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Abstract. Lévy-type perpetuities being the a.s. limits of particular generalized
Ornstein-Uhlenbeck processes are a natural continuous-time generalization of discre-
te-time perpetuities. These are random variables of the form S :=

∫
[0,∞)

e−Xs−dZs,
where (X,Z) is a two-dimensional Lévy process, and Z is a drift-free Lévy process
of bounded variation. We prove an ultimate criterion for the finiteness of power
moments of S. This result and the previously known assertion due to Erickson
and Maller (2005) concerning the a.s. finiteness of S are then used to derive ul-
timate necessary and sufficient conditions for the Lp-convergence for p > 1 and
p = 1, respectively, of Biggins’ martingales associated to branching Lévy processes.
In particular, we provide final versions of results obtained recently in Bertoin and
Mallein (2018).

1. Introduction

Let (Mk, Qk)k∈N be a sequence of independent copies of an R2-valued ran-
dom vector (M,Q) with arbitrary dependence of components. Further, denote
by (Πn)n∈N0

the multiplicative (ordinary) random walk with factors Mn for n ∈ N
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which starts at 1, that is, Π0 := 1 and Πn :=
∏n
i=1Mi, n ∈ N. Then define its

perturbed variant (Θn)n∈N, that may be called a perturbed multiplicative random
walk, by

Θn := Πn−1Qn, n ∈ N. (1.1)

When Mk and Qk are a.s. positive, the random sequence (log Θn)n∈N is known in
the literature as a perturbed (additive) random walk. A major part of the recent
book (Iksanov, 2016) is concerned with the so defined perturbed random walks,
both multiplicative and additive. We refer to the cited book for numerous applica-
tions of these random sequences and to Alsmeyer et al. (2017); Buraczewski et al.
(2018); Damek and Kołodziejek (2018); Iksanov et al. (2018, 2017) for more recent
contributions.

Recall that, provided that the series
∑
k≥1 Θk converges a.s., its sum

Ξ :=
∑
k≥1

Θk

is called perpetuity. The term stems from the fact that such random series may
be used in insurance mathematics and financial mathematics to model sums of
discounted payment streams. The state of the art concerning various aspects of
perpetuities is discussed in Buraczewski et al. (2016) and Iksanov (2016). We think
that the most valuable feature of the perturbed multiplicative random walks is their
link with perpetuities.

There is also an unexpected connection, unveiled in Lyons (1997) and detailed in
Iksanov (2004) and Alsmeyer and Iksanov (2009), between perpetuities and branch-
ing random walks. The connection, which is not immediately seen, emerges when
studying the weighted random tree associated with the branching random walk
under a size-biased measure. In particular, criteria for the uniform integrability
and the Lp-convergence for p > 1 of the Biggins martingale (also known as the
additive martingale or the intrinsic martingale in the branching random walk) are
closely linked with criteria for the a.s. finiteness and the existence of the pth mo-
ment of perpetuities, respectively. In this way one arrives at a final version of the
famous Biggins martingale convergence theorem which was originally proved by
Biggins himself in Biggins (1977) with the help of a different argument and under
additional moment assumptions. The recent article Bertoin and Mallein (2018) is
aimed at obtaining sufficient conditions for the uniform integrability and the Lp-
convergence for p ∈ (1, 2] of the Biggins martingale in a branching Lévy process. To
this end, a connection similar to that described at the beginning of the paragraph is
exploited between certain continuous-time perpetuities and branching Lévy process.
The conditions obtained in Bertoin and Mallein (2018) are not optimal.

In this article we first define perturbed multiplicative Lévy processes which are
natural continuous-time counterparts of the perturbed multiplicative random walks.
These are then used to construct Lévy-type perpetuities in the same way as the
perturbed multiplicative random walks are used to construct the discrete-type per-
petuities. The Lévy-type perpetuities are a particular instance of the limit random
variables for generalized Ornstein-Uhlenbeck processes. This restriction (that is,
that we consider the particular rather than any limit) is motivated by a prospective
application, see the end of this section for more details. Necessary and sufficient
conditions for the a.s. finiteness of the Lévy-type perpetuities can be derived from
Erickson and Maller (2005, Theorem 2).
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Our main contribution is two-fold. First, we prove an ultimate criterion for the
finiteness of the pth moment of the Lévy-type perpetuity for all p > 0. Second, we
apply this criterion and the aforementioned result from Erickson and Maller (2005)
to derive necessary and sufficient conditions for the a.s. and the Lp-convergence for
p ≥ 1 of the Biggins martingale in the branching Lévy process. Thus, we obtain
final versions of Theorem 1.1 and Proposition 1.4 in Bertoin and Mallein (2018)
which was our primary motivation.

2. Lévy-type perpetuities

In this section we first define a continuous-time counterpart of the perturbed
multiplicative random walks, described in (1.1).

Let Λ be a sigma-finite measure on R × R with Λ({0, 0}) = 0. Define the
projections Λ1 and Λ2 of Λ by

Λ1(B) :=

∫
R

Λ(B, dy) and Λ2(B) :=

∫
R

Λ(dx,B)

for Borel sets B in R\{0}. Throughout the article our standing assumption is that∫
R

(x2 ∧ 1)Λ1(dx) <∞ and
∫
R
(|y| ∧ 1)Λ2(dy) <∞. (2.1)

Denote by N :=
∑
k ε(τk,(ik,jk)) a Poisson random measure on R+ × R2 with

mean measure LEB ⊗ Λ, where R+ := [0,∞), ε(t,(x,y)) denotes the Dirac mass
at (t, (x, y)) ⊂ R+ × R2, and LEB is the Lebesgue measure on R+. Define N1 :=∑
k ε(τk,ik) and N2 :=

∑
k ε(τk,jk), the projections of N . These are Poisson random

measures on R+ × R with mean measures LEB⊗ Λj , j = 1, 2.
For t ≥ 0, set

Xt := vBt + bt+

∫
[0, t]×R

x1[−1,1](x)N c
1 (dsdx) +

∫
[0, t]×R

x1R\[−1,1](x)N1(dsdx)

(2.2)

Zt :=

∫
[0, t]×R

yN2(dsdy)

where v2 ≥ 0, b ∈ R and (Bt)t≥0 is a Brownian motion independent of N . The first
integral in (2.2) is a compensated Poisson integral (hence, the notation N c

1 ) which
can be defined as the following limit in L2

lim
δ↓0

∫
[0, t]×R

x1(δ,1](|x|)N1(dsdx)− t
∫
δ<|x|≤1

xΛ1(dx).

In view of the second assumption in (2.1) the process Z := (Zt)t≥0 is a drift-
free Lévy process of bounded variation. In particular, Z can be represented as
the difference of two independent subordinators. The random measure N is the
measure of jumps of the two-dimensional Lévy process (Xt, Zt)t≥0.

Define the random process Y := (Yt)t≥0 by

Yt =

{
y, if N2({t} × {y}) = 1;

0, if N2({t} × R) = 0,

that is, Y = (Zt −Zt−)t≥0 is the process of jumps of Z. The process (Yte
−Xt−)t≥0

which is a natural continuous-time generalization of the process (Θn)n∈N defined
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in (1.1) will be called perturbed multiplicative Lévy process. For t ≥ 0, set

St :=
∑

0≤s≤t

e−Xs−Ys =
∑
τk≤t

e−Xτk−jk =

∫
[0, t]

e−Xs−dZs. (2.3)

Whenever the a.s. limit S := limt→∞ St exists and is finite, we call the random
variable

S =
∑
s≥0

e−Xs−Ys =
∑
k

e−Xτk−jk =

∫
R+

e−Xs−dZs (2.4)

Lévy-type perpetuity.
The following result which gives necessary and sufficient conditions for the a.s.

finiteness of Lévy-type perpetuities is a specialization1 of Theorem 2 in Erickson
and Maller (2005). For x ≥ 1, set

A(x) := 1 +

∫ x

1

Λ1((y,∞))dy = 1 +

∫
R

(x ∧ z − 1)+Λ1(dz),

where z+ = max(z, 0) and y ∧ z = min(y, z) for all y, z ∈ R.

Proposition 2.1. Assume that

lim
t→∞

Xt = +∞ a.s. and
∫
R\[−e,e]

log |y|
A(log |y|)

Λ2(dy) <∞. (2.5)

Then
P{ lim

t→∞
St exists and is finite} = 1. (2.6)

Conversely, if (2.5) fails, then (2.6) fails.

It should not come as a surprise that Proposition 2.1 is very similar to Theo-
rem 2.1 in Goldie and Maller (2000) which provides a criterion for the a.s. finiteness
of discrete-time perpetuities Ξ.

3. Power moments of Lévy-type perpetuities

3.1. Main result. The purpose of this section is to point out necessary and sufficient
conditions for the finiteness of power moments of S. Before formulating the corre-
sponding result we note that the distribution of S is degenerate if, and only if, it is
degenerate at 0, and that the latter occurs if, and only if, Λ2 is trivial which means
that Λ2 ≡ 0. The non-obvious part of this statement, that is, that the distribution
of S cannot be degenerate at a nonzero point follows from the fact that Z does not
have a Brownian component and Theorem 2.2 in Bertoin et al. (2008).

Theorem 3.1. Assume that Λ2 is nontrivial and let p > 0. The following assertions
are equivalent:

E e−pX1 < 1 and
∫
R\[−1,1]

|y|pΛ2(dy) <∞; (3.1)

E |S|p <∞. (3.2)

1In the cited result Z is allowed to be an arbitrary Lévy process. The random process (St)t≥0

in (2.3) is then called a generalized Ornstein-Uhlenbeck process. In view of the second condition in
(2.1) which is motivated by a forthcoming application of our results to branching Lévy processes
we only consider a subclass of generalized Ornstein-Uhlenbeck processes.
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3.2. Auxiliary results. Proposition 3.2 and Proposition 3.3 given below are our main
technical tools for the proof of Theorem 3.1. We start by recalling a criterion ob-
tained in Theorem 1.4 of Alsmeyer et al. (2009) for the finiteness of power moments
of discrete-time perpetuities Ξ.

Proposition 3.2. Let p > 0 and suppose that

P{M = 0} = 0 and P{Q = 0} < 1 (3.3)

and that
P{Q+Mr = r} < 1 for all r ∈ R. (3.4)

The following assertions are equivalent:

E |M |p < 1 and E |Q|p <∞; (3.5)

E |Ξ|p <∞. (3.6)

The next proposition gives sufficient conditions for the finiteness of the pth mo-
ment of the integral of an adapted process against the Lévy process Z defined in
Section 2.

Proposition 3.3. Let (Zs)s≥0 be a drift-free Lévy process of finite variation (as
defined in Section 2) and (Hs)s≥0 an adapted càdlàg process. Suppose that there
exists p > 0 such that E |Z1|p <∞ and E sups∈(0,1] |Hs|p <∞. Then

E
∣∣∣ ∫

(0,1]

Hs−dZs

∣∣∣p <∞.
Proof : When p ≥ 1 the assertion follows from Lemma 6.1 in Behme (2011).

Assume that p ∈ (0, 1). Subadditivity of x 7→ xp on R+ and the triangle inequal-
ity entail

E
∣∣∣ ∫

(0,1]

Hs−dZs

∣∣∣p ≤ E

(∫
(0,1]

|Hs−|dZ(1)
s

)p
+ E

(∫
(0,1]

|Hs−|dZ(2)
s

)p
, (3.7)

where, for t ≥ 0,

Z
(1)
t :=

∫
[0, t]×R

|y|1[−1,1](y)N2(dsdy) =
∑
τk≤t

|jk|1{|jk|≤1}

and

Z
(2)
t :=

∫
[0, t]×R

|y|1R\[−1,1](y)N2(dsdy) =
∑
τk≤t

|jk|1{|jk|>1} .

Note that Z(i) := (Z
(i)
t )t≥0, i = 1, 2 are drift-free subordinators. We shall prove

finiteness of the two summands on the right-hand side of (3.7) separately.
We start by observing that Z(2) is a compound Poisson process with jumps sizes

larger than one. Denote by T1, T2, . . . the times at which Z(2) jumps, ranked in the
increasing order, and set Ri := Z

(2)
Ti
−Z(2)

Ti− for i ∈ N. The sequence (Tk)k∈N forms
the arrival times of a Poisson process with intensity c := Λ2(R\[−1, 1]), and (Rk)k∈N
are i.i.d. random variables with distribution P{R1 > x} = c−1Λ2(R\[−x, x]) for
x > 1 and P{R1 > x} = 1 for x ≤ 1. Moreover, for each fixed i ∈ N, (HTi−, Ti)
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is independent of Ri. Using these facts in combination with the aforementioned
subadditivity we obtain

E
∣∣∣ ∫

(0, 1]

Hs−dZ(2)
s

∣∣∣p ≤E
(∑
i≥1

|HTi−|pR
p
i 1{Ti≤1}

)
=E

(∑
i≥1

|HTi−|p 1{Ti≤1}

)
ERp1

=cE
(∫ 1

0

|Hs|pds
)
c−1

∫
R\[−1, 1]

|y|pΛ2(dy),

where, recalling that (Hs)s≥0 is an adapted process, the second equality is justified
by the compensation formula for Poisson random measures. As a result,

E
∣∣∣ ∫

(0, 1]

Hs−dZ(2)
s

∣∣∣p ≤ E
(

sup
s∈[0,1]

|Hs|p
)∫

R\[−1, 1]

|y|pΛ2(dy) <∞.

Here, the inequality
∫
R\[−1, 1]

|y|pΛ2(dy) < ∞ is guaranteed by the assumption
E |Z1|p <∞ (see Theorem 25.3 in Sato (2013)).

It remains to show that

E

(∫
(0,1]

|Hs−|dZ(1)
s

)p
<∞. (3.8)

For each A > 0 and each t ∈ [0, 1], set KA
t = |Ht| ∧ A. Also, for each n ∈ N and

integer 1 ≤ k ≤ n, set Ik,n := ((k − 1)/n, k/n] and let Fk,n denote the σ-algebra
generated by (Hs−, Z

(1)
s )0≤s≤k/n (we also denote by F0,n the trivial σ-algebra).

Recalling that Z(1) is a drift-free subordinator we write

E
(∫

(0, 1]

KA
s−dZ(1)

s

)p
= E

( n∑
k=1

∫
Ik,n

KA
s−dZ(1)

s

)p
≤ 2E

( n∑
k=1

E
(∫

Ik,n

KA
s−dZ(1)

s

∣∣∣Fk−1,n

))p
≤ 2E

( n∑
k=1

∫
Ik,n

E(KA
s |Fk−1,n)ds

)p(∫
[−1, 1]

|y|Λ2(dy)
)p
,

where the first inequality follows by an application of Lemma 6 on p. 411 in Chow
and Teicher (1988), and the second inequality is a consequence of subadditivity of
x 7→ xp on R+ and the equality

E
(∫

Ik,n

KA
s−dZ(1)

s

∣∣∣Fk−1,n

)
=

∫
Ik,n

E(KA
s |Fk−1,n)ds

∫
[−1, 1]

|y|Λ2(dy)

which is implied by the compensation formula for Poisson random measures. Fur-
ther, letting n → ∞ and using the fact that (KA

s )s≥0 is an adapted bounded
process, an appeal to Lebesgue’s dominated convergence theorem yields

lim
n→∞

E
( n∑
k=1

∫
Ik,n

E(KA
s |Fk−1,n)ds

)p
= E

(∫ 1

0

KA
s ds

)p
≤ E( sup

s∈[0, 1]

(KA
s )p).
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Thus, we have proved that, for each A > 0,

E
(∫

(0,1]

(|Hs−| ∧A)dZ(1)
s

)p
≤ 2E( sup

s∈[0,1]

|Hs| ∧A)p
(∫

[−1, 1]

|y|Λ2(dy)
)p

≤ E( sup
s∈[0,1]

|Hs|)p
(∫

[−1, 1]

|y|Λ2(dy)
)p

<∞.

Letting A→∞ in the latter formula, we infer (3.8) with the help of Lévy’s mono-
tone convergence theorem. �

The result given next is a consequence of Theorem 25.18 in Sato (2013). A direct
proof can be found in Lemma 2.1 (a) of Aurzada et al. (2015).

Lemma 3.4. Let p > 0. If E e−pX1 <∞, then

E sup
s∈[0,1]

e−pXs = E exp(−p inf
s∈[0,1]

Xs) <∞.

3.3. Proof of Theorem 3.1.

Proof of (3.1)⇒(3.2). We first show that conditions (3.1) ensure |S| < ∞ a.s. In-
deed, by Jensen’s inequality E e−pX1 < 1 entails EX1 ∈ (0,∞], whence limt→∞Xt

= +∞ a.s. Further,
∫
|y|>1

|y|pΛ2(dy) < ∞ ensures
∫
|y|>1

log |y|Λ2(dy) < ∞ and,
a fortiori, the second condition in (2.5). Now |S| < ∞ a.s. follows from Proposi-
tion 2.1.

Now observe that the random variable S can be obtained as a discrete-time
perpetuity generated by the pair of random variables

(M∗, Q∗) := (e−X1 ,

∫
[0, 1]

e−Xs−dZs).

In view of the discussion at the beginning of Section 3.1 and our assumption that Λ2

is nontrivial, the distribution of S is nondegenerate. Therefore, P{Q∗+M∗r = r} <
1 for all r ∈ R. This enables us to invoke Proposition 3.2 which states that E |S|p <
∞ if, and only if, EMp

∗ = E e−pX1 < 1 and E |Q∗|p = E |
∫

[0, 1]
e−Xs−dZs|p <∞.

It is well-known that the second assumption in (3.1) is equivalent to E |Z1|p <∞
(see, for instance, Theorem 25.3 on p. 159 in Sato (2013)). By Lemma 3.4, the first
condition in (3.1) guarantees E sups∈[0,1] e

−pXs <∞. With these at hand we infer
E |Q∗|p <∞ by Proposition 3.3. �

Proof of (3.2)⇒(3.1). We assume that Λ2 charges all the punctured line R\{0}.
Otherwise, the proof becomes simpler. We have EMp

∗ = E e−pX1 < 1 by another
appeal to Proposition 3.2. Using the inequality

|x+ y|p ≥ (21−p ∧ 1)|x|p − |y|p, x, y ∈ R

which is implied by convexity (respectively subadditivity) of s 7→ sp for s ≥ 0 when
p ≥ 1 (resp. when p ∈ (0, 1)) we obtain

∞ > E |S|p = E
∣∣∣ ∫

[0, 1]

e−Xs−dZ̃(1)
s +

∫
[0, 1]

e−Xs−dZ̃(2)
s

∣∣∣p
≥ (21−p ∧ 1)E

∣∣∣ ∫
[0, 1]

e−Xs−dZ̃(2)
s

∣∣∣p − E
∣∣∣ ∫

[0, 1]

e−Xs−dZ̃(1)
s

∣∣∣p,
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where, for t ≥ 0,

Z̃
(1)
t :=

∫
[0, t]×R

y 1[−1,1](y)N2(dsdy) =
∑
τk≤t

jk 1{|jk|≤1}

Z̃
(2)
t := Zt − Z̃(1)

t =

∫
[0, t]×R

y 1R\[−1,1](y)N2(dsdy) =
∑
τk≤t

jk 1{|jk|>1} .

By Theorem 25.3 on p. 159 in Sato (2013), the random variable |Z̃(1)
1 | has fi-

nite power moments of all positive orders. In particular, E |Z̃(1)
1 |p < ∞. Hence,

according to Proposition 3.3, E
∣∣∣ ∫[0, 1]

e−Xs−dZ̃
(1)
s

∣∣∣p < ∞. Recall the notation
(Ti, Ri)i∈N introduced in the proof of Proposition 3.3 for the jump times and jump
sizes of Z(2), respectively. Noting that T1, T2, . . . are also the jump times of Z̃(2),
set Vi := Z̃

(2)
Ti
− Z̃(2)

Ti− for i ∈ N and observe that |Vi| = Ri. We infer

∞ >E
∣∣∣ ∫

[0, 1]

e−Xs−dZ̃(2)
s

∣∣∣p ≥ E
∣∣∣ ∑
Tk≤1

e−XTk−Vk

∣∣∣p 1{T1≤1<T2} = E |e−XT1−V1|pe−cc

=E e−pXT1− E |V1|pe−cc,

where c = Λ2(R\[−1, 1]), thereby proving that E |V1|p < ∞ or, equivalently, that
the second inequality in (3.1) holds. The proof of Theorem 3.1 is complete. �

4. Applications to branching Lévy processes

4.1. Definitions and main result. Branching Lévy processes are a continuous-time
generalization of branching random walks. Similarly to Lévy processes (see (2.2)),
branching Lévy processes are characterized by a triplet (σ2, a,Π), where σ2 ≥ 0,
a ∈ R and Π is a sigma-finite measure on

P :=
{
x = (xn) ∈ [−∞,∞)N : x1 ≥ x2 ≥ · · · and lim

n→∞
xn = −∞

}
.

Also, it is assumed that Π satisfies∫
P

(x2
1 ∧ 1)Π(dx) <∞, (4.1)

and that there exists θ > 0 such that∫
P

eθx1 1(1,∞)(x1) +
∑
j≥2

eθxj

Π(dx) <∞. (4.2)

In the sequel we reserve the letter θ to denote a fixed (possibly unique) positive
number for which (4.2) holds.

The set of individuals alive at time t which we denote by Nt can be encoded
using an adaptation of Ulam-Harris notation (see Shi and Watson, 2017 for the
proposed encoding in the context of compensated fragmentations). For all s ≤ t
and all individual u alive at time t, we write Xs(u) for the position at time s of u
if u ∈ Ns, and for the position of its ancestor at time s if u /∈ Ns.

We outline the evolution of a branching Lévy process with characteristic triplet
(σ2, a,Π) and refer to Sections 4 and 5 in Bertoin and Mallein (2019+) for more
details. Denote by N =

∑
ε(tk,x(k)) a Poisson random measure on R+ × P with
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mean measure LEB⊗Π. The position of the initial particle in the branching Lévy
process follows the path of the process (Xt(�))t≥0 defined by

Xt(�) := σB∗t + at+

∫
[0, t]×P

x1 1[−1,1](x1)N c(dsdx)

+

∫
[0, t]×P

x1 1R\[−1,1](x1)N (dsdx), t ≥ 0, (4.3)

where (B∗t )t≥0 is a Brownian motion independent ofN , and the first Poisson integral
is taken in the compensated sense (see Section 2 for more details concerning a similar
integral). For each atom (tk,x

(k)) of N , the initial particle gives birth at time tk to
new individuals which are started at position Xtk−(�) + x

(k)
2 , Xtk−(�) + x

(k)
3 , . . ..

Each of the newborn particles then starts an independent copy of the branching
Lévy process from their birth time and position. Note that (Xt(�))t≥0 is a Lévy
process with characteristic triplet (σ2, a,Π1), where Π1 is the image measure of Π
under the mapping x→ x1, and (4.3) is its Lévy-Itô decomposition (compare with
(2.2)). Condition (4.1) guarantees that this Lévy process is well-defined.

For z ∈ C with Re(z) = θ, set

κ(z) =
1

2
σ2z2 + az +

∫
P

∑
k≥1

(ezxk − 1− zx1 1(−1,1)(x1))

Π(dx).

Condition (4.2) ensures that κ(z) is finite on its domain. By Bertoin and Mallein
(2019+, Theorem 1.1(ii)), we have, for t ≥ 0,

E

(∑
u∈Nt

ezXt(u)

)
= exp(tκ(z)). (4.4)

Therefore, it is natural to say that κ(z) is the value at z of the cumulant generating
function of the branching Lévy process. For later needs we also note that according
to the many-to-one formula for branching Lévy processes (Bertoin and Mallein,
2019+, Lemma 2.2), the function Ψ : R→ C defined by

Ψ(s) := κ(θ + is)− κ(θ) (4.5)

is the Lévy-Khinchine exponent of a Lévy process that we denote by ξ = (ξt)t≥0.
The branching property of the branching Lévy process tells us that conditionally

on the positions of the particles at time t the processes initiated by these particles
are i.i.d. branching Lévy processes, shifted by the position of their ancestor, see
Bertoin and Mallein (2019+, Fact (B)). The branching property in combination
with (4.4) imply that the process W := (Wt)t≥0 defined by

Wt :=
∑
u∈Nt

eθXt(u)−tκ(θ), t ≥ 0 (4.6)

is a non-negative continuous-time martingale with respect to the natural filtration.
This martingale, often called Biggins’ or McKean’s martingale, and its a.s. limitW∞
are of primary importance for the study of branching Lévy processes. According to
a classical result in the field of branching processes

P{W∞ = 0} ∈ {P{∃t > 0 : Nt = �}, 1},
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i.e., either W∞ is strictly positive a.s. on the survival set of the branching Lévy
process orW∞ = 0 a.s. While the first case is equivalent to the uniform integrability
of the martingale W , the second one is called the degenerate case.

We are ready to state the second main result of the present article.

Theorem 4.1. Let X be a branching Lévy process satisfying (4.1) and (4.2), W the
corresponding Biggins martingale, and ξ the Lévy process with the Lévy-Khinchine
exponent given in (4.5).

(i) The martingale W is uniformly integrable if, and only if,

lim
t→∞

(θξt − tκ(θ)) = −∞ a.s.

and
∫
P

∑
k≥1

eθxk
log
(∑

j 6=k e
θxj
)

A
(

log
(∑

j 6=k e
θxj

)) 1(e,∞)

(∑
j 6=k

eθxj
)

Π(dx) <∞, (4.7)

where A(y) = 1 +
∫
P
∑
k≥1 e

θxk ((−xk) ∧ y − 1)+ Π(dx) for y ≥ 1.
(ii) Let p ∈ (1, 2]. The martingale W converges in Lp if, and only if,

κ(pθ) < pκ(θ) and
∫
P

∑
k≥1

eθxk
(∑
j 6=k

eθxj
)p−1

1(e,∞)

(∑
j 6=k

eθxj
)

Π(dx) <∞

(4.8)

In Bertoin and Mallein (2018, Theorem 1.1) similar necessary and sufficient con-
ditions for the uniform integrability of W were obtained under the additional as-
sumption that E ξ1 ∈ (−∞,∞). A new aspect of part (i) of Theorem 4.1 is that E ξ1
may be infinite or not exist. In Bertoin and Mallein (2018, Proposition 1.4) it was
proved that conditions (4.8) entail the Lp-convergence of W under the additional
integrability condition κ(qθ) <∞ for some q > p.

Using Doney (2007, Theorem 4.15) one can give an integral test expressed in
terms of the characteristics of the branching Lévy process which is equivalent to
the first condition in (4.7), that is, limt→∞(θξt − tκ(θ)) = −∞ a.s.

Theorem 4.1 will be proved along the lines of the proof of the corresponding
result for branching random walks, see the introduction for more details. To this
end, in the next section we define a size-biased measure and the corresponding
spinal decomposition. The latter as well as Proposition 2.1 and Theorem 3.1 are
essential ingredients for the proof of Theorem 4.1.

4.2. Spinal decomposition. The spinal decomposition is a useful tool to construct
the branching Lévy process under the size-biased law

P̄
∣∣
Ft

:= WtP|Ft , t ≥ 0,

where (Ft)t≥0 is the natural filtration for W . The resulting process is a branching
process with the set of distinguished individuals, called the spine. While the in-
dividuals belonging to the spine produce offspring and displace them according to
a special law, the rest of the population behaves as in a standard branching Lévy
process. This justifies the term ‘spinal decomposition’.

To explain the evolution of a branching Lévy process with spine we need more
notation. Let Π̂ be a measure on P × N defined by

Π̂(dxdk) = eθxk (Π(dx)Count(dk)) , (4.9)
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where Count is the counting measure on N. Set

â = a+ θσ2 +

∫
P

(∑
k≥1

xke
θxk 1[−1,1](xk)− x1 1[−1,1](x1)

)
Π(dx)

and note that â is well-defined and finite by (4.1) and (4.2). Also, we denote by N̂
a Poisson random measure on R+ × P × N with mean measure LEB ⊗ Π̂ and by
(B̂t)t≥0 a Brownian motion which is independent of N̂ .

Now we define the spine process ξ̂ = (ξ̂t)t≥0 by the following Lévy-Itô decompo-
sition: for t ≥ 0

ξ̂t :=σB̂t + ât+

∫
[0, t]×P×N

xk 1[−1,1](xk)N̂ (c)(dsdxdk)

+

∫
[0, t]×P×N

xk 1R\[−1,1](xk)N̂ (dsdxdk).

Plainly, ξ̂ is a Lévy process with characteristic triplet (σ2, â,Λ1), where the Lévy
measure is given by∫

R
f(−x)Λ1(dx) =

∫
P

(∑
k≥1

eθxkf(xk)
)

Π(dx). (4.10)

Further, it can be checked that the Lévy-Khinchine exponent of ξ̂ is Ψ defined in
(4.5).

We are now ready to discuss briefly the evolution of a branching Lévy process
with spine. The spine particle displaces according to the Lévy process ξ̂, and for
each atom (t,x, k) of N̂ , the spine particle produces offspring at positions ξ̂t−+xj for
all j 6= k. Each of these newborn particles then immediately starts an independent
branching Lévy process from their birth place and time. Retaining the notation Nt
and Xs(u) (see Section 4.1) for the branching Lévy process with spine we shall also
write wt for the label at time t of the spine particle. With these at hand we denote
by P̂ the law of ((Xt(u))u∈Nt,t≥0, (Nt)t≥0, (wt)t≥0).

Denote by (Ht)t≥0 the filtration associated to (Xt(u))u∈Nt,t≥0 for the branching
Lévy process with spine which excludes the information concerning the labels of
the spine individuals.

Lemma 4.2. We have P̄|Ht = P̂|Ht for t ≥ 0 and

P̂{wt = u|Ht} =
eθXt(u)−tκ(θ)

Wt
, t ≥ 0.

Furthermore, under P̂, (Xt(wt))t≥0 is a Lévy process with Lévy-Khinchine exponent
Ψ.

The spinal decomposition was introduced in Lyons et al. (1995) in the context
of Galton-Watson processes. Lyons (1997) then proved a spinal decomposition re-
sult for branching random walks. This result was further generalized to branching
Markov chains and general associated harmonic functions in Biggins and Kypri-
anou (2004), to general Markov processes and multiple spines in Harris and Roberts
(2017), etc. In the context of growth-fragmentation processes a proof of the spinal
decomposition appeared in Bertoin et al. (2018) for binary compensated fragmen-
tations, i.e., under the assumption Π({x1 > 0}) + Π({x3 > −∞}) = 0. The first
general spinal decomposition result for branching Lévy processes was obtained in
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Shi and Watson (2017, Theorem 5.2) under the assumption Π({x1 > 0}) = 0. A
simple argument was given in Bertoin and Mallein (2018, Lemma 2.3) which en-
abled one to deduce the spinal decomposition for branching Lévy processes from
that for branching random walks.

4.3. Proof of Theorem 4.1. We start with some preliminary work. Denote by Ωs the
multiset2 of children’s positions at time s relative to the positions of their parents
belonging to the spine, i.e.,

Ωs =

{
�, if N̂ ({s} × P × N) = 0

{(xj)j 6=k}, if N̂ ({(s,x, k}) = 1.

Setting
St :=

∑
0≤s≤t

eθXs−(ws−)−sκ(θ)
∑
z∈Ωs

eθz, t ≥ 0

we note that the P̂-a.s. limit limt→∞ St, provided it is finite, is a Lévy-type perpe-
tuity (see (2.4)) in which the role of X is played by (−θXt(wt) + tκ(θ))t≥0 under
P̂, and the associated Lévy measures Λ1 and Λ2 are given, respectively, by (4.10)
and ∫

R+

f(x)Λ2(dx) =

∫
P

∑
k≥1

eθxkf

∑
j 6=k

eθxj

Π(dx).

It can be checked that assumptions (4.1) and (4.2) guarantee that the so defined
Λ1 and Λ2 satisfy (2.1).

To facilitate a forthcoming application of Proposition 2.1 let us note that the
second condition in (4.7) is equivalent to∫

(e,∞)

log y

A(log y)
Λ2(dy) <∞, (4.11)

where A(x) = 1 +
∫ x

1
Λ1((y,∞))dy for x ≥ 1 as in Section 2 but with Λ1 as

defined above. As far as an application of Theorem 3.1 is concerned observe that
κ(pθ) < pκ(θ) which is the first condition in (4.8) is equivalent to

Ê exp((p− 1)(θXt(wt)− tκ(θ))) = exp(κ(pθ)− pκ(θ)) < 1. (4.12)

The latter is the first condition in (3.1) withX as defined in the previous paragraph.
Further, the second condition in (4.8) is equivalent to∫

(1,∞)

yp−1Λ2(dy) <∞. (4.13)

Now we write a basic representation for what follows:

W ∗t := Ê (Wt|G) = eθXt(wt)−tκ(θ) + St, t ≥ 0, (4.14)

where G is the σ-algebra which contains the information concerning the trajectory
of the spine as well as the birth place and the birth times of its offspring.

Passing to the proof of Theorem 4.1 we first deal with the uniform integrability
of W .

Lemma 4.3. Under the assumptions of Theorem 4.1 the martingaleW is uniformly
integrable if, and only if, conditions (4.7) hold.

2I.e., the set of elements counted with their multiplicity.



Power moments of Lévy-type perpetuities 327

Proof : We use the classical observation (see, for instance, p. 220 in Lyons, 1997)
that

W is uniformly integrable under P ⇐⇒ W̄∞ := lim sup
t→∞

Wt <∞ P̂− a.s. (4.15)

Therefore, it is enough to prove that conditions (4.7) are equivalent to the P̂-a.s.
finiteness of W̄∞.

Assume that conditions (4.7) hold. Since the law of the Lévy process (ξt)t≥0 is
the same as the P̂-law of (Xt(wt))t≥0, the first condition in (4.7) ensures that

lim
t→∞

(θXt(wt)− tκ(θ)) = −∞ P̂− a.s. (4.16)

This entails limt→∞W ∗t = limt→∞ St P̂-a.s. With (4.11) and (4.16) at hand, an
application of Proposition 2.1 (recall our specific choice of X) yields limt→∞ St <

∞ P̂-a.s. and thereupon limt→∞W ∗t < ∞ P̂-a.s. Invoking the conditional Fatou
Lemma we further infer

lim inft→∞Wt <∞ P̂− a.s. (4.17)

According to Proposition 2 in Harris and Roberts (2009), 1/W is a positive super-
martingale under P̂. Thus, 1/Wt converges P̂-a.s. as t→∞. In view of (4.17) the
limit cannot be zero. Therefore, W̄∞ <∞ P̂-a.s. which is equivalent to the uniform
integrability of W .

Conversely, assume that W is uniformly integrable or equivalently W̄∞ < ∞
P̂-a.s. Then

Wt ≥
∑
u∈Nt

eθXt(u)−tκ(θ) ≥ eθXt(wt)−tκ(θ), t ≥ 0

entails lim supt→∞(θXt(wt)−tκ(θ)) <∞ P̂-a.s, whence limt→∞(θXt(wt)−tκ(θ)) =

−∞ P̂-a.s. This proves that the first condition in (4.7) holds.
Passing to the proof of the second condition in (4.7) we first observe that, for all

0 ≤ s ≤ t,
Wt ≥

∑
0≤r≤s

eθXr−(wr)−rκ(θ)
∑
z∈Ωr

eθzW
(r,z)
t P̂− a.s.,

where the random variables

W
(r,z)
t :=

∑
u∈Nt

eθ(Xt(u)−Xr(u))−(t−r)κ(θ)
1{u descendant of z}

are independent of G and have the same P̂-distribution as the P-distribution of
Wt−r. Letting now t→∞ we infer, for all s ≥ 0,

W̄∞ ≥
∑
r≤s

eθXr−(wr)−rκ(θ)
∑
z∈Ωr

eθzW (r,z)
∞ P̂− a.s., (4.18)

where W (r,z)
∞ is the limit of the Biggins martingale associated to the descendant of

the spine born at time r at position z.
The random variables (W

(r,z)
∞ )r≥0,z∈Ωr are i.i.d. In view of the assumption

W̄∞ < ∞ P̂-a.s. equivalence (4.15) ensures EW (r,z)
∞ = 1. As a consequence, there

exists δ > 0 such that P{W (r,z)
∞ ≥ 1} = δ. Setting e(r,z) = 1[1,∞)(W

(r,z)
∞ ) we con-

clude that the random variables (e(r,z))r≥0,z∈Ωr are independent Bernoulli random
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variables with parameter δ. Now (4.18) implies that, for all s ≥ 0,

W̄∞ ≥
∑
r≤s

eθXr−(wr)−rκ(θ)
∑
z∈Ωr

eθze(r,z) =: Γs P̂− a.s.

In particular, there exists a sequence (sj) such that limj→∞ Γsj <∞ P̂-a.s.
Assume now that limt→∞ St = ∞ P̂-a.s., so that limj→∞(Γsj/Ssj ) = 0 P̂-a.s.

Since Γsj/Ssj ≤ 1 P̂-a.s. Γsj/Ssj must converge to 0 in P̂- mean. However, this
is not the case, for Ê(Γsj/Ssj ) = δ, a contradiction. Thus, we have shown that
limt→∞ St <∞ P̂-a.s. By Proposition 2.1 this implies that the second condition in
(4.7) holds. The proof of Lemma 4.3 is complete. �

The proof of the second part of Theorem 4.1 follows by a similar reasoning.
We first use the fact that (Wn)n∈N0

is the Biggins martingale of a branching ran-
dom walk with the underlying point process

∑
u∈N1

εX1(u). The following result is
well-known and can be found in Theorem 3.1 of Alsmeyer and Kuhlbusch (2010),
Corollary 5 of Iksanov (2004), Theorem 2.1 of Liu (2000) and perhaps some other
articles: the Lp-convergence of (Wn)n∈N0

for p > 1 is equivalent to the following
two conditions

κ(pθ) < pκ(θ) and EW p
1 <∞. (4.19)

Another form of the left-hand inequality is given by the first inequality in

1 > E
∑
u∈N1

ep(θX1(u)−κ(θ)) = eκ(pθ)−pκ(θ).

As the Lp-convergence of W is obviously equivalent to that of (Wn)n∈N0
, it only

remains to check that conditions (4.8) and (4.19) are equivalent.

Lemma 4.4. Let p ∈ (1, 2]. Assume (4.1) and (4.2) hold and that κ(pθ) < pκ(θ).
Then

EW p
1 <∞ ⇐⇒

∫
P

∑
k≥1

eθxk
(∑
j 6=k

eθxj
)p−1

1(e,∞)

(∑
j 6=k

eθxj
)

Π(dx) <∞.

Proof : ⇐: We intend to prove that EW p
1 < ∞ or equivalently ÊW p−1

1 < ∞. By
Theorem 3.1, conditions (4.12) and (4.13) ensure that S := limt→∞ St < ∞ P̂-a.s.
and that ÊSp−1 <∞. Recalling (4.14) we obtain

ÊW p−1
1 ≤ Ê[Ê(W1|G)p−1] ≤ Ê

(
e(p−1)(θX1(w1)−κ(θ)) + Sp−1

1

)
<∞

having used the conditional Jensen inequality for the first inequality, subadditivity
of x 7→ xp−1 on R+ for the second, and (4.12) together with ÊSp−1

1 ≤ ÊSp−1 for
the third.
⇒: For s > 0 and z ∈ Ωs, denote by (W

(s,z)
u )u≥0 the Biggins martingale as-

sociated to the descendant of the spine born at time s at position z. Setting
W

(s,z)
1 := infu∈[0,1]W

(s,z)
u we obtain

W1 ≥
∑

0≤s≤1

eθXs−(ws−)−sκ(θ)
∑
z∈Ωs

eθzW
(s,z)
1−s

≥
∑

0≤s≤1

eθXs−(ws−)−sκ(θ)
∑
z∈Ωs

eθzW
(s,z)
1 P̂− a.s.
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The random variables W (s,z)
1 are P̂-i.i.d., positive with positive probability and

independent of all the other random variables occurring under the sum. Using
concavity of x 7→ xp−1 on R+ yields

W p−1
1 ≥ Sp−1

1 ×
∑

0≤s≤1,z∈Ωs
eθXs−(ws−)−sκ(θ)eθz(W

(s,z)
1 )p−1

S1
P̂− a.s.

Denoting by W 1 a generic copy of W (s,z)
1 , we deduce ÊW p−1

1 ≥ ÊSp−1
1 ÊW p−1

1 ,

thereby showing that ÊSp−1
1 <∞.

Using Proposition 3.2 in the same way as in the proof of Theorem 3.1, implica-
tion (3.1)⇒ (3.2) we conclude that ÊSp−1

1 < ∞ together with (4.12) ensure that
ÊSp−1 <∞. Formula (4.13) then follows by Theorem 3.1. The proof of Lemma 4.4
is complete. �
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