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Abstract. We provide a process on the space of collections of coalescing cadlag
stable paths and show convergence in an appropriate topology for coalescing stable
random walks on the integer lattice.

1. Introduction

A system of coalescing Brownian Motions starting at “every” point in R and
evolving independently before coalescence was first introduced by Arratia (1981a,b).
This system has been studied by several authors and motivated the question about
the existence of a system of coalescing Brownian Motions starting at “every” point
in the space-time plane R2. Such an object is called the Brownian Web and was
introduced by Fontes, Isopi, Newman and Ravishankar in Fontes et al. (2004). In
the same paper they prove weak convergence to the Brownian Web under diffu-
sive scaling of the system of simple symmetric one-dimensional coalescing random
walks starting on each point in the space-time lattice Z2. Later Newman, Ravis-
hankar and Sun (Newman et al., 2005) proved an invariance principle related to the
Brownian Web; they established the convergence to Brownian web for systems of
one-dimensional coalescing random walks under finite absolute fifth moment of the
transition probability (allowing for crossing of paths unlike the nearest neighbour
walks).

More recently, Evans, Morris and Sen (Evans et al., 2013) studied a system
of coalescing α-stable processes, α > 1, starting at every point in R. As Arratia
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(1981a) did for Brownian Motion, they proved that the system of α-stable processes
are locally finite for every time t > 0. And based on this, our main motivation here
is to build a stable version of the Brownian Web or simply a “Stable Web” and
also prove an invariance principle for it. We point out that an alternative weak
topology was introduced in Berestycki et al. (2015) to deal with the convergence
of other systems of random coalescing paths that do not have the non-crossing
property.

In this note we make a first step at defining the stable web. In subsequent
work Hao Xue and the last two authors will generalize the domain of applicability
and show that the object defined is equivalent to an object with a more general
“smoother” topology. Our objective here is simply to define a reasonable metric on
the space of collections of cadlag paths that gives convergence to the “stable web”
for suitably normalized coalescing random walks.

The paper is organized as follows. In Section 2 we define the stable aged process
or collection of stable aged paths. This is a collection of coalescing stable processes
equipped with an associated age process, which will be essential for our approach.
Section 3 gives a topology for the space of cadlag aged paths defined in the previous
section which we use in order to discuss weak convergence of processes to “our”
system of coalescing stable processes. We then give a (somewhat involved) set of
criteria for a collection of aged paths to be compact. Section 4 takes this condition
for compact sets and shows that the distribution of stable aged paths is tight.
The penultimate section introduces finite approximations to the stable web which
are used in the last section to establish that in the space presented the suitably
renormalized system of coalescing random walks converges in distribution to the
stable aged process introduced in Section 2.

2. The Age Process

In the following we have for n ∈ Z+, Dn = Z/2n.
We follow Evans et al. (2013) and consider systems of coalescing identically dis-

tributed stable processes X
Dn

= {Xn,x = (Xn,x
t )t≥0 : x ∈ Dn} with stable index

α ∈ (1, 2) such that Xn,x
0 = x = i2−n for integers i and n. It is not essential but

since establishing our results in greatest generality is not paramount, we will sup-
pose that the processes are symmetric. The stable processes evolve independently
until coalescence. The rules of precedence will be arbitrary for points in Dn/Dn−1

but lower order points will have coalescence precedence so that X
Dn ⊂ X

Dn+1 for
each n ≥ 1. For x ∈ D = ∪n≥1Dn, take n such that x ∈ Dn/Dn−1 and simply
write Xn,x = Xx. Moreover we denote X = ∪n≥1X

Dn and for every t > 0,
X
Dn
t = ∪x∈DnXx

t and Xt = ∪x∈DXx
t which are the time level sets associated

to the set valued processes X
Dn and X respectively.

Proposition 2.1. There exists K <∞ so that ∀ n ≥ 1 the density of the process,
X
Dn at time t <∞ D(n, t), given by the a.s. limit of

lim
M→∞

1

2M
#
(
X
Dn
t ∩ [−M,M ]

)
,

satisfies D(n, t) ≤ K

t
1
α
.
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Proof : To prove this we simply adapt the ideas of Bramson and Griffeath (1980).
Given t > 0 and a positive integer n, we divide up time interval [0, t] into intervals

[0, 2−nα], [2−nα, 2−(n−1)α], . . . , [2−(r+1)α, 2−rα], [2−rα, t]

where r < n is an integer such that 2−rα ≤ t ≤ 2−(r−1)α. We may assume that
t ≥ 2−nα since otherwise the density of X̄Dn is less than 2n ≤ t−1/α.

We now fix ε > 0 so that for X1
. and X2

. independent stable processes starting at
distance less than or equal to ε apart, the probability that the two processes meet
before time 1 is at least 2

(
(1 − ( 2

√
2−1
3 )

)
. We fix

K =
82

1
α

ε(2α − 1)
1
α

.

Lemma 2.2. If the density of X̄Dn
s is less than or equal to K/s1/α, then the density

of X̄Dn
s2α is less than K/(2s1/α)

The proof uses only the scaling property of the system of coalescing stable pro-
cesses. Write s0 < s1 < s2 for s = s0, s2

α = s2 and s1 the midpoint between the
two.

We first suppose for i = 0 or 1 that X
Dn
si has density greater than K/(2s1/α).

Then the density of points, x in X
Dn
si so that (x, x + 8s1/α

K ] contains no points of
X
Dn
si has density less than 1

4 of the overall density. We denote these half isolated
points by B. The remaining points are all within distance 8s1/α

K of another point
of the process at time si. Accordingly by our choice of K and simple scaling the
probability of such a process coalescing in the next s 2

α−1
2 time units is at least

2
(

(1 − ( 2
√
2−1
3 )

)
. From this we see that the density of X̄Dn

si+1
will be less than 1√

2

that of the density at time si.
This implies that either at time s0 or at time s1 the density of X̄Dn

. will be less
than K/(2s1/α) (and so by monotonicity, the density at time s2 will also be) or
the density at time s2 will be ( 1√

2
)2 that at time s0 which again implies that the

density at time s2 = s2α will be less than K/(2s1/α).
Applying Lemma 2.2 successively at time 2−jα yields that the density at time

2−rα will be less than K2−r ≤ K21/α/t1/α, provided K is fixed large (or equiva-
lently ε was chosen sufficiently small).

�

It follows from the fact that 0 is regular for the stable processes that if we choose
a x /∈ D and start a stable process at x at time 0, it will coalesce with processes
starting at D before time t for any t > 0 (given precedence to the latter), then
P (Xx

t ∈ Xt ∀ t > 0) = 1. For any x ∈ R we can indeed unambiguously define a
stable process (Xx

t )t≥0 which has the same distribution as a stable process starting
at x and such that t > 0, Xx

t ∈ Xt. So we can think of the above process as
a collection of coalescing stable processes starting “on” R. For any countable set
E ⊂ R we denote X

E
= {Xx : x ∈ E}. It follows that if for any nested collection

of “translation invariant” points Vn with V = ∪n≥1Vn dense we have (with the
coalescence rules with Xt as above) that X

Vn
t ⊂ Xt ∀ t > 0 with probability 1.

But equally we can show a.s that Xt ⊂ X
V

t . Furthermore for any strictly positive
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c we can choose V0 to be points spaced c apart and containing 0 and Vn obtained
from Vn−1 by adding the midpoints between neighbours. Then we have that

X
Vn
t

D−→ Xt , X
Dn
t

D−→ X
V

t and
1

c
X
Vn
cαt

D
= X

Dn
t ,

together this yields.

Proposition 2.3. For the process Xt the density at time t is equal to k/t
1
α for

some k depending on our choice of the stable process.

To construct the stable web we now consider coalescing stable processes starting
at times t ∈ D.

The first step is for D0 = Z1. We define the stable coalescing processes starting
at {i} ×R. For t ∈ (i, i+ 1] let this process be X

i

t. At time t = i+ 1, X
i

i+1 will be
a countable collection of points on {i + 1} × R. As such they can be continued on
interval [i+ 1, i+ 2] so that X

i

s ⊂ X
i+1

s for every s ∈ [i+ 1, i+ 2] with probability
1. Continuing we have ∀ i < j X

i

s ⊂ X
j

s ∀ s > j a.s.
We now proceed in an analogous manner adding in stable coalescing processes

at times Dn/Dn−1 to obtain a collection of processes {Xd

t }t>d for d ∈ D with the
property that a.s. for every d < d′, t > d′ we have that X

d

t ⊂ X
d′

t . We use the
notation Xd′,d = (Xd′,d

t )t≥d to denote the stable process beginning at (dyadic) time
d at spatial (dyadic) point d′.

We now define the age of a process (or path) (γ(s))s>d of X
d
: the age of (γ(s), s)

is simply s − inf(d′ < d : γ(s) ∈ Xd′

s ). So the age of (γ(s), s) increases continuously
at rate 1 but then jumps when the path coalesces with an older path. We note that
these age processes are compatible in the sense that if for d′ > d if (γ(s))s>t of X

d

is equal to (γ′(s))s>t of X
d′

on (t,∞) for some t > d′), the two age processes agree
on (t,∞).

While at time t > d the ages of the different processes ofX
d

t will be unbounded, it
should be noted that by Proposition 2.3 above, the density of points in X

−N
at time

t is equal to k/(N − t)1/α which tends to zero as N becomes large for fixed t. The
event that any process of X

d
at time t in the spatial interval [−M,M ] having age

greater than N−t is precisely the event that X
−N

at time t has points in [−M,M ].
This tends to zero as N becomes large (with t and M fixed) . This ensures that
with probability one the ages are all finite for processes of X

d
in [−M,M ] a time

t. Since M is arbitrary we have that all ages are finite.
This idea of age is by no means novel, see Fontes et al. (2006).
We can now define our aged path process. This is a collection of pairs of cadlag

functions (γ, a) defined on (σ,∞) for some finite σ so that for each d ∈ D strictly
greater than σ, γ restricted to (d,∞) will be an element of X

d
and a on this interval

will be the corresponding age process and σ is the smallest possible value in the
sense that a(t) tends to zero as t tends down to σ (or equivalently the functions
(γ, a) are defined on maximal open intervals).

We call this (random) collection of paths the stable web and denote it by X . It
is defined as a (H, ρ) valued random variable where H is a set whose elements are
closed subsets of the set (G, ρ′) of ordered pair of cadlag aged paths (γ, a). ρ′ is a
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compactified Skorohod metric while ρ is the induced Hausdorff metric on the closed
subsets of G. The spaces and metrics will be defined in the next section. It may be
useful to note that for each dyadic space time point (d, d′), for every t > d′, there
will exist (infinitely many) elements (γ, a) defined on (σ,∞) so that t > σ and γ
agrees with Xd,d′ on time interval [t,∞) but there will not typically exist in X a
single (γ, a) so that γ(d′) is defined and equals d. Again this is not dissimilar to
Brownian web behaviour and in no way prevents us talking about a stable process
beginning at (d, d′).

We could equally have defined the stable web X as the limit of the aged paths
{Xd,d′}(d,d′)∈Dn under the topology to be introduced in the next section, where Dn

are finite subsets increasing to D.
We note here one of many similarities with preceding works, in particular Fontes

et al. (2004): For a fixed non random (x, t), we can define a stable process Xx,t

defined on time interval [t,∞) with Xx,t
t = x by taking the limiting process of

a fixed sequence of “dyadic” processes Xd,d′ where d converges to x rapidly and d′
converges to t rapidly. Given any countable, dense collection of space time points
{(xi, ti)}∞i=1 we can thus obtain a system of coalescing stable processes {Xxi,ti

. }∞i=1.
Arguing as before Proposition 2.3 we have that with probability one for any (γ, a) ∈
X , a(s) > c if and only if γ has coalesced by time s with some X(xi,ti) with
ti < s−c. Thus we could have defined the system X via such a system of coalescing
stable processes. This shows that the distribution of X is independent of the dense
countable set of space time points used to obtain a system of coalescing stable
processes.

A key part of our understanding of X will be via its image through the operator
Φε. Given (γ, a) ∈ X , Φε((γ, a)) is the function pair (γ, a) restricted to [σε,∞)
where σε = inf{s > σ : a(s) ≥ ε}. Xε = Φε(X ) will be called the set of ε paths
(for X ).

We note (it is proved in the Section Four) that for any bounded space time region
A and any ε > 0 the subset of ε paths (γε, aε) so that γε(t) = x for some (x, t) ∈ A
is finite. We note that the set of (γ, a) in X so that Φε((γ, a)) has this property
will typically be infinite. A.s. the map Φε is infinitely many to one.

The associated age process a(.) and the function Φε may seem artificial but they
are important for our approach as they remove a massive source of irregularities
for our collection of coalescing stable processes. Let us consider the space time
rectangle [0, 1]2 (though it could be any bounded rectangle with nonempty interior).
For each positive integers n and M we can cut it into 2n × b2nαc subrectangles
of spatial side 2−n and temporal side 2−nα (plus a small remaining area). If we
consider independent coalescing processes beginning at the centre of each rectangle,
then the number of processes X. such that (Xt, t) stays within within their space
time rectangle before making a jump of order M will be of order 2nα with high
probability. This shows that any kind of criterion for tightness such as in Fontes
et al. (2004) is not possible. But overwhelmingly these large jumps result from
processes of small age. By cutting out the (many) stable processes when their age
is small, we remove from consideration the greater part of the overall processes’
wildness.

We now wish to define a general class of “aged path” spaces which generalize the
above, using the preceding construction as motivation, we define first an aged path
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Definition 2.4. An aged path is a cadlag pair of functions (γ, a) defined on a
common open half interval (σ,∞) to R × R+, so that a(t + s) − a(t) ≥ s ∀ s ≥ 0
and t > σ.

For A ⊂ R×R, we say that γ hits A if there exists (x, t) ∈ A so that γ(t) = x.
Implicitly t will be such that γ(t) is defined. Given an aged path (γ, a), we say
it hits A if γ does so. The operator Φε (by abuse of notation we use the same
notation for this operator on pairs of paths) from the set of aged paths to itself is
defined simply by taking Φε((γ, a)) to be the restriction of (γ, a) to (σε,∞) where
σε = inf{s ≥ σ : a(s) ≥ ε}.

Definition 2.5. A space or collection of aged paths is a set of aged paths
{(γi, ai)}i∈I having the property that for for every positive integer N the set of pairs
Φ2−N ((γi, ai)) that hit [−N,N ]2 is finite and γ(bγN ) is (perhaps as a limit) well de-
fined, where bγN = inf{s ≥ σ2−N ∧ −N : γ(s) ∈ [−N,N ]}.

We will define a topology on the sets of aged paths in the next section.
We return to our stable web and note that Proposition 2.3 yields the following

corollary:

Corollary 2.6. The density of points of X with age in the interval (a, a+ ε) at a
given time t is equal to k/a1/α − k/(a+ ε)1/α.

We will also need the following result which follows from the fact that the density
of processes of age at leastM at a particular time tends to zero asM becomes large.

Lemma 2.7. Given ε > 0 and N < ∞, there exists M = M(ε,N) < ∞ so that
outside probability ε every path of X that intersects space time square [−N,N ]2 has
age less than M at time N .

Proof : This simply follows from the fact that by Proposition 2.3, the density of
coalescing processes, started at time −(N+M) has density k/(2N+M)1/α at time
N . So the chance that one such process is in spatial interval [−N,N ] at time N
is less than 2kN/(2N + M)1/α. Let c(N) > 0 be the infimum of the conditional
probability a path be in [−N,N ] at time N given that it hits [−N,N ]2 . The
probability that the event of interest occurs is bounded above by 2kN/c(N)(2N +
M)1/α which will be less than ε for large enough M depending on N and ε. �

3. Topology

First recall (see e.g. Ethier and Kurtz, 1986) the definition of the δ-modulus of
continuity for a cadlag path γ : [c, d]→ R:

ω(δ, γ, [e, f ]) = inf
ti−ti−1≥δ

sup
i

sup
s,t∈[ti−1,ti)

|γ(t)− γ(s)|

for [e, f ] ⊂ [c, d]. This quantity is important for determining the compactness of
sets of cadlag paths.

We use the metric d1 between two cadlag paths γ1 : [a, b]→ R and γ2 : [c, d]→ R
(typically but not always we will have b = d = ∞) where

d1(γ1, γ2) = | tanh(a)− tanh(c)|+

inf
g:[a,b]→[c,d]

[
sup
a≤t≤b

e−|t||((γ1(t), t)− (γ2(g(t)), g(t))| ∧ 1) + sup
a<s<b

e−|s||g′(s)− 1|
]
.
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where the infimum is over continuous piecewise differentiable bijections g. This
amounts to a compactification of space-time as in Fontes et al. (2004). When
dealing with paths defined in a finite time rectangle, we will use the equivalent
metric

d(γ1, γ2) = |a− c|+

inf
g:[a,b]→[c,d]

[
sup
a≤t≤b

(|(γ1(t), t)− (γ2(g(t)), g(t))| ∧ 1) + sup
a<s<b

|g′(s)− 1|
]
.

In dealing with aged paths defined over finite intervals

(γi(t), ai(t)) : [ci, bi]→ R× (0,∞)

for i = 1, 2, we simply take

d((γ1, a1), (γ2, a2)) = d(γ1, γ2) ∨ d(a1, a2).

and similarly for d1. In the following, when speaking of distance between aged
paths (γ1, a1), (γ2, a2), we will abuse notation and write d(γ1, γ2).

A similar topology on cadlag functions was introduced in the recent work of
Etheridge et al. (2017). It follows immediately,

Lemma 3.1. For a cadlag function f : [0, T ]→ R let fη be its restriction to [η, T ]
(for η > 0). ∀σ > 0, there exists η0 so that d(f, fη) < σ for every 0 ≤ η ≤ η0.

Proof : Take h to be such that sups≤h |f(s)−f(0)| ≤ σ/10. Now (for h > η > 0)
define path g : [0, T ]→ [η, T ] by

g(s) = s for s ∈ [h, T ]; g(.) is linear bijection [0, h] → [η, h].

Then this shows that d(f, fη) < 2σ/10 + η/h + η and so the result follows. �

The above argument in fact yields

Lemma 3.2. For any h > η,

d(fη, f) ≤ η +
η

h
+ 2 sup

0≤s≤h
|f(0)− f(s)| .

If we are dealing with aged paths

d((fη, aη), (f, a)) ≤ η +
η

h
+ 2( sup

0≤s≤h
|f(0)− f(s)| ∨ a(h)− a(0)) .

Corollary 3.3. For a stable process (X(t) : t ≥ 0), ∀σ > 0 there exists η0 > 0 so
that ∀ T > 0,

P (∀ η ≤ η0, d(X,Xη) < σ) > 1− σ2

106
,

where we consider the restrictions of X and Xη to [0, T ] and [η, T ] respectively.

Similarly, if for process X and time interval I within its domain of definition, we
write XI as the process with time restricted to I, then we have

Corollary 3.4. For a stable process (X(t) : t ≥ 0), ∀σ > 0, ε > 0 there exists
η0 > 0 so that ∀ t > ε and 0 ≤ η1, η2 ≤ η0,

d(X [0,t], X [η1,t+η2]) < σ

outside probability σ2

106 .
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We will examine the systems of aged paths X and Xδ considering them as random
elements of a proper path space which we now define in a natural way based on our
previous considerations. Let G be the space of aged paths: {(σ, γ, a)} where γ and
a are cadlag functions defined on (σ,∞) and satisfying the conditions given in the
previous section.

Denote by ΨN the map that associates to an aged path (γ, a) in G its restriction
to the interval [bγN , N ] (where bγN is as in the definition of collections of aged paths).
We note that this is not a continuous operator for the given metric between paths.

We denote the composition ΨN ◦Φ2−N by ΠN (recall Φδ is defined at the end of
Section 2).

We have the semimetric ρ[−N,N ]2 on G defined by

ρ[−N,N ]2 ((γ, a), (γ′, a′)) = d(ΠN ((γ, a)),ΠN ((γ′, a′))).

We now consider the metric between aged paths (which by abuse of notation we
also denote as ρ) by

ρ′((b, γ, a), (b′, γ′, a′)) =

∞∑
N=1

2−N min
{

1, ρ[−N,N ]2
(
ΠN (b, γ, a),ΠN (b′, γ′, a′)

)}
.

The metric is artificial in that it privileges certain cutoffs and rectangles, whereas
the spatial or temporal integer values are not special for stable processes and the
ages 2−N are not significant for our coalescing system. However this is a positive
in our approach as we will be able to argue that the lack of continuity of our
projections ΠN is ultimately not a problem.

We, as usual, take H to be the set of closed subsets of G with the Hausdorff
metric, which, is denoted by ρ. We have the usual criterion for tightness (see Fontes
et al., 2004).

For every N ≥ 1 fix εN > 0, MN > 0 and δN ∈ [0, 1)N a sequence tending to
zero and put ϑ = (εN ,MN , δN )N≥1. We denote by K(ϑ) the set of collections of
aged paths in G such that for each collection C ∈ K(ϑ) and for each integer N ≥ 1:

(i) the number of paths in ΠN (C) is less than MN ;
(ii) the age of every path in ΠN (C) is less than MN throughout;
(iii) every path in ΠN (C) is contained in [−MN ,MN ]× [−N,N ] ;
(iv) every path, (b, γ, a) ∈ ΠN (C) has ω(2−r, γ, [TN , N ]) ≤ δN (r) for every

r ∈ N, where TN = bγN ;
(v) every path, (b, γ, a) ∈ ΠN+1(C) has γ(TN ) ∈ [−N + εN , N − εN ] and prior

to this it did not enter [−N − εN , N + εN ];
(vi) the age process of every path γ ∈ ΠN+1(C) makes no jump while the age

has value in [2−N − εN , 2−N + εN ];
(vii) the age process of every path γ ∈ ΠN (C) makes no jumps within time εN

of each other;
(viii) the age process of every path γ ∈ ΠN+1(C) does not have age in interval

(2−N −εN , 2−N +εN ) at times in [−N−εN ,−N+εN ] or [N−εN , N+εN ].
(ix) every path, (b, γ, a) ∈ ΠN+1(C) has d(γ[TN ,N ], γ[TN+η1,N+η2]) ≤ 2−r for

every r with 0 ≤ δN (r) < εN/2 and 0 ≤ η1, η2 ≤ δN (r), where again
TN = bγN .
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Proposition 3.5. The sets K(ϑ) are compact.

Proof : Given a sequence of collections C1, C2, . . . in K, we prove that we can find
a convergent subsequence which converges to an element of K.

If we fix N and consider the paths γ that are in ΠN (Cn) for some n, then by con-
ditions (iii) and (iv) this set is compact. Similarly (ii) and (vii) ensure that the age
processes will be compact. Since the set of compact sets of trajectories on a bounded
domain endowed with the Hausdorff metric is compact, that is {ΠN (C)|C ∈ K} is
compact for each N , we can take a subsequence, (CnNj ) of (Cn) so that (ΠN (CnNj ))

converges. By Cantor diagonal method, we arrive at a subsequence Cni , i ≥ 1,
such that for every N the sequence (ΠN (Cni)) converges to some collection DN .
We must show that from this collection (DN )N≥1, we can find an aged path col-
lection C so that Cni converges to C. It will be clear that any such limit is in
K(ϑ) so the principal task is to produce aged path collectionC so that for every N ,
ΠN (C) = DN . The essential step is to show that for each N , ΠN (DN+1) = DN .
Since ΠN (Cni) ⊂ ΠNΠN+1(Cni) It is clear that DN ⊂ ΠN (DN+1). Now we show
that ΠN (DN+1) ⊂ DN by contradiction. Suppose that ΠN (DN+1) contains a path
(b, γ, a) not in DN . We have by hypothesis that there is a δ > 0 so that (b, γ, a) is
distance greater than δ from DN . We consider a sequence of paths γni ∈ Cni so
that ΠN+1γni converge to (b′, γ′, a′) such that ΠN ((b′, γ′, a′) = (b, γ, a). By condi-
tion (v) and (viii) TN (γni) must be in time [−N+εN , N−εN ] or the age a(TN ) must
be greater than 2−N+εNand γni(TN ) must be in spatial interval [−N+εN , N−εN ].
From this and (ix), we see that ΠNγni must converge to (b, γ, a) and the desired
contradiction is achieved.

To construct our limit set C (which will clearly be in K), we need to find a
collection of aged paths C so that for each N, ΠNC = DN . Fix (γN , aN ) ∈ DN .
By the above paragraph we can find inductively (γM , aM ) ∈ DM ∀M > N so
that ΠN ((γM , aM )) = (γN , aN ). So γM and aM are cadlag functions defined on
intervals [cM , dM ] so that

∀ M > M ′ ≥ N, [cM ′ , dM ′ ] ⊂ [cM , dM ] and
γM |[cM′ ,dM′ ] = γM ′ , aM |[cM′ ,dM′ ] = aM ′ .

We also have that dM tends to infinity asM tends to infinity but that (by condition
(ii)), limM−>∞ cM > −∞. We define γ on (limM−>∞ cM ,∞) by γ(s) = γM (s)
for any (and by the consistency all) M with s ∈ [cM , dM ]. Similarly for a.

We have that (γ, a) has the desired property. We take C to be the totality of
paths that can be obtained in this way (i.e. starting from some N and taking a
convergent sequence of aged paths. It is clear C is our limit. �

4. Tightness of the Stable web

In this section our main purpose is to show

Proposition 4.1. For each σ, ∃ϑ = (εN )N≥1, (MN )N≥1, (δN )N≥1 so that

P [X 6∈ K(ϑ))] < σ2/106

Remark 4.2. This shows that our measure on aged paths is tight. Given Propo-
sition 3.5 this section will consist of simply working through (not necessarily in
order) the hypotheses of Proposition 3.5.
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For N = 1, 2, . . . , we consider ΓN as the random collection of aged paths ΠN (X ).
Let us fix a space time square SN = [−N,N ]2.

Definition 4.3. For a cadlag path F : I → R, the variation of f on [a, b] ⊂ I is
supa≤s,t≤b |f(t) − f(s)|.

Proposition 4.4. Given a path (b, γ, a) that intersects SN while of age at least ε,
let

β = β(γ, ε) = inf{t : (γ(t), t) ∈ SN and (γ(t), t) has age ≥ ε} .
Given N ≥ 1 and 1 > σ > 0 then ∃ η1 > 0 and N ′ < ∞ so that

P
[
∃ γ that intersects SN while of age at least ε

and has variation greater than σ/100 on [β, β + 3η1]
]
≤ 10−6σ2 .

and

P
[
∃ γ that intersects SN while of age at least ε

and after time β leaves [−N ′, N ′]
]
≤ 10−6σ2 .

Remark 4.5. Of course we are particularly interested in ε of the form 2−N .

Proof : We only explicitly show the first probability bound, the second following in
similar fashion.

We consider paths γ for which the β as defined above lies in
(
i ε3 , (i+ 1) ε3

]
for

fixed i. There are ≤ 7N
ε such i’s for ε small). We fix such an i.

We are interested in the paths’ behaviour after the time β(ε). As such it is
only necessary to treat a “good” representative. While it may be true that the
evolution of the age of path γ immediately before β(ε, γ) was very rapid due to
several coalescences, for every γ, the behaviour of the path γ on interval [β(γ),∞)
will equal that of a path γ′ on interval [β(γ),∞) = [β(γ′),∞) for some path whose
age at time iε/3 is at least ε/2. As such to establish the proposition it is enough to
treat γ having this property. Henceforth we drop the dependence of β on γ from
the notation.

So we are interested in the behaviour on interval [β, β + 3η1] of paths γ having
the property that at time iε/3 the path has age at least ε/2 and such that in
time interval (iε/3, (i+ 1)ε/3] the path γ meets spatial interval [−N,N ]. We first
note that by Proposition 2.3, the density of the translation invariant collection of
processes of age at least ε/2 at time iε/3 (or indeed any time) is equal toK/(ε/2)1/α.
We now consider (for comparison purposes) the system of stable processes beginning
with these walkers evolving independently on time interval [iε/3, (i+1)ε/3] without
coalescence. This system at time (i+1)ε/3 will have the same density (K/(ε/2)1/α)
and will again be translation invariant. Thus the expected number of points for our
comparison system in [−N,N ] at time (i+ 1)ε/3 is exactly 2Nk/(ε/2)1/α. By the
Markov property (applied when a process first enters [−N,N ]) each process that
touches [−N,N ] has a probability ≥ CN,ε > 0 of being within interval [−N,N ] at
time (i+1)ε

3 where by symmetry e.g. CN,ε > 1/3 for ε small enough and N large
enough. Thus provided ε was fixed sufficiently small, we have that the expectation
of the number of comparison processes that touch spatial interval[−N,N ] in time
interval [iε/3, (i+ 1)ε/3] is bounded above by

6Nk/(ε/2)1/α .
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This bound must then also apply to our original system of coalescing paths by
simple stochastic domination.

So the expectation of the total number (i.e. for every relevant i) is thus ≤
7N
ε

6kN

( ε2 )
1
α
. By the Markov property (for each stable process) if we choose η1 so that

P ( sup
s≤3η1

|X(s)−X(0)| ≥ σ/100) ≤ σ2/

(
7N

ε

6kN

( ε2 )
1
α

.107

)
,

we have that outside probability σ2

107 , the variation on [β, β+3η1]] is less than σ/100
for all these paths. �

Proposition 4.6. Given a path (b, γ, a) that intersects SN , while of age at least
ε, γ, let β = β(γ, ε) be as in Proposition 4.4. Given N, σ ∃ (δ(r))r≥1 a positive
sequence tending to zero as r tends to infinity so that P

[
∃ γthat intersects [−N,N ]2

while of age at least ε and so that for some r ≥ 1, ω(2−r, γ, [β,N ]) > δ(r)
]
≤ σ2

106 .

Proof : The claim follows from the observations ω(2−r, γ, [β,N ])→ 0 as r →∞ and
the total number of paths is bounded in probability (from the previous proposition).

�

Remark 4.7. The results above speak to properties (i), (iii) and (iv) in the defi-
nition of compact set K((εN )N≥1, (MN )N≥1, (δN )N≥1) while the next proposition
addresses (iii). Property (ii) follows from Lemma 2.7.

The following result is important in establishing properties (vi) and (vii)

Proposition 4.8. Given η2, σ > 0, there is N ′ so that the probability that a path
(b, γ, a) satisfies

(i) γ hits SN while of age at least 2−N ,
(ii) there exists t ∈ [−N,N ] so that aγ(t) ≥ η2 and γ(t) ∈ [−N ′, N ′]c,

is bounded by σ.

Remark 4.9. This result is useful in that it argues that the age is ”locally” deter-
mined (to within a certain precision). We do not rule out that the true age is
determined out at infinity, our claim is that the age within η2 is decided locally.

Proof of Proposition 4.8: Fix a positive integer k and let Ak be the event that for
some i, there is a path γ that intersects interval Ik ( defined below) in time in the
time interval

[
iη2
3 , (i+ 1)η23

]
so that

(i)
[
iη2
3 , (i+ 1)η23

]
∩ [−N,N ] 6= ∅;

(ii) the path has age ≥ η2
2 at time iη2

3 ;
(iii) Ik = [2kNβ , 2k+1Nβ ] ∪ [−2k+1Nβ ,−2kNβ ] for β ≥ 2

α .

We have, since the number of such i is bounded above by 7N
η2

and the expected

number of such paths is dominated by 2K2kNβ

η
1
α
2

, then the expectation of this number

is bounded above by
7N

η2

2K2kNβ

η
1
α
2

qN .
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where qN is the upper bound over possible initial points of the probability that a
stable process starting at some point in interval Ik visits[−N,N ] before time 2N
which is of order N/Nβ(α+1)2k(α+1). Thus for some K ′ > 0

P (Ak) ≤ 7KK ′

η
1+ 1

α
2

N2−βα2−kα .

Since β ≥ 2
α , summing this over k ≥ ko gives P (∪k≥k0Ak) < σ for k0 sufficiently

large. Since ∪k≥k0Ak contains the event in the statement we are done. �

We use Proposition 4.8 above to show:

Lemma 4.10. For every N ∈ N and ε > 0 there exists η > 0 so that
P
(
∃ (b, γ, a) so that ΠNγ 6= ∅ and so that a(·) jumps twice in an interval of length

η while of age at least 2−N
)
is less than ε.

Remark 4.11. Lemma 4.10 above addresses (vii) of the definition of the compact
sets K(ϑ).

Proof of Lemma 4.10: We fix N and ε. First pick N ′ according to Propositions 4.8
and 4.4 applied to N + 1 with η2 = 2−N/10 and σ = ε/100. Then pick N ′′ in this
way with N ′ substituted for N . Pick M so that the probability that the number of
paths in ΦN+2(C) to touch (−N ′′, N ′′) × (−N,N) is greater than M is less than
ε/100. Let the complements of these “expected events” be denoted by B1, B2, B3:
B1 is the event that there exists a path which touches spatial interval [−N,N ] in

time interval [−N − 1, N + 1] while having been outside spatial interval [−N ′, N ′]
in this time interval while of age greater than η2 = 2−N/10, or there exists such a
path which subsequently leaves interval [−N ′, N ′].
B2 is the event that there exists a path which touches spatial interval [−N ′, N ′]

in time interval [−N−1, N+1] while having been outside spatial interval [−N ′′, N ′′]
while of age greater than η2 = 2−N/10.
B3 is the event that the number of paths to touch spatial interval [−N ′′, N ′′]

during temporal interval [−N − 1, N + 1] while having age greater than 2−N−2

exceeds M .
We divide up the event in question into the union of events A(i,N) where A(i,N)

is the event that a path of age ≥ 2−N having touched spatial interval [−N−1, N+1],
meets two paths also of age ≥ 2−N in time interval [iη, (i + 2)η] (which intersects
[−N,N ]) and all three paths were in (−N ′′, N ′′) at time iη − 2−N−1.

It is easy to see that the probability of ∪iη∈(−N−1,N)A(i,N) occurring but not
one of the Bi is less than Const(N/η)22N/αM3η2/α: we simply note that for a fixed
such interval, for the event to occur (and none of the Bi ) at time iη − 2−N/4 all
three of the processes must be among the at mostM processes of age at least 2−N/2
in spatial interval [−N ′′, N ′′]. We have at most M3 choices for the three processes.
Secondly we see that uniformly over the spatial initial points, the probability for
two independent stable processes to meet in time interval [1, 1 + δ] (one beginning
at time 0) is less than Kδ1/α for some universal K. So, by scaling and the Markov
property uniformly over the positions of the three processes a time iη− 2−N/4, the
probability that the first two meet and then the third in the given time interval is
bounded by Kη2/α22N/α for some universal K.

Given that our valueM has been fixed (and that α < 2) this upper bound will be
less than ε/100 if η is chosen small enough. Thus with these choices of N ′, N ′′,M
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and η the probability of the event occurring is less than ε/100 + ε/100 + ε/100 +
ε/100 < ε and the result follows.

�

In a similar way we can show the following which is relevant to (vi) of the
definition of K(ϑ).

Proposition 4.12. For each σ, ε > 0, N <∞, ∃η > 0 so that the probability that
there exists (γ, a) so that

(i) ∃s so that γ(s) ∈ [−N,N ] and a(s) ∈ (ε− η, ε+ η) and so that for some
other path (γ′a′)

(ii) |γ(s)− γ′(s)| < η and a′(s) > a(s)

is bounded by σ2/106.

Again by Proposition 4.8 we can restrict attention to paths within N ′ of the
origin. Again we bound the number of such paths that touch this spatial interval
during time interval (−N,N) while of age at least 2−N−1. The argument is now as
with Lemma 4.10.

Proposition 4.13. For each σ, ε > 0, N < ∞, ∃εN > 0 so that for event
A(N, εN ) ≡ {∃γ having age in interval (2−N −εN , 2−N ,+εN ) at times in (−N −
εN ,−N + εN ) or (N − εN , N + εN ) while in interval spatial [−N,N ]} satisfies

P [A(N, εN )] < σ2/106.

Again we sketch. To see this for the time interval (N − εN , N + εN ), we first
choose N ′ so that (using Proposition 4.8), outside a set of probability σ2/107. any
path that meets (−N−1, N+1) in time interval (−N−1, N+1) must be within N ′
of the origin while having age at least 2−N/3. Outside this small probability event,
the claimed event lies in the existence of a path such that at time N−2−N−1 lies in
(−N ′, N ′) and has age in interval of length 4εN around 2−N−1. Given Corollary 2.6,
we obtain the result.

We can equally address property (v) in our definition of compact K:

Lemma 4.14. For each N and each δ > 0, ∃ εN > 0 so that the probability that
there exists a path γ which first hits [N − εN , N + εN ] at a time before or equal to
its first time of hitting [−N,N ]2 while of age at least 2−N is less than δ.

Proof : We denote the “bad” event whose probability we wish to bound by BN . It
follows from the self similarity properties of the stable process that for a stable
process {X(s)}s≥0 starting at 1 with τ = inf{s : X(s) ≤ 0}, we have X(τ) < 0.
By quasi left continuity we get that

c(ε) ≡ P 1({X(s) 0 ≤ s ≤ τ} ∩ [−ε, ε] 6= ∅) → 0

as ε tends to zero. So by scaling we have for τ now equal to inf{s : X(s)X(0) ≤ 0}
sup
|x|≥a

P x({X(s) 0 ≤ s ≤ τ} ∩ [−ε, ε] 6= ∅) = c(ε/a).

We divide up BN into four parts:
- BN (1): a path enters [−N,N ]2 while of age at least 2−N which had been
outside spatial interval [−N ′, N ′] while of age in [2−N/3, 2−N ].

- BN (2): the number of paths inside [−N ′, N ′] × [−N,N ] of age at least
2−N/3 is greater than N ′′
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- BN (3): there exists a path that achieves age 2−N while spatially in [N −
ε′N , N + ε′N ].

- BN (4): BN occurs through a path that hits [−N,N ]2 with age at least 2−N

which achieved age 2−N while outside [N − ε′N , N + ε′N ].
In the above definition N ′, N ′′ and ε′N will be specified as the proof progresses.

By Proposition 4.8 if N ′ is fixed high enough, then P (BN (1)) < δ/4. Simi-
larly we have that for N ′′ sufficiently large P (BN (2)\BN (1)) < δ/4. By applying
the Markov property at age time 2−N/3 we easily see that P (BN (3)\(BN (1) ∪
BN (2))) < CN ′′ε′N2N/α < δ/4 if ε′N is fixed small enough. Finally

P (BN (4)\(BN (1) ∪BN (2) ∪BN (3))) < CN ′′c(
εN
ε′N

)

which is less than δ/4 if εN is chosen small enough. �

Propositions 4.6, 4.12, 4.13, Lemma 4.10 and Corollary 3.4 as well as the proof
of Proposition 4.4 yield.

Proposition 4.15. For each σ, there exists ϑ = ((εN )N≥1, (MN )N≥1, (δN )N≥1)
so that

P [X 6∈ K(ϑ))] < σ2/106

Remark 4.16. This shows that our measure on aged paths is tight given Proposi-
tion 3.5.

5. A Discrete Approximation.

The object in this section is to introduce a coalescing process based on a large
but finite number of coalescing stable processes which well approximates the ΠN

projection of a given stable web. This approximation result is Proposition 5.3
below. After which some related technical results are prepared. The purpose of the
approximation is to facilitate the proof of convergence in distribution of systems
of coalescing random walks (which are in the domain of attraction of our stable
process) which will be performed in the next section. It is at least plausible that
for θ small the web on bounded space-time rectangles will be well approximated by
a large but finite system of coalescing stable processes beginning on a fine mesh of
space-time points separated by distance θ.

A θ process is simply a stable process beginning at a some space-time point in
θZ2. The (θi, θj)-process is simply the stable process beginning at position θi at
time θj The θ stable web is the collection of coalescing θ processes . We will also
be interested in finite subsets of these processes.

More generally given a space time subset A (either a countable set or a rectangle
[x, y]× [s, t]) for a path (γ, a)) that is a restriction of a path in X we say its A−age,
(aA(s)) (on s ∈ (σ,∞)) is the supremum of s− t over paths Xx,t so that

(i) Xx,t has coalesced with γ by time s and
(ii) (x, t) is in A (if A is countable) or A ∩D (for A a rectangle).
If there has been no such coalescence the A-age will be undefined. Obviously the

A-age at time s is less than or equal to a(s).
We say that (given A countable or a rectangle) and (x, t) ∈ A or in A ∩ D)

that Xx,t δ-approximates (γ, a) by time s on time interval I if for each u ∈
(s,∞) ∩ I, γ(u) = Xx,t(u) and 0 ≤ a(u) − aA(X)(u) < δ where aA(X) is the
A− age for the process Xx,t .
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Proposition 5.1. ∀ η, σ > 0 and positive integer N , there exists θ > 0 and
finite N ′′ so that outside probability σ for very path γ ∈ X so that ΠN ((γ, a)) is
nontrivial, there exists (y, s) ∈ A = θZ2 ∩ [−N ′′, N ′′]× .[−N ′′, N ] so that Xy,s

η-approximates (γ, a) by time σ2−N (Xy,s, aA(X, .)) on [−N,N ].

Proof : We use VN to denote the set of γ which intersect [−N,N ]2 after age 2−N

tacitly identifying paths which agree after age 2−N so we will consider the number
to be finite. For space time rectangle R, we write U(R, δ) to denote the set of paths
that hit R after age δ(again identifying paths which agree after age δ ).

Given N we apply Proposition 4.8 twice. First with (N, η/8, σ/100) to obtain
value N ′ so that with probability at least 1 − σ/100, every path (γ, a) that after
age 2−N is in VN has the property that it for a(s) ≥ η/8 (γ, (s), s) ∈ [−N ′, N ′]×
[−N,N ].

Next we take M so that every path that hits [−N ′, N ′]× [−N ′, N ] has age less
than M outside probability σ/100 (we can do this by Lemma 2.7). We now apply
Proposition 4.8 for (N

′
+M,η/8, σ/100) to obtain value N ′′.

For a path γ in VN we cannot rule out that the age of the path is defined via paths
that “diverge to infinity”. But we have that outside probability 3σ/100 every such
path has an age determined within η/4 by paths starting on [−N ′′, N ′′]× [−N ′′, N ]
in the sense that outside this probability, for every (γ, a) ∈ VN ) there exists a path
γ′ in U([−N ′′, N ′′] × [−N ′′, N ], η/4) so that (γ′, a(γ′)A) (with A = [−N ′′, N ′′] ×
[−N ′′, N ]) η/2-approximates (γ, a) by time σ2−N (γ) on [−N,N ].

It remains to show that for any relevant γ′, we can η/4-approximate
(γ′, a(γ′)[−N

′′,N ′′]×[−N ′′,N ]) by time σ2−N (γ′, a(γ′)[−N
′′,N ′′]×[−N ′′,N ]) on [−N,N ]

by a pair (Xv, a(X)A) for A = [−N ′′, N ′′]× [−N ′′, N ] ∩ θZ2 and v ∈ θZ2 (outside
appropriately small probability).

We note that by the argument for Proposition 4.8, there existsK = K(N ′′, η) so
that the number of distinct processes in UN ([−N ′′, N ′′]×[−N ′′, N ], η/4) is bounded
by K outside of probability σ/100.

Now (outside the previously “ eliminated” event of probability bounded by
3σ/100) every γ′ in UN remains in rectangle [−N ′′, N ′′]× [−N ′′, N ] after age η/4.

We fix one such path γ′ and consider J = [t, t + η/4] ∩ θZ where t is the first
time the age of γ′ exceeds η/4. For each si ∈ J , let xi be one of the spatial points in
θZ closest to γ′(si). By scaling (and the fact that α > 1) there is a chance greater
than 1/2 (for θ small enough) chance that γ′ and X(xi,si) will coalesce in the next
θ time units. Since J has cardinality at least η/(5θ) for θ small we see that outside
probability σ/100 +K(1/2)η/(5θ) every path γ′ will be coalesced with a process Xs

for s ∈ [−N ′′, N ′′]× [−N ′′, N ]∩θZ2. The result now follows by taking θ sufficiently
small that K(N ′′, η).(1/2)η/(5θ) is less than σ/100.

�

Notation: Given A ⊂ Z2 either countable or a rectangle and (x, t) ∈ A (or
A ∩ D), the age process for Xx,t (given A, aA(Xx,t) has been defined. We can
accordingly define ΠA

N (Xx,t) to be the joint process (Xx,t, aA(Xx,t) on the interval
[bA,∞) where

bA = inf{s : aA(s) ≥ 2−N and (Xs,t(s), s) ∈ [−N,N ]2 .

Proposition 5.1 begets



802 T. Mountford, K. Ravishankar and G. Valle

Corollary 5.2. Given N and σ > 0, there exists N ′ and θ > 0 so that if Ł is the
collection of coalescing stable processes in θZ2 ∩ [−N ′, N ′]× [−N ′, N ], then outside
probability σ for every path γ with (γ(s), s) ∈ [−N,N ]2 for some s ∈ [−N,N ] with
a(s) ≥ 2−N , we have γ′ ∈ Ł with distance

ρ′(ΠN (γ),ΠA
N (γ′) < σ/10.

Proof : Given N and σ let us apply Proposition 4.4 with ε = 2−N to obtain η1
satisfying the desired condition. We can also, arguing as in Lemma 4.10 suppose
that η1 is sufficiently small that no path hitting [−N,N ]2 while of age greater than
2−N has a jump in [a(2−N )− η1, a(2−N ) + η1] outside this probability. Now given
this η1 (which we can take to be small compared to 2 −N , let η2 be less than
ση1/100. We apply Proposition 4.8 with η = η2 and σ equal to our fixed σ2/106.
This yields our desired N ′ (We here also suppose that outside this probability no
path hitting [−N,N ]2 has age greater than N ′.). Applying Proposition 5.1, with
N,N ′, η and σ replaced by σ2/106 we have our θ and outside of probability 2σ2/106,
every path γ as above has coalesced with a path in Ł before it has age 2η. The
result now follows from Proposition 4.4. �

Propositions 4.4, 4.8 and 5.1 and Corollary 5.2 yield

Proposition 5.3. ∀σ > 0 there exists N,N ′, θ so that outside probability σ the ρ
distance between the paths resulting from the stable web and the paths resulting from
the θZ2 ∩ [−N ′, N ′]× [−N ′, N + 1] beginning after age (defined via the processes in
A = θZ2 ∩ [−N ′, N ′]× [−N ′, N ] ) when the processes touch [−N,N ] while of age
greater than 2−N is less than σ.

We denote the system of θ-processes by X θ and the system of θ-processes of age
at least δ by X θδ . We claim that X θ plays the role of an skeleton for the stable
web in an analogous way to the definition of an skeleton for the Brownian Web, see
Fontes et al. (2004).

6. Convergence in Distribution

In this Section we only consider discrete time random walks, although analogous
results hold for continuous time random walks. Consider a random walk (Wn)n≥1
such that Wn =

∑n
i=1 Zn with (Zn)∞n=1 iid random variables whose distribution

is in the domain of attraction of a stable symmetric α ∈ (1, 2) random variable
X = X0,0

1 (X0,0 defined as in Section 2). Let p(x) = P (Z1 = x), x ∈ Z be its
transition probability function. Since the best convergence result is not our focus
we assume that p(·) is symmetric and satisfies

x1+αp(x)→ C ∈ (0,∞) , as |x| → ∞ ,

where the C is chosen to be compatible with X. Thus we have that(
Wbntc

n
1
α

)
t≥0

converges in distribution under the Skorohod topology to (X0,0
t )t≥0. We have the

Gnedenko local CLT, see Gnedenko and Kolmogorov (1954),

sup
|x0|≤Kn

1
α

∣∣∣∣n 1
αP (Wn = x0)− fX

(
x0

n
1
α

)∣∣∣∣→ 0 , as n→∞ ,
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where fX is the density of X. This is enough to show convergence of the Green
functions: For every β > 0

Gβ(u) = lim
n→∞

n(
1
α−1)

∞∑
j=1

P (Wj = [un
1
α ])e−β

j
n ,

uniformly on compact intervals for u.

From this and standard optional stopping, we have

Lemma 6.1. For every β > 0, if W 1, W 2 are two iid random walks with in-
crements distributed as p(·) and starting at W 1

0 = 0 and W 2
0 = [n

1
αu] and Tn =

1
n inf{j : W 1

j = W 2
j } then limn→∞Ee−βTn = Ee−βT where T = inf{t : X1

t = X2
t }

for X1, X2 iid stable processes distributed as X0,0 starting at X1
0 = 0 and X2

u = u.
Therefore Tn converges to T in distribution.

From this we obtain

Lemma 6.2. For N , N ′, ε and θ fixed positive and finite, the system of coalescing
stable processes starting from points in θZ2 ∩ [−N ′, N ′] × [N ′, N ] is the limit as
n → ∞ of the system of coalescing random walks starting on [−N ′n 1

α , N ′n
1
α ] ×

[−Nn,Nn] from points in bθn 1
α cZ× θnZ and appropriately rescaled.

Recall the definitions of Section 2 and Proposition 2.3. The system X of α-stable
processes starting from full occupancy at time 0 is scale invariant and in particular
the density scales as k/t

1
α for some constant k not depending on t. We now note

that the density for coalescing random walks scales (when suitably renormalized)
in the same way.

Proposition 6.3. For coalescing random walks on Z × Z+ beginning with full
occupancy at time 0, the density at time n is approximately k/n

1
α , meaning that

the ratio goes to one as n goes to infinity, where k is the constant for the continuous
time coalescing processes obtained in Proposition 2.3.

Proof : By Proposition 2.3 for the system of α-stable coalescing processes the den-
sity at time t is the (increasing) limit as θ ↓ 0 of the processes beginning at θZ.
Thus for every ε > 0, there exists θ > 0 so that the density of coalescing θ-processes
at given times t1, t2 are greater than (k − ε)/t

1
α
1 and (k − ε)/t

1
α
2 .

We first take t1 = 1. Now for θ as above, we consider the coalescing random
walks beginning at bθn 1

α cZ. By Lemma 6.2, we get that for n large the density
of these coalescing random walks at time n is at least (k − 2ε)/n

1
α . Hence by

monotonicity it is at least (k − 2ε)/n
1
α for the full process of coalescing random

walks (i.e. starting from full occupancy on Z).
On the other hand we can via Bramson and Griffeath arguments (Bramson and

Griffeath, 1980), see Lemma 2.2, show that there exists m < ∞ so that for every
choice of the scale parameter n, the density of the full process of coalescing random
walks at time T is bounded above by m/T

1
α . In particular at T = rn, r small,

the density is bounded above by m/(r
1
αn

1
α ). We now couple this to a coalescing

system of random walks starting with occupancy at bθn 1
α cZ at time T = rn and

we take t2 = (1− r) then the density of the full process of coalescing random walks
at time n = rn + (1 − r)n is equal to the density of the bθn 1

α cZ random walks at
time (1 − r)n plus the density of walks of the full process that have not coupled
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with a θ random walk by time n. But (if θ << 1/m is sufficiently small) this latter
density will be smaller than ε/n1/α . while the former density (by invariance) will
be less than (k + ε)/((1− r) 1

αn
1
α ). Thus the density of full random walks at time

n will be bounded above by

k + ε

(1− r) 1
αn

1
α

+ ε/n1/α .

We now let r ↓ 0 and then ε ↓ 0 to obtain our result. �

From now on consider that we work with systems of discrete time coalescing
random walks starting at points on [n

1
α ]Z × nZ, making jumps from i to j with

probability p(j − i) after intervals of time with length one. The age of such a
random walk is defined to be continuously increasing at rate 1 on time intervals of
no coalescence and when a coalescence occurs the age jumps to the age of the older
path. We call it an aged random walk. We denote this collection of aged random
walks (γ, a) with space scaled by n−1/α and time by n−1 by Wn ∈ (H, ρ) for n ≥ 1
(so n is the scaling parameter).

Proposition 6.4.
Wn ⇒ X as n→∞

Given Proposition 6.3 we can easily prove the following analogue of Proposi-
tion 4.4:

Proposition 6.5. Given an aged random walk path (γ, a) ∈ Wn that intersects
SN = [−N,N ]2, while of age at least ε, let

β = β(γ, ε) = inf{t : (γ(t), t) ∈ SN and a(t) ≥ ε}.

Given N and σ there exists η1 so that for every n
(i)

P
[
∃ (γ, a) ∈ Wn that intersects SN while of age at least ε and has variation

greater than σ on [β, β + 3η1]
]
≤ σ2

106
,

and (ii)

P
[
∃ γ that intersects SN while of age at least ε

and after time β leaves [−N ′, N ′]
]
≤ 10−6σ2 .

We similarly have analogues of Propositions 4.6, 4.12, 4.13, Corollary 3.4 and
Lemmas 4.10 and 4.14. This yields:

Proposition 6.6. For each σ > 0, there exists ϑ = ((εN )N≥1, (MN )N≥1, (δN )N≥1)
so that for each δ > 0, there exists n0 = n0(δ) <∞ so that for n ≥ n0

P [Wn 6∈ Kδ(ϑ)] < σ2/106 ,

where Kδ = {ψ : ρ(ψ,K) ≤ δ}. In particular (Wn)n≥1 is a tight family of random
elements of H.

Remark 6.7. We need to consider Kδ rather than simply K since we need the
convergence of renormalized random walks to continuous time stable processes that
ensures the desired approximation for paths ΠNγ, N ≥ 1.
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The aim from this point is to prove weak convergence of Wn to X . Our ar-
gument uses the approximation of X by θ-processes and we need an analogous
approximation for the system of aged random walks. So we consider the system
of θ-random walks associated to the scaling parameter n as the collection of dis-
crete time rescaled coalescing random walks obtained from coalescing random walks
starting at bθn 1

α cZ×θnZ that evolves as before (jumps from i to j with probability
p(j− i) after one unit of time), with space scaled by n−

1
α and time by n−1. To sim-

plify notation we write Xθi,θj for the θ-random walk starting at (bθn 1
α cn− 1

α i, θj).
Given a collection of θ-random walks, we can, just as in the original process,

speak of ages of paths: the age of a path Xθi,θj at time s > jθ is simply

s− inf{θl : ∃k : Xθi,θj
s = Xθk,θl

s } .

We then denote by Wθ
n the system of aged coalescing θ-random walks with scaling

parameter n and given N and N ′ we write Wθ,N ′

n for the system of coalescing θ-
random walks with scaling parameter n beginning at points inside the space-time
box [−N − 1, N ] × [−N ′, N ′]. (Usually N is given and so is dropped from the
notation.)

As in Proposition 6.6, we can show that (Wθ
n)n≥1 is a tight family of random

elements of H. Moreover, we can prove as in Corollary 5.2 the following result:

Proposition 6.8. Given N, N ′ and θ, the coalescing renormalized systems Wθ,N ′

n

converge in distribution to X θ,N ′ as n tends to infinity. Furthermore ΠN (Wθ,N ′n)

converges in distribution to ΠN (X θ,N ′).

We are now ready to establish weak convergence of Wn to X . (Proof of Propo-
sition 6.4)

Proof : To establish weak convergence it is sufficient to show that for a bounded
and continuous F on our space

E[F (Wn)] → E[F (X )]

as n tends to infinity.
We fix ε > 0 and a bounded continuous function F on the set of aged path

collections. Given ε > 0, we fix a compact set K of collections of paths as in
Proposition 3.5 so that the probability that X ∈ K is at least 1 − ε. By the
compactness of K we have that there exists η > 0 so that

∀ψ ∈ K, sup
ψ′:ρ(ψ,ψ′)<2η

|F (ψ)− F (ψ′)| < ε/2

which immediately implies that

∀ψ ∈ Kη, sup
ψ′:ρ(ψ,ψ′)<η

|F (ψ)− F (ψ′)| < ε

where again Kη = {ψ : ρ(ψ,K) ≤ η}.
By Proposition 6.8 for any θ > 0 (and N,N ′),

lim
n→∞

∣∣E[F (Wθ
n)]− E[F (X θ)]

∣∣ = 0.

We choose θ, N and N ′ according to Proposition 5.3 so that the distance between
X and X θ is less than η outside probability ε. We can take this θ, N and N ′ so
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that we have equally for each n, the distance between Wn and Wθ
n is less than η

outside this probability. We now have∣∣E[F (X )]− E[F (X θ)]
∣∣ ≤ E

[∣∣F (X )]− F (X θ)
∣∣]

≤ E
[∣∣F (X )− F (X θ)

∣∣IX /∈K]
+E

[∣∣F (X )− F (X θ)
∣∣Iρ(X ,X θ)<ηIX∈K]

+E
[∣∣F (X )− F (X θ)

∣∣Iρ(X ,X θ)≥η] .
This latter sum is bounded by 2ε||F ||∞ + ε + 2ε||F ||∞ ≤ 5ε (1 ∨ ||F ||∞).

We also have that for any η > 0, P (Wn ∈ Kη) > 1 − ε/2 for n large and so we
can argue as above that for universal C∣∣E[F (Wn)]− E[F (Wθ

n)]
∣∣ ≤ Cε (1 ∨ ||F ||∞)

for n large which gives that
∣∣E[F (Wn)]−E[F (X )]

∣∣ ≤ C ′ε (1∨||F ||∞) for n large. �
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