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Abstract. The purpose of this paper is to present Bernstein and Hoeffding type in-
equalities for regenerative Markov chains. Furthermore, we generalize these results
and establish exponential bounds for suprema of empirical processes over a class of
functions F which size is controlled by its uniform entropy number. All constants
involved in the bounds of the considered inequalities are given in an explicit form
which can be advantageous for practical considerations. We present the theory for
regenerative Markov chains, however the inequalities are also valid in the Harris
recurrent case.

1. Introduction

Exponential inequalities are a powerful tool to control the tail probability that
a random variable X exceeds some prescribed value t. They have been extensively
investigated by many researchers due to the fact that they are a crucial step in
deriving many results in numerous fields such as statistics, learning theory, discrete
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mathematics, statistical mechanics, information theory or convex geometry. There
is a vast literature that provides a comprehensive overview of the theory of expo-
nential inequalities in the i.i.d. setting. An interested reader is referred to Lin and
Bai (2010), Boucheron et al. (2013) or van der Vaart and Wellner (1996).

The wealth of possible applications of exponential inequalities has naturally led
to development of this theory in the dependent setting. In this paper we are particu-
larly interested in results that establish exponential bounds for the tail probabilities
of the additive functional of the regenerative Markov chain of the form

f(X1) + · · ·+ f(Xn),

where (Xn)n∈N is a regenerative Markov chain. It is noteworthy that when deriving
exponential inequalities for Markov chains (or any other process with some depen-
dence structure) one can not expect to recover fully the classical results from the
i.i.d. case. The goal is then to get some counterparts of the inequalities for i.i.d.
random variables with some extra terms that appear in the bound as a consequence
of a Markovian structure of the considered process.

In the recent years such (non-)asymptotic results have been obtained for Markov
chains via many approaches: martingale arguments (see Glynn and Ormoneit, 2002,
where Hoeffding’s inequality for uniformly ergodic Markov chains has been pre-
sented), coupling techniques (see Chazottes and Redig, 2009 and Dedecker and
Gouëzel, 2015). In fact, Dedecker and Gouëzel (2015) have proved that Hoeffding’s
inequality holds when the Markov chain is geometrically ergodic and thus weak-
ened the assumptions imposed on the Markov chain in Glynn and Ormoneit (2002).
Wintenberger (2017) has generalized the result of Dedecker and Gouëzel (2015) by
showing that Hoeffding’s inequality is valid also for unbounded functions of geomet-
rically ergodic Markov chains provided that the sum is correctly self-normalized.
Paulin (2015) has presented McDiarmid inequality for Markov chains using Mer-
ton coupling and spectral methods. Clémençon (2001), Adamczak (2008), Bertail
and Clémençon (2009), and Adamczak and Bednorz (2015) have obtained exponen-
tial inequalities for ergodic Markov chains via regeneration techniques (see Smith,
1955).

Regeneration techniques for Markov chains are particularly appealing to us
mainly due to the fact that it requires much fewer restrictions on the ergodic-
ity properties of the chain in comparison to alternative methods. In this paper
we establish Hoeffding and Bernstein type of inequalities for statistics of the form
1
n

∑n
i=1 f(Xi), where (Xn)n∈N is a regenerative Markov chain. We show that under

proper control of the size of class of functions F (measured by its uniform entropy
number), one can get non-asymptotic bounds on the suprema over the class of F of
such empirical process for regenerative Markov chains. It is noteworthy that it is
easy to generalize such results from regenerative case to the Harris recurrent one,
using Nummelin extension of the initial chain (see Nummelin, 1978).

The paper is organized as follows. In Chapter 2 we introduce the notation and
preliminary assumptions for Markov chains. We also recall some classical results
from the i.i.d. setting which we generalize to the Markovian case. In Chapter 3 we
present main results - Bernstein and Hoeffding type inequalities for regenerative
Markov chains. The main ingredient to provide a crude exponential bound (with
bad constants) is based on Montgomery-Smith’s inequality which allows to reduce
the problem on a random number of blocks to a fixed number of independent blocks.
We then proposed a refined inequality by first controlling the number of blocks in the
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inequality and then applying again Montgomery-Smith’s inequality on a remainder
term. Next, we generalize these results and obtain Hoeffding and Bernstein type
of bounds for suprema of empirical processes over a class of functions F . We also
present the inequalities when the chain is Harris recurrent. Some technical parts of
the proofs are postponed to the Appendix.

2. Preliminaries

We begin by introducing some notation and recall the key concepts of Markov
chains theory (see Meyn and Tweedie, 1993 for a detailed review and references).
Let X = (Xn)n∈N be a positive recurrent, ψ−irreducible Markov chain on a count-
ably generated state space (E, E) with transition probability Π and initial probabil-
ity ν. We assume further, that X is regenerative (see Smith, 1955), i.e. there exists
a measurable set A, called an atom, such that ψ(A) > 0 and for all (x, y) ∈ A2

we have Π(x, ·) = Π(y, ·). In what follows, Pν (resp. PA) denotes the probability
measure on the underlying space such that X0 ∼ ν (resp. conditioned on X0 ∈ A),
and Eν (·) is the Pν-expectation (resp. EA (·) is the PA-expectation). We define the
sequence of regeneration times (τA(j))j≥1 which is the sequence of successive points
of time when the chain visits A and forgets its past. Throughout the paper we write
τA = τA(1). It is well-known that we can cut the sample path of the process into
data segments of the form

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

according to consecutive visits of the chain to the regeneration set A. By the strong
Markov property the blocks are i.i.d. random variables taking values in the torus
∪∞k=1E

k.
In the following, we assume that the mean inter-renewal time α = EA[τA] < ∞

and point out that in this case, the stationary distribution is a Pitman occupation
measure given by

∀B ∈ E , µ(B) =
1

EA[τA]
EA

[
τA∑
i=1

I{Xi∈B}

]
,

where IB is the indicator function of an event B. Assume that we observe
(X1, · · · , Xn). We introduce few more pieces of notation: throughout the paper
we write ln =

∑n
i=1 I{Xi ∈ A} for the total number of consecutive visits of the

chain to the atom A, thus we observe ln + 1 data blocks. We make the convention

that B
(n)
ln

= ∅ when τA(ln) = n. Furthermore, we denote by

l(Bj) = τA(j + 1)− τA(j), j ≥ 1,

the length of regeneration blocks. Let f : E → R be µ− integrable function. In
the following, we assume without loss of generality that

µ(f) = Eµ[f(X1)] = 0.

We introduce the following notation for partial sums of the regeneration cycles

f(Bi) =
∑τA(j+1)
i=1+τA(j) f(Xi). Then, the regenerative approach is based on the follow-

ing decomposition of the sum
∑n
i=1 f(Xi) :

n∑
i=1

f(Xi) =

ln∑
i=1

f(Bi) + ∆n,
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where

∆n =

τA∑
i=1

f(Xi) +

n∑
i=τA(ln−1)

f(Xi).

We denote by

σ2(f) =
1

EA(τA)
EA

(
τA∑
i=1

{f(Xi)− µ(f)}2
)

the asymptotic variance.
For the completeness of the exposition, we recall now well-known classical results

concerning some exponential inequalities for independent random variables. Firstly,
we present the inequality for the i.i.d. bounded random variables due to Hoeffding
(1963).

Theorem 2.1 (Hoeffding’s inequality). Let X1, X2, · · · , Xn be independent iden-
tically distributed random variables with common expectation EX1 and such that
ai ≤ Xi ≤ bi (i = 1, · · · , n), then for t > 0

P

(
1

n

n∑
i=1

Xi − EX1 ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Below we recall the generalization of Hoeffding’s inequality to unbounded func-
tions. Interested reader, can find different variations of the following inequality
(depending on imposed conditions on the random variables) in Boucheron et al.
(2013).

Theorem 2.2 (Bernstein’s inequality). Let X1, · · · , Xn be independent random
variables with expectation EXl for Xl, l ≥ 1 respectively, such that, for all integers
p ≥ 2,

E|Xl|p ≤ p!Rp−2σ2
l /2 for all l ∈ {1, · · · , n}.

Then, for all t > 0,

P

(∣∣∣∣∣
n∑
i=1

(Xl − EXl)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2(σ2 +Rt)

)
,

where σ2 =
∑n
i=1 σ

2
l .

The purpose of this paper is to derive similar bounds for Markov chains using
the nice regenerative structure of Markov chains.

3. Exponential inequalities for the tail probability for suprema of em-
pirical processes for Markov chains

In the following, we denote f̄(x) = f(x)− µ(f). Moreover, we write respectively
f̄(B1) =

∑τA
i=1 f̄(Xi) and |f̄ |(B1) =

∑τA
i=1 |f̄ |(Xi). We will work under following

conditions.

A1. (Bernstein’s block moment condition) There exists a positive constant M1

such that for any p ≥ 2 and for every f ∈ F

EA
∣∣f̄(B1)

∣∣p ≤ 1

2
p!σ2(f)Mp−2

1 . (3.1)
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A2. (Non-regenerative block exponential moment assumption) There exists
λ0 > 0 such that for every f ∈ F we have

Eν

[
exp

[
λ0

∣∣∣∣∣
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]]

<∞.

A3. (Exponential block moment assumption) There exists λ1 > 0 such that for
every f ∈ F we have

EA
[
exp

[
λ1
∣∣f̄ ∣∣ (B1)

]]
<∞.

Remark 3.1. It is noteworthy to mention that assumption A1 implies the existence
of some exponential moments of f̄(B1) :

EA exp(λf̄(B1)) ≤ exp

(
λ2/2

1−M1|λ|

)
for all λ <

1

M1
.

In this section, we formulate two Bernstein type inequalities for Markov chains, one
is established via simple use of Montgomery-Smith’s inequality (see Montgomery-
Smith, 1993 and de la Peña and Giné, 1999) which results in much larger constants
(comparing to the i.i.d. setting) in the dominating parts of the bound. The second
Bernstein’s bound contains small constants in the main counterparts of the bound,
however at a cost of having an extra term in the bound. Since Montgomery-Smith’s
inequality is a crucial tool in our considerations, we provide that result below.

Theorem 3.2 (Montgomery-Smith’s inequality). If Xi, i ∈ N are independent and
identically distributed random variables, then for 1 ≤ k ≤ n < ∞ and all t > 0 we
have

P

(
max

1≤k≤n
‖

k∑
i=1

Xi‖ > t

)
≤ 9P

(
‖

n∑
i=1

Xi‖ > t/30

)
.

Montgomery-Smith’s inequality is particularly useful when dealing with random

number of blocks ln when establishing tail bound for
∑ln
i=1 f(Bi) after proper cen-

tering. Using Theorem 3.2 we can smoothly switch to consideration of a fixed
number of independent blocks.

Before we state the theorems, we will give a short discussion on already existing
results for exponential inequalities for Markov chains.

Remarks 3.3. Since there is plenty of results concerning exponential inequalities
for Markov chains under many assumptions, it may be difficult to compare their
strength (measured by assumptions imposed on the chain) and applicability. Thus,
before we present the proofs of Theorem 3.4 and Theorem 3.8 , we make a short
comparison of our result to already existing inequalities for Markov chains. We also
strongly recommend seeing an exhaustive overview on the recent results of that type
in Adamczak and Bednorz (2015).

(1) The bounds obtained in this paper are related to the Fuk and Nagaev sharp
bound inequality obtained in Bertail and Clémençon (2009). It is also based
on the regeneration properties and decomposition of the chain. However,
our techniques of proof differ and allow us to obtain a better rate in the
main subgaussian part of the inequality under the hypotheses. The proofs of
the inequalities are simplified and do not require the partitioning arguments
which was used in Bertail and Clémençon (2009).
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(2) It is noteworthy that we do not impose condition of stationarity of the
considered Markov chain as in Dedecker and Gouëzel (2015) and Chazottes
and Redig (2009) or any restrictions on the starting point of the chain as
in Dedecker and Gouëzel (2015). Moreover, Adamczak and Bednorz (2015)
use the assumption of strong aperiodicity for Harris Markov chain. We
state a remark that this condition can be relaxed and we can only assume
that Harris Markov chain is aperiodic (see Remark 3.19).

(3) Many results concerning exponential inequalities for Markov chains are es-
tablished for bounded functions f (see for instance Adamczak, 2008,
Clémençon, 2001, Dedecker and Gouëzel, 2015, Paulin, 2015 and the ref-
erences therein). Our inequalities work for unbounded functions satisfying
Bernstein’s block moment condition without uniform ergodicity conditions.
Moreover, all terms involved in our inequalities are given by explicit formu-
las. Thus, the results can be directly used in practical considerations. Note
also that all the constants are given in simple, easy to interpret form and
they do not depend on other underlying parameters.

(4) Wintenberger (2017) has established exponential inequalities in unbounded
case extending the result of Dedecker and Gouëzel (2015) to the case when
the chain can start from any x ∈ E. However, the constant involved in the
bound of the Theorem 2.1 (obtained for bounded and unbounded functions)
is very large.

(5) As mentioned in the paper of Adamczak (2008), there is many exponen-
tial inequalities that satisfy spectral gaps (see for instance Gao et al., 2014,
Lezaud, 2001). Spectral gap inequalities allow to recover the Bernstein type
inequality at its full strength. We need to mention that the geometric ergod-
icity assumption does not ensure in the non-reversible case that considered
Markov chains admit a spectral gap (see Theorem 1.4 in Kontoyiannis and
Meyn, 2012).

We formulate a Bernstein type inequality for Markov chains below.

Theorem 3.4. Assume that X = (Xn)n∈N is a regenerative positive recurrent
Markov chain. Then, under assumptions A1−A3, we have

Pν

[∣∣∣∣∣
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ 18 exp

[
− x2

2× 902 (nσ2(f) +M1x/90)

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
,

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]
,

C2 = EA
[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
.

Remark 3.5. Observe that we do not impose a moment condition on EA[τA]p <∞
for p ≥ 2. At the first glance, this might be surprising since one usually assumes
the existence of EA[τA]2 < ∞ when proving central limit theorem for regenerative
Markov chains. A simple analysis of the proof of the central limit theorem in
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a Markovian case (see for instance Meyn and Tweedie, 1993) reveals that it is
sufficient to require only EA[τA] <∞ when we consider centered function f̄ instead
of f.

Proof : Firstly, we consider the sum of random variables of the following form

Zn(f̄) =

ln∑
i=1

f̄(Bj). (3.2)

Furthermore, we have that Sn(f̄) = Zn(f̄) + ∆n(f̄).
We recall, that ln is random and correlated with blocks itself. In order to apply

Bernstein’s inequality for i.i.d. random variables we apply the Montgomery-Smith’s
inequality (see Montgomery-Smith, 1993) . It follows easily that

PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3
]
≤ PA

[
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3
]

≤ 9PA

[∣∣∣∣∣
n∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/90

]
(3.3)

and under Bernstein’s condition A1 we obtain

PA

[∣∣∣∣∣
n∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/90

]
≤ 2 exp

[
− x2

2× 902 (M1x/90 + nσ2(f))

]
. (3.4)

Next, we want to control the remainder term ∆n.

∆n =

τA∑
i=1

f̄(Xi) +

n∑
i=τA(ln−1)

f̄(Xi). (3.5)

The control of ∆n is guaranteed by Markov’s inequality, i.e.

Pν

[∣∣∣∣∣
τA∑
i=1

f̄(Xi)

∣∣∣∣∣ ≥ x

3

]
≤ Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]

exp

[
−λ0x

3

]
.

We deal similarly with the last term of ∆n. We complement the data 1+ τA(ln)+1
by observations up to the next regeneration time 1 + τA(ln + 1) and obtain

Pν

∣∣∣∣∣∣
n∑

i=1+τA(ln)+1

f̄(Xi)

∣∣∣∣∣∣ ≥ x

3

 ≤ Pν

 n∑
i=1+τA(ln)+1

∣∣f̄ ∣∣ (Xi) ≥
x

3


≤ Pν

 1+τA(ln+1)∑
i=1+τA(ln)+1

∣∣f̄ ∣∣ (Xi) ≥
x

3


≤ EA

[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]

exp

[
−λ1x

3

]
.

�

We note that although the Montgomery-Smith’s inequality allows to obtain eas-
ily Bernstein’s bound for Markov chains, the constants are rather large. Inter-
estingly, under an additional assumption on EA[τA]p we can obtain the Bernstein
type inequality for regenerative Markov chains with much smaller constants for the
dominating counterparts of the bound.
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A4. (Block length moment assumption) There exists a positive constant M2

such that for any p ≥ 2

EA[τA]p ≤ p!Mp−2
2 EA[τ2A]

and
Eν [τA]p ≤ p!Mp−2

2 Eν [τ2A].

Before we formulate Bernstein’s inequality for regenerative Markov chains we in-
troduce a lemma which provides a bound for tail probability of

√
n
(
ln
n −

1
α

)
which

will be crucial for the proof of Bernstein’s bound but also may be of independent
interest.

Lemma 3.6. Suppose that condition A4 holds. Then

Pν
(
n1/2

(
ln
n
− 1

α

)
≥ x

)
is bounded by

exp

(
− 1

2 (αx
√
n− 2α)2

(Eντ2A+(nα+x
√
n)EAτ2A)+(αx

√
n+EντA)M2(Eντ2A+(nα+x

√
n)EAτ2A)1/2

)
.

Proof of Lemma 3.6 is postponed to the Appendix.

Remark 3.7. Note that when n→∞, the dominating part in the exponential term
is of order

1

2

α2x2

EAτ2A/α+ α1/2xM2 (EAτ2A)
1/2

+O(n−1/2)

=
1

2

α2x2

EAτ2A/α(1 + αxM2 (EAτ2A/α)
−1/2

)
+O(n−1/2)

=
1

2

(αx)2/
(
EAτ

2
A/α

)
(1 + αxM2 (EAτ2A/α)

−1/2
)

+O(n−1/2),

thus we have a Gaussian tail with the right variance for moderate x and an ex-
ponential tail for large x and, in consequence, the constants are asymptotically
optimal.

Now we are ready to state an alternative Bernstein type inequality for regener-
ative Markov chains, where under additional condition on the length of the blocks
we can obtain much better inequality in terms of constants.

Theorem 3.8. Assume that X = (Xn)n∈N is a regenerative positive recurrent
Markov chain. Then, under assumptions A1-A4 we have for any a > 0, for x > 0
and N > 0

Pν

[∣∣∣∣∣
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

 −x2

2× 32(1 + a)2
(⌊

n
α

⌋
σ2(f) + M1

3
x

1+a

)


+ 18 exp

 −a2x2

2× 902(1 + a)2
(
N
√
nσ2(f) + M1

90
ax
1+a

)


+ Pν
(
n1/2

[
ln
n
− 1

α

]
> N

)
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
, (3.6)
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where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]
,

C2 = EA
[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
.

Remark 3.9. In the proof of Theorem 3.8 we are interested in bounding for some
t > 0 the probability

PA


∣∣∣∣∣∣∣

max(bnαc, ln)∑
i=min(bnαc, ln)

f̄(Bi)

∣∣∣∣∣∣∣ ≥ t
 .

We control this quantity by using truncation argument for the total number of
regeneration times ln, i.e. for some N > 0 we cut

√
n
[
ln
n −

1
α

]
≤ N. The magnitude

of N (we want it to be relatively small) is significant since it appears in the final
bound for Pν [|

∑n
i=1 f(Xi)− µ(f)| ≥ x] . Observe that if we choose N = log(n),

then by Lemma 3.6 we can see that

Pν
(
n1/2

[
ln
n
− 1

α

]
≥ log(n)

)
= o

(
1

n

)
and in that case the second term in (3.6) remains small uniformly in x.

Proof : We start by the obvious observation that

Pν

[∣∣∣∣∣
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3
]

+ Pν

[∣∣∣∣∣
τA∑
i=1

f̄(Xi)

∣∣∣∣∣ ≥ x/3
]

+ PA

∣∣∣∣∣∣
n∑

i=τA(ln−1)

f̄(Xi)

∣∣∣∣∣∣ ≥ x/3
 . (3.7)

Remark 3.10. Instead of dividing x by 3 in (3.7), one can use a different splitting
to improve a little bit the final constants.

The bounds for the first and last non-regenerative blocks can be handled the
same way as in Theorem 3.4. Next, we observe that, for any a > 0, we have

PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3
]

≤ PA


∣∣∣∣∣∣∣
bnαc∑
i=1

f̄(Bi)

∣∣∣∣∣∣∣ ≥
x

3(1 + a)

+ PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ ax

3(1 + a)

 , (3.8)

where ln1
= min(

⌊
n
α

⌋
, ln) and ln2

= max(
⌊
n
α

⌋
, ln). We observe that

∑bnαc
i=1 f̄(Bi) is

a sum of independent, identically distributed and sub-exponential random variables.
Thus, we can directly apply Bernstein’s bound and obtain

PA


∣∣∣∣∣∣∣
bnαc∑
i=1

f̄(Bi)

∣∣∣∣∣∣∣≥
x

3(1 + a)

≤ 2 exp

[
−x2

2× 32(1 + a)2
(⌊

n
α

⌋
σ2(f) +M1x/3(1 + a)

)].
(3.9)
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The control of
∑ln2

ln1
f̄(Bi) is slightly more challenging due to the fact that ln is

random and correlated with the blocks itself. In the following, we will make use
of the Montgomery-Smith’s inequality. Notice however, that since we expect the
number of terms in this sum to be at most of the order

√
n, this term will be much

smaller than the leading term (3.9) and will be asymptotically negligible. We have

PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ ax

3(1 + a)

 ≤ PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ ax

3(1 + a)
,
√
n

[
ln
n
− 1

α

]
≤ N


+ Pν

(√
n

[
ln
n
− 1

α

]
> N

)
= I + II. (3.10)

Firstly, we will bound term I in (3.10) using Montgomery-Smith’s inequality and
the fact that if

√
n
[
ln
n −

1
α

]
≤ N, then ln1 − ln2 ≤

√
nN.

PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ ax

3(1 + a)
,
√
n

[
ln
n
− 1

α

]
≤ N


≤ PA

(
max

1≤k≤N
√
n

∣∣∣∣∣
k∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ ax

3(1 + a)

)

≤ 9PA

∣∣∣∣∣∣
N
√
n∑

i=1

f̄(Bi)

∣∣∣∣∣∣ ≥ ax

90(1 + a)


≤ 18 exp

 −a2x2

2× 902(1 + a)2
(
N
√
nσ2(f) + M1

90
ax
1+a

)
 .

Lemma 3.6 allows to control term II. �

3.1. Maximal inequalities under uniform entropy. In empirical processes theory for
processes indexed by class of functions, it is important to assess the complex-
ity of considered classes. The information about entropy of F helps us to inspect
how large our class is. Generally, control of entropy of certain classes may be crucial
step when investigating asymptotic behaviour of empirical processes indexed by a
class of functions. In our setting, we will measure the size of class of functions F
via covering numbers and uniform entropy number. The following definition is due
to van der Vaart and Wellner (1996).

Definition 3.11 (Covering and uniform entropy number). The covering number
Np(ε,Q,F) is the minimal number of balls {g : ‖g−f‖Lp(Q) < ε} of radius ε needed
to cover the set F . The entropy (without bracketing) is the logarithm of the covering
number. We define uniform entropy number as Np(ε,F) = supQNp(ε,Q,F), where
the supremum is taken over all discrete probability measures Q.

In the following we state assumptions on the size of considered class of func-
tions F . Rather than considering the assumptions A2 and A3, we impose the as-
sumptions on the first and the last non-regenerative blocks for the envelope F of F .
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A2′. (Non-regenerative block exponential moment assumption) There exists
λ0 > 0 such that

Eν

[
exp

[
2λ0

∣∣∣∣∣
τA∑
i=1

F̄ (Xi)

∣∣∣∣∣
]]

<∞.

A3′. (Exponential block moment assumption) There exists λ1 > 0 such that

EA
[
exp

[
2λ1

∣∣F̄ ∣∣ (B1)
]]
<∞.

A5. (Uniform entropy number condition) N1(ε,F) <∞.
Before we formulate Bernstein concentration type inequality for unbounded classes
of functions, we introduce one more piece of notation, let

σ2
m = max

f∈F
σ2(f) > η > 0.

Theorem 3.12. Assume that X = (Xn)n∈N is a regenerative positive recurrent
Markov chain. Then, under assumptions A1, A2′, A3′ and A5 and for any x >
0, 0 < ε < x/2 and for all n ≥ 1 we have

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]

≤ N1 (ε,F)

{
18 exp

[
− (x− 2ε)2n

2× 902 (σ2
m +M1(x− 2ε)/90)

]
+C1 exp

[
−λ0(x− 2ε)n

3

]
+ C2 exp

[
−λ1(x− 2ε)n

3

]}
, (3.11)

where

C1 = Eν

[
exp

∣∣∣∣∣2λ0
τA∑
i=1

F (Xi)

∣∣∣∣∣
]

and C2 = EA [exp[2λ1 |F | (B1)]]

and F is an envelope function for F .

Remark 3.13. Notice that our bound depends on a notion of uniform entropy num-
ber over a certain class of probability measures. However, for some classes of
functions, this uniformity holds naturally, see for instance Zou et al. (2009).

Observe that if F belongs to a ball of a Hölder space CP (E′) on a compact set
E′ of an Euclidean space endowed with the norm

||f ||CP (E′) = sup
x∈E′

|f(x)|+ sup
x1∈E′, x2∈E′

(
f(x1)− f(x2)

d(x1, x2)p

)
then we have

M = supx∈XF (x) <∞
as well as

L = supf,g∈F,f 6=g supz
|f(z)− g(z)|
||f − g||CP (E′)

<∞

so that we can directly control the empirical sum by the obvious inequality

sup
f,g∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− g(Xi)

∣∣∣∣∣ ≤ L||f − g||CP (E′).

We refer to Cucker and Smale (2002) and Zou et al. (2009) for more details. See
also examples of such classes of functions used in statistical learning in the latter.
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It follows that if we replace the notion of uniform covering number N1(ε,F) with
respect to the norm ‖.‖L1(Q) by the covering numbers NCp(ε,F) with respect to
||.||CP (E′) (which does not depend on underlying probability provided that N1(ε,F)
is replaced by NCp( εL ,F) in the inequality).

Proof of Theorem 3.12: We choose functions g1, g2, · · · , gM , where M = N1(ε,F)
such that

min
j

Q|f − µ(f)− gj + µ(g1)| ≤ 2ε for each f ∈ F ,

where Q is any discrete probability measure. We also assume that g1, g2, · · · , gM
belong to F and satisfy conditions A1, A2′, A3′. We write f∗ for the gj , where the
minimum is achieved.

Next, by definition of uniform covering numbers we obtain

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− µ(f))

∣∣∣∣∣ ≥ x
]

≤ Pν

{
sup
f∈F

[∣∣∣∣∣ 1n
n∑
i=1

|f(Xi)− µ(f)− f∗(Xi) + µ(f∗)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

|f∗(Xi)− µ(f∗)|

∣∣∣∣∣
]
≥ x

}

≤ Pν

[
max

j∈{1,··· ,N1(ε,F)}

∣∣∣∣∣ 1n
n∑
i=1

gj(Xi)− µ(gj)

∣∣∣∣∣ ≥ x− 2ε

]

≤ N1 (ε,F) max
j∈{1,··· ,N1(ε,F)}

Pν

{
1

n

∣∣∣∣∣
n∑
i=1

gj(Xi)− µ(gj)

∣∣∣∣∣ ≥ x− 2ε

}
.

We set the notation that

gj = gj − µ(gj).

In what follows, our reasoning is analogous as in the proof of Theorem 3.4.
Instead of taking any f ∈ F , we work with the functions gj ∈ F . Thus, we consider
now the processes

Zn(gj) =

ln∑
i=1

gj(Bi) (3.12)

and

Sn(gj) = Zn(gj) + ∆n(gj).

Under the assumptions A1, A2′ and A3′ for gj , we get the analogous bound to
that from Theorem 3.4 for Zn(gj). Note that in order to control the first and the
last non-regenerative blocks we use conditions A2′ and A3′. Thus, consequently an
envelope F̄ appears in the bounds.

�

Below we will formulate a maximal version of Theorem 3.8.

Theorem 3.14. Assume that X = (Xn)n∈N is a regenerative positive recurrent
Markov chain. Then, under assumptions A1, A2′, A3′, A4−A5 and for any x > 0,
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any 0 < ε < x/2, any N > 0 and for all n ≥ 1 we have

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]

≤ N1 (ε,F)

2 exp

 −(x− 2ε)2n

2× 32(1 + a)2
(
σ2(f)
EA[τA] + M1

3
x−2ε
1+a

)


+ 18 exp

 −a2(x− 2ε)2n2

2× 902(1 + a)2
(
N
√
nσ2(f) + M1

90
a(x−2ε)

1+a

)


+Pν
(
n1/2

[
ln
n
− 1

EA[τA]

]
> N

)
+ C1 exp

[
−λ0(x− 2ε)n

3

]
+C2 exp

[
−λ1(x− 2ε)n

3

]}
,

where

C1 = Eν

[
exp

∣∣∣∣∣2λ0
τA∑
i=1

F (Xi)

∣∣∣∣∣
]

and C2 = EA [exp[2λ1 |F | (B1)]] .

Proof : The proof is a combination of the proofs of Theorem 3.8 and Theorem 3.12.
We deal with the supremum over F the same way as in Theorem 3.12. Indeed, for
any 0 < ε < x/2 we have

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− µ(f))

∣∣∣∣∣ ≥ x
]

≤ N1 (ε,F) max
j∈{1,··· ,N1(ε,F)}

Pν

{
1

n

∣∣∣∣∣
n∑
i=1

gj(Xi)− µ(gj)

∣∣∣∣∣ ≥ x− 2ε

}

= N1 (ε,F) max
j∈{1,··· ,N1(ε,F)}

Pν

[∣∣∣∣∣
n∑
i=1

ḡj(Bi)

∣∣∣∣∣ ≥ x
]

for the same collection of functions g1, · · · , gN1(ε,F) as in Theorem 3.12. Now we
can do the following decomposition

Pν

[∣∣∣∣∣
n∑
i=1

ḡj(Bi)

∣∣∣∣∣ ≥ x
]
≤ PA

[∣∣∣∣∣
ln∑
i=1

ḡj(Bi)

∣∣∣∣∣ ≥ x/3
]

+ Pν

[∣∣∣∣∣
τA∑
i=1

ḡj(Xi)

∣∣∣∣∣ ≥ x/3
]

(3.13)

+ PA

∣∣∣∣∣∣
n∑

i=τA(ln−1)

ḡj(Xi)

∣∣∣∣∣∣ ≥ x/3
 (3.14)

and control each term on the right hand side of the above inequality in an analogous
way as in Theorem 3.8. �

We can obtain even sharper upper bound when class F is uniformly bounded. In
the following, we will show that it is possible to get a Hoeffding type inequality and
have a stronger control of moments of the sum Sn(f) which is a natural consequence
of uniform boundedness assumption imposed on F .
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A6. The class of functions F is uniformly bounded, i.e. there exists a constant
D such that ∀f ∈ F |f | < D.

Theorem 3.15. Assume that X = (Xn)n∈N is a regenerative positive recurrent
Markov chain. Then, under assumptions A1, A2′, A3′, A5−A6 and for any x > 0,
any 0 < ε < x/2 and for all n ≥ 1 we have

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ N1 (ε,F)

{
18 exp

[
− (x− 2ε)2n

2× 902D2

]
+C1 exp

[
−λ0(x− 2ε)n

3

]
+ C2 exp

[
−λ1(x− 2ε)n

3

]}
, (3.15)

where
C1 = Eν exp |2λ0τAD| and C2 = EA exp |2λ1l(B1)D| .

Proof : The proof bears resemblance to the proof of Theorem 3.12, with a few
natural modifications which are a consequence of the uniform boundedness of F . �

Under additional condition A4 we can obtain easily the bound with smaller con-
stants, we follow the analogous way as in Theorem 3.14.

3.2. General Harris recurrent case. It is noteworthy that Theorems 3.4, 3.12, 3.15
are also valid in a Harris recurrent case under slightly modified assumptions. It is
well known that it is possible to retrieve all regeneration techniques also in a Harris
recurrent case via the Nummelin splitting technique which allows to extend the
probabilistic structure of any chain in order to artificially construct a regeneration
set. The Nummelin splitting technique relies heavily on the notion of small set.
For the clarity of exposition we recall the definition.

Definition 3.16. We say that a set S ∈ E is small if there exists a parameter
δ > 0, a positive probability measure Φ supported by S and an integer m ∈ N∗
such that

∀x ∈ S, B ∈ E Πm(x,B) ≥ δ Φ(B), (3.16)

where Πm denotes the m-th iterate of the transition probability Π.

We expand the sample space in order to define a sequence (Yn)n∈N of independent
r.v.’s with parameter δ. We define a joint distribution Pν,M of XM = (Xn, Yn)n∈N.
The construction relies on the mixture representation of Π on S, namely

Π(x,B) = δΦ(B) + (1− δ)Π(x,B)− δΦ(B)

1− δ
.

It can be retrieved by the following randomization of the transition probability Π
each time the chain X visits the set S. If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is dis-
tributed according to the probability measure Φ,
• if Yn = 0 (that happens with probability 1 − δ), then Xn+1 is distributed

according to the probability measure (1− δ)−1(Π(Xn, ·)− δΦ(·)).
This bivariate Markov chain XM is called the split chain. It takes its values in
E×{0, 1} and possesses an atom, namely A = S×{1}. The split chain XM inherits
all the stability and communication properties of the chain X. The regenerative
blocks of the split chain are i.i.d. (in case m = 1 in (3.16)) (see Meyn and Tweedie,
1993 for further details).
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We will formulate a Bernstein type inequality for unbounded classes of functions
in the Harris recurrent case (equivalent of Theorem 3.4). Theorems 3.12 and 3.15
can be reformulated for Harris chains in similar way. We impose the following
conditions:

AH1. (Bernstein’s block moment condition) There exists a positive constant M1

such that for any p ≥ 2 and for every f ∈ F

sup
y∈S

Ey
∣∣f̄(B1)

∣∣p ≤ 1

2
p!σ2(f)Mp−2

1 . (3.17)

AH2. (Non-regenerative block exponential moment assumption) There exists a
constant λ0 > 0 such that for every f ∈ F we have

Eν

[
exp

∣∣∣∣∣λ0
τS∑
i=1

f̄(Xi)

∣∣∣∣∣
]
<∞.

AH3. (Exponential block moment assumption) There exists a constant λ1 > 0
such that for every f ∈ F we have

sup
y∈S

Ey
[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
<∞.

Let supy∈S Ey [τS ] = αM < ∞. We are ready to formulate a Bernstein type in-
equality for Harris recurrent Markov chains.

Theorem 3.17. Assume that XM is a Harris recurrent, strongly aperiodic Markov
chain. Then, under assumptions AH1-AH3, we have

Pν

[∣∣∣∣∣
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ 18 exp

[
− x2

2× 902 (nσ2(f) +M1x/90)

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
, (3.18)

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τS∑
i=1

f(Xi)

∣∣∣∣∣
]
,

C2 = sup
y∈S

Ey
[
exp[λ1

∣∣f ∣∣ (B1)
]
.

The proof of Theorem 3.17 is analogous to the proof of Theorem 3.4. We can
obtain a bound with much smaller constants under an extra block moment condi-
tion.

AH4. (Block length moment assumption) There exists a positive constant M2

such that for any p ≥ 2

sup
y∈S

Ey [τS ]
p ≤ p!Mp−2

2 EAτ
2
A,

Eν [τS ]p ≤ p!Mp−2
2 Eντ

2
S .

.
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Theorem 3.18. Assume that XM is a Harris recurrent, strongly aperiodic Markov
chain. Then, under assumptions AH1-AH4, we have for any x > 0 and for N ∈ R

Pν

[∣∣∣∣∣
n∑
i=1

f(Xi)− µ(f)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

 −x2

2× 32(1 + a)2
(⌊

n
α

⌋
σ2(f) + M1

3
x

1+a

)


+ 18 exp

 −a2x2

2× 902(1 + a)2
(
N
√
nσ2(f) + M1

90
ax
1+a

)


+ Pν
[
n1/2

(
ln
n
− 1

α

)
> N

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
,

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τS∑
i=1

f(Xi)

∣∣∣∣∣
]
,

C2 = sup
y∈S

Ey
[
exp[λ1

∣∣f ∣∣ (B1)]
]
.

Remark 3.19. In the Theorem 3.17 we assumed that XM is strongly aperiodic. It is
easy, however, to relax this assumption and impose only the aperiodicity condition
on Harris chain by using the same trick as in Levental (1988). Note that if XM
satisfies M(m,S, δ,Φ) for m > 1, then the blocks of data are 1-dependent. Denote
by S = S ∪ {∗}, where {∗} is an ideal point which is not in S. Next, we define
a pseudo-atom αM = S × {1}. In order to impose only aperiodicity in this case
it is sufficient to consider two processes {Ei} and {Oi} such that Oi = f(Xi) if
ταM

(2k + 1) < i ≤ ταM
(2k + 2) and Oi = ∗ otherwise Ei = f(Xi) if ταM

(2k) <
i ≤ ταM

(2k + 1), for some k ≥ 0 and Ei = ∗. Every function f : S → R will be

considered as defined on S with identification f(∗) = 0 (see also Levental, 1988 for
more details concerning those two processes). Then, we prove Bernstein type of
inequality similarly as we prove Theorems 3.4 and 3.17 applying all the reasoning
to {Ei} and {Oi} separately, yielding to a similar inequality up to an additional
multiplicative constant 2.
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Appendix

Proof of Lemma 3.6: Let τk be the time of the k-th visit to the atom A (S × {1}
in the general case).
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In the following we make use of the argument from Dedecker and Gouëzel (2015)
and observe that we have for any k ≤ n

Pν(ln ≥ k) = Pν(τk ≤ n) = Pν(

k∑
i=1

∆τk ≤ n)

= P((∆τ1 − EντA) +

k∑
i=2

(∆τi − α) ≤ n− (k − 1)α− EντA).

It follows that if x >
√
n(1− α−1) (α = EAτA), then

Pν
(
n1/2

(
ln
n
− 1

α

)
≥ x

)
= 0

and if 0 < x ≤
√
n(1− α−1), then

Pν
(
n1/2

(
ln
n
− 1

α

)
≥ x

)
= Pν

(
ln ≥

n

α
+ x
√
n
)

≤ Pν
(
ln ≥

[n
α

+ x
√
n
])

≤ P((∆τ1 − EντA) +

[nα+x
√
n]∑

i=2

(∆τi − α) ≤ n− ([
n

α
+ x
√
n]− 1)α− EντA),

where [.] is the integer part.

Since n
α + x

√
n− 1 ≤ [nα + x

√
n] ≤ n

α + x
√
n, we get

n− ([
n

α
+ x
√
n]− 1)α− EντA) ≤ n− (

n

α
+ x
√
n− 2)α− EντA

= −αx
√
n+ 2α− EντA.

It follows that

Pν
(
n1/2

(
ln
n
− 1

α

)
≥ x

)

≤ P

(∆τ1 − EντA) +

[nα+x
√
n]∑

i=2

(∆τi − α) ≤ −αx
√
n+ 2α− EντA

,
where [.] is the integer part.

Now, we can apply any Bennett’s or Bernstein’s inequality on these centered
i.i.d. random variables to get an exponential bound. This can be done since we
assumed A4. Note that other bounds (polynomial for instance) can be obtained
under appropriate modifications of A4. In our case we get

P((∆τ1 − EντA) +

[nα+x
√
n]∑

i=2

(∆τi − α) ≤ −αx
√
n+ 2α− EντA)

≤ exp

(
−

1
2 (αx

√
n− 2α+ Eντ

2
A)/S2

n

1 + (αx
√
n− 2α+ EντA)M2/Sn

)
,

where

S2
n = Eντ

2
A + ([

n

α
+ x
√
n]− 1)EAτ

2
A.
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The above bound can be reduced to

exp

(
− 1

2 (αx
√
n− 2α)2

(Eντ2A+(nα+x
√
n)EAτ2A)+(αx

√
n+EντA)M2(Eντ2A+(nα+x

√
n)EAτ2A)1/2

)
.

�
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