
a result, U

(
Xi, Xi(j + d − b d

N(d)c)
)

is an exponential time with rate at least
λ
d ερ
(
Xi(j+ d−b d

N(d)c)
)
, where ρ

(
Xi(j+ d−b d

N(d)c)
)

is an independent copy of ρ.

Therefore, U
(
Xi, Xi(j + d − b d

N(d)c)
)

is stochastic dominated from above by Ûij
and ηi is dominated from above by ζi. Hence,

Pλ,d

( bσ0 log dc−1∑
i=0

ζi ≥ b
√

log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
(4.26)

≥ Pλ,d
( bσ0 log dc−1∑

i=0

ηi ≥ b
√

log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
.

For any path ~l : O = l0 ⇒ l1 ⇒ . . .⇒ lbσ0 log dc, we use γ(~l) to denote

Pλ,d

(
Xi = li for all 1 ≤ i ≤ bσ0 log dc − 1

∣∣∣∣∣Ŵbσ0 log dc−1 6= ∅
)
.

Then,

Pλ,d

( bσ0 log dc−1∑
i=0

ηi ≥ b
√

log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
=
∑
~l

γ(~l)Pλ,d

(
(4.27)

bσ0 log dc−1∑
i=0

ηi(~l) ≥ b
√

log d

N(d)
c
∣∣∣Xi = li for all 1 ≤ i ≤ bσ0 log dc − 1, Ŵbσ0 log dc−1 6= ∅

)
,

where

ηi(~l) =

b d
N(d)

c∑
j=1

1{Ûij<Y (li)}.

The condition {Xi = li for all 1 ≤ i ≤ bσ0 log dc, Ŵbσ0 log dc 6= ∅} in Equation (4.27)

is concerned with the values of Y (li) and {U
(
li, li(j)

)
: 1 ≤ j ≤ d − b d

N(d)c} for
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0 ≤ i ≤ bσ0 log dc − 1. A worse condition for
∑bσ0 log dc−1
i=0 ηi(~l) ≥ b

√
log d
N(d) c to occur

is that

Y (li) < inf
{
U
(
li, li(j)

)
: 1 ≤ j ≤ d− b d

N(d)
c
}

for all 0 ≤ i ≤ bσ0 log dc − 1, i.e.,

Pλ,d

( bσ0 log dc−1∑
i=0

ηi(~l) ≥ b
√

log d

N(d)
c
∣∣∣Xi = li for all 1 ≤ i ≤ bσ0 log dc − 1,

Ŵbσ0 log dc−1 6= ∅
)
≥

Pλ,d

( bσ0 log dc−1∑
i=0

ηi(~l) ≥ b
√

log d

N(d)
c
∣∣∣Y (li) < inf

{
U
(
li, li(j)

)
: 1 ≤ j ≤ d− b d

N(d)
c
}

for all 0 ≤ i ≤ bσ0 log dc − 1
)
. (4.28)

Note that Y (li) is with the same distribution as that of Ŷi while ηi(~l) is with the
same distribution as that of ξi. Further more, inf

{
U
(
li, li(j)

)
: 1 ≤ j ≤ d−b d

N(d)c
}

is an exponential time with rate at most

(d− b d

N(d)
c)λ
d
M2 ≤ λM2,

which is the rate of Λi. Then,

Pλ,d

( bσ0 log dc−1∑
i=0

ηi(~l) ≥ b
√

log d

N(d)
c
∣∣∣Y (li) < inf

{
U
(
li, li(j)

)
: j ≤ d− b d

N(d)
c − 1

}
for all 1 ≤ i ≤ bσ0 log dc − 1

)
≥ Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≥ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)
.

Therefore, by Equation (4.28),

Pλ,d

( bσ0 log dc−1∑
i=0

ηi(~l) ≥ b
√

log d

N(d)
c
∣∣∣Xi = li for all i < bσ0 log dc, Ŵbσ0 log dc−1 6= ∅

)

≥ Pλ,d
( bσ0 log dc−1∑

i=0

ξi ≥ b
√

log d

N(d)
c
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)
. (4.29)

By Equations (4.27) and (4.29),

Pλ,d

( bσ0 log dc−1∑
i=0

ηi ≥ b
√

log d

N(d)
c
∣∣∣Ŵbσ0 log dc−1 6= ∅

)
(4.30)

≥
∑
~l

γ(~l)Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≥ K(d)
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)

= Pλ,d

( bσ0 log dc−1∑
i=0

ξi ≥ K(d)
∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1

)
,
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since
∑
~l γ(~l) = 1. Equation (4.22) follows directly from Equations (4.25), (4.26)

and (4.30).
Equation (4.23) follows from the following analysis. According to the assumption

of independence of the exponential times,

Eλ,d

(
e
−sN(d)

log d

bσ0 log dc−1∑
j=0

ξj ∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1
)

=

[
Eλ,d

(
e−s

N(d)
log d ξ0

∣∣∣∣∣Ŷ0 < Λ0

)]bσ0 log dc

. (4.31)

By direct calculation,

Eλ,d

(
e−s

N(d)
log d ξ0

∣∣∣∣∣Ŷ0 < Λ0

)
= E

(
Ξ(Ŷ0, s, d)

∣∣∣Ŷ0 < Λ0

)
,

where

Ξ(t, s, d) =

[
E
(
e−s

N(d)
log d

(
1− e−

λtερ
d

)
+ e−

λtερ
d

)]b d
N(d)

c

.

Then, by Equation (4.31),

Eλ,d

(
e
−sN(d)

log d

bσ0 log dc−1∑
j=0

ξj ∣∣∣Ŷi < Λi for all 0 ≤ i ≤ bσ0 log dc − 1
)

=

[
E
(

Ξ(Ŷ0, s, d)
∣∣∣Ŷ0 < Λ0

)]bσ0 log dc

. (4.32)

By direct calculation, it is not difficult to check that

lim
d→+∞

bσ0 log dc
(

Ξ(t, s, d)− 1
)

= −sσλtεEρ.

for any t > 0. As a result,

Θ(s) = lim
d→+∞

[
E
(

Ξ(Ŷ0, s, d)
∣∣∣Ŷ0 < Λ0

)]bσ0 log dc

= E
(
e−sσλŶ0εEρ

∣∣∣Ŷ0 < Λ0

)
.

(4.33)
Note that here we still utilize the fact that (1 + ad)

cd → ec when ad → 0, cd → +∞
and adcd → c. Equation (4.23) follows directly from Equations (4.32) and (4.33).

�

4.4. Proof of Lemma 4.2. In this subsection we give the proof of Lemma 4.2. The
proof is inspired a lot by the approach introduced in Xue (2015). First we introduce
some definitions and notations. We let {ϑn}n≥0 be the oriented random walk on
Zd+ such that

P (ϑn+1 − ϑn = ei) =
1

d
for each n ≥ 0 and 1 ≤ i ≤ d. We let {νn}n≥0 be an independent copy of {ϑn}n≥0.
From now on, we denote by P the probability measure of {ϑn}n≥0 and {νn}n≥0

while denote by E the expectation with respect to P. When we need to point out
the dimension d of the lattice, we write P and E as Pd and Ed. We write ϑn (resp.
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νn) as ϑxn (resp. νxn) when ϑ0 = x (resp. ν0 = x). For x, y ∈ Zd+ satisfying x 6= y
and ‖x‖ = ‖y‖, we define

τx,y = inf
{
k ≥ 1 : ϑxk = νyk

}
.

That is to say, τx,y is the first moment when {ϑxn}n≥0 and {νyn}n≥0 collide. For
x, y ∈ Zd+ satisfying ‖x‖ = ‖y‖, we introduce the following random variables. We
define

τx,y0 =

{
0 if x = y,

τx,y if x 6= y.

We let

τx,y1 = inf
{
n ≥ τx,y0 : ϑxn = νyn, ϑ

x
n+1 = νyn+1

}
,

κx,y1 = inf
{
n > τx,y1 : ϑxn = νyn, ϑ

x
n+1 6= νyn+1

}
,

τx,y2 = inf
{
n > κx,y1 : ϑxn = νyn, ϑ

x
n+1 = νyn+1

}
,

κx,y2 = inf
{
n > τx,y2 : ϑxn = νyn, ϑ

x
n+1 6= νyn+1

}
,

. . . . . .

τx,yl = inf
{
n > κx,yl−1 : ϑxn = νyn, ϑ

x
n+1 = νyn+1

}
,

κx,yl = inf
{
n > τx,yl : ϑxn = νyn, ϑ

x
n+1 6= νyn+1

}
,

. . . . . .

That is to say, τx,y1 is the first moment n such that ϑxn = νyn and ϑxn+1 = νyn+1. For
l ≥ 1, κx,yl is the first moment n after τx,yl such that ϑxn = νyn and ϑxn+1 6= νyn+1

while τx,yl+1 is the first moment n after κx,yl that ϑxn = νyn and ϑxn+1 = νyn+1.
We define

T (x, y) =

{
sup

{
l ≥ 0 : τx,yl < +∞

}
if τx,y0 < +∞,

0 if τx,y0 = +∞.

In this subsection we assume that d ≥ 4 such that T (x, y) < +∞ with probability
one according to the conclusion given in Cox and Durrett (1983) about the collision
times of two independent oriented random walks.

For 1 ≤ l ≤ T (x, y), we define

hx,yl = κx,yl − τx,yl .

We let

fx,y0 =
∣∣{τx,y0 ≤ n < τx,y1 : ϑxn = νyn}

∣∣,
fx,y1 =

∣∣{κx,y1 < n < τx,y2 : ϑxn = νyn}
∣∣,

. . . . . .

fx,yl =
∣∣{κx,yl < n < τx,yl+1 : ϑxn = νyn}

∣∣,
. . . . . .

fx,yT (x,y)−1 =
∣∣{κx,yT (x,y)−1 < n < τx,yT (x,y) : ϑxn = νyn}

∣∣,
fx,yT (x,y) =

∣∣{n > κx,yT (x,y) : ϑxn = νyn}
∣∣,
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where |A| is the cardinality of the set A as we have introduced. Then, for x, y that
‖x‖ = ‖y‖, we define

R(x, y) =

2
T (x,y)+

T (x,y)∑
i=0

fx,yi (
1 + λM2

d

)4T (x,y)+2
T (x,y)∑
i=1

hx,yi +4
T (x,y)∑
i=0

fx,yi
M

6T (x,y)+4
T (x,y)∑
i=0

fx,yi

(
λE(ρ2)
d

)T (x,y)∑
i=1

hx,yi
(
E(ρ2)

)3T (x,y)+2
T (x,y)∑
i=0

fi(x,y)

when τx,y0 > 0 while define

R(x, y) =

2
T (x,y)+

T (x,y)∑
i=1

fx,yi (
1 + λM2

d

)4T (x,y)+2
T (x,y)∑
i=1

hx,yi +4
T (x,y)∑
i=1

fx,yi −2
M

6T (x,y)+4
T (x,y)∑
i=1

fx,yi −3

ε
(
λE(ρ2)
d

)T (x,y)∑
i=1

hx,yi
(
E(ρ2)

)3T (x,y)+2
T (x,y)∑
i=1

fi(x,y)−2

when τx,y0 = τx,y1 = 0 and define

R(x, y) =

2
T (x,y)+

T (x,y)∑
i=0

fx,yi (
1 + λM2

d

)4T (x,y)+2
T (x,y)∑
i=1

hx,yi +4
T (x,y)∑
i=0

fx,yi −2
M

6T (x,y)+4
T (x,y)∑
i=0

fx,yi −4

(
λE(ρ2)
d

)T (x,y)∑
i=1

hx,yi
(
E(ρ2)

)3T (x,y)+2
T (x,y)∑
i=0

fi(x,y)−2

when 0 = τx,y0 < τx,y1 . The following three lemmas are crucial for us to prove
Lemma 4.2.

Lemma 4.6. There exists c1 > 0 which does not depend on d such that

Pd
(
τx,y < +∞

)
≤ c1
d2

for any d ≥ 4 and x, y ∈ Zd+ satisfying x 6= y, ‖x‖ = ‖y‖.

Lemma 4.7. For given λ > 1
E(ρ2) , there exist d0 ≥ 4 and c2 > 0 which does not

depend on d such that

Ed
(
R(x, y)

∣∣∣τ(x, y) < +∞
)
≤ c2

for any d ≥ d0 and x, y ∈ Z+
d satisfying ‖x‖ = ‖y‖.

Lemma 4.8. For A ⊆ Z+
d satisfying ‖x‖ = ‖y‖ for any x, y ∈ A,

Pλ,d

(
IAt 6= ∅,∀ t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)
≥ 1

1
|A|2

∑
x∈A

∑
y∈A

Ed
(
R(x, y)

) .
The proofs of Lemmas 4.6-4.8 will be given later. Now we give the proof of

Lemma 4.2.

Proof of Lemma 4.2: For x, y ∈ Zd+ satisfying x 6= y, ‖x‖ = ‖y‖, according to the
definition of R(x, y), R(x, y) = 1 when τx,y = +∞. Therefore, by Lemmas 4.6
and 4.7,

Ed
(
R(x, y)

)
= Pd

(
τx,y = +∞

)
+ Ed

(
R(x, y)1{τx,y<+∞}

)
≤ 1 +

c1c2
d2

(4.34)
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for any d ≥ d0 and x, y ∈ Zd+ satisfying x 6= y, ‖x‖ = ‖y‖. By Lemma 4.7 and
Equation (4.34),∑

x∈A

∑
y∈A

Ed
(
R(x, y)

)
≤ |A|c2 + (|A|2 − |A|)(1 +

c1c2
d2

) (4.35)

for any A ⊆ Zd+ satisfying ‖x‖ = ‖y‖ for any x, y ∈ A. By Lemma 4.8 and Equation
(4.35),

Pλ,d

(
IAt 6= ∅,∀ t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)
≥ |A|2

(|A|2 − |A|)(1 + c1c2
d2 ) + |A|c2

(4.36)
for any d ≥ d0 and A ⊆ Zd+ satisfying ‖x‖ = ‖y‖ for any x, y ∈ A. Note that ‖x‖ =

bσ0 log dc for any x ∈ Γ1

⋂
Γ2. Hence, let m(d) = |K(d)|2

(|K(d)|2−|K(d)|)(1+
c1c2
d2

)+|K(d)|c2
,

then limd→+∞m(d) = 1 while

Pλ,d

(
IAt 6= ∅,∀ t ≥ 0

∣∣∣ρ(x) = ε for all x ∈ A
)
≥ m(d)

for any A satisfying A ⊆ Γ1

⋂
Γ2, |A| = K(d) by Equation (4.36) and the proof is

complete.
�

Now we give the proof of Lemma 4.6.

Proof of Lemma 4.6: Let

τ
O,O

= inf
{
n ≥ 1 : ϑOn = νOn

}
,

then by the conclusion given in Cox and Durrett (1983), there exists c3 > 0 which
does not depend on d such that

Pd
(
τ
O,O

< +∞
)
≤ 1

d
+
c3
d2

(4.37)

for all d ≥ 4. Since Pd
(
τ
O,O

= 1
)

= 1
d , according to the spatial homogeneity of Zd+,

(1− 1

d
)Pd
(
τei,ej < +∞

)
= Pd

(
2 ≤ τ

O,O
< +∞

)
≤ c3
d2

(4.38)

for any d ≥ 4, 1 ≤ i < j ≤ d. For x, y that x 6= y and ‖x‖ = ‖y‖, ‖x− y‖ is an even
number, which is at least two. Let

τ̂x,y = inf{n ≥ 0 : ‖ϑxn − νyn‖ = 2},

then, according to the strong Markov property,

Pd
(
τx,y < +∞

)
= Pd

(
τ̂x,y < +∞

)
Pd
(
τe1,e2 < +∞

)
≤ c3
d(d− 1)

, (4.39)

since ‖ϑxn+1 − ν
y
n+1‖ − ‖ϑxn − νyn‖ ∈ {0,−2, 2} for each n.

For d ≥ 4,
c3

d(d− 1)
≤ 2c3

d2
.

Let c1 = 2c3 and the proof is complete.
�

Now we give the proof of Lemma 4.7.
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Proof of Lemma 4.7: According to the definition of R(·, ·), for any x, y ∈ Z+
d ,

R(x, y) ≤ (4.40)

c52
T (x,y)+

T (x,y)∑
i=0

fx,yi (
1 + λM2

d

)4T (x,y)+2
T (x,y)∑
i=1

hx,yi +4
T (x,y)∑
i=0

fx,yi
M

6T (x,y)+4
T (x,y)∑
i=0

fx,yi

(
λE(ρ2)
d

)T (x,y)∑
i=1

hx,yi
(
E(ρ2)

)3T (x,y)+2
T (x,y)∑
i=0

fi(x,y)

,

where c5 > 0 is a constant which depends on M,E(ρ2), Eρ, λ, ε and does not de-
pend on d. According to the strong Markov property, for any positive integers
T, {hi}Ti=1, {fi}Ti=0,

Pd
(
T (x, y) = T, hx,yi = hi, f

x,y
i = fi for 0 ≤ i ≤ T

∣∣∣τx,y < +∞
)

(4.41)

≤ Pd
(

2 ≤ τ
O,O

< +∞
)f0+

∑T−1
i=1 (fi+1)+fT

Pd
(
τ
O,O

= 1
)∑T

i=1 hi
,

where τ
O,O

is defined as in the proof of Lemma 4.6. By Equations (4.38) and (4.41),

Pd
(
T (x, y) = T, hx,yi = hi, f

x,y
i = fi for 0 ≤ i ≤ T

∣∣∣τx,y < +∞
)

(4.42)

≤
( c3
d2

)f0−1+
∑T
i=1 fi+T (1

d

)∑T
i=1 hi .

By Equations (4.40) and (4.42),

Ed
(
R(x, y)

∣∣∣τx,y < +∞
)

(4.43)

≤ c5
+∞∑
T=0

+∞∑
f0=1

+∞∑
f1=1

. . .

+∞∑
fT=1

+∞∑
h1=1

. . .

+∞∑
hT=1

( c3
d2

)∑T
i=0 fi+T−1(1

d

)∑T
i=1 hi

×
2
T+

T∑
i=0

fi(
1 + λM2

d

)4T+2
T∑
i=1

hi+4
T∑
i=0

fi
M

6T+4
T∑
i=0

fi

(
λE(ρ2)
d

) T∑
i=1

hi(
E(ρ2)

)3T+2
T∑
i=0

fi

= ĉ5

+∞∑
T=0

(
c7(d)

)T [ +∞∑
f0=0

+∞∑
f1=1

. . .

+∞∑
fT=1

(
c8(d)

)∑T
i=0 fi

]

×
[ +∞∑
h1=1

. . .

+∞∑
hT=1

(
c9(d)

)∑T
i=1 hi

]
,

where ĉ5 =
2c5(1+λM2

d )4M4(
E(ρ2)

)2 , c7(d) =
2c3(1+λM2

d )4M6

d2
(
E(ρ2)

)3 , c8(d) =
2c3(1+λM2

d )4M4

d2
(
E(ρ2)

)2 and

c9(d) =
1

d

d

λE(ρ2)
(1 +

λM2

d
)2 =

(
1 + λM2

d

)2
λE(ρ2)

.

Since λ > 1
E(ρ2) , there exists c10 ∈ (0, 1), which does not depend on d, such that

ĉ5 <
3M4c5(
E(ρ2)

)2 and c9(d) ≤ c10
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for sufficiently large d. For sufficiently large d,

c8(d) ≤ 1

2
and

c7(d)c8(d)

1− c8(d)

c10

1− c10
≤ 1

10

since limd→+∞ c7(d) = limd→+∞ c8(d) = 0. As a result, by Equation (4.43),

Ed
(
R(x, y)

∣∣∣τx,y < +∞
)

≤ 1

1− c8(d)

3M4c5(
E(ρ2)

)2 +∞∑
T=0

(
c7(d)

c8(d)

1− c8(d)

c10

1− c10

)T
≤ 6M4c5(

E(ρ2)
)2 +∞∑

T=0

(
1

10
)T =

20M4c5

3
(
E(ρ2)

)2
for sufficiently large d. Let

c2 =
20M4c5

3
(
E(ρ2)

)2
and the proof is complete.

�

At the end of this subsection, we give the proof of Lemma 4.8.

Proof of Lemma 4.8: For given A ⊆ Zd+ satisfying ‖x‖ = ‖y‖ for any x, y ∈ A, we

use P̃λ,d(·) to denote the conditional probability measure

Pλ,d

(
·
∣∣∣ρ(x) = ε for all x ∈ A

)
.

We use Ẽλ,d to denote the expectation with respect to P̃λ,d.
For each m ≥ 1 and each x ∈ A, we define

Lm(x) =
{
~x = (x0, x1, . . . , xm) : x0 = x, xi → xi+1 for all 0 ≤ i ≤ m− 1

}
as the set of oriented paths starting at x with length m.

For each ~x = (x, x1, . . . , xm) ∈ Lm(x), we denote by π~x the event that

Ũ(xi, xi+1) < Ỹ (xi)

for all 0 ≤ i ≤ m− 1, then for each x ∈ Z+
d ,

P̃λ,d

(
π~x

)
= Eµd

(m−1∏
i=0

Pλ,ω
(
Ũ(xi, xi+1) < Ỹ (xi)

)∣∣∣ρ(x) = ε
)

= Eµd

( λ
d ερ(x1)

1 + λ
d ερ(x1)

m−1∏
i=1

λ
dρ(xi)ρ(xi+1)

1 + λ
dρ(xi)ρ(xi+1)

)
(4.44)

= E
( λ

d ερ1

1 + λ
d ερ1

m−1∏
i=0

λ
dρiρi+1

1 + λ
dρiρi+1

)
,

where ρ1, . . . , ρm are independent copies of ρ. For x, y ∈ A and ~x = (x, x1, . . . , xm)
∈ Lm(x), ~y = (y, y1, . . . , ym) ∈ Lm(y),

P̃λ,d

(
π~x
⋂
π~y

)
= Eλ,d

(
m∏
l=1

G(xl−1, yl−1;xl, yl)

∣∣∣∣∣ρ(x) = ρ(y) = ε

)
, (4.45)
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where

G(x, y;u, v) = Pλ,ω
(
Ũ(x, u) < Ỹ (x), Ũ(y, v) < Ỹ (y)

)
for x→ u and y → v.

By direct calculation, for x, y that ‖x‖ = ‖y‖,

G(x, y;u, v)



=
λ
d ρ(x)ρ(u)

1+λ
d ρ(x)ρ(u)

if x = y and u = v,

≤ 2λ
2

d2
ρ2(x)ρ(u)ρ(v)

[1+λ
d ρ(x)ρ(u)][1+λ

d ρ(x)ρ(v)]
if x = y and u 6= v,

=
λ2

d2
ρ(x)ρ(y)ρ2(u)

[1+λ
d ρ(x)ρ(u)][1+λ

d ρ(y)ρ(u)]
if x 6= y and u = v,

=
λ2

d2
ρ(x)ρ(y)ρ(u)ρ(v)

[1+λ
d ρ(x)ρ(u)][1+λ

d ρ(y)ρ(v)]
if x 6= y and u 6= v.

(4.46)

According to the definition of the SIR model, for x ∈ A, if π~x occurs for some
~x = (x, x1, . . . , xm) ∈ Lm(x), then

xm ∈
⋃
t≥0

IAt .

As a result, on the event
⋂+∞
m=1

⋃
x∈A

⋃
~x∈Lm(x) π~x, there are infinite many vertices

which have ever been infected and hence

P̃λ,d
(
IAt 6= ∅,∀ t ≥ 0

)
≥ P̃λ,d

( +∞⋂
m=1

⋃
x∈A

⋃
~x∈Lm(x)

π~x

)
. (4.47)

We use χ~x to denote the indicator function of π~x, then by the Cauchy-Schwartz’s
inequality and the dominated convergence theorem,

P̃λ,d

( +∞⋂
m=1

⋃
x∈A

⋃
~x∈Lm(x)

π~x

)
≥ lim
m≥1

P̃λ,d
( ⋃
x∈A

⋃
~x∈Lm(x)

π~x
)

= lim
m≥1

P̃λ,d
(∑
x∈A

∑
~x∈Lm(x)

χ~x > 0
)

≥ lim sup
m→+∞

[
Ẽλ,d

(∑
x∈A

∑
~x∈Lm(x) χ~x

)]2

Ẽλ,d

[(∑
x∈A

∑
~x∈Lm(x) χ~x

)2
]

= lim sup
m→+∞

[ ∑
x∈A

∑
~x∈Lm(x)

P̃λ,d
(
π~x
)]2

∑
x∈A

∑
y∈A

∑
~x∈Lm(x)

∑
~y∈Lm(y)

P̃λ,d
(
π~x
⋂
π~y
) .
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By Equation (4.44), for given m ≥ 1 and ~x ∈ Lm(x), P̃λ,d
(
π~x
)

does not depend on
the choice of ~x and x. Therefore, according to the fact that |Lm(x)| = dm,

P̃λ,d

( +∞⋂
m=1

⋃
x∈A

⋃
~x∈Lm(x)

π~x

)
(4.48)

≥ 1

lim inf
m→+∞

1
|A|2

∑
x∈A

∑
y∈A

∑
~x∈Lm(x)

∑
~y∈Lm(y)

1
d2m

P̃λ,d

(
π~x

⋂
π~y

)
P̃λ,d

(
π~x

)
P̃λ,d

(
π~y

) .
We use ~ϑxm to denote the random path (ϑx0 , . . . , ϑ

x
m) while use ~νym to denote the

path (νy0 , . . . , ν
y
m), then by Equation (4.48),

P̃λ,d

( +∞⋂
m=1

⋃
x∈A

⋃
~x∈Lm(x)

π~x

)
≥ 1

lim inf
m→+∞

1
|A|2

∑
x∈A

∑
y∈A

Ed
( P̃λ,d(π

~ϑxm

⋂
π
~ν
y
m

)

P̃λ,d(π
~ϑxm

)P̃λ,d(π
~ν
y
m

)

) . (4.49)

We bound
P̃λ,d(π

~ϑxm

⋂
π
~ν
y
m

)

P̃λ,d(π
~ϑxm

)P̃λ,d(π
~ν
y
m

)
from above according to the following procedure.

For the denominator

P̃λ,d(π~ϑxm
)P̃λ,d(π~νym

) =

Eµd

(m−1∏
i=0

λ
dρ(ϑi)ρ(ϑi+1)

1 + λ
dρ(ϑi)ρ(ϑi+1)

∣∣∣ρ(ϑ0) = ε
)
Eµd

(m−1∏
i=0

λ
dρ(νi)ρ(νi+1)

1 + λ
dρ(νi)ρ(νi+1)

∣∣∣ρ(ν0) = ε
)
,

if l ≥ 1 satisfies that ϑxl = νyl , then

λ
d ρ(ϑ

x
l )ρ(ϑxl+1)

1+λ
d ρ(ϑ

x
l )ρ(ϑxl+1)

≥
λ
d ρ(ϑ

x
l )ρ(ϑxl+1)

1+λ
dM

2 ,
λ
d ρ(ν

y
l )ρ(νyl+1)

1+λ
d ρ(ν

y
l )ρ(νyl+1)

≥
λ
d ρ(ν

y
l )ρ(νyl+1)

1+λ
dM

2 ,
λ
d ρ(ϑ

x
l−1)ρ(ϑxl )

1+λ
d ρ(ϑ

x
l−1)ρ(ϑxl )

≥
λ
d ρ(ϑ

x
l−1)ρ(ϑxl )

1+λ
dM

2 ,
λ
d ρ(ν

y
l−1)ρ(νyl )

1+λ
d ρ(ν

y
l−1)ρ(νyl )

≥
λ
d ρ(ν

y
l−1)ρ(νl)

1+λ
dM

2 .

For l = 0,
λ
dρ(ϑx0)ρ(ϑx1)

1 + λ
dρ(ϑx0)ρ(ϑx1)

≥
λ
d ερ(ϑx1)

1 + λ
dM

2
and

λ
dρ(νx0 )ρ(νx1 )

1 + λ
dρ(νx0 )ρ(νx1 )

≥
λ
d ερ(νx1 )

1 + λ
dM

2
.

For the numerator P̃λ,d(π~ϑxm

⋂
π
~ν
y
m

) with expression given by Equation (4.45),

G(ϑxl , ν
y
l ;ϑxl+1, ν

y
l+1) ≤ λ

dρ(ϑxl )ρ(ϑxl+1)

if ϑxl = νyl and ϑxl+1 = νyl+1,

G(ϑxl , ν
y
l ;ϑxl+1, ν

y
l+1) ≤ 2λ2

d2 ρ
2(ϑxl )ρ(ϑxl+1)ρ(νyl+1)

if ϑxl = νyl and ϑxl+1 6= νyl+1,

G(ϑxl , ν
y
l ;ϑxl+1, ν

y
l+1) ≤ λ2

d2 ρ(ϑxl )ρ(νyl )ρ2(ϑxl+1)

if ϑxl 6= νyl and ϑxl+1 = νyl+1.

According to the aforesaid inequalities,
P̃λ,d(π

~ϑxm

⋂
π
~ν
y
m

)

P̃λ,d(π
~ϑxm

)P̃λ,d(π
~ν
y
m

)
is bounded from above

by an upper bound Rm(x, y). According to our assumption of the independence
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between the exponential times, the expression of Rm(x, y) can be simplified by
canceling common factors in the numerator and denominator. For example, if
l < k that ϑxl = νyl and ϑxk = νyk while ϑxj 6= νyj for any l < j < k, then both the
numerator and denominator have the factor(

E
( ∏k−l−1

i=1 ρ2
i∏k−l−2

i=1 (1 + λ
dρiρi+1)

))2

that can be canceled, where ρ1, . . . , ρk−1−l are independent copies of ρ. As a result,
it is not difficult to check that

lim
m→+∞

Rm(x, y) = R(x, y)

and hence

P̃λ,d

( +∞⋂
m=1

⋃
x∈A

⋃
~x∈Lm(x)

π~x

)
≥ 1

lim
m→+∞

1
|A|2

∑
x∈A

∑
y∈A

Ed
(
Rm(x, y)

)
=

1
1
|A|2

∑
x∈A

∑
y∈A

Ed
(
R(x, y)

) (4.50)

according to Equation (4.49). Lemma 4.8 follows directly from Equations (4.47)
and (4.50).

�

5. Proof of Equation (2.4)

In this section we give the proof of Equation (2.4). We still assume that the vertex
weight ρ satisfies (4.1). The assumption is without loss of generality according to
the following analysis. For general ρ not satisfying (4.1), we let

ρ̂m =

{
ρ if ρ ≥ 1

m ,
1
m if ρ < 1

m ,

then ρ̂m ≥ ρ and limm→+∞ ρ̂m = ρ. Therefore,

Pλ,d,ρ
(
COt 6= ∅,∀ t ≥ 0

)
≤ Pλ,d,ρ̂m

(
COt 6= ∅,∀ t ≥ 0

)
.

If Equation (2.4) holds under assumption (4.1), which ρ̂m satisfies, then

lim sup
d→+∞

Pλ,d,ρ
(
COt 6= ∅,∀ t ≥ 0

)
≤ lim sup

d→+∞
Pλ,d,ρ̂m

(
COt 6= ∅,∀ t ≥ 0

)
≤ E

( λρ̂mθ̂m

1 + λρ̂mθ̂m

)
,

where θ̂m satisfies

E
( λρ̂2

m

1 + λρ̂mθ̂m

)
= 1

and it is easy to check that limm→+∞ θ̂m = θ. Let m→ +∞, then Equation (2.4)
holds for general ρ.

For each n ≥ 0, we define

βn =
{
x ∈ Zd+ : ‖x‖ = n and x ∈

⋃
t≥0

COt
}
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as the vertices with l1 norm n which have ever been infected in the contact process
with O as the unique initially infected vertex.

The infection never dies out when and only when there are infinitely many ver-
tices that have ever been infected. Furthermore, since x infects y only if x→ y,{

COt 6= ∅,∀ t ≥ 0
}

=
{
βn 6= ∅ for all n ≥ 0

}
. (5.1)

The proof of Equation (2.4) relies heavily on Equation (5.1) and the following
two lemmas.

Lemma 5.1. Let {Wn}n≥0 be the branching process with random vertex weights
defined as in Section 3 and σ0 ∈ (0, 1

10 log(λM2) ) defined as in Section 4, then

lim inf
d→+∞

P̂λ,d
(
Wbσ0 log dc = ∅

)
≥ E

( 1

1 + λρθ

)
,

where P̂λ,d is the annealed measure of the branching process defined as in Section 3.

Lemma 5.2. Let {Vn}n≥0 be defined as in Section 4, then

lim
d→+∞

[
Pλ,d

(
βbσ0 log dc = ∅

)
− Pλ,d

(
Vbσ0 log dc = ∅

)]
= 0.

The proof of Lemma 5.1 is given in Subsection 5.1. The core idea of the proof is
to show that the branching process survives with high probability conditioned on
Wbσ0 log dc 6= ∅. The proof of Lemma 5.2 is given in Subsection 5.2. The core idea of
the proof is to construct a coupling of {βn}n≥0 and {Vn}n≥0 such that βbσ0 log dc =
Vbσ0 log dc with high probability. Now we show how to utilize Lemmas 5.1 and 5.2
to prove Equation (2.4).

Proof of Equation (2.4): We couple {Wn}n≥0 and {Vn}n≥0 under the same proba-
bility space as what we have done in Subsection 4.1. Recalling that we define B(d)
as the event that the coupling is successful at step m for all m ≤ bσ0 log dc, then

Vbσ0 log dc = Wbσ0 log dc

on the event B(d). Therefore, by Lemma 4.3,∣∣∣P̂λ,d(Wbσ0 log dc = ∅
)
− Pλ,d

(
Vbσ0 log dc = ∅

)∣∣∣ ≤ 2Pλ,d
(
B(d)c

)
→ 0

as d→ +∞ and hence

lim inf
d→+∞

Pλ,d
(
Vbσ0 log dc = ∅

)
≥ E

( 1

1 + λρθ

)
according to Lemma 5.1. Then, by Lemma 5.2,

lim inf
d→+∞

Pλ,d
(
βbσ0 log dc = ∅

)
≥ E

( 1

1 + λρθ

)
and hence

lim inf
d→+∞

Pλ,d
(
βn = ∅ for some n ≥ 0

)
≥ E

( 1

1 + λρθ

)
. (5.2)

By Equation (5.2),

lim sup
d→+∞

Pλ,d
(
βn 6= ∅ for all n ≥ 0

)
≤ E

( λρθ

1 + λρθ

)
. (5.3)

Equation (2.4) follows from Equations (5.1) and (5.3) directly.
�
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5.1. Proof of Lemma 5.1. In this subsection, we give the proof of Lemma 5.1. Let

{Ŵn}n≥0 be defined as in Subsection 4.2, then {Ŵn}n≥0 is a branching process

with random vertex weights on a subtree of Td which is isomorphic to Td−b
d

N(d)
c as

we have introduced. For each n ≥ 0, Ŵn ⊆Wn. The following lemma is crucial for
us to prove Lemma 5.1.

Lemma 5.3. For any σ ∈ (0, 1
10 log(λM2) ),

lim
d→+∞

P̂λ,d

(
Wn 6= ∅ for all n ≥ 0

∣∣∣Ŵbσ log dc−1 6= ∅
)

= 1.

We give the proof of Lemma 5.3 at the end of this subsection. Now we show how
to utilize Lemma 5.3 to prove Lemma 5.1.

Proof of Lemma 5.1: By the conditional probability formula,

P̂λ,d
(
Wn 6= ∅ for all n ≥ 0

)
≥ P̂λ,d

(
(Wn 6= ∅ for all n ≥ 0

∣∣∣Ŵbσ log dc−1 6= ∅
)
P̂λ,d

(
Ŵbσ log dc−1 6= ∅

)
.

Then, by Lemmas 3.1 and 5.3,

lim sup
d→+∞

P̂λ,d
(
Ŵbσ log dc−1 6= ∅

)
≤ E

( λρθ

1 + λρθ

)
and hence

lim inf
d→+∞

P̂λ,d
(
Ŵbσ log dc = ∅

)
≥ lim inf

d→+∞
P̂λ,d

(
Ŵbσ log dc−1 = ∅

)
≥ E

( 1

1 + λρθ

)
(5.4)

for any σ ∈ (0, 1
10 log(λM2) ).

For given λ > 1
E(ρ2) and σ0 ∈ (0, 1

10 log(λM2) ), we choose arbitrary λ̂ ∈ (λ,+∞)

and σ ∈ (0, σ0). For sufficiently large d, we define

d̂ = inf{k : k − b k

N(k)
c ≥ d},

then it is easy to check that limd→+∞
d̂
d = 1 and hence

λ̂

d̂
≥ λ

d
while σ log d̂ ≤ σ0 log d (5.5)

for sufficiently large d. As we have introduced, {Ŵn}n≥0 on Td̂ can be identified

with {Wn}n≥0 on Td̂−b
d̂

N(d̂)
c

with a scaling of the infection rate λ. As a result, by
Equation (5.5),

P̂λ̂,d̂
(
Ŵbσ log d̂c = ∅

)
≤ P̂λ,d

(
Wbσ0 log dc = ∅

)
(5.6)

for sufficiently large d. By Equations (5.4) and (5.6),

lim inf
d→+∞

P̂λ,d
(
Wbσ0 log dc = ∅

)
≥ lim inf

d→+∞
P̂λ̂,d̂

(
Ŵbσ log d̂c = ∅

)
≥ E

( 1

1 + λ̂ρθ̂

)
, (5.7)

where θ̂ satisfies

E
( λ̂ρ2

1 + λ̂ρθ̂

)
= 1

and it is easy to check that limλ̂→λ θ̂ = θ.
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Let λ̂→ λ, then Lemma 5.1 follows directly from Equation (5.7).
�

At the end of this subsection we give the proof of Lemma 5.3.

Proof of Lemma 5.3: Let

D̂σ =
{
y : there exists x ∈

bσ log dc−1⋃
m=0

Ŵm

such that y = x(i) for some i ≥ j(d) and U(x, y) < Y (x)
}
,

i.e, D̂ defined in Subsection 4.2 equals D̂σ0
. According to Lemma 4.4,

lim
d→+∞

P̂λ,d

(
|D̂σ| ≥ b

√
log d

N(d)
c
∣∣∣Ŵbσ log dc−1 6= ∅

)
= 1. (5.8)

Note that although σ0 is fixed in Lemma 4.4, the analysis leading to Lemma 4.4
holds for any σ < 1

10 log(λM2) . According to Equation (4.17),

lim
d→+∞

P̂λ,d

( ∑
u∈D̂σ

χ(u) ≥ b λεθ

2(1 + λεθ)

√
log d

N(d)
c
∣∣∣Ŵbσ log dc−1 6= ∅,

|D̂σ| ≥ b
log d

N(d)
c
)

= 1.

(5.9)

By Equations (5.8), (5.9) and the conditional probability formula,

lim
d→+∞

P̂λ,d

( ∑
u∈D̂σ

χ(u) ≥ b λεθ

2(1 + λεθ)

√
log d

N(d)
c
∣∣∣Ŵbσ log dc−1 6= ∅

)
= 1. (5.10)

If χ(u) = 1 for some u ∈ D̂σ, then infinitely many vertices have ever been infected.
Therefore,{ ∑

u∈D̂σ

χ(u) ≥ b λεθ

2(1 + λεθ)

√
log d

N(d)
c
}
⊆
{
Wn 6= ∅ for all n ≥ 0

}
.

As a result, Lemma 5.3 follows from Equation (5.10) directly.
�

5.2. Proof of Lemma 5.2. In this subsection we give the proof of Lemma 5.2. First

we couple {βn}n≥0 and {Vn}n≥0 under the same probability space. Let {Ỹ (x)}x∈Zd+
and {Ũ(x, y)}x∈Zd+,x→y be defined as in Section 4, then {Vn}n≥0 is defined as in

Section 4 according to the values of {Ỹ (x)}x∈Zd+ and {Ũ(x, y)}x∈Zd+,x→y. For any

x, y ∈ Zd+, x→ y, let Ũ2(x, y) be an independent copy of Ũ(x, y) under the quenched
measure. We assume that all these exponential times are independent under the

quenched measure. For the contact process, we let Ỹ (x) be the time x waits for

to become healthy after the first moment when x is infected. We let Ũ(x, y) be
the time x waits for to infect y after the first moment when x is infected. If

Ũ(x, y) < Ỹ (x), then after the first infection from x to y, x waits for Ũ2(x, y) units
of time to infect y again, i.e., x infects y at least twice before becoming healthy when

Ũ(x, y) + Ũ2(x, y) < Ỹ (x). Following the above definitions, {Vn}n≥0 and {βn}n≥0
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are coupled under the same probability space and it is obvious that Vn ⊆ βn for
each n ≥ 0.

Let J(d) be defined as in Section 4, i.e., the event that Ũ(x, y) > Ỹ (x) and

Ũ(z, y) > Ỹ (z) for any x, y, z that x, z ∈
⋃bσ0 log dc−1
m=0 Vm and x, z → y. On the

event J(d), if Vbσ0 log dc 6= βbσ0 log dc, then there must exist repeated infection from
some x to y that x→ y for the contact process, i.e.,

Ũ(x, y) + Ũ2(x, y) < Ỹ (x).

For each m ≥ 1, Lm(O) is the set of oriented paths on Zd+ starting at O with length

m defined as in Section 4. For each ~l : O = l0 → l1 → l2 → . . .→ lm in Lm(O), we

denote by Â~l the event that Ũ(li, li+1) < Ỹ (li) for all 0 ≤ i ≤ m− 2 and

Ũ(lm − 1, lm) + Ũ2(lm−1, lm) < Ỹ (lm−1),

then according to the aforesaid analysis,

Pλ,d
(
Vbσ0 log dc 6= βbσ0 log dc, J(d)

)
≤
bσ0 log dc∑
m=0

∑
~l∈Lm

Pλ,d(Â~l). (5.11)

Now we give the proof of Lemma 5.2.

Proof of Lemma 5.2: For each ~l ∈ Lm, since Ũ(·, ·), Ũ2(·, ·) are exponential times

with rate at most λM2

d while Ỹ (·) is an exponential time with rate one, it is easy
to check that

Pλ,d(Â~l) ≤
(λM2

d

)m−1(λM2

d

)2
=
λm+1M2m+2

dm+1
.

Since |Lm| = dm and σ0 <
1

10 log(λM2) , by Equation (5.11),

Pλ,d
(
Vbσ0 log dc 6= βbσ0 log dc, J(d)

)
≤
bσ0 log dc∑
m=0

dm
λm+1M2m+2

dm+1
≤ λ2M4d−0.9

λM2 − 1
.

(5.12)
By Equation (5.12),

|Pλ,d
(
βbσ0 log dc = ∅

)
− Pλ,d

(
Vbσ0 log dc = ∅

)
| (5.13)

≤ 2Pλ,d
(
βbσ0 log dc 6= Vbσ0 log dc

)
≤ 2Pλ,d

(
βbσ0 log dc 6= Vbσ0 log dc, J(d)

)
+ 2Pλ,d

(
J(d)c

)
≤ 2λ2M4d−0.9

λM2 − 1
+ 2Pλ,d

(
J(d)c

)
.

We claim that

lim
d→+∞

Pλ,d
(
J(d)

)
= 1. (5.14)

Equation (5.14) follows from the following analysis, which we have utilized in the
proof of Lemma 4.3. For each 0 ≤ m ≤ bσ0 log dc − 1, according to the fact that

Ỹ (·) is an exponential time with rate 1 while Ũ(·, ·) is an exponential time with
rate at most λ

dM
2 and |q(x)| ≤ |Vm| for any x ∈ Vm,

Pλ,d

(
J(d,m)

∣∣∣Vm ≤ d0.2
)
≥ 1− d0.2 × d0.2λ

d
M2 = 1− λM2d−0.6.
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Then, by Equation (4.12),

Pλ,d

(
J(d,m)

)
≥
(
1− λM2d−0.6

)(
1− d−0.1

λM2 − 1

)
for all 0 ≤ m ≤ bσ0 log dc − 1 and hence

Pλ,d

(
J(d)

)
≥ 1− bσ0 log dc

[
1−

(
1− λM2d−0.6

)(
1− d−0.1

λM2 − 1

)]
,

and Equation (5.14) follows from which directly.
Lemma 5.2 follows directly from Equations (5.13) and (5.14). �
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