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Abstract. Herein, we describe multidimensional Brownian motions for d = 2, 3
with drifts whose order is the same as that of the mean displacement of a Brownian
motion. We consider the probabilities that the processes remain in specific cones for
a considerable amount of time. We obtain exponents expressing the probabilities,
which are different from that of the ordinary Brownian motion. Finally, we suggest
an open problem concerning the exact values.

1. Introduction and Known Results

Herein, we describe Brownian motions with drifts Bt + Ft whose order is same
as that of the mean displacement of a Brownian motion (Bt)t≥0. Although the
topic is classical, multiple things have been remained and under investigation. A
previous study (Antunović et al., 2011) considered the standard one-dimensional
Brownian motion Bt with α-Hölder continuous functions Ft with α ≤ 1/2. An-
other study (Peres and Sousi, 2012) showed that the hitting time satisfies the in-
tersection equivalence concerning standard one-dimensional and multidimensional
Brownian motions with 1/2-Hölder continuous functions. Furthermore, previous
research (Mörters and Peres, 2010) proposed several other related open problems.
Herein, we investigate the probabilities that the processes remain in specific cones
for considerable amount of time. In particular, we show that the probabilities satisfy
submultiplicativity and supermultiplicativity. This indicates that the probabilities
are of polynomial order. In addition, it shows the existence of cone exponents ξ for
the processes. In other words, the probability that a Brownian motion with spe-
cific drifts remains in a specific cone until time n2 is asymptotically close to n−ξ.
Our results show that the cone exponents are different from those of the ordinary
Brownian motion, and they are positive and finite.
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Next, we introduce the details of known results concerning the cone estimates of
the Brownian motion. If

β =(cosβ1, sinβ1) (d=2),
β =(cosβ1 cosβ2, sinβ1 cosβ2, sinβ2) (d=3)

for some 0 ≤ β1, β2 < 2π, let arg(β, b) be the angle between the line connecting the
origin and β and the line connecting the origin and b. For d = 2, 3, 0 < α < π, and
0 ≤ β1, β2 < 2π, define the open cone W [α, β] := {z ∈ Rd : arg(β, z) < α/2}. Let
{B(t)}t≥0 be a Brownian motion for d = 2, 3. We denote the Brownian trajectory
for T ⊂ R+ ∪ {0} by B[T ]. For d = 2, we define C+

t (α)(resp., C−
t (α)) as a set of

times that B spends in W [α, β] with some β, i.e.,

C+
t (α) := ∪β∈[0,2π]{t ∈ [0, 1) : ∃h > 0, B(s) ∈ B(t) +W [α, β], s ∈ [t, t+ h]},

C−
t (α) := ∪β∈[0,2π]{t ∈ [0, 1) : ∃h > 0, B(s) ∈ B(t) +W [α, β], s ∈ [t− h, t]}.

The corresponding points of the Brownian trajectory are called α-cone points. We
let the set of α-cone points be C+

p (α) or C−
p (α), i.e.,

C+
p (α) := ∪β∈[0,2π] {Bt : t ∈ [0, 1)∃h > 0, B(s) ∈ B(t) +W [α, β], s ∈ [t, t+ h]},

C−
p (α) := ∪β∈[0,2π] {Bt : t ∈ [0, 1)∃h > 0, B(s) ∈ B(t) +W [α, β], s ∈ [t− h, t]}.

It was shown

dim(C+
p (α) ∩ C−

p (α)) = 2− 2π

α
a.s.

dim(C+
p (α)) = 2− π

α
a.s.

in Evans (1985). Another proof was given in Mörters and Peres (2010, Section
10.4). Burdzy (1985) and Shimura (1985) independently showed that one-sided
cone points with angle α exist when α < π/4. Le Gall and Meyre (1992) showed
that a cone point with angle π/4 does not exist. Lawler (1999, Section 3) argued
with cone exponents, which describe the probability that the Brownian motion
stays in a cone. For d = 2, the value of cone exponents were obtained (see Mörters
and Peres, 2010, Section 10.4). Moreover, in a previous study (Garbit and Raschel,
2014), the tail distribution of the first exit time from a typical cone was observed
for a Brownian motion with a drift of order t. The results of Garbit and Raschel
(2014) are not the same as those of this paper since the order of the drift in this
paper is different from that in Garbit and Raschel (2014). In addition, there are
several order results that deal with other rear points e.g., slow points, where the
Brownian motion is slow in Barlow and Perkins (1986); Davis and Perkins (1985).
The following results are not directly connected but important.

2. Main Results

To state the principal results, we introduce the following notation. Let d = 2,
3. For x ∈ Rd and r > 0, let B(x, r) := {y ∈ Rd : |x − y| ≤ r}. For A ⊂ Rd,
let ∂A be the boundary of A. In particular, we write Br for B(0, r) and B for B1.
For any x = (x1, ..., xd) ∈ Rd, we denote (nx1, ..., nxd)(resp., (x1/n, ..., xd/n)) by
nx(resp., x/n). For any x ∈ Rd and A ⊂ Rd, let x + A := {x + y ∈ Rd : y ∈ A}.
Let Fl(t) := (K(t+ l)1/2 −Kl1/2, 0) (d = 2) and Fl(t) := (K(t+ l)1/2 −Kl1/2, 0, 0)

(d = 3) for l ≥ 0. Let W̃ [α, β] := W [α/2, β]. Let P x denote the probability of a
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Brownian motion starting at x. For l ≥ 0, let τn,l := inf{t > 0 : (B+Fl)(t) ∈ ∂Bn}.
For typographical reasons, we write τ(n, l) and B(r) et al. for τn,l and Br et al,
respectively. Let

an,l := sup
x∈∂B

P x((B + Fl)[0, τ(e
n, l)] ⊂ W [α, β]).

In addition, we write a(n, l) for an,l. We write F (t), an, and τn for F0(t), an,0, and
τn,0, respectively. In the following theorems, we consider the long-time behavior of
an. Without loss of generality, we consider the function Fl(t) that has a one-way
drift. Now, we fix K ≥ 0, α, and β unless otherwise stated. We occasionally omit
the symbols K, α and β. Hereafter, the values C and c might vary from place to
place.

We now state the principal results.

Theorem 2.1. For any K < ∞, α and β, there exists C < ∞ such that for any
n,m ∈ N

an+m ≤ Canam.

Theorem 2.2. For any K < ∞, α and β, there exists C < ∞ such that for any
n,m ∈ N

anam ≤ Can+m.

Remark 2.3. In fact, we have stronger claims. If we fix K0 > 0, we can uniformly
choose C in K ∈ [0,K0] in Theorems 2.1 and 2.2. We omit the proof since we can
uniformly choose any constants (C or c) in K ∈ [0,K0] in the proofs of Theorems 2.1
and 2.2.

Corollary 2.4. There exist c > 0, C < ∞ and 0 < ξ(K,α, β) < ∞ such that for
any n ∈ N and x ∈ W̃ ∩ ∂B

cn−ξ ≤ P x((B + F )[0, τn] ⊂ W [α, β]) (2.1)
and for any n ∈ N and x ∈ W ∩ ∂B

P x((B + F )[0, τn] ⊂ W [α, β]) ≤ Cn−ξ. (2.2)

Corollary 2.5. It holds that ξ(K,α, β) → ξ(0, α, β) as K → 0. If (1, 0)(or
(1, 0, 0)) ∈ W [α, β], then ξ(K,α, β) → 0 as K → ∞. If (1, 0)(or (1, 0, 0)) ̸∈ W [α, β],
then ξ(K,α, β) → ∞ as K → ∞, where A denotes the closure of A.

Corollary 2.6. There exist 0 < C1, C2 < ∞ such that for any n ∈ N and x ∈
W̃ ∩ ∂B,

C1n
−ξ ≤ P x((B + F )[0, n2] ⊂ W [α, β]) ≤ C2n

−ξ.

Remark 2.7. Let Lk := {t : (B + F )[0, t) ∩ (B + F )(t, 1] = ∅}. The following result
is obtained by an argument same as that in proof of Lawler (1996, Theorem 1.1)
using Lawler (1996, Proposition 3.15) instead of Corollary 2.6:

dimh(Lk) = 1− ξ(K)

2
,

where dimh denotes the Hausdorff dimension.

Open Problem 2.8. We suggest an open problem concerning the exact values of
ξ(K,α, β) for any K > 0, 0 < α < π, and β.
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Now, we provide proofs of the principal results. It is worth nothing that while
Theorem 2.1 for K = 0 (ordinary Brownian motion) is trivial using scaling and
the Markov property, for K > 0 (Brownian motion with drift) is not. Concretely,
while {B(s) : 0 ≤ s ≤ τn,0, B(0) = x} =d {B(n2s)/n : 0 ≤ s ≤ τn+m,0, B(0) =
nx} for x ∈ ∂B, the corresponding result for a Brownian motion with drifts does
not hold. Hence, we consider the subsidiary properties in Section 3.1 to show a
result which close to that obtained in Theorem 2.1, i.e., the submultiplicativity of
sup0≤l≤1 an,l. In addition, we show a particular equivalence of sup0≤l≤1 an,l and
an using geometric structures of the cone and hence obtain the desired result.

3. Proofs

3.1. Preparations for principal results. In this section, we provide the properties of
Brownian motions with drifts that correspond to the elementary properties of the
ordinary Brownian motion.

Lemma 3.1. (The scaling property of Brownian motions with drifts)
Let e be Napier’s constant. It holds that for any r > 0 and x ∈ Rd

{(B + Fl)(s) : 0 ≤ s ≤ r, (B + Fl)(0) = x}
=d{e(B + Fl/e2)(s/e

2) : 0 ≤ s ≤ r, (B + Fl/e2)(0) = x/e}
and for any r > 0 and x ∈ Br

{(B + Fl)(s) : 0 ≤ s ≤ τr,l, (B + Fl)(0) = x}
=d{e(B + Fl/e2)(s/e

2) : 0 ≤ s ≤ τ(r/e, l/e2), (B + Fl/e2)(0) = x/e}.
In particular, it holds that for any l ≥ 0, r > 0 and x ∈ W ∩ Br

P x((B + Fl)[0, τr,l] ⊂ W ) = P x/e((B + Fl/e2)[0, τ(r/e, l/e
2)] ⊂ W )

and
P x((B + Fl)[0, r] ⊂ W ) = P x/e((B + Fl/e2)[0, r/e

2] ⊂ W ).

Proof : Note that for any 0 < s, s′ < ∞,
Fl(s)− Fl(s

′) = e(Fl/e2(s/e
2)− Fl/e2(s

′/e2)).

Then, the scaling property of the ordinary Brownian motion yields the desired
results. □

Lemma 3.2. (The (strong) Markov property of Brownian motions with drifts)
The (strong) Markov property of Brownian motions with drifts holds. For exam-

ple, it holds that for any l ≥ 0, x ∈ ∂B and 1 < r, r′ < ∞,
P x((B + Fl)[0, τr+r′,l] ⊂ W )

=Ex[PB(τr,l)((B + Fl)[0, τr+r′,l] ⊂ W |F(τr,l))1{(B + Fl)[0, τr,l] ⊂ W}].

Proof : The (strong) Markov property of the ordinary Brownian motion yields nat-
urally the desired result. □

Lemma 3.3. (The large deviation estimate of Brownian motions with drifts)
It holds that there exist C < ∞ and c > 0 such that for any n ∈ N and s > 0

sup
l≥0

sup
x∈∂B(exp(n−1))

P x(τ(en, l) ≥ se2n) ≤ C exp(−cs), (3.1)
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and
sup
l≥0

sup
x∈B(exp(n−1))

P x(τ(en, l) ≤ se2n) ≤ C exp(−c/s). (3.2)

Proof : By the scaling property, it suffices to show the result for n = 1. First
we show (3.1). Let τ̂n := inf{t > 0 : B(t) ∈ ∂Bn}. Note that given that
maxl≥0 K((K2/100) ∧ (100K2)−1 + l)1/2 −Kl1/2 ≤ 1/10,

inf
l≥0

inf
x∈B(e)

P x(τe,l < 1) ≥ inf
l≥0

inf
x∈B(e)

P x(τe,l <
K2

100
∧ 1

100K2
)

≥ inf
x∈B(e)

P x(τ̂e−1/10 <
K2

100
∧ 1

100K2
) > 0.

Thus, there exist C < ∞ and c > 0 such that for any n ∈ N and s > 0

sup
l≥0

sup
x∈∂B

P x(τe,l ≥ s) ≤ sup
l≥0

sup
x∈∂B

P x(τe,l ≥ ⌈s⌉ − 1)

≤(sup
l≥0

sup
x∈B(e)

P x(τe,l ≥ 1))⌈s⌉−1 ≤ C exp(−cs),

and hence the desired result holds. Next, we show (3.2). It suffices to show the
result for all sufficiently small s > 0 with Ks1/2 ≤ 1. The large deviation estimate
of the ordinary Brownian motion (see Lawler, 1996, (11)) indicates that C < ∞
and c > 0 exist such that for any n ∈ N and s > 0,

sup
l≥0

sup
x∈∂B

P x(τe,l ≤ s) ≤ sup
x∈∂B

P x(τ̂e−Ks1/2 ≤ s)

≤ sup
x∈∂B

P x(τ̂e−1 ≤ s)

≤C exp(−c/s),

and hence, we obtain the desired results. □

3.2. Proof of Theorem 2.1. To show Theorem 2.1, we introduce some lemmas. To
begin, we let G0 := [0, e2] and Gs := [e2s, e2(s+1)]. Let An,l be the event such that
(B + Fl)[0, τ(e

n, l)] ⊂ W . In particular, we write An for An,0.
Lemma 3.4. There exists 0 < a < ∞ such that for any n ∈ N

inf
x∈W̃∩∂B

inf
l≥0

P x(An,l) ≥ e−na.

Proof : Let Ŵ [α, β] := W [α/4, β] and W 0[α, β] := W [2α/3, β]. Pick ϵ > 0 such
that ϵ <dist(∂W 0[α, β] ∩ ∂B1/2, ∂W ∩ ∂B1/2). Then, we have

0 < inf
x∈W̃∩∂B

P x(B[0, τ̂e+ϵ] ⊂ W 0[α, β], τ̂e+ϵ < K−2ϵ2 ∧ τ̂1/2, B(τ̂e+ϵ) ∈ Ŵ ).

Note that for any ϵ > 0 it holds that maxl≥0 Fl(K
−2ϵ2) = ϵ. For any x ∈ W̃ ∩ ∂B

P x(B[0, τ̂e+ϵ] ⊂ W 0[α, β], τ̂e+ϵ < K−2ϵ2 ∧ τ̂1/2, B(τ̂e+ϵ) ∈ Ŵ )

≤P x(∩l>0(A1,l ∩ {(B + Fl)(τe,l) ∈ W̃})).
Then, we have

inf
x∈W̃∩∂B

inf
l≥0

P x(A1,l ∩ {(B + Fl)(τe,l) ∈ W̃})

≥ inf
x∈W̃∩∂B

P x(∩l>0(A1,l ∩ {(B + Fl)(τe,l) ∈ W̃})) > 0,
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and hence,

a := − log inf
x∈W̃∩∂B

inf
l≥0

P x(A1,l ∩ {(B + Fl)(τe,l) ∈ W̃}) < ∞. (3.3)

Therefore, the strong Markov property yields

inf
x∈W̃∩∂B

inf
l≥0

P x(An,l) ≥ e−a inf
x∈W̃∩∂B(e)

inf
l≥0

P x(An,l).

By iterating it, the scaling property yields the desired result. □

To state the next lemma, let Ln,l be the event that (B + Fl)(τ(e
n, l)) ∈ W̃ and

(B + Fl)[0, τ(e
n, l)] ⊂ W .

Lemma 3.5. There exists C > 0 such that for any n ∈ N,

inf
y∈W̃∩∂B(exp(n−1))

inf
l≥0

P x(Ln,l|An,l) ≥ C.

Proof : Based on the scaling property, the desired result is obtained when the result
for n = 1 is proved. Let D :=dist(∂W, y) and un :=

∑∞
j=n j

22−j . For all sufficiently
large n ∈ N such that un ≤ 1/4, let hn be the infimum of

P y(L1,l)

P y(A1,l)
,

where the infimum is over 0 ≤ r ≤ un, l ≥ 0 and y such that D ≥ 2−n and |y| = 1+r
for some r > 0. The lemma will follow if we prove that infn hn > 0. Then, it suffices
to show that hn > 0 for each n ∈ N and that there exists a summable sequence
δn < 1 such that hn+1 ≥ hn(1−δn). We first show hn > 0 for any n ∈ N. Note that
we can find the following infinite cone O based on an argument same as those in
the separation lemma in Lawler (1995); Lawler and Vermesi (2012) and in Lawler
(1999, Section 3),

(1)
D

100
≤ |z − y| ≤ D

20
,

(2)y ∈ z +O,
D

100
≤ |y − ∂(z +O)| ≤ D

20
,

(3)(z +O) ∩ B ⊂ B(y, D
10

),

(4)if V := (z +O) ∩ Bc
exp(1/16), then dist(∂W, V ) ≥ α

10000
.

With the aid of (1) (2) and (3), by Lemma 3.4 and the scaling property, there exist
C < ∞ and 0 < a < ∞ such that for any l ≥ 0,

P y((B + Fl)[0, τexp(1/16),l] ⊂ z +O) ≥ C

(
c+ exp(1/16)

D/100

)−a

≥ CDa.

Thus, with the aid of (4), the strong Markov property yields that

P y(L1,l) ≥ P y((B + Fl)[0, τexp(1/16),l] ⊂ z +O)× inf
x∈(z+O)∩∂Bexp(1/16)

P x(L1,l) ≥ CDa.

Hence, hn > 0.
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Next, we show the second claim. Assume that 0 ≤ r ≤ un+1 and D ≥ 2−n−1.
Let

w(j) := (1 + r) + 4j2−n, Dj,l := dist((B + Fl)(τ(w(j), l)),W ),

ρ′l := inf{j ≥ 1 : Dj,l ≥ 2−n} and ρl := min(ρ′l,
n2

4
).

Let Cj+1,n,l be an event such that Dj+1,l ≥ 2−n. There exists c > 0 such that the
probability that Cj+1,n,l, starting from a given distribution in ∂B(w(j)), is at least
c for any l ≥ 0 and j. Iterating this, it can be observed that C < ∞ and b > 0
exist such that for any l ≥ 0 and y ∈ ∂B(w(0)),

P y(ρl =
n2

4
)

≤ sup
l≥0

sup
y∈∂B(w(0))

P y(C1,n,l) sup
l≥0

sup
y∈∂B(w(1))

P y(C2,n,l) . . . sup
l≥0

sup
y∈∂B(w(n2−1))

P y(Cn2/4,n,l)

≤C exp(−bn2).

Using the definition of hn, we see that for any l ≥ 0, y with D ≤ 2−n−1

P y(L1,l) ≥ P y(L1,l ∩ {ρl <
n2

4
}) ≥ hnP

y(A1,l ∩ {ρl <
n2

4
}).

However, we obtain

P y(A1,l ∩ {ρl <
n2

4
}) ≥ P y(A1,l)− C exp(−bn2) ≥ P y(A1,l)(1− C exp(−bn2)).

Therefore, if we set δn = C exp(−bn2), we complete the proof. □

Lemma 3.6. There exists C < ∞ such that for any l ≥ 0 and n ∈ N

an,l ≤ Can+1,l.

Proof : The strong Markov property and Lemmas 3.4 yield that for any x ∈ ∂B

P x((B + Fl)[0, τ(e
n, l)] ⊂ W [α, β]) ≤[1A(n−1,l)P

B(τn−1,l)(An,l)]

≤CEx[1A(n−1,l)P
B(τn−1,l)(Ln,l)]

≤CP x(Ln,l). (3.4)

Hence, (3.3) yields

an,l ≤ C sup
x∈∂B

P x(Ln,l)× inf
x∈W̃∩∂B

inf
l≥0

P x(A1,l ∩ {(B + Fl)(τe,l) ∈ W̃}) ≤ Can+1,l.

Therefore, the desired result holds. □

Lemma 3.7. There exists C < ∞ such that for any l ≥ 0, n ∈ N and r ≥ 1

an,l ≤ a(n− r, l/e2r), (3.5)
an,l ≤ Ca(n, l/e2). (3.6)

Proof : Note that for any x ∈ W∩∂B, x′ ∈ (x+W )∩∂B(er), r ≥ 1, y ∈ Rd, if y+x ∈
W , then y+x′ ∈ W . Hence, if B(s)+Fl(s)+x ∈ W , then B(s)+Fl(s)+x′ ∈ W for
any 0 ≤ s ≤ inf{t ≥ 0 : B(t) + Fl(t) + x ∈ ∂Ben} and Brownian motion (B(t))t≥0

starting the origin (see Figure 3.1). Thus, for any x ∈ W∩∂B, x′ ∈ (x+W )∩∂B(er),
r ≥ 1, and l ≥ 0, it is true that P x(An,l) ≤ P x′

(An,l) given that inf{t ≥ 0 :
B(t) + Fl(t) + x ∈ ∂Ben} ≤ inf{t ≥ 0 : B(t) + Fl(t) + x′ ∈ ∂Ben}. In addition,
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the scaling property states that P x′
(An,l) = P x′/ exp(r)(A(n− r, l/e2r)). Therefore,

from Lemma 3.6, we obtain an,l ≤ a(n − 1, l/e2) ≤ Ca(n, l/e2). Consequently, we
obtain the desired results. □

Figure 3.1.

Lemma 3.8. There exists C < ∞ such that for any n ∈ N

sup
l∈G0

an,l ≤ C inf
x′∈W̃∩B

P x′
(An).

Remark 3.9. Lemma 3.8 yields that there exists C < ∞ such that for any n ∈ N

sup
l∈G0

an,l ≤ Can.

Proof : Let

c0 := inf{c ≥ 0 : min
x∈W∩∂B

dist(W̃ ∩ ∂Bc, ∂(x+W )) = Ke, W̃ ∩ ∂Bc ⊂ x+W}.

Note that maxt≥0 maxl∈G0
|F (t)−Fl(t)| = Ke. Thus, for x ∈ ∂B, x′ ∈ W̃ ∩∂B(c0),

y ∈ Rd, t ≥ 0 and l ∈ G0, if x + y + Fl(t) ∈ W , then x′ + y + F (t) ∈ W given
that dist(x′, x + ∂W ) ≤ Ke. Hence, if B is a Brownian motion starting at the
origin, x ∈ ∂B, l ∈ G0, and x + B(t) + Fl(t) ∈ W , then x′ + B(t) + F (t) ∈
W for any x′ ∈ W̃ ∩ ∂B(c0)(see Figure 3.2). Thus, we have a(n + log c0, l) ≤
infx′∈W̃∩∂B(c0)

P x′
(A(n+log c0)) given that inf{t ≥ 0 : B(t)+Fl(t)+x ∈ ∂Ben+c0} ≤

inf{t ≥ 0 : B(t) + F (t) + x′ ∈ ∂Ben+c0 }. Therefore, the scaling property and
Lemma 3.6 yield

an,l ≤ Ca(n+ log c0, l) ≤ C inf
x′∈W̃∩∂B(c0)

P x′
(A(n+ log c0)) = C inf

x∈W̃∩∂B
P x(An).

Consequently, the desired result holds. □
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Figure 3.2.

Proof of Theorem 2.1: By the Markov property and the scaling property, we obtain

an+m ≤ sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ∈ G0)

× sup
x∈∂Ben

sup
l≥0

P x((B + Fl)[0, τ(e
n+m, l)] ⊂ W )

+

∞∑
s=1

sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ∈ Gs)

× sup
x∈∂Ben

sup
l∈Gs

P x((B + Fl)[0, τ(e
n+m, l)] ⊂ W )

= sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ∈ G0)

× sup
x∈∂B

sup
l≥0

P x((B + Fl)[0, τ(e
m, l)] ⊂ W )

+

∞∑
s=1

sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ∈ Gs)

× sup
x∈∂B

sup
l∈Gs

P x((B + Fl)[0, τ(e
m, l)] ⊂ W ).

Note that if τ(en)e−2n ≥ es, τ(ej , l)− τ(ej−1, l) ≥ e−n+j−1es(en)2 = es(ej)2en−j/e
for any j = 1, ..., n. Then, (3.1) yields that there exists C > 0 such that for any
s > 0

sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(ej)− τ(ej−1) ≥ es

e
(ej)2en−j)

≤ aj−1 sup
l≥0

sup
x∈∂B(exp(j−1))

P x(τ(ej , l)− τ(ej−1, l) ≥ es

e
(ej)2en−j)

≤ Caj−1 exp(−Cesen−j).
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Hence, (3.6) yields

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ∈ Gs)

≤
n∑

j=0

Caj−1 exp(−Cesen−j) = an

n∑
j=0

C
aj−1

an
exp(−Cesen−j)

≤C exp(−Ces)an. (3.7)

In addition, (3.6) yields that for any s > 0 there exists C < ∞ such that

sup
x∈∂B

sup
l∈Gs

P x((B + Fl)[0, τ(e
m, l)] ⊂ W )

≤ C sup
x∈∂B

sup
l∈Gs−1

P x((B + Fl)[0, τ(e
m, l)] ⊂ W ).

Consequently, we obtain
∞∑
s=0

C exp(−Ces) sup
x∈∂B

sup
l∈Gs

P x((B + Fl)[0, τ(e
m, l)] ⊂ W )

≤C

∞∑
s=0

C exp(−Ces)Cs sup
x∈∂B

sup
l∈G0

P x((B + Fl)[0, τ(e
m, l)] ⊂ W )

≤C sup
x∈∂B

sup
l∈G0

P x((B + Fl)[0, τ(e
m, l)] ⊂ W ).

Therefore, by Remark 3.9 we obtain the desired result. □

3.3. Proof of Theorem 2.2.

Lemma 3.10. There exist g > 0 and C < ∞ such that for any n ∈ N

an ≤ Can,g.

Proof : We pick g such that

Kg1/2(= max
t≥0

|F (t)− Fg(t)|) = min
x∈W∩∂B

max
(x′

1,...,x
′
d)∈(x+W )∩∂Be

min
(z1,...,zd)∈∂W

|x′
1 − z1|.

Note that for any y ∈ Rd, x ∈ W ∩∂B and x′ ∈ (x+W )∩∂Be, if y+F (s)+x ∈ W ,
then y+Fg(s)+x′ ∈ W . Thus, if B(s)+F (s)+x ∈ W , then B(s)+Fg(s)+x′ ∈ W
for any 0 ≤ s ≤ inf{t ≥ 0 : B(t) + F (t) + x ∈ ∂Ben} and Brownian motion
(B(t))t≥0 starting the origin (see Figure 3.3). Hence, for any x ∈ W ∩ ∂B there
exists x′ ∈ W∩∂Be such that P x(An) ≤ P x′

(An,g). Therefore, (3.5) and Lemma 3.6
yield that there exists C < ∞ such that for any n ∈ N, and x ∈ W ∩∂B, P x(An) ≤
a(n− 1, g/e2) ≤ Can,g holds. □

To show Theorem 2.2, we introduce the following lemma.

Lemma 3.11. For any b′ > 0 and b > 0 there exists C < ∞ such that for any
n ∈ N

an ≤ C inf
x∈W̃∩∂B

inf
b′≤l≤b

P x(An,l).

Proof : Note that for any b′ > 0 and b > 0 there exists c > 0 such that

inf
a∈∂B

inf
b′≤l≤b

inf
x∈W̃∩∂B(

√
g/2l)

P x((B + Fg/2)[0,
g

2
]⊂W ; (B + Fg/2)(

g

2
)∈a+ (W ∩ B)) > c.
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Figure 3.3.

In addition, we have

sup
x∈∂B

P x(An,g) ≤ sup
a∈∂B

inf
x′∈a+(W∩B)

P x′
(An,g).

Because if B(s)+Fg(s)+x ∈ W , then there exists a ∈ ∂B such that B(s)+Fg(s)+
a ∈ W for any 0 ≤ s ≤ inf{t ≥ 0 : B(t) + Fg(t) + x ∈ ∂Ben} and Brownian motion
(B(t))t≥0 starting the origin and hence for any y ∈ W ∩B there exists a ∈ ∂B such
that B(s) + Fg(s) + y + a ∈ W . Then, we obtain

sup
x∈∂B

P x(An,g)

≤C sup
a∈∂B

inf
x∈a+(W∩B)

P x(An,g)

× inf
a∈∂B

inf
b′≤l≤b

inf
x∈W̃∩∂B(

√
g/2l)

P x((B + Fg/2)[0,
g

2
]⊂W ; (B + Fg/2)(

g

2
)∈a+ (W ∩ B))

≤C sup
a∈∂B

{ inf
b′≤l≤b

inf
x∈W̃∩∂B(

√
g/2l)

P x((B + Fg/2)[0,
g

2
]⊂W ; (B + Fg/2)(

g

2
)∈a+ (W ∩ B))

× inf
x∈a+(W∩B)

P x(An,g)}

≤C sup
a∈∂B

{ inf
b′≤l≤b

inf
x∈W̃∩∂B(

√
g/2l)

P x((B + Fg/2)[0, τn,g/2] ⊂ W )}

=C inf
b′≤l≤b

inf
x∈W̃∩∂B(

√
g/2l)

P x((B + Fg/2)[0, τn,g/2] ⊂ W )

≤C inf
x∈W̃∩∂B

inf
b′≤l≤b

P x((B + Fl)[0, τn−2l/g,l] ⊂ W ).

Finally, by Lemma 3.5 and the same argument as Lemma 3.6, it is bound by

C inf
x∈W̃∩∂B

inf
b′≤l≤b

P x((B + Fl)[0, τn,l] ⊂ W ).

Therefore, by Lemma 3.10 we obtain the desired result. □
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Lemma 3.12. There exist C < ∞ and c > 0 such that for any n ∈ N and
0 < b < ∞

sup
x∈∂B

P x(An ∩ {τ(en)e−2n ≥ b}) ≤ Ce−cban, (3.8)

sup
x∈∂B

P x(An ∩ {τ(en)e−2n ≤ b}) ≤ Ce−c/ban. (3.9)

Proof : Lemma 3.6 and (3.2) yield

sup
x∈∂B

P x(An ∩ {τ(en)e−2n ≤ b})

≤ sup
x∈∂B

P x(An−1) sup
l≥0

sup
y∈∂B(n−1)

P y(τ(en)e−2n ≤ b) ≤ Ce−c/ban.

Then, we obtain (3.9). In addition (3.7) and Corollary 2.4 yield (3.8). □

Proof of Theorem 2.2: First, Lemma 3.5 and (3.8) yield that there exists C < ∞
such that for any n ∈ N

sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ≥ b) ≤ Ce−cban

≤ Ce−cb sup
x∈∂B

P x(Ln,0).

In addition, (3.9) yields

sup
x∈∂B

P x((B + F )[0, τ(en)] ⊂ W ; τ(en)e−2n ≤ b′)

≤ Ce−c/b′an ≤ Ce−c/b′ sup
x∈∂B

P x(Ln,0).

If we pick sufficiently small b′ and large b, by Lemma 3.4 there exists c > 0 such
that for any n ∈ N

sup
x∈∂B

P x(Ln,0 ∩ {τ(en)e−2n ∈ [b′, b]}) ≥ c sup
x∈∂B

P x(Ln,0) ≥ c sup
x∈∂B

P x(An).

Consequently,

an+m ≥ sup
x∈∂B

P x(Ln,0 ∩ {τ(en)e−2n ∈ [b′, b]}) inf
x∈W̃∩∂B(exp(n))

inf
b′≤l≤b

P x(Am,l)

≥can inf
x∈W̃∩∂B

inf
b′≤l≤b

P x(Am,l).

Therefore, from Lemma 3.11, we obtain the desired result. □

Now, we show (2.1) in Corollary 2.4.

Proof of (2.2) in Corollary 2.4 : Note that Fekete’s lemma holds: if {bn}∞n=1 is a
superadditive (subadditive) sequence with nonpositive elements, (bn/n) is bounded
below and converges to sup{bn/n : n ∈ N} (or inf{bn/n : n ∈ N}). If we set
ãn := log(an/C), then {ãn}∞n=1 is a superadditive sequence with nonpositive terms.
Thus, Fekete’s lemma implies that there exist C < ∞ and ξ > 0 such that ãn ≤ −ξn
and hence an ≤ Ce−ξn with the aid of Theorem 2.2. By Lemma 3.4, we obtain
ξ < ∞. Therefore, given that P x((B + F )[0, τn] ⊂ W (α, β)) is decreasing on n, we
obtain (2.2). □
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Proof of (2.1) in Corollary 2.4 : Fekete’s lemma implies that if there exist C > 0
such that for any n,m ∈ N, an ≤ Canam, then there exists c > 0 such that an ≥
ce−ξn with the same argument as the proof of (2.2) in Corollary 2.4. Theorem 2.1
states that there exists c > 0 such that for any n ∈ N, and x ∈ W̃ ∩ ∂B

cn−ξ ≤ sup
x∈∂B

P x((B + F )[0, τn] ⊂ W ).

Subsequently, Lemma 3.8 yields the desired result. □

3.4. Proof of Corollary 2.5.

Proof of Corollary 2.5: First, we show the first claim. Since we emphasize on K in
F (t), we write An(K) for An. Let ξ1(K) := supK′≤K ξ(K ′). Based on Remark 2.3,
Theorem 2.2 and Fekete’s lemma state that there exists C < ∞ such that for any
K ≤ 1, and x ∈ ∂B

P x(An+1(0)) ≤ P x(∩K′≤KAn(K
′)) ≤ min

K′≤K
P x(An(K

′)) ≤ Ce−ξ1(K)n.

Since ξ1(K) ≥ ξ(0), we obtain ξ1(K) → ξ(0) as K → 0. To show the other
inequality, let ξ2(K) := infK′≤K ξ(K ′). By Remark 2.3, Theorem 2.1 and Fekete’s
lemma yield that there exists C < ∞ such that for any K ≤ 1 and x ∈ ∂B,

P x(An+1(0)) ≥ P x(∪K′≤KAn(K
′)) ≥ max

K′≤K
P x(An(K

′)) ≥ Ce−ξ2(K)n.

Since ξ2(K) ≤ ξ(0), we obtain ξ2(K) → ξ(0) as K → 0. Therefore, we obtain the
first result.

Next, we show the second claim. By monotonicity, the desired result is obtained
when β = (1, 0) or (1, 0, 0) and α is an acute angle. Let C1(K) :=
infx∈W̃∩∂B inf l≤1 P (Le,l ∩ {τe,l ≤ e2 − 1}). It is trivial that as K → ∞,

C1(K) → 1.

In addition, for any x ∈ W̃ ∩ ∂B and n ∈ N

P x(An(K)) ≥ C1(K)n.

Hence, we obtain the second claim.
Next, we show the third claim. Choose sufficiently large M < ∞ such that for

any v ∈ N,
lim

K→∞
sup
x∈∂B

sup
l≤M2v

P x(AlogM,l(K)) = 0. (3.10)

The large deviation estimate states that C < ∞ and c > 0 exist such that for any
s < ∞ and M < ∞,

sup
K≥0,l≥0

sup
x∈∂B

P x(τM,lM
−2 ≥ s) ≤ C exp(−cs). (3.11)

Next, fix ϵ > 0 and choose sufficiently large v ∈ N such that
∞∑

s=v−1

C exp(−c′M2s)

ϵs+1
≤ 1

4
. (3.12)

In addition, based on (3.10), we can choose K < ∞ such that
a′n := sup

K′≥K
sup
x∈∂B

sup
l≤M2v

P x(AlogM,l(K
′)) < ϵ.
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Note that (3.5) yields

sup
x∈∂B

P x(An,l) ≤ sup
x∈∂B

P x(A(n− 1, l/e2)).

Then, by (3.11) we obtain

a′n+1 ≤ sup
K′≥K

sup
x∈∂B

sup
l≤M2v

P x((B + Fl)(0, τ(M
n+1, l))⊂W ; τM,lM

−2≤M2v−M2v−2)

+

n−2∑
s=v−1

sup
K′≥K

sup
x∈∂B

sup
l≤M2v

P x((B + Fl)(0, τ(M
n+1, l)) ⊂ W ;

τM,lM
−2 ∈ [M2s −M2v−2,M2s+2 −M2v−2])

+ sup
K′≥K

sup
x∈∂B

sup
l≤M2v

P x(τM,lM
−2 ≥ M2n)

≤ϵa′n +

n∑
s=v−1

C exp(−cM2s)a′n−s.

Hence, if we set b′n = a′n/ϵ
n, we obtain that for any m ≥ v

b′m+1 − b′m ≤
m∑

s=v−1

C
exp(−c′M2s)

ϵs+1
b′m−s.

Summing over m = v, v + 1, ..., n, by (3.12) we obtain that for any n ≥ v

b′n+1 ≤ b′v +

n−v∑
m=0

b′m
4

≤ 2

n∑
m=0

b′m.

Then, the induction yields that for any ϵ > 0 there exists C < ∞ such that for any
n ∈ N

b′n ≤ C3n,

and, hence,

lim sup
n→∞

log a′n
n

≤ log ϵ+ 3.

Therefore, we have the desired result. □

3.5. Proof of Corollary 2.6.

Proof of Corollary 2.6: By monotonicity, it suffices to show that there exist 0 <
C1, C2 < ∞ such that for any n ∈ N and x ∈ W̃ ∩ ∂B,

C1e
−ξn ≤ P x((B + F )[0, e2n] ⊂ W [α, β]) ≤ C2e

−ξn.

Equations (2.2) and (3.9) conclude that for any b < ∞,

sup
x∈W̃∩∂B

P x((B + F )[0, e2n] ⊂ W )

≥ sup
x∈W̃∩∂B

P x((B + F )[0, τ(ben)] ⊂ W )

− sup
x∈W∩∂B

P x((B + F )[0, τ(ben)] ⊂ W ; τbene
−2n ≤ 1)

≥(ben)−ξ − C(ben)−ξe−cb2 .
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Next, if we choose sufficiently large b < ∞, the last expression is greater than
(ben)−ξ/2. Hence, we obtain the desired lower bound. We now show the upper
bound. Note that for any x ∈ W ∩ ∂B

sup
x∈W∩∂B

P x((B + F )[0, e2n] ⊂ W )

≤ sup
x∈W∩∂B

P x((B + F )[0, e2n] ⊂ W )

≤ sup
x∈W∩∂B

P x(An) +

n∑
j=1

sup
x∈W∩∂B

P x(Aj−1 ∩ {τ(ej−1) ≥ e2n}).

Equations (2.2) and (3.8) yield that there exist C < ∞ and c > 0 such that

sup
x∈W∩∂B

P x(Aj−1 ∩ {τ(ej−1) ≥ e2n}) ≤C(ej−1)−ξ exp(−cen−j)

=C(en−1)−ξ(en−j)ξ exp(−cen−j).

By summing over j, we have the desired upper bound. □
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