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Abstract. This paper studies a variant of the multi-type contact process as a
model for the competition between cooperators and defectors. Regardless of their
type, individuals die at rate one. Defectors give birth at a fixed rate whereas coop-
erators give birth at a rate that increases linearly with the number of nearby coop-
erators. In particular, it is assumed that only cooperators benefit from cooperators,
which is referred to as kin-recognition in the ecological literature. To understand
how the inclusion of space in the form of local interactions affects the dynamics,
the results for the interacting particle system are compared with their counterpart
for the non-spatial mean-field model. Due to some monotonicity with respect to
the parameters, both the spatial and non-spatial models exhibit a unique phase
transition. Our analysis shows however a major difference: In the spatial model,
when cooperation is strong enough, the cooperators out-compete the defectors even
when starting at arbitrarily low density. In contrast, regardless of the strength of
cooperation, when the initial density of cooperators is too low, the defectors out-
compete the cooperators in the non-spatial model. In particular, when cooperation
is sufficiently strong, the cooperators can invade the defectors in their equilibrium in
the spatial model but not in the non-spatial model, showing that space in the form
of local interactions promotes cooperation. This result is consistent with previous
results in the literature of interacting particle systems, but our work also shows
an interesting novel aspect: in contrast with the inclusion of local interactions, the
inclusion of spontaneous deaths promotes defection.

1. Introduction

In game theory, cooperating and defecting refer to the two possible strategies in
the prisoner’s dilemma, the most popular example of a two-person game. Imagine
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that the two accomplices of a crime (the two players) are arrested and interviewed
separately by the police. Each player has the option to either defect by betraying
his accomplice and testifying against him, or cooperate by remaining silent. When
one player cooperates while the other one defects, the cooperator gets the smallest
possible payoff called the sucker’s payoff while the defector gets the largest possible
payoff called the temptation. When both players cooperate they get the same payoff
called the reward while when both players defect they get the same payoff called
the punishment. The prisoner’s dilemma is characterized by the condition

sucker’s payoff < punishment < reward < temptation.

Because the punishment is better than the sucker’s payoff and the temptation is
better than the reward, no matter the strategy of the other player, each player al-
ways gets a better payoff by defecting. Accordingly, in the context of evolutionary
game theory (Hofbauer and Sigmund, 1998; Maynard Smith and Price, 1973) where
the dynamics of a population of players are derived by interpreting payoff as fit-
ness, simple models based on ordinary differential equations such as the replicator
equation predict that the defectors out-compete the cooperators. Although reason-
able from a mathematical point of view, this conclusion appears to contradict the
fact that cooperation is ubiquitous in nature. This apparent contradiction between
theory and observations has been resolved through the study of more realistic mod-
els, with the notable example of the death-birth updating process (Nowak, 2006;
Ohtsuki et al., 2006) in which each players’ payoff is calculated based on a set of
neighbors on a connected graph. In this model, it is possible for the cooperators to
out-compete the defectors. The basic idea is that, due to the inclusion of space in
the form of local interactions, cooperators are more likely to be located next to co-
operators and defectors are more likely to be located next to defectors. Because the
reward is better than the punishment, clusters of cooperators can expand linearly in
space. This result has been proved analytically for various spatially explicit models
such as the ones in Chen (2013); Cox et al. (2013); Durrett (2014); Evilsizor and
Lanchier (2016); Foxall and Lanchier (2017), supporting the idea that the inclusion
of space in the form of local interactions promotes cooperation.

The main objective of this paper is to again understand the effect of space in
the form of local interactions in cooperator-defector systems. The model we study
also falls in the category of interacting particle systems (Liggett, 1985, 1999) but
the evolution rules are somewhat different from the ones of the death-birth updat-
ing process: Defectors have a fixed birth rate that does not depend on the nearby
configuration, indicating that defectors do not benefit from interacting with coop-
erators, while cooperators have a birth rate that is increasing with respect to the
number of cooperators in their neighborhood. The case of interest is when the birth
rate of the cooperators can be smaller or larger than the birth rate of the defectors
depending on the nearby configurations. Another notable difference is that our
model is a variant of the multi-type contact process that includes deaths at a spon-
taneous rate (and empty sites) whereas, as far as we know, all the analytical studies
of evolutionary games based on interacting particle systems look at variants of the
voter model in which all sites are occupied. Interestingly, our results below show
that, while the inclusion of a spatial structure promotes cooperation, the presence
of spontaneous deaths weakens this effect.

More precisely, the interacting particle system we consider is inspired from the
model introduced in Czuppon and Pfaffelhuber (2017, remark 3). The latter is a
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variant of the biased voter model where each site of the d-dimensional integer lattice
is occupied by either a cooperator or a defector. Defectors give birth to defectors
at rate one plus βd while cooperators give birth to cooperators at rate one plus βc

times the fraction of their neighbors that are cooperators. Like in the biased voter
model, the offspring replaces one of the 2d parent’s neighbors chosen uniformly at
random. The parameter βd represents the fitness advantage of the defectors over
the cooperators, thus measuring the energy saved from not cooperating. The pa-
rameter βc represents the benefit from cooperation, and the model assumes that
only cooperators benefit from nearby cooperators which, in the ecological literature,
is referred to as kin-recognition.

Though the main objective of Czuppon and Pfaffelhuber (2017) was not to study
this model but two related models, their proofs easily adapt to show that, for the
process on the integers Z starting from a translation invariant product measure
with a positive density of cooperators and defectors,

• the cooperators win (the probability that a given site is occupied by a
cooperator converges to one) if and only if βc > 2βd,

• the defectors win (the probability that a given site is occupied by a de-
fector converges to one) if and only if βc < 2βd,

• the process clusters (the probability that a given bounded set contains
cooperators and defectors converges to zero) when βc = 2βd.

The authors did not say much about the process in d > 1. Czuppon (2016, Sec-
tion 6), however, introduces a similar model and uses a block construction to prove
that the cooperators win in any spatial dimensions for an appropriate choice of the
parameters. Similarly, our analysis holds in any dimensions.

As mentioned above, the model we study is similar to the model in Czuppon
and Pfaffelhuber (2017, remark 3) except that it is based on the multi-type contact
process rather than the biased voter model. In particular, the process also includes
deaths, which results in the presence of empty sites. More precisely, our model is a
continuous-time Markov chain whose state at time t is a spatial configuration

ξt : Z
d −→ S = {c,d, e}

with ξt(x) denoting the state of site x ∈ Zd at time t, either

c = occupied by a cooperator

d = occupied by a defector

e = empty.

To describe the possible transitions, for each ξ : Zd → S and each i ∈ S, we denote
by ξx,i the configuration obtained from ξ by setting the state at site x equal to i

and leaving the states at all the other sites unchanged. The dynamics are then
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described by the Markov generator

Lf(ξ) =
∑

x

∑

y∼x

(

β

2d
+
∑

z∼y

βc 1{ξ(z) = c}
4d2

)

1{ξ(y) = c, ξ(x) = e} [f(ξx,c)− f(ξ)]

+
∑

x

∑

y∼x

(

β + βd

2d

)

1{ξ(y) = d, ξ(x) = e} [f(ξx,d)− f(ξ)]

+
∑

x

[f(ξx,e)− f(ξ)]

(1.1)

where x ∼ y means that vertex x and vertex y are nearest neighbors on the d-
dimensional integer lattice. In words, cooperators give birth to cooperators at
rate β plus βc times the fraction of adjacent cooperators while, regardless of the
nearby configuration, defectors give birth to defectors at the fixed rate β + βd. In
either case, the offspring is sent to one of the 2d parent’s neighbors chosen uni-
formly at random. If the target site is empty, it becomes occupied by the offspring,
otherwise the offspring is removed from the system as a result of a lack of space
available. In addition, regardless of their type, individuals die independently at
rate one. The parameter β is the basic birth rate of cooperators. Like in Czuppon
and Pfaffelhuber (2017), the parameter βd is the additional birth rate for defectors
resulting from the energy they save from not cooperating while the parameter βc

measures the benefit a cooperator obtains from nearby cooperators.

The mean-field model. Before studying the spatial model, we look at its deter-
ministic non-spatial version or mean-field model (Durrett and Levin, 1994). That
is, we assume that all sites are independent, and the system spatially homogeneous.
This results in a system of coupled differential equations for the densities of coop-
erators and defectors. The main reason for studying this model is to compare later
its behavior with the behavior of the interacting particle system and understand
the effect of local interactions on the dynamics. Letting x and y be the density of
cooperators and defectors, respectively, the mean-field model is described by

dx

dt
= (β + βc x)(1 − x− y)x− x

dy

dt
= (β + βd)(1 − x− y)y − y.

(1.2)

Letting also z be the density of empty sites, the simplex

S = {(x,y, z) : x,y, z ≥ 0 and x+ y + z = 1},

that corresponds to the set of vectors that are physically relevant, is positive invari-
ant under the dynamics of (1.2). In particular, we are only interested in the model
with initial conditions and the fixed points in the simplex. When βc = βd = 0, the
population survives, i.e., the extinction fixed point (0, 0, 1) is not the unique fixed
point, if and only if β > 1. Because our main objective is to study the competition
between cooperators and defectors rather than whether a given type survives in the
absence of the other type, we only study the mean-field model with β > 1. The
following theorem describes the behavior in this case.
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Theorem 1.1 (mean-field model). Let β > 1 and

φ(βc) =
2βc

βc + β −
√

(βc + β)2 − 4βc

− β for all βc > 0.

Then, for almost all x(0),y(0) > 0, we have the following.

• For all βd > φ(βc), the defectors win:

lim
t→∞

(x(t),y(t)) =

(

0, 1− 1

β + βd

)

.

• For all βd < φ(βc), the system is bistable: depending on the initial densities,

lim
t→∞

(x(t),y(t)) =

(

0, 1− 1

β + βd

)

or

lim
t→∞

(x(t),y(t)) =

(

βc − β +
√

(βc + β)2 − 4βc

2βc

, 0

)

.

• The function φ is nondecreasing,

φ(βc) < βc for all βc > 0 and lim
βc→0

φ(βc) = 0.

The theorem gives the following picture of the mean-field model with three main
properties that will also be studied for the stochastic model.

• Regardless of the parameters βc and βd, the cooperators cannot invade the
defectors in their equilibrium. In contrast, the defectors can invade the
cooperators, which splits the (βc, βd) plane into two regions: one where the
defectors always win when starting at a positive density and one where the
system is bistable and the winner depends on the initial densities.

• The system is monotone in the sense that the two parameter regions are
separated by a transition curve described by φ that can be viewed as both
the graph of a nondecreasing function of βc and the graph of a nonde-
creasing function of βd. In words, the parameter βc helps the cooperators
whereas the parameter βd helps the defectors.

• The defectors always win when βd > βc and there is a parameter region
where, even if βd < βc, the defectors again out-compete the cooperators.

This is summarized in the phase diagram on the left-hand side of Figure 1.1.

The stochastic process. Before stating our results for the interacting particle
system, we give some simple observations and a couple of definitions. Starting from
a translation invariant measure, we say that

• the cooperators die out when P (ξt(x) = c i.o.) = 0,

• the cooperators survive in the long run when P (ξt(x) = c i.o.) = 1,

where i.o. stands for infinitely often, i.e.,

{ξt(x) = c i.o} =
⋂

t>0

⋃

s>t

{ξs(x) = c}.

Death and long-term survival of the defectors are defined similarly by replacing
state c by state d in the events above. Then, we say that

• the cooperators win when they survive and the defectors die out,
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• the defectors win when they survive and the cooperators die out,

• coexistence occurs when cooperators and defectors survive.

In the absence of cooperators, defectors evolve according to the basic contact process
with birth parameter β + βd. In this case, it is known from Bezuidenhout and
Grimmett (1990) that there exists a critical value β∗ ∈ (0,∞) such that, starting
with a positive density of defectors,

the defectors survive if and only if β + βd > β∗.

In the absence of defectors, the evolution is more complicated, but the process can
be coupled with the contact processes with parameters β and β + βc, respectively,
to prove that, starting with a positive density of cooperators,

the cooperators survive whenever β > β∗

the cooperators die out whenever β + βc ≤ β∗.

Because our main objective is to study the competition between cooperators and
defectors, we assume from now on that the process starts from a translation invari-
ant product measure with a positive density of cooperators and a positive density
of defectors. To prevent extinction, we also assume that β > β∗. Using a coupling
argument to compare processes with different birth parameters, we first prove the
following monotonicity result.

Theorem 1.2 (monotonicity). For all β, ξ0 and {i, j} = {c,d},
P (ξt(x) = i i.o.) is nondecreasing in βi and nonincreasing in βj.

To understand the outcome of the competition, we fix β > β∗ and βd > 0, and
study the values of βc for which the cooperators die out, survive or win. This and
the previous monotonicity result motivate the introduction of the critical values

β−

c (β, βd) = inf {βc : the cooperators survive}
β+
c (β, βd) = inf {βc : the cooperators win}

for the process with parameters β > β∗ and βd > 0 starting from a translation
invariant product measure with a positive density of both types. Applying the
monotonicity result Theorem 1.2 with i = c and j = d implies that

β−

c (β, βd) and β+
c (β, βd) are nondecreasing with respect to βd, (1.3)

while applying the result for i = d and j = c implies that

the defectors win for all βc ∈ [0, β−

c )

cooperators and defectors coexist for all βc ∈ (β−

c , β+
c )

the cooperators win for all βc ∈ (β+
c ,∞).

(1.4)

The main result of this paper states that, for all β and βd, the cooperators can
win provided the benefit from cooperation is sufficiently large. In addition, for
the cooperators to survive, the benefit βc must be larger than a value larger
than 2dβd/(2d − 1). These results can be expressed in terms of lower and upper
bounds for the two critical values introduced above as follows.

Theorem 1.3 (critical values). For all β > β∗ and βd > 0,

βd <

(

2dβd

2d− 1

)

< β−

c (β, βd) ≤ β+
c (β, βd) < ∞.
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Defectors win

Cooperators win

Defectors win

Bistability

βc

βd

βc = β±
c (βd)

β d
=
β c

2d
βd

=
(2
d−

1)
β c

βc

y → y∗

βd

x → x∗ or y → y∗

βd = φ(βc)

β d
=
β c

Figure 1.1. Phase diagram of the mean-field model on the left and phase diagram
of the interacting particle system on the right in the (βc, βd) plane when β > 1.
The solid curve in the left picture is a sketch of the graph of φ corresponding to the
actual transition curve for the mean-field model. In contrast, the solid curve in the
right picture is a conjectured transition curve for the interacting particle system.

Note that our result implies that β−

c > 2βd in one dimension, which contrasts with
the model from Czuppon and Pfaffelhuber (2017, remark 3) for which the critical
value is equal to 2βd. This means that the benefit from cooperation needs to be
larger for the cooperators to survive in the presence of deaths, i.e., using the multi-
type contact process rather than the biased voter model. Finally, we observe that,
when βc = βd = 0, the process reduces to the multi-type contact process in which
both types have the same birth rate β. The results from Neuhauser (1992) imply
that, in this case, cooperators and defectors coexist in the sense that

P ({ξt(x) = c i.o.} ∩ {ξt(x) = d i.o.}) = 1

though there is no stationary distribution with a positive density of both types in
one and two dimensions. This implies that

β−

c (β, 0) = 0 for all β > β∗. (1.5)

Based on previous results for the biased voter model (Bramson and Griffeath, 1980,
1981) and the multi-type contact process (Neuhauser, 1992), we also conjecture that
coexistence cannot occur in an open set of the parameter space, meaning that both
critical values are equal. Combining this conjecture with Theorems 1.2 and 1.3
and (1.3)–(1.5), gives the phase diagram on the right-hand side of Figure 1.1.

Effect of local interactions. The spatial (1.1) and the non-spatial (1.2) models
exhibit the same monotonicity property with respect to the parameters βc and βd,
which results in the uniqueness of a phase transition for both models. In addition,
for both models, the defectors always win when βd > βc and there is a parameter
region where, even if βd < βc, the defectors out-compete the cooperators. The
two models, however, exhibit a major difference. In the spatial model, when co-
operation is strong enough, the cooperators win starting at arbitrarily low density.
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In contrast, for all βc, the cooperators go extinct in the non-spatial model if their
initial density is too low. In particular, for sufficiently large βc, the cooperators can
invade the defectors in their equilibrium in the presence of local interactions but
not in the absence of space, a property that is summarized in the title of this paper:
Local interactions promote cooperation. This finding has already been proved for
other cooperator-defector models based on interacting particle systems. Our work,
however, reveals a novel aspect which comes from the comparison with the model
in Czuppon and Pfaffelhuber (2017), namely, in contrast with the inclusion of local
interactions, the inclusion of spontaneous deaths promotes defection.

2. The mean-field model

In this section, we study the mean-field model (1.2) and prove Theorem 1.1. Recall
that the mean-field model is given by the system of differential equations

dx

dt
= f(x,y) = (β + βc x)(1 − x− y)x− x

dy

dt
= g(x,y) = (β + βd)(1 − x− y)y − y

where x is the frequency of cooperators, and y the frequency of defectors. The
proof of the theorem is organized in three parts. To begin with, we identify the
nontrivial boundary fixed points and study their stability. Then, we prove that
the system does not have any stable interior fixed point nor periodic solution in
the simplex. Finally, we study the properties of the function φ. Throughout this
section, we assume that β > 1.

Nontrivial boundary fixed points. Setting x = 0 and dy/dt = 0 gives

y = 0 or y = y∗ = 1− 1

β + βd

. (2.1)

Then, assuming that y = y∗ and x > 0 is small, we get

dx

dt
= β (1 − y∗)x− x+ o(x) =

(

β

β + βd

− 1

)

x+ o(x) < 0 (2.2)

showing that, for all βc, the defector fixed point (0,y∗, 1−y∗) is locally stable: the
cooperators cannot invade the defectors in their equilibrium. Turning to the other
boundary, we set y = 0 and dx/dt = 0, which gives

x = 0 or (β + βc x)(1 − x)− 1 = −βc x
2 + (βc − β)x+ β − 1 = 0.

Thinking of dx/dt as a polynomial in x, the discriminant is

∆ = (βc − β)2 + 4(β − 1)βc = (βc + β)2 − 4βc

> (βc + 1)2 − 4βc = (βc − 1)2 ≥ 0.

This gives two distinct roots:

x∗ =
βc − β −

√

(βc + β)2 − 4βc

2βc

x∗ =
βc − β +

√

(βc + β)2 − 4βc

2βc

.

(2.3)
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The fixed point (x∗, 0, 1− x∗) is not physically relevant because

2βc x∗ ≤ βc − β −
√

(βc − 1)2 =

{

2βc − β − 1 < 0 for βc ≤ 1

−β + 1 < 0 for βc ≥ 1,

indicating that, starting from an initial condition in the simplex, the density of
cooperators x cannot converge to x∗. In contrast, for all β > 1 and βc > 0,

(βc − β)2 −∆ = (βc − β)2 − (βc + β)2 + 4βc = 4(1− β)βc < 0

(βc + β)2 −∆ = (βc + β)2 − (βc + β)2 + 4βc = 4βc > 0

from which it respectively follows that

βc − β +
√
∆ > 0 and x∗ > 0

βc + β −
√
∆ > 0 and 2βc(x

∗ − 1) = −βc − β +
√
∆ < 0.

In particular, x∗ ∈ (0, 1), therefore (x∗, 0, 1 − x∗) is in the simplex. To study
the local stability of the cooperator fixed point, we observe that, when x = x∗

and y > 0 is small, we have

dy

dt
= (β + βd)(1 − x∗)y − y + o(y)

which is positive if

βd >
1

1− x∗
− β =

2βc

βc + β −
√

(βc + β)2 − 4βc

− β = φ(βc), (2.4)

and negative if βd < φ(βc).

Interior fixed point and periodic solution. To deduce the first two parts
of the theorem from the existence and stability of the two boundary fixed points
above (2.1)–(2.4), we still need to prove that the potential interior fixed points are
unstable and that the system does not have any periodic solution. Starting with
the interior fixed points, note that y 6= 0 and dy/dt = 0 imply

(β + βd)(1 − x− y) = 1 and y = 1− x− 1

β + βd

.

Assuming also that x 6= 0 and dx/dt = 0 gives

(β + βc x)

(

1− x−
(

1− x− 1

β + βd

))

=
β + βc x

β + βd

= 1

therefore the only possible interior fixed point is

(x0,y0) =

(

βd

βc

, 1− βd

βc

− 1

β + βd

)

.

Using that (β + βd)(1− x0 − y0) = 1 and βc x0 = βd, we get

∂f

∂x
(x0,y0) = βc(1 − x0 − y0)x0 − (β + βc x0)x0

+ (β + βc x0)(1 − x0 − y0)− 1

= βc(1 − x0 − y0)x0 − (β + βc x0)x0

= βd/(β + βd)− (β + βd)x0.
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Similarly, a direct calculation implies that

∂f

∂y
(x0,y0) = −(β + βc x0)x0 = −(β + βd)x0

while the partial derivatives of g are given by

∂g

∂x
(x0,y0) =

∂g

∂y
(x0,y0) = −(β + βd)y0 + (β + βd)(1 − x0 − y0)− 1

= −(β + βd)y0.

In particular, the determinant of the Jacobian matrix at (x0,y0) is
(

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)

(x0,y0) = −βd y0 < 0

from which it follows that the Jacobian matrix at (x0,y0) has one positive eigen-
value and one negative eigenvalue. This implies that the only possible interior fixed
point is locally unstable.

To prove the lack of periodic solution in the simplex, we use the Bendixson-Dulac
theorem: it suffices to find a so-called Dulac function h(x,y) such that

sign

(

∂(hf)

∂x
+

∂(hg)

∂y

)

6= 0 and is constant (2.5)

almost everywhere in the simplex. Taking for instance h(x,y) = 1/x2y,

∂(hf)

∂x
=

1

y

∂

∂x

[(

β

x
+ βc

)

(1− x− y)− 1

x

]

=
1

y

[(

− β

x2

)

(1− x− y) −
(

β

x
+ βc

)

+
1

x2

]

=
β(y − 1)− βc x

2 + 1

x2y
.

A direct calculation also gives

∂(hg)

∂y
=

1

x2

∂

∂y
[(β + βd)(1− x− y) − 1] = −β + βd

x2
.

Recalling that β > 1, we deduce

∂(hf)

∂x
+

∂(hg)

∂y
=

β(y − 1)− βc x
2 + 1− (β + βd)y

x2y

= −βc x
2 + βd y + (β − 1)

x2y
< 0

for all (x,y, 1 − x− y) in the interior of the simplex, therefore (2.5) holds.

The transition curve. To complete the proof of Theorem 1.1, the last step is to
study the function φ representing the critical curve:

φ(βc) =
2βc

βc + β −
√
∆

− β =
2βc

βc + β −
√

(βc + β)2 − 4βc

− β.
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A direct calculation gives

(β
√
∆)2 − (∆− βc (βc + β − 2))2

= β2 ((βc + β)2 − 4βc)− ((βc + β)2 − 4βc − βc (βc + β − 2))2

= β2 ((βc + β)2 − 4βc)− (ββc + β2 − 2βc)
2 = 4(β − 1)β2

c

from which it follows that, for all β > 1,

∂x∗

∂βc

=
βc (βc + β − 2) + β

√
∆−∆

2
√
∆β2

c

> 0

hence x∗ is nondecreasing in βc. Recalling from (2.4) that

φ(βc) =
1

1− x∗
− β,

we deduce that φ also is nondecreasing. To prove that φ(βc) < βc, we first observe
that, expanding and reducing, we get

((βc + β)2 − 2βc)
2 > (βc + β)2 ∆ for all βc > 0,

from which we deduce that

(βc + β)(βc + β −
√
∆) > 2βc and φ(βc) =

2βc

βc + β −
√
∆

− β < βc.

Finally, when βc is small,
√
∆ =

√

(βc + β)2 − 4βc

=
√

β2 + 2(β − 2)βc + o(βc) = β

(

1 +
β − 2

β2
βc + o(βc)

)

from which it follows that

lim
βc→0

φ(βc) = lim
βc→0

2βc

βc + β − β

(

1 +
β − 2

β2
βc

) − β

= lim
βc→0

2ββc

ββc − (β − 2)βc

− β = 0.

This completes the proof of Theorem 1.1.

3. Graphical representation and monotonicity

This section first shows how to construct the interacting particle system from collec-
tions of independent Poisson processes using an idea of Harris (1972). This results in
a so-called graphical representation that we then use to couple cooperator-defector
systems with different birth parameters and prove the monotonicity stated in The-
orem 1.2. More precisely, for all x, y, z ∈ Z

d, we let

B(x, y) = Poisson process with rate β/2d where x ∼ y

U(x) = Poisson process with rate one

C(x, y, z) = Poisson process with rate βc/4d
2 where x ∼ y and y ∼ z

D(x, y) = Poisson process with rate βd/2d where x ∼ y.

(3.1)

The process can then be constructed as follows.
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Figure 3.2. Picture of the graphical representation introduced in (3.1) along with
the corresponding rates. Each picture shows the effect of the → and × symbols on
the configuration with time going up.

• At the times of the Poisson process B(x, y), we draw y → x to indicate that
if y is occupied by a cooperator, respectively a defector, and x is empty,
then x becomes occupied by a cooperator, respectively a defector.

• At the times of the Poisson process U(x), we put a cross × at site x to
indicate that if x is occupied then it becomes empty.

• At the times of the Poisson process C(x, y, z), we put a dot • at site z and
draw a c-arrow y → x to indicate that if both y and z are occupied by
cooperators and x is empty, then x becomes occupied by a cooperator.

• At the times of the Poisson process D(x, y), we draw a d-arrow y → x to
indicate that if y is occupied by a defector and x is empty, then x becomes
occupied by a defector.

Figure 3.2 gives an illustration of the graphical representation.

Lemma 3.1. Let βc,c ≥ βc,d and βd,c ≤ βd,d, and for i = c,d,

(ξit) be the process with parameters β, βc = βc,i and βd = βd,i.

Then, there is a coupling (ξct , ξ
d
t ) such that

{x : ξct (x) = c} ⊃ {x : ξdt (x) = c}
{x : ξct (x) = d} ⊂ {x : ξdt (x) = d}

for all t > 0 whenever the inclusions hold at time t = 0.

Proof. The basic idea is to construct the two processes from the common graphical
representation depicted in Figure 3.3 using six collections of independent Poisson
processes. More precisely, the two processes are constructed as follows.

• The unlabeled arrows →, crosses ×, c-arrows and d-arrows have the same
effect as before, and are used to construct both processes.

• The c+-arrows have the same effect as the c-arrows on the first process but
are not used in the construction of the second process.

• The d+-arrows have the same effect as the d-arrows on the second process
but are not used in the construction of the first process.

The superposition property for Poisson processes, and the fact that

βc,d + (βc,c − βc,d) = βc,c

βd,c + (βd,d − βd,c) = βd,d
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Figure 3.3. Graphical representation used in Lemma 3.1.

imply that the two processes have the desired transition rates. In addition, it is
straightforward to check from our construction that the coupling satisfies

(ξct (x), ξ
d
t (x)) ∈ {(c, c), (d,d), (e, e), (c,d), (c, e), (e,d)}

for all x ∈ Zd whenever this is true at time t = 0. �

Using the coupling from the previous lemma, we can prove Theorem 1.2.

Proof of Theorem 1.2. Let βc,c ≥ βc,d and βd,c ≤ βd,d and, for i ∈ {c,d}, let

θc(βc,i, βd,i) = survival probability of the cooperators for the

process with parameters β, βc = βc,i and βd = βd,i

θd(βc,i, βd,i) = survival probability of the defectors for the

process with parameters β, βc = βc,i and βd = βd,i.

To prove the theorem, it suffices to show that

θc(βc,c, βd,c) ≥ θc(βc,d, βd,d)

θd(βc,c, βd,c) ≤ θc(βc,d, βd,d).

For each realization ξ· ∈ {c,d, e}R+×Z
d

of the process, let

hc(ξ·) = 1{ξt(x) = c i.o.} and hd(ξ·) = 1{ξt(x) = d i.o.}.
Also, let (ξct , ξ

d
t ) be the coupling defined in Lemma 3.1. Then, for all t > 0,

{x : ξct (x) = c} ⊃ {x : ξdt (x) = c}
{x : ξct (x) = d} ⊂ {x : ξdt (x) = d}

therefore hc(ξ
c
·
) ≥ hc(ξ

d
·
) and hd(ξ

c
·
) ≤ hd(ξ

d
·
). Taking the expected value,

θc(βc,c, βd,c) = P (ξct (x) = c i.o.) = E(hc(ξ
c
·
))

≥ E(hc(ξ
d
·
)) = θc(βc,d, βd,d)

θd(βc,c, βd,c) = P (ξct (x) = d i.o.) = E(hd(ξ
c
·
))

≤ E(hd(ξ
d
·
)) = θd(βc,d, βd,d).
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This completes the proof. �

4. The cooperators win (upper bound for β+
c )

In this section, we prove that the cooperators win when βc is large but finite,
which shows that the critical value β+

c is finite. Our proof is based on a block con-
struction, an approach/technique introduced in Bramson and Durrett (1988) and
reviewed in Durrett (1995) that consists in coupling the interacting particle system
properly rescaled in space and time with oriented site percolation.

Block construction. In the context of our cooperator-defector system, we will
prove that whenever a space-time block is “almost” completely occupied by coop-
erators, a property referred to as c-occupied below, the 2d adjacent blocks later
in time satisfy the same property with a probability close to one. To define our
construction rigorously, we first consider the lattice

L = {(z, n) ∈ Z
d × N : z1 + · · ·+ zd + n is even},

which we turn into a directed graph G by adding arrows

(z, n) → (z′, n′) if and only if z′ = z ± ej for some j = 1, 2, . . . , d

and some n′ = n+ 1

where ej is the jth unit vector. Define

Bz = z + {−1, 0, 1}d for all z ∈ Z
d.

Let T > 0 to be fixed later, and consider the events

C(z, n) : card {x ∈ Bz : ξt(x) = c} ≥ 3d − 1 and

card {x ∈ Bz : ξt(x) = d} = 0 for all nT ≤ t ≤ (n+ 1)T

for all (z, n) ∈ L. When this happens, we declare (z, n) to be c-occupied. To define
oriented site percolation on the graph G, we let ǫ > 0 to be fixed later, and assume
that each site in L is open with probability 1− ǫ and closed with probability ǫ. We
further assume that the process is seven-dependent, meaning that

P ((zi, ni) is closed for i = 1, 2, . . . ,m) = ǫm

when |zi − zj | ∨ |ni − nj | > 7 for i 6= j. Recalling that a site is wet if and only if it
can be reached from a directed path of open sites starting at level zero, i.e., starting
at some open site (z, 0) ∈ L, the goal is to use a coupling argument to prove that,
at each level n, the set Xn dominates stochastically the set W ǫ

n where

Xn = {z : (z, n) is c-occupied} and W ǫ
n = {z : (z, n) is wet}.

This can be done by thinking of the process as being generated from the graphi-
cal representation above, and constructing a collection of good events A(z, n) that
are measurable with respect to the graphical representation restricted to bounded
space-time blocks, occur with probability at least 1−ǫ, and insure that the property
of being c-occupied spreads in space and time.

The good events A(z, n). In this subsection, we define the good events mentioned
above and estimate their probability. These events can be conveniently written as
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the intersection of three events defined from the graphical representation introduced
in the previous section. Let

B+ = (Be1 ∪B−e1) ∪ · · · ∪ (Bed ∪B−ed) and B− = B+ \B0,

and consider the first event

A1 : there is at least one death mark × at each of

the 2d× 3d−1 sites in B− between time T and time 2T .

In words, the event A1 guarantees that there is a death at each of the sites of
each of the boxes around the origin, which will be used later to give room for the
cooperators to invade nearby boxes. The probability of this event is computed
explicitly in the following lemma.

Lemma 4.1. We have P (A1) = (1− e−T )2d×3d−1

.

Proof. Let τx be the first time after T there is a death mark at x. Because τx − T
is exponentially distributed with parameter one, and Poisson processes at different
sites are independent, we have

P (A1) = P (τx < 2T for all x ∈ B−)

= (1− P (τ0 − T > T ))cardB
− = (1− e−T )2d×3d−1

which completes the proof. �

To define the second event, we let T0 = 0 and, for every i ∈ N∗,

Ti = the ith time there is either a death mark × at a site in B+

or a d-arrow pointing at a site in B+.

Letting K = max {i : Ti < 2T }, the second event is defined as

A2 : Ti+1 − Ti > 2δ for all i = 0, 1, . . . ,K − 1,

where δ > 0 will be fixed later. The event A2 guarantees that enough time has
elapsed between two consecutive potential deaths and/or births of a defector around
the origin. This will be used to ensure that, with high probability, cooperators re-
invade empty sites faster than the defectors and before any other deaths.

Lemma 4.2. Let r = 3d−1(2d+ 3)(β + βd + 1). There exists a > 0 such that

P (A2) ≥ 1− exp(−aT )− 4rT (1− e−2δr) for all T large.

Proof. To begin with, we observe that

• death marks appear independently at each vertex at rate one,

• d-arrows pointing at a given vertex appear at rate β + βd and

• there are 3d−1(2d+ 3) vertices in B+.

Therefore, the number of death marks and d-arrows by time 2T is

K = max {i : Ti < 2T } = Poisson (2rT )

where r = 3d−1(2d+ 3)(β + βd + 1).

In particular, large deviations estimates for the Poisson distribution give the exis-
tence of a positive constant a > 0 that only depends on r such that

P (K > 4rT ) ≤ exp(−aT ) for all T large.
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Using also that the random variables Ti+1 − Ti are independent and exponentially
distributed with parameter r, we deduce that

P (A2) ≥ 1− P (K > 4rT )− P (Ac
2 |K ≤ 4rT )

≥ 1− exp(−aT )− P (Ti+1 − Ti ≤ 2δ for some i < 4rT )

≥ 1− exp(−aT )− 4rT P (T1 ≤ 2δ)

= 1− exp(−aT )− 4rT
(

1− e−2δr
)

.

This completes the proof. �

Finally, consider the event

A3 : for all n ≤ 2T/δ and all x ∈ B+, there is at least one c-arrow

from a site in B0 pointing at x beween times nδ and (n+ 1) δ.

The event A3 guarantees that, until time 2T and around the origin, each site is
targeted by a c-arrows in each time window of length δ. This event will be used
later to ensure that, given the event A2 above, cooperators re-invade empty sites
faster than the defectors and before any other deaths.

Lemma 4.3. Let R = (β + βc/2d)/2d. Then,

P (A3) ≥ (1− e−δR)2×3d−1(2d+3)T/δ.

Proof. For each site x ∈ B+, let σx be the first time there is a c-arrow from a
site in the region B0 pointing at site x. Because σx is exponentially distributed
with parameter at least R, Poisson processes at different sites are independent, and
there are 3d−1(2d+ 3) vertices in the region B+,

P (σx < δ for all x ∈ B+) =
∏

x∈B+

(1− P (σx ≥ δ)) ≥ (1 − e−δR)3
d−1(2d+3).

By the memoryless property of the exponential distribution,

P (A3) ≥
(

(1− e−δR)3
d−1(2d+3)

)2T/δ

≥ (1− e−δR)2×3d−1(2d+3)T/δ

and the proof is complete. �

To define the collection of good events, we set A(0, 0) = A1 ∩ A2 ∩ A3 and de-
fine A(z, n) similarly through a translation of vector (z, nT ).

Lemma 4.4. For all ǫ, β, βd > 0, there exist T, δ > 0 such that

P (A(z, n)) = P (A1 ∩ A2 ∩A3) ≥ 1− ǫ for all (z, n) ∈ L and all βc large.

Proof. To begin with, we observe that, because (the distribution of) the graphical
representation is translation invariant in space and time

P (A(z, n)) = P (A(0, 0)) = P (A1 ∩A2 ∩ A3) for all (z, n) ∈ L,

which proves the equality in the statement of the lemma. To prove the inequality,
we first fix the scale parameter T < ∞ large such that

(1− e−T )2d×3d−1 ≥ 1− ǫ/3 and exp(−aT ) ≤ ǫ/6 (4.1)

where a > 0 is the constant in the statement of Lemma 4.2. Time T < ∞ being
fixed, we can fix the parameter δ > 0 small such that

4rT (1− e−2δr) ≤ ǫ/6. (4.2)
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Finally, T < ∞ and δ > 0 being fixed, because the rate R defined in Lemma 4.3
goes to infinity as βc → ∞, for all rate βc sufficiently large, we have

(1− e−δR)2×3d−1(2d+3)T/δ ≥ 1− ǫ/3. (4.3)

Combining (4.1)–(4.3) and Lemmas 4.1–4.3 implies that

P (A1 ∩ A2 ∩ A3) ≥ 1− (1− P (A1))− (1− P (A2))− (1− P (A3))

= −2 + P (A1) + P (A2) + P (A3)

≥ −2 + 3 (1− ǫ/3) = 1− ǫ.

(4.4)

This completes the proof. �

Coupling with oriented percolation. With Lemma 4.4 in hands, we can now
prove the existence of a coupling in which the set of c-occupied sites dominates
stochastically the set of wet sites in the oriented site percolation model. The basic
idea is to use the previous estimates to check that the assumptions of Durrett (1995,
Theorem 4.3) are satisfied, which is done in the next lemma.

Lemma 4.5. For all ǫ, β, βd > 0, there exist T, δ > 0 such that, for all βc large,

P (z ∈ W ǫ
n) ≤ P (z ∈ Xn) for all (z, n) ∈ L whenever W ǫ

0 ⊂ X0.

Proof. The first step is to show how the events C(z, n) are related to the good
events A(z, n) above. To begin with, observe that, on the event A2 ∩ A3,

• For all i = 0, 1, . . . ,K−1 and all x ∈ B+, there is at least one c-arrow from
a site in B0 pointing at site x between time Ti and time Ti+1.

Assuming in addition that C(0, 0) occurs gives the following:

• Up to time 2T , each time a site in B+ becomes empty, it becomes occupied
by a cooperator before any other site in B+ becomes empty.

Assuming also that A1 occurs, which guarantees that all sites in B− become empty
at least once between time T and time 2T , we get

A(0, 0) ∩ {0 ∈ X0} = (A1 ∩ A2 ∩ A3) ∩ C(0, 0)

⊂ C(e1, 1) ∩ C(−e1, 1) ∩ · · · ∩ C(ed, 1) ∩ C(−ed, 1)

= {±ej ∈ X1 for j = 1, 2, . . . , d}.

Using also translation invariance, we have more generally

A(z, n) ∩ {z ∈ Xn} ⊂
d
⋂

j=1

{z ± ej ∈ Xn+1} for all (z, n) ∈ L. (4.5)

From Lemma 4.4, we also have that T and δ can be chosen such that

P (A(z, n)) ≥ 1− ǫ for all (z, n) ∈ L and all βc large. (4.6)

Observe also from the definition that

A1 ∩ A2 ∩ A3 is measurable with respect to the graphical

representation restricted to the space-time

region R(0, 0) = {−3, . . . , 3}d × [0, 2T ].
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Because A(z, n) is defined from a translation of A(0, 0),

A(z, n) is measurable with respect to the graphical

representation restricted to the space-time

region R(z, n) = (z + {−3, . . . , 3}d)× [nT, (n+ 2)T ].

(4.7)

The three properties (4.5)–(4.7) are the assumptions of Durrett (1995, Theorem
4.3), which implies that there exists a coupling of the interacting particle system and
seven-dependent oriented site percolation process in which sites are independently
open with probability 1− ǫ such that

P (W ǫ
n ⊂ Xn) = 1 whenever W ǫ

0 ⊂ X0,

where the seven-dependency follows from the fact that

R(z, n) ∩ R(z′, n′) = ∅ whenever |z − z′| ∨ |n− n′| > 7.

The lemma directly follows from the existence of this coupling. �

Proof of the upper bound. We are now ready to prove that β+
c (β, βd) < ∞,

i.e., starting from a translation invariant product measure, the cooperators win
provided the benefit from cooperation βc is sufficiently large. We start by proving
survival of the cooperators.

Lemma 4.6. For all β > β∗ and βd ≥ 0,

P (ξt(x) = c i.o.) = 1 for all βc large.

Proof. A contour argument Durrett (1984) implies that, for ǫ > 0 small,

P (z ∈ W ǫ
n i.o.) = 1 whenever card(W ǫ

0 ) = ∞.

Then, using Lemma 4.5 and that card(X0) = ∞ for any initial translation invari-
ant product measure with a positive density of cooperators, we deduce that there
exists βc < ∞ large such that

P (ξt(x) = c i.o.) ≥ P (z ∈ Xn i.o.) ≥ P (z ∈ W ǫ
n i.o.) = 1,

where the first inequality follows from the definition of a c-occupied site. In par-
ticular, the cooperators survive for βc large and the lemma follows. �

Because of the presence of closed sites in the percolation process that may re-
sult in the presence of space-time regions containing defectors even at equilibrium,
the previous lemma does not exclude the possibility that cooperators and defectors
coexist. To also prove extinction of the defectors, we rely on the lack of percolation
of the dry sites when ǫ > 0 is small.

Lemma 4.7. For all β > β∗ and βd ≥ 0,

P (ξt(x) = d i.o.) = 0 for all βc large.

Proof. Let H be the directed graph with the same vertex set L as the directed
graph G but with the additional horizontal arrows:

(z, n) → (z′, n) if z′ = z ± 2ej for some j = 1, 2, . . . , d.

Writing (w, 0) →G (z, n) to indicate the presence of a dry path in G, i.e., a directed
path of sites that are not wet, Durrett (1992, Theorem 5) states that, when ǫ > 0 is
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sufficiently small and sites are open with probability 1−ǫ, dry sites do not percolate,
which implies that, when ǫ > 0 is small,

lim
n→∞

P ((w, 0) →G (z, n) for some w ∈ Z) = 0

for all z ∈ Z. Note that a dry path in G is also a dry path in H but the converse is
false because the latter has more oriented edges than the former. However, Lemma 9
in Lanchier (2013) shows that the previous result can be extended to dry paths in
the larger graph with horizontal arrows, i.e.,

lim
n→∞

P ((w, 0) →H (z, n) for some w ∈ Z) = 0 (4.8)

where (w, 0) →H (z, n) indicates the presence of a dry path in H. Now, observe
that, because defectors cannot appear spontaneously,

ξt(x) = d for some (x, t) ∈ Bz × [nT, (n+ 1)T ]

implies that (w, 0) →H (z, n) for some w ∈ Z.
(4.9)

Combining (4.8) and (4.9), we deduce that

P (ξt(x) = d i.o.) ≤ lim
n→∞

P ((w, 0) →H (z, n) for some w ∈ Z) = 0.

This completes the proof. �

Combining the previous two lemmas shows that the cooperators win for all βc < ∞
sufficiently large, which is equivalent to β+

c (β, βd) < ∞.

5. The defectors win (lower bound for β−

c )

In this section, we prove that

β−

c (β, βd) >
2dβd

2d− 1
> βd for all β > β∗ and βd > 0, (5.1)

meaning that there exists βc > 2dβd/(2d − 1) such that the defectors win. This,
together with the result from the previous section, will complete the proof of The-
orem 1.3. To begin with, we observe that the rate at which an empty site, say x,
becomes occupied by a defector is

∑

y∼x

(

β + βd

2d

)

1{ξ(y) = d}

while the rate at which it becomes occupied by a cooperator is

∑

y∼x

(

β

2d
+
∑

z∼y

βc 1{ξ(z) = c}
4d2

)

1{ξ(y) = c}

≤
∑

y∼x

(

β

2d
+
∑

z∼y

βc

4d2

)

1{ξ(y) = c} =
∑

y∼x

(

β + βc

2d

)

1{ξ(y) = c}.

In particular, the process can be coupled with a multi-type contact process in
which type 1 particles give birth at rate β + βc and type 2 particles give birth at
rate β+βd in such a way that type 1 particles dominate the cooperators and type 2
particles are dominated by the defectors, provided this is true initially. Starting
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Figure 5.4. Graphical representation with βc = 2dβd/(2d − 1).

from a translation invariant product measure with a positive density of each type,
Neuhauser (1992, Theorem 1) states that type 2 particles win whenever

β + βc < β + βd and β > β∗.

This and the coupling imply that, when βc < βd, the defectors win, so

β−

c (β, βd) ≥ βd.

Proving the bound in (5.1) is more difficult. The idea is to show that the defectors
again win when

βc =
2dβd

2d− 1
> 0 and β > β∗

using a block construction to compare the process properly rescaled in space and
time with oriented site percolation as in the previous section. The block construc-
tion allows for the use of a perturbation argument to deduce that the defectors still
win for some βc > 2dβd/(2d− 1).

Graphical representation. First, we construct the process with

βc =
2dβd

2d− 1
> 0 (5.2)

by coupling the births and deaths of the two types. The process can be constructed
from the first three collections of Poisson processes in (3.1) as follows.

• At the times of the Poisson process B(x, y), we draw y → x to indicate that
if y is occupied by a cooperator, respectively a defector, and x is empty,
then x becomes occupied by a cooperator, respectively a defector.

• At the times of the Poisson process U(x), we put a cross × at site x to
indicate that if x is occupied then it becomes empty.

• At the times of the Poisson process C(x, y, z) with z 6= x, we put a dot • at
site z and draw an arrow y → x to indicate that if both site y and site z are
occupied by cooperators and site x is empty, then site x becomes occupied
by a cooperator, while if site y is occupied by a defector and site x is empty,
then site x becomes occupied by a defector.

• At the times of the Poisson process C(x, y, z) with z = x, we put a dot •
at site z and draw a c-arrow y → x to indicate that if y and z are occupied
by cooperators and x is empty, then x becomes occupied by a cooperator.

See Figure 5.4 for a picture. Note that, for each pair of neighbors x ∼ y,

card {z ∈ Z
d : z ∼ y and z 6= x}

(

βc

4d2

)

= (2d− 1)

(

βc

4d2

)

=
βd

2d
.
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In particular, the superposition property for independent Poisson processes implies
that there is an unlabeled dot-arrow y → x at the times of a Poisson process with
intensity βd/2d, therefore the construction produces the desired birth rates. Note
also that the c-arrows above are introduced for completeness, but the cooperators
cannot give birth through these arrows because the conditions y and z occupied by
cooperators and x empty are incompatible, which we state in the next lemma.

Lemma 5.1. The c-arrows have no effect.

To prove that the defectors win when (5.2) holds, we now show that, regardless
of the initial configuration, the cooperators cannot give birth through some of the
unlabeled dot-arrows. For each time s ∈ C(x, y, z), we let

u(s) = sup {t < s : t ∈ U(z)}
v(s) = sup {t < s : t ∈ B(z, y′) for some y′ ∼ z or

t ∈ C(z, y′, z′) for some y′ ∼ z, z′ ∼ y′}
denote respectively the last time before time s there is a death mark × at site z
and the last time before time s there is either an arrow or a dot-arrow pointing at
site z. Then, we say that the dot-arrow y → x at time s is sterile whenever

s− u(s) < 1 < s− v(s) < 2.

Lemma 5.2. Let si ∈ C(xi, yi, zi) for i = 1, 2, . . . , n. Then the dot-arrows yi → xi

at times si are independently sterile with the same probability

(1 − e−1)(1 − e−(β+βc)) e−(β+βc) > 0

whenever |xi − xj | ∨ |si − sj | > 2 and si > 2 for all i 6= j.

Proof. The fact that the n events in the statement are independent follows from the
fact that disjoint parts of the graphical representation are independent. The fact
that they also have the same probability follows from the fact that the distribution of
the graphical representation is translation invariant in space and time. In addition,
assuming that the Poisson processes used in the graphical representation are also
defined for negative times,

s− u(s) = Exponential (1) and s− v(s) = Exponential (β + βc)

and the two random variables are independent. It follows that

P (s− u(s) < 1 < s− v(s) < 2)

= P (s− u(s) < 1)P (1 < s− v(s) < 2)

= (1 − e−1)(e−(β+βc) − e−2(β+βc))

= (1 − e−1)(1− e−(β+βc)) e−(β+βc) > 0.

This completes the proof. �

Lemma 5.3. Cooperators cannot give birth through a sterile arrow.

Proof. Let s ∈ C(x, y, z) be the time of a sterile dot-arrow y → x. By definition,
there is a death mark at site z at time u(s) < s and no arrow pointing at site z
between time u(s) and time s, therefore site z must be empty at time s. It follows
that, even if site y is occupied by a cooperator at time s, this cooperator cannot
give birth through the dot-arrow. �
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Motivated by Lemma 5.1, we remove all the c-arrows from the graphical repre-
sentation. Motivated by Lemma 5.3, we also label all the sterile dot-arrows with
a d to indicate that only the defectors can give birth through these arrows.

Duality relationship. The fact that the defectors win when (5.2) holds follows
from the duality techniques in Durrett and Neuhauser (1997) for the multi-type
contact process. The multi-type contact process is associated to a so-called dual
process in such a way that the state of each space-time point can be determined from
the initial configuration and the structure of the dual process. For our cooperator-
defector system, we define a process that we again call the dual process. This
process, however, only gives a partial information of the state of each space-time
point. Given a realization of the graphical representation above where the c-arrows
have been removed and the sterile dot-arrows have been labeled with a d, we define
paths, dual paths and dual process as follows.

Definition 5.4 (dual path). There is a path (y, s) ↑ (x, t) if there are

times s = s0 < s1 < · · · < sn+1 = t and sites y = x0, x1, . . . , xn = x

such that the following two conditions hold:

(1) For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

(2) For i = 0, 1, . . . , n, the segments {xi} × (si, si+1) do not contain any ×’s.

There is a dual path (x, t) ↓ (y, t− s) if there is a path (y, t− s) ↑ (x, t).

Definition 5.5 (dual process). The dual process starting at (x, t) is defined as

ξ̂(x,t)s = {y ∈ Z
d : (x, t) ↓ (y, t− s)} for all 0 ≤ s ≤ t.

There might be several dual paths connecting two space-time points, so strictly
speaking the state of the dual process is not a subset but a multi-subset of the
integer lattice Zd where each site is assigned a multiplicity representing a number
of dual paths. The dual process can be visualized by injecting a fluid at (x, t)
that flows down (backward in time), is stopped at the death marks and crosses the
arrows in the opposite direction, as shown in Figure 5.5. The dual process keeps
track of all the potential ancestors of the individual (if any) at site x at time t. The
space-time set filled with the fluid, namely

Γ = {(ξ̂(x,t)s , s) : 0 ≤ s ≤ t},
exhibits a tree structure that induces an ancestor hierarchy corresponding to the
order in which ancestors determine the type of (x, t). The ancestor hierarchy for
our model is the same as for the multi-type contact process and was first described
by Neuhauser (1992), but we follow an idea of Lanchier and Neuhauser (2006) to
give a more rigorous definition. The hierarchy can be defined using a function

φ : Γ −→ S

that maps the tree structure into the set S of integer-valued sequences equipped
with the usual lexicographic order ≪ defined as

u ≪ v if and only if ui = vi for i = 1, 2, . . . , n− 1 and un < vn

for some integer n ≥ 1. For all u ∈ S, it is convenient to identify

u ≡ (u1, u2, . . . , un) whenever un 6= 0 and un+1 = un+2 = · · · = 0.

The function φ is defined inductively as follows.
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• We start at φ(x, 0) = (1, 0, 0, . . .) ≡ (1).

• Assume that y is added to the dual process at dual time s∗ and that

φ(y, s∗) = u ≡ (u1, u2, . . . , un).

◦ Go down the graphical representation starting at (y, t− s∗), let t− s0
be the first time a death mark × is encountered at site y, then set

φ(y, s) = φ(y, s∗) = u for all s∗ ≤ s < s0.

◦ Go back up from (y, t− s0) to (y, t− s∗), let

t− s1 < t− s2 < · · · < t− sm

be the times at which we encounter the tip of an arrow, and y1, . . . , ym
be the sites these m arrows originate from. Then, we set

φ(yi, si) = (u1, . . . , un, i) for all i = 1, . . . ,m.

At a given dual time s, the ancestor hierarchy is described by

y comes before z in the hierarchy if and only if φ(y, s) ≪ φ(z, s).

Figure 5.5 gives an example of a realization of the graphical representation along
with the dual process drawn in thick solid and dashed lines. The solid lines keep
track of the position of the first ancestor, the vectors along the branches of the dual
process refer to the value of the function φ along these branches, and the numbers
at the bottom of the picture show the ancestor hierarchy at time zero. Note that,
in our example, there are two dual paths (x, t) ↓ (0, 0) therefore site 0 appears twice
in the ancestor hierarchy. It is both the second and the fourth ancestors. More
precisely, the full ancestor hierarchy is given by

ξ̂
(x,t)
t = (−1, 0,−3, 0, 2, 3).

The dual process of our cooperator-defector system is similar to the dual process
of the multi-type contact process (Neuhauser, 1992). However, for the multi-type
contact process, the state at (x, t) can be determined from the dual process and the
initial configuration, whereas for our model, the dual process only gives a partial
information. In our example, we have the following alternative.

1. All the ancestors are (initially) empty, in which case (x, t) is empty.

2. At least one of the ancestors is occupied and the first occupied ancestor is
occupied by a defector, in which case (x, t) is occupied by a defector.

3. Items 1 and 2 do not hold. In this case, the first three ancestors are irrel-
evant because if any of these three ancestors is occupied by a cooperator
then the cooperator is blocked by the d-arrow on the left of the picture
on its way up to (x, t) and none of the three ancestors can be the actual
ancestor of (x, t). Then, we have the following alternative.

3a. The fourth ancestor, site 0, is occupied, in which case (x, t) is of this type.

3b. The fourth ancestor is empty and the next occupied ancestor (if any) is
occupied by a defector, in which case (x, t) is occupied by a defector.

3c. The fourth ancestor is empty and the next occupied ancestor (if any) is
occupied by a cooperator. In this case, the cooperator meets the tail of
a dot-arrow on its way up to (x, t) so the outcome depends on the state
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Figure 5.5. Example of realization of the dual process. The solid lines keep track
of the position of the first ancestor, the dashed lines represent the other ancestors,
the vectors along the branches refer to the value of the function φ, and the numbers
at the bottom of the picture show the ancestor hierarchy at time zero.

at the dot. In particular, the dual process alone does not provide enough
information to determine the state at (x, t).

Even though the dual process we defined does not always provide enough infor-
mation to deduce the state at (x, t) from the initial configuration, the presence
of d-arrows that block the cooperators while the defectors can give birth through
all the arrows is sufficient to prove that the probability that (x, t) is occupied by a
cooperator tends to zero as t → ∞.

Block construction. The dual process of the cooperator-defector system is similar
to the dual process of the multi-type contact process in which the defectors have
the same death rate as the cooperators but a higher birth rate. There is a slight
difference in the structure.

• In the multi-type contact process, all the arrows are independently turned
into d-arrows with a fixed probability whereas the dot-arrows in our system
are turned into d-arrows based on the nearby graphical representation.
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There is also a difference in the interpretation.

• For the multi-type contact process, the type of (x, t) can be determined
from the type of the ancestors and the structure of the dual process. Be-
cause the cooperators cannot give birth through an unlabeled dot-arrow
when the site marked with the dot is not occupied by a cooperator, for the
cooperator-defector system, the initial configuration and the dual process
are not always sufficient to determine the state at (x, t). However, the ini-
tial configuration and the dual process being fixed, if space-time point (x, t)
is occupied by a defector in the multi-type contact process then it is also
occupied by a defector for the cooperator-defector system.

Neuhauser (1992) proved that the path of the first ancestor, which is the same for
both processes, can be broken into independent and identically distributed pieces
at some renewal points using an idea of Kuczek (1989). This idea was again used
by Durrett and Neuhauser (1997) in combination with a so-called repositioning
algorithm to obtain an estimate of the rate at which defectors (type 1 particles in
their work) expands. The objective of the repositioning algorithm is to construct a
designated dual path moving toward a target region. More precisely, assume that,
following the path of the first ancestor going forward in time and starting at some
renewal point, the first arrow we cross is a d-arrow. Because this arrow blocks
the cooperators (type 2 particles in their work), the space-time point (x, t) will be
occupied by a defector whenever, at the time of this renewal point, the first or the
second ancestor is occupied by a defector. Each time this happens, the repositioning
algorithm is applied to move the designated dual path to whichever site (the first or
the second ancestor) is closer to a certain target region playing the role of a source
of defectors. Durrett and Neuhauser (1997) used the repositioning algorithm in
combination with a block construction to couple the multi-type contact process
properly rescaled in space and time with oriented site percolation and proved that
the type with the higher birth rate expands linearly. Their proof is rather lengthy
but easily adapts to our cooperator-defector system so we just apply their result,
which gives Proposition 5.6 below. Even though they focused on the d = 2 case
because this was the case of interest in their work, their argument holds in any
spatial dimensions. As previously, let

L = {(z, n) ∈ Z
d × N : z1 + · · ·+ zd + n is even}.

which we turn into a directed graph using the same construction as before. Let L
be a large integer to be fixed later, and introduce the spatial boxes

Bz = Lz + [−L,L]d for all z ∈ Z
d.

We further partition each Bz by setting

Dw = L0.1w + (−L0.1/2, L0.1/2]d and Iz = {w ∈ Z
d : Dw ⊂ Bz}.

Define also the collection of space-time rectangles

B(z, n) = Bz × (nT + [0, T )) for all (z, n) ∈ L

where T = L2. Then, we consider the two collections of events

C−(z, n) : ξt(x) 6= c for all (x, t) ∈ B(z, n)

C+(z, n) : for all w ∈ Iz , there is x ∈ Dw such that ξnT (x) = d and

for all y ∈ Bz , we have ξnT (y) 6= c
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L(z − 3) L(z − 1) L(z + 1) L(z + 3)BzL(z − 2) L(z + 2)

B(z − 1, n + 1) B(z + 1, n + 1)

R(z, n)

(n + 2)T

(n + 1)T
at least one d in each Dw

at least one d in each Dw

at least one d in each Dw

C+(z, n) : no c and

C+(z − 1, n + 1) : no c and C+(z + 1, n + 1) : no c and

no c in this box no c in this box
C−(z + 1, n + 1)C−(z − 1, n + 1)

Figure 5.6. Illustration of Proposition 5.6. The proposition states that if there is
no cooperator and at least one defector in each of the Dw along the thick line at
the bottom of the picture then, with probability close to one, the same holds along
the two thick lines in the middle of the picture and there is no cooperator in the
two space-time boxes at the top of the picture.

for all (z, n) ∈ L. In words, the rectangle B(z, n) is void of cooperators, and
each Dw ⊂ Bz is void of cooperators and has at least one defector at time nT .

Proposition 5.6. Assume that

β > β∗ and βc =
2dβd

2d− 1
> 0.

For all ǫ > 0, there exists a collection of events A(z, n) that are measurable with
respect to the graphical representation restricted to the space-time region

R(z, n) = (Lz, nT ) + ([−3L, 3L]d × [0, 2T ])

and such that, for all L sufficiently large,

A(z, n) ∩ C+(z, n) ⊂ C+(z ± ei, n+ 1) ∩ C−(z ± ei, n+ 1)

for all i = 1, 2, . . . , d and P (A(z, n)) ≥ 1− ǫ.

We refer the reader to Propositions 3.1 and 3.2 in Durrett and Neuhauser (1997)
for a proof, and Figure 5.6 for an illustration.

Proof of the lower bound. The final step to prove the lower bound is similar to
the final step to prove the upper bound, but using Proposition 5.6 together with a
perturbation argument instead of the three conditions (4.5)–(4.7). Let

ρ = βc −
2dβd

2d− 1
.

The goal is to prove that the defectors win for all ρ > 0 sufficiently small. From
now on, we think of the process with ρ > 0 as being generated from the graphical
representation introduced right after condition (5.2) supplemented with additional
dot-arrows. More precisely, we let

C+(x, y, z) = Poisson process with rate ρ/4d2 when x ∼ y and y ∼ z.
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At the times of the Poisson process C+(x, y, z), we put a dot • at site z and draw
an arrow y → x labelled with a c+ to indicate that if both site y and site z are
occupied by cooperators and site x is empty, then site x becomes occupied by a
cooperator. For all (z, n) ∈ L, we let

A+(z, n) = A(z, n) ∩ C(z, n)

where A(z, n) is the event in Proposition 5.6 and where

C(z, n) : there is no c+ arrow pointing at the region R(z, n).

Lemma 5.7. Assume that

β > β∗ and βc >
2dβd

2d− 1
> 0,

and let ǫ > 0. Then,

P (A+(z, n)) ≥ 1− ǫ for some L large and ρ > 0 small.

Proof. Because Proposition 5.6 above holds for all ǫ > 0 arbitrarily small, there
exists a scaling parameter L large, fixed from now on, such that

P (A(z, n)) ≥ 1− ǫ/2. (5.3)

The parameter L being fixed, in view of the common rate of the Poisson pro-
cesses C+(x, y, z) and the common size of the space-time regions R(z, n),

P (C(z, n)) = P (Poisson (2T (6L+ 1)dρ) = 0)

= exp(−2L2(6L+ 1)dρ) ≥ 1− ǫ/2
(5.4)

for all ρ > 0 small. Combining (5.3) and (5.4), we deduce that

P (A+(z, n)) = P (A(z, n) ∩ C(z, n))

≥ 1− (1− P (A(z, n)))− (1− P (C(z, n)))

≥ 1− ǫ/2− ǫ/2 = 1− ǫ.

This completes the proof. �

To deduce the lower bound, we say that

(z, n) ∈ L is d-occupied if and only if C−(z, n) ∩ C+(z, n) occurs

and let Xn = {z : (z, n) is d-occupied}. Now, observe that

A+(z, n) = A(z, n) ∩ C(z, n) is measurable with respect to

the graphical representation

restricted to R(z, n)

(5.5)

because both A(z, n) and C(z, n) are. In addition, by Proposition 5.6,

A+(z, n) ∩ C+(z, n) = (A(z, n) ∩ C(z, n)) ∩ C+(z, n)

⊂ C+(z ± ei, n+ 1) ∩ C−(z ± ei, n+ 1)
(5.6)

for all i = 1, 2, . . . , d, where the events C−(z, n) and C+(z, n) are for the process
with ρ > 0. Also, it follows from Lemma 5.7 that L can be chosen such that

P (A+(z, n)) ≥ 1− ǫ for all (z, n) ∈ L and all ρ > 0 small. (5.7)
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As in the proof of Lemma 4.5, conditions (5.5)–(5.7) and Durrett (1995, Theo-
rem 4.3) imply that the set of d-occupied sites dominates the set of wet sites in
oriented site percolation: For all ǫ > 0, there is L such that, for all ρ > 0 small,

P (z ∈ W ǫ
n) ≤ P (z ∈ Xn) for all (z, n) ∈ L whenever W ǫ

0 ⊂ X0

where W ǫ
n is now the set of wet sites at level n in a three-dependent oriented site

percolation process where sites are closed with probability ǫ > 0. Following the
exact same approach as in the proofs of Lemmas 4.6 and 4.7, i.e., using the lack
of percolation of the sites occupied by at least one cooperator to show that the
cooperators die, we conclude that the defectors win whenever

β > β∗ and βd > 0 and ρ = βc −
2dβd

2d− 1
> 0 is sufficiently small

showing that

β−

c (β, βd) >
2dβd

2d− 1
.

This completes the proof of Theorem 1.3.
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