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Abstract. We consider the Brownian interlacements model in Euclidean space,
introduced by Sznitman (2013). We give estimates for the asymptotics of the vis-
ibility in the vacant set. We also consider visibility inside the vacant set of the
Brownian excursion process in the unit disc and show that it undergoes a phase
transition regarding visibility to infinity as in Benjamini et al. (2009). Addition-
ally, we determine the critical value and that there is no visibility to infinity at the
critical intensity.

1. Introduction

In this paper, we study visibility inside the vacant set of two percolation models;
the Brownian interlacements model in Rd (d ≥ 3), and the Brownian excursion
process in the unit disc. Below, we first informally discuss Brownian interlacements
model and our results for that model, and then we move on the Brownian excursions
process.

The Brownian interlacements model is defined as a Poisson point process on the
space of doubly infinite continuous trajectories modulo time-shift in Rd, d ≥ 3. The
aforementioned trajectories essentially look like the traces of double-sided Brownian
motions. It was introduced by Sznitman (2013) as a means to study scaling limits
of the occupation measure of continuous time random interlacements on the lattice
N−1Zd. The Brownian interlacements model can be considered to be the continuous
counterpart of the random interlacements model, which is defined as a Poisson point
process on the space of doubly infinite trajectories in Zd, d ≥ 3, and was introduced
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in Sznitman (2010). Both models exhibit infinite range dependence of polynomial
decay, which often complicates the application of standard arguments. Random
interlacements on Zd have received quite a lot of attention since their introduction.
For example, percolation in the vacant set of the model have been studied in Sido-
ravicius and Sznitman (2009) and Sznitman (2010). Connectivity properties of the
interlacement set have been studied in Ráth and Sapozhnikov (2012), Procaccia and
Tykesson (2011), Černý and Popov (2012) and Lacoin and Tykesson (2013). For
the Brownian interlacements model, percolative and connectivity properties were
studied in Li (2016).

We will recall the precise definition of the Brownian interlacement model in
Section 2, where we will also give the precise formulation of our main results, but
first we discuss our results somewhat informally. In the present work, we study
visibility inside the vacant set of the Brownian interlacements. For ρ > 0 and
α > 0, the vacant set Vα,ρ is the complement of the random closed set BIρα, which
is the closed ρ-neighbourhood of the union of the traces of the trajectories in the
underlying Poisson point process in the model. Here α is a multiplicative constant of
the intensity measure (see (2.9)) of the Poisson point process, governing the amount
of trajectories that appear in the process. The visibility in a fixed direction in Vα,ρ

from a given point x ∈ Rd (d ≥ 3) is defined as the longest distance you can move
from x in the direction, without hitting BIρα. The probability that the visibility
in a fixed direction from x is larger than r ≥ 0 is denoted by f(r) = f(r,α,ρ,d).
The visibility from x is then defined as the longest distance you can move in some
direction, and the probability that the visibility is larger than r ≥ 0 is denoted by
Pvis(r) = Pvis(r,α,ρ,d). Clearly, Pvis(r) ≥ f(r), but it is of interest to more closely
study the relationship between the functions Pvis(r) and f(r). Our main result

for Brownian interlacements in Rd, Theorem 2.3, gives upper and lower bounds
of Pvis(r) in terms of f(r). In particular, Theorem 2.3 show that the rates of
decay (in r) for the two functions differ with at most a polynomial factor. It is
worth mentioning that even if the Brownian interlacements model in some aspects
behaves very differently from more standard continuum percolation models like the
Poisson Boolean model, when it comes to visibility the difference does not appear
to be too big. The proof of Theorem 2.3 uses first and second moment methods
and is inspired by the proofs of Lemmas 3.5 and 3.6 of Benjamini et al. (2009). The
existence of long-range dependence in the model creates some extra complications
to overcome. It seems to us that the arguments in the proof of Theorem 2.3 are
possible to adapt to other percolation models based on Poisson-processes on infinite
objects, for example the Poisson cylinder model Tykesson and Windisch (2012).

We now move on to the Brownian excursion process in the open unit disk D =
{z ∈ C : |z| < 1}. This process is defined as a Poisson point process on the space
of Brownian paths that start and end on ∂D, and stay inside D in between. The
intensity measure is given by αµ where µ is the Brownian excursion measure (see
for example Lawler and Werner (2000), Lawler (2005)) and α > 0 is a constant.
This process was studied in Wu (2012), where, among other things, connections to
Gaussian free fields were made. The union of the traces of the trajectories in this
Poisson point process is a closed random set which we denoted by BEα, and the
complement is denoted by Vα. Again, we consider visibility inside the vacant set.
In Theorem 2.4, we show that, there is a critical level αc = π/4 such that if α < αc,
with positive probability there is some θ ∈ [0,2π) such that the line-segment [0,eiθ)
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(which has infinite length in the hyperbolic metric) is contained in Vα, while if
α ≥ αc the set of such θ is a.s. empty. A similar phase transistion is known to hold
for the Poisson Boolean model of continuum percolation and some other models
in the hyperbolic plane, see Benjamini et al. (2009) and Lyons (1996). As seen by
Theorem 2.3, such a phase transition does not occur for the set Vα,ρ in the Brownian
interlacements model in Euclidean space, when ρ > 0. The proof of Theorem 2.4
is based on circle covering techniques, using a sharp condition by Shepp Shepp
(1972), see Theorem 5.1, for when the unit circle is covered by random arcs. To be
able to use Shepp’s condition, the µ-measure of a certain set of trajectories must
be calculated. This is done in the key lemma of the section, Lemma 5.3, which
we think might be of independent interest. Lemma 5.3 has a somewhat surprising
consequence, see Equation (5.17).

We now give some historical remarks concerning the study of visibility in various
models. The problem of visibility was first studied by G. Pólya in Pólya (1918)
where he considered the visibility for a person at the origin and discs of radiusR > 0,
placed on the lattice Z2. For the Poisson Boolean model of continuum percolation
in the Euclidean plane, an explicit expression is known for the probability that the
visibility is larger than r, see Proposition 2.1 on p.4 in Calka et al. (2009) (which
uses a formula from Siegel and Holst (1982)). Visibility in non-Euclidean spaces
has been considered by R. Lyons in Lyons (1996), where he studied the visibility on
manifolds with negative curvature, see also Kahanes earlier works Kahane (1990)
Kahane (1991) in the two-dimensional case. In the hyperbolic plane, visibility
in so-called well behaved random sets was studied in Benjamini et al. (2009) by
Benjamini et. al.

The rest of the paper is organized as follows. In Section 2 we give the definitions
of Brownian interlacements and Brownian excursions, and give the precise formu-
lations of our results. Section 3 contains some preliminary results needed for the
proof of our main result for Brownian interlacements. In Section 4 we prove the
main result for Brownian interlacements. The final section of the paper, Section 5,
contains the proof of our main result for the Brownian excursion process.

We now introduce some notation. We denote by 1{A} the indicator function of a
set A. By A b X we mean that A is a compact subset of a topological space X. Let
a ∈ [0,∞] and f ,g be two functions. If lim supx→a f/g < ∞ we write f = O(g(x))
as x→ a and if lim infx→a f/g > 0 then we write f = Ω(g(x)) as x→ a.

For x ∈ Rd and r > 0, let B(x,r) = {y : |x − y| ≤ r} and B(r) = B(0,r). For
A ⊂ Rd define

At :=
{
x ∈ Rd : dist(x,A) ≤ t

}
,

to be the closed t-neighbourhood of A. For x,y ∈ Rd let [x,y] be the (straight) line
segment between x and y.

Finally, we describe the notation and the convention for constants used in this
paper. We will let c,c′,c′′ denote positive finite constants that are allowed to depend
on the dimension d and the thickness ρ only, and their values might change from
place to place, even on the same line. With numbered constants ci, i ≥ 1, we
denote constants that are defined where they first appear within a proof, and stay
the same for the rest of the proof. If a constant depends on another parameter, for
example the intensity of the underlying Poisson point process, this is indicated.
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2. Preliminaries

2.1. Brownian interlacements. We begin with the setup as in Sznitman (2013).
Let C = C(R;Rd) denote the continuous functions from R to Rd and let C+ =
C(R+;Rd) denote the continuous functions from R+ to Rd. Define

W = {x ∈ C : lim
|t|→∞

|x(t)| =∞} and W+ = {x ∈ C+ : lim
t→∞

|x(t)| =∞}.

On W we let Xt, t ∈ R, denote the canonical process, i.e. Xt(w) = w(t) for w ∈ C,
and letW denote the σ-algebra generated by the canonical processes. Moreover we
let θx,x ∈ R denote the shift operators acting on R, that is θx : R→ R, y 7→ y + x.
We extend this notion to act on C by composition as

θx : C → C, f 7→ f ◦ θx.

Similarly, on W+, we define the canonical process Xt, t ≥ 0, the shifts θh, h ≥ 0, and
the sigma algebraW+ generated by the canonical processes. We define the following
random times corresponding to the canonical processes. For F ⊂ Rd closed and
w ∈W+, the entrance time is defined as HF (w) = inf{t ≥ 0 : Xt(w) ∈ F} and the

hitting time is defined as H̃F (w) = inf{t > 0 : Xt(w) ∈ F}. For K b Rd the time
of last visit to K for w ∈ W+ is defined as LK(w) = sup {t > 0 : Xt(w) ∈ K}.
The entrance time for w ∈W is defined similarly, but t > 0 is replaced by t ∈ R.

On W , we introduce the equivalence relation w ∼ w′ ⇔ ∃h ∈ R : θhw = w′ and
we denote the quotient space by W ∗ = W/ ∼ and let

π : W →W ∗, w 7→ w∗,

denote the canonical projection. Moreover, we let W∗ denote the largest σ-algebra
such that π is a measurable function, i.e. W∗ = {π−1(A) : A ∈ W}. We denote
WK ⊂W all trajectories which enter K, and W ∗K the associated projection. We let
Px be the Wiener measure on C with the canonical process starting at x, and we
denote PBx (·) = Px(·|HB = ∞) the probability measure conditioned on the event
that the Brownian motion never hits the closed ball B. When y ∈ ∂B some care
is needed to ensure that this definition makes sense. In this case, the measure
Py(·|HB) for y ∈ ∂B is defined as the weak limit on C(R+;Rd) of the measures
Pz(·|HB), z 6∈ B as z → y. For more details see Theorems 2.2 and 4.1 of Burdzy
(1987).

For a finite measure λ on Rd we define

Pλ =

∫
Pxλ(dx).

The transition density for the Brownian motion on Rd is given by

p(t,x,y) :=
1

(2πt)d/2
exp

(
−|x− y|

2

2t

)
(2.1)

and the Greens function is given by

G(x,y) = G(x− y) :=

∫ ∞
0

p(t,x,y)dt = cd/|x− y|d−2,

where cd is some dimension dependent constant, see Theorem 3.33 p.80 in Mörters
and Peres (2010).
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Following Sznitman (2013) we introduce the following potential theoretic frame-
work. For K b Rd let P(K) be the space of probability measures supported on K
and introduce the energy functional

EK(λ) =

∫
K×K

G(x,y)λ(dx)λ(dy), λ ∈ P(K). (2.2)

The Newtonian capacity of K b Rd is defined as

cap(K) :=

(
inf

λ∈P(K)
{EK(λ)}

)−1

, (2.3)

see for instance Brelot (1967), Port and Stone (1978) or Mörters and Peres (2010).
It is the case that

the capacity is a strongly sub-additive and monotone set-function. (2.4)

Let eK(dy) be the equilibrium measure, which is the finite measure that is
uniquely determined by the last exit formula, see Theorem 8.8 in Mörters and
Peres (2010),

Px(X(LK) ∈ A, LK > 0) =

∫
A

G(x,y)eK(dy), (2.5)

and let ẽK be the normalized equilibrium measure. By Theorem 8.27 on p. 240 in
Mörters and Peres (2010) we have that ẽK is the unique minimzer of (2.2) and

cap(K) = eK(K). (2.6)

Moreover the support satisfies supp eK(dy) = ∂K.
If B is a closed ball, we define the measure QB on W 0

B := {w ∈W : HB(w) = 0}
as follows:

QB [(X−t)t≥0 ⊂ A′, X0 ∈ dy, (Xt)t≥0 ⊂ A] := PBy (A′)Py(A)eB(dy), (2.7)

where A,A′ ∈ W+. If K is compact, then QK is defined as

QK = θHK ◦ (1{HK <∞}QB), for any closed ball B ⊇ K.

As pointed out in Sznitman (2013) this definition is independent of the choice of
B ⊇ K and coincides with (2.7) when K is a closed ball. We point out that
Equation 2.21 of Sznitman (2013) says that

QK [(Xt)t≥0 ∈ ·] = PeK (·). (2.8)

From Sznitman (2013) we have the following theorem, which is Theorem 2.2 on
p.564.

Theorem 2.1. There exists a unique σ-finite measure ν on (W ∗,W∗) such that
for all K compact,

ν(· ∩W ∗K) = π ◦QK(·). (2.9)

By Equations 2.7 on p.564 and 2.21 on p.568 in Sznitman (2013) it follows that
for K ⊂ Rd compact

ν(W ∗K) = cap(K).

Now we introduce the space of point measures or configurations, where δ is the
usual Dirac measure:

Ω =

ω =
∑
i≥0

δ(w∗
i ,αi) : (w∗

i ,αi) ∈W ∗ × [0,∞), ω(W ∗
K × [0,α]) <∞, ∀K b Rd,α ≥ 0

 ,

(2.10)
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and we endow Ω with the σ-algebra M generated by the evaluation maps

ω 7→ ω(B),B ∈ W∗ ⊗ B(R+).

Note that the symbol Ω should not be confused with Ω which was introduced in
the end of Section 1. Furthermore, we let P denote the law of the Poisson point
process of W ∗ × R+ with intensity measure ν ⊗ dα. The Brownian interlacement
at level α ∈ R+ with radius ρ ∈ R+ is then defined as the random closed set

BIρα(ω) :=
⋃
αi≤α

⋃
s∈R

B(wi(s),ρ), (2.11)

where ω =
∑
i≥0 δ(w

∗
i ,αi) ∈ Ω and π(wi) = w∗i . We then let Vα,ρ = Rd \BIρα denote

the vacant set.
The law of BIρα is characterized as follows. Let Σ denote the family of all closed

sets of Rd. We endow Σ with the σ-algebra F generated by sets of the type {F ∈
Σ : F ∩ K = ∅} for K compact, see p.27 of Matheron (1975). The law of the
interlacement set, Qρα, is a probability measure on (Σ,F) given by the following
identity:

Qρα ({F ∈ Σ : F ∩K = ∅}) = P (BIρα ∩K = ∅) = e−αcap(Kρ). (2.12)

For convenience, we also introduce the following notation. For α > 0 and ω =∑
i≥1 δ(wi,αi) ∈ Ω, we write

ωα :=
∑
i≥1

δ(wi,αi)1{αi ≤ α}. (2.13)

Observe that under P, ωα is a Poisson point process onW ∗ with intensity measure
αν. Note that, by Remark 2.3 (2) and Proposition 2.4 in Sznitman (2013) both ν
and P are invariant under translations as well as linear isometries.

Remark 2.2. To get a better intuition of how this model works it might be good to
think of the local structure of the random set BIρα. This can be done in the following
way, which uses (2.8). Let K ⊂ Rd be a compact set. Let NK ∼ Poisson(αcap(K)).

Conditioned on NK , let (yi)
NK
i=1 be i.i.d. with distribution ẽK . Conditioned on NK

and (yi)
NK
i=1 let ((Bi(t))t≥0)NKi=1 be a collection of independent Brownian motions in

Rd with Bi(0) = yi for i = 1,...,NK . We have the following distributional equality:

K ∩ BIρα
d
=

(
NK⋃
i=1

[Bi]
ρ

)
∩K, (2.14)

where [Bi] stands for the trace of Bi.

2.2. Results for the Brownian interlacements model in Euclidean space. The fol-
lowing theorem is our main result concerning visibility inside the vacant set of
Brownian interlacements in Rd. Recall the definition of f(r) from Section 1: f(r)
is the probability that a line-segment of length r does not intersect BIρα.

Theorem 2.3. As r →∞

Pvis(r) = O
(
r2(d−1)f(r)

)
, d ≥ 3, (2.15)

Pvis(r) = Ω
(
rd−1f(r)

)
, d ≥ 4, (2.16)

where the implied constants only depend on d, ρ and α.
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We believe that the lower bound in (2.16) is closer to the true asymptotic be-
haviour of Pvis(r) as r →∞ than the upper bound in (2.15). Indeed, if for r > 0 we
let Zr denote the set of points x ∈ ∂B(0,r) such that [0,x] ⊂ Vα,ρ, then the expected
value of |Zr|, the (d − 1)-dimensional volume of Zr, is proportional to rd−1f(r).
We also observe that a consequence of Theorem 2.3 we obtain that Pvis(r)→ 0 as
r →∞. However, this fact can be obtained in simpler ways than Theorem 2.3.

2.3. Brownian excursions in the unit disc. The Brownian excursion measure on a
domain S in C is a σ-finite measure on Brownian paths which is supported on the
set of continuous paths, w = (w(t))0≤t≤Tw , that start and end on the boundary ∂S
such that w(t) ∈ S,∀t ∈ (0,Tw). Its definition is found in for example Lawler and
Werner (2000), Virág (2003), see also Lawler (2005), Lawler and Werner (2004)
for useful reviews. We now recall the definition and properties of the Brownian
excursion measure in the case when S is the open unit disc D = {z ∈ C : |z| < 1}.

Let

WD :=
{
w ∈ C([0,Tw],D̄) : w(0),w(Tw) ∈ ∂D, w(t) ∈ D,∀t ∈ (0,Tw)

}
and let Xt(w) = w(t) be the canonical process on WD. LetWD be the sigma-algebra
generated by the canonical processes. Moreover, for K ⊂ D we let WK,D be the set
of trajectories in WD that hit K. Let

ΩD =

{
ω =

∑
i≥0

δ(wi,αi) : (wi,αi) ∈WD × [0,∞),

ω(WK,D × [0,α]) <∞,∀K b D,α ≥ 0

}
.

We endow ΩD with the σ-algebra MD generated by the evaluation maps

ω 7→ ω(B),B ∈ WD ⊗ B(R+).

For a probability measure σ on D, denote by Pσ the law of Brownian motion
with starting point chosen at random according to σ, stopped upon hitting ∂D.
Note that Pσ is not supported on WD but on the closely related space W̃D, which
is defined in the same way as WD but with the condition that w(0) ∈ ∂D replaced
with the condition w(0) ∈ D. (Also note that Pσ has a different meaning if it occurs
in a section concerning Brownian interlacements.) For r > 0, let σr be the uniform
probability measure on ∂B(0,r) ⊂ R2. The Brownian excursion measure on D is
defined as the limit

µ = lim
ε→0

2π

ε
Pσ1−ε . (2.17)

See for example Chapter 5 in Lawler (2005) for details. The measure µ is a sigma-
finite measure on WD with infinite mass.

As in Wu (2012) we can then define the Brownian excursion process as a Poisson
point process on WD×R+ with intensity measure µ⊗ dα and we let PD denote the
probability measure corresponding to this process.

For α > 0, the Brownian excursion set at level α is then defined as

BEα(ω) :=
⋃
αi≤α

⋃
s≥0

wi(s), ω =
∑
i≥0

δ(wi,αi) ∈ ΩD, (2.18)

and we let Vα = D \ BEα denote the vacant set.
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Proposition 5.8 in Lawler (2005) says that µ, and consequently PD, are invariant
under conformal automorphisms of D. The conformal automorphisms of D are given
by

Tλ,a = λ
z − a
āz − 1

, |λ| = 1, |a| < 1. (2.19)

On D we consider the hyperbolic metric ρ given by

%(u,v) = 2 tanh−1

∣∣∣∣ u− v1− ūv

∣∣∣∣ for u,v ∈ D.

We refer to D equipped with % as the Poincaré disc model of 2-dimensional
hyperbolic space H2. The metric % is invariant under (Tλ,a)|λ|=1, |a|<1.

The Brownian excursion process can in some sense be thought of as the H2

analogue of the Brownian interlacements process due to the following reasons. First,
as already mentioned, the law of the Brownian excursion process is invariant under
the conformal automorphisms of D, which are isometries of H2. Moreover, Brownian
motion in H2 started at x ∈ D can be seen as a time-changed Brownian motion
started at x stopped upon hitting ∂D, see Example 3.3.3 on p.84 in Hsu (2002).
In addition, we can easily calculate the µ-measure of trajectories that hit a ball as
follows. First observe that for r < 1

µ({γ : γ ∩B(0,r) 6= ∅}) = lim
ε→0

2πε−1Pσ1−ε(HB(0,r) <∞)

= lim
ε→0

2π log(1− ε)
ε log(r)

= − 2π

log(r)
, (2.20)

where we used Theorem 3.18 of Mörters and Peres (2010) in the penultimate equal-
ity. For rh ≥ 0 let BH2(x,rh) = {y ∈ D : %(x,y) ≤ rh} be the closed hyperbolic ball
centered at x with hyperbolic radius rh. Then BH2(0,rh) = B(0,(erh−1)/(erh +1))
so that

µ({γ : γ ∩BH2(0,rh) 6= ∅}) = − 2π

log( e
rh−1
erh+1 )

=
2π

log(coth(rh/2))
.

The last expression can be recognized as the hyperbolic capacity (see Grigor’yan,
1999 for definition) of a hyperbolic ball of radius rh, since according to Equation
4.23 in Grigor’yan (1999)

capH2(BH2(0,rh)) =

(∫ ∞
rh

1

S(t)
dt

)−1

, (2.21)

where S(rh) = 2π sinh(rh) is the circumference of a ball of radius rh in the hyper-
bolic metric. The integral equals∫ ∞

rh

1

2π sinh(t)
dt =

1

2π
[log(tanh(t/2))]

∞
rh

=
log(coth(rh/2))

2π
,

which yields the expression

capH2(BH2(0,rh)) =
2π

log[coth(rh/2)]
,

which coincides with (2.20).
We now define the event of interest in this section. Let

V α∞ =
{
{θ ∈ [0,2π) : [0,eiθ) ⊂ Vα} 6= ∅

}
. (2.22)
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If V α∞ occurs, we say that we have visibility to infinity in the vacant set (since
[0,eiθ) has infinite length in the hyperbolic metric). As remarked above, such a
phenomena cannot occur for the Brownian interlacements model on Rd (d ≥ 3).

2.4. Results for the Brownian excursions process. Our main result (Theorem 2.4)
for the Brownian excursion process is that we have a phase transition for visibility
to infinity in the vacant set. We also determine the critical level for this transition
and what happens at the critical level.

Theorem 2.4. It is the case that

PD(V α∞) > 0, α < π/4,
PD(V α∞) = 0, α ≥ π/4.

(2.23)

Remark 2.5. A similar phase-transition for visibility to infinity was proven to hold
for so called well-behaved random sets in the hyperbolic plane in Benjamini et al.
(2009). One condition for a random set Z ⊂ D to be classified as well-behaved in
Benjamini et al. (2009) is that there is some constant R0 such that for every pair
of subsets A,A′ ⊂ D satisfying inf{%(x,x′) : x ∈ A,x′ ∈ A′} ≥ R0, the random sets
Z∩A and Z∩A′ are independent. The vacant set of the Brownian excursion process
is not well-behaved due to the fact that the excursions have infinite diameter. One
example of a well-behaved random set is the vacant set of the Poisson-Boolean
model of continuum percolation with balls of deterministic radii. In this model,
balls of some fixed radius are centered around the points of a homogeneous Poisson
point process in H2, and the vacant set is the complement of the union of those
balls. In this case, a phase-transition for visibility was known to hold earlier, see
Lyons (1996).

Remark 2.6. In a remark after the proof of Theorem 2.4 we explain why

PD([0,eiθ) ⊂ Vα) = 0 for every θ ∈ [0,2π) and every α > 0. (2.24)

From (2.24) if follows that the set {θ ∈ [0,2π) : [0,eiθ) ⊂ Vα} has Lebesgue
measure 0 a.s. when α > 0. It could be of interest to determine the Hausdorff
dimension of {θ ∈ [0,2π) : [0,eiθ) ⊂ Vα} on the event that this set is non-empty.
For example, this was done for well-behaved random sets in the hyperbolic plane
in Thäle (2014).

3. Preliminary results for the Euclidean case

In this section we collect some preliminary results needed for the proof of The-
orem 2.3. The parameters α > 0 and ρ > 0 will be kept fixed, so for brevity we
write V and BI for Vα,ρ and BIρα respectively. We now introduce some additional
notation. For A,B b Rd define the event

A
g↔ B := {∃x ∈ A, y ∈ B : [x,y] ⊂ V} (3.1)

In words, the event A
g↔ B is the event that there is a straight line-segment con-

tained in V connecting A and B. In Euclidean geometry, a straight line segment is
a geodesic path, which explains why we use the letter g.

Then

Pvis(r) = P
(

0
g↔ ∂B(r)

)
, (3.2)
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f(r) = P
(

0
g↔ xr

)
,x ∈ Sd−1, (3.3)

where Sd−1 = ∂B(1). For L,ρ > 0 let

[0,L]ρ :=
{
x = (x1,x′) ∈ R× Rd−1 : x1 ∈ [0,L], |x′| ≤ ρ

}
, (3.4)

denote the cylinder of length L and radius ρ. For x,y ∈ Rd let [x,y]ρ = Rx,y([0,|x−
y|]ρ) where Rx,y is an isometry on Rd mapping 0 to x and (|x− y|,0,...,0) to y. In
other words, [x,y]ρ is the finite cylinder with base radius ρ and with central axis
running between x and y. Using estimates of the capacity of [0,L]1 from Port and
Stone (1978) we easily obtain estimates of the capacity of [0,L]ρ for general ρ as
follows.

Lemma 3.1. For every L0 ∈ (0,∞) and ρ0 ∈ (0,∞) there are constants c,c′ ∈ (0,∞)
(depending on L0,ρ0 and d) such that for L ≥ L0, ρ ≤ ρ0,

cρd−3L ≤ cap([0,L]ρ) ≤ c′ρd−3L, d > 3,

cL/(log(L/ρ)) ≤ cap([0,L]ρ) ≤ c′L/(log(L/ρ)), d = 3.

Proof : Fix L0,ρ0 ∈ (0,∞) and consider L ≥ L0 and ρ ≤ ρ0. Note that [0,L]ρ =
ρ[0,L/ρ]1. Hence by the homogeneity property of the capacity, see Proposition 3.4
p.67 in Port and Stone (1978), we have

cap([0,L]ρ) = ρd−2cap([0,L/ρ]1).

We then utilize the following bounds, see Proposition 1.12 p.60 and Proposition 3.4
p.67 in Port and Stone (1978): For each L′0 ∈ (0,∞) there are constants c,c′ such
that

cL ≤ cap([0,L]1) ≤ c′L, d > 3,

cL/ log(L) ≤ cap([0,L]1) ≤ c′L/ log(L), d = 3,

for L ≥ L′0. The results follows, since L/ρ ≥ L0/ρ0. �

Observe that by invariance, Proposition 3.4 p.67 in Port and Stone (1978),

cap([x,y]ρ) = cap([0,|x− y|]ρ).

Next, we discuss the probability that a given line segment of length r is contained
in V, that is f(r). Note that for x,y ∈ Rd,

{x g↔ y} =
{
ω ∈ Ω : ωα

(
W ∗[x,y]ρ

)
= 0
}

.

Since under P, ω is a Poisson point process with intensity measure ν ⊗ dα we get
that

f(|x− y|) = e−αcap([x,y]ρ). (3.5)

Since [x,y]ρ is the union of the cylinder [x,y]ρ and two half-spheres of radius ρ,
it follows using (2.4) that

c(α)e−αcap([x,y]ρ) ≤ f(|x− y|) ≤ e−αcap([x,y]ρ). (3.6)

The next lemma will be used in the proof of (2.16). However, we will not use
the full strength of this Lemma but rather the conclusion in the remark following
the proof.
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Lemma 3.2. Let d ≥ 4 and L be a bi-infinite line. Let Lr be a line segment of
length r ≥ 1. There are constants c(d,ρ), c′(d,ρ) such that

ν(W ∗Lρr \W
∗
Lρ) ≥ (1− cdist(Lr,L)−(d−3))ν(W ∗Lρr ). (3.7)

whenever dist(Lr,L) ≥ c′.

Proof : First assume that r ≥ 1 is an integer and that one of the endpoints of Lr
minimizes the distance between L and Lr. We write

ν(W ∗Lρr ) = ν(W ∗Lρr \W
∗
Lρ) + ν(W ∗Lρr ∩W

∗
Lρ), (3.8)

and focus on finding a useful upper bound of the second term of the right hand
side.

We now write L = (γ1(t))t∈R, where γ1 is parametrized to be unit speed and
such that dist(Lr,γ1(0)) = dist(Lr,L). Similarly, we write Lr = (γ2(t))0≤t≤r where

γ2 has unit speed and dist(γ2(0),L) = dist(Lr,L). For i ∈ Z and 0 ≤ j ≤ r − 1 let
yi = γ1(i) and let zj = γ2(j). Choose s = s(ρ) <∞ such that

Lρ ⊂
⋃
i∈Z

B(yi,s) and Lρr ⊂
r−1⋃
i=0

B(zi,s).

We now have that

ν(W ∗Lρr ∩W
∗
Lρ) ≤

r−1∑
j=0

ν(W ∗B(zj ,s)
∩W ∗Lρ)

≤
r−1∑
j=0

∑
i∈Z

ν(W ∗B(zj ,s)
∩W ∗B(yi,s)

)

≤
r−1∑
j=0

∑
i∈Z

c

|zj − yi|(d−2)
≤ c

r−1∑
j=0

∑
i∈Z

1

|z0 − yi|d−2

≤ c
r−1∑
j=0

∑
i∈Z

1

(dist(L,Lr)2 + i2)
d−2
2

≤ c1
r−1∑
j=0

dist(L,Lr)
−(d−3)

= c1 r dist(L,Lr)
−(d−3),

where the third inequality follows from Lemma 2.1 on p.14 in Li (2016). Combining
this with the fact from Lemma 3.1 that ν(W ∗

Lρr
) ≥ c2r whenever r ≥ 1, we get that

ν(W ∗Lρr ∩W
∗
Lρ) ≤

c1
c2
ν(W ∗Lρr )dist(L,Lr)

−(d−3),

which together with (3.8) gives the result.
For the case of arbitrarily oriented lines we note that the calculation of the upper

bound of ν(W ∗
Lρr
∩W ∗Lρ) in the displayed equation array above gives that

ν
(
W ∗B(x,s) ∩W

∗
Lρ

)
≤ c dist(x,L)−(d−3)

for any x ∈ Rd and any line L. This, together with the fact that a line-segment
of length r can be covered by O(r) balls of radius s(ρ) is what is used to obtain
the result. The particular choice of z0 in the beginning of the proof was only for
convenience of notation. �
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Remark 3.3. Observe that the lemma above implies that for every r > 1, and every
line L and line-segment Lr of length r satisfying dist(L,Lr) > c, we have

ν(W ∗Lρr \W
∗
Lρ) ≥

1

2
ν(W ∗Lρr ).

It is easy to generalize the statement to hold for every r > 0.

4. Proof of Theorem 2.3

We split the proof of Theorem 2.3 into the proofs of two propositions, Propo-
sition 4.1 which is the lower bound (2.16) and Proposition 4.2 which is the upper
bound (2.15).

4.1. The lower bound. To get a lower bound we will utilize the second moment
method. More precisely we shall modify the arguments from the proof of Lemma
3.6 on p.332 in Benjamini et al. (2009). Let σ(dx) denote the surface measure of
Sd−1, and for r > 0 define

Yr :=
{
x ∈ Sd−1 : [0, rx] ⊂ V

}
, (4.1)

yr := |Yr| =
∫
Sd−1

1Yr (x)σ(dx). (4.2)

The expectation and the second moment of yr are computed using Fubini’s theorem:

E(yr) = |Sd−1|f(r) (4.3)

E(y2
r) =

∫
(Sd−1)2

P(x,x′ ∈ Yr)σ(dx)σ(dx′), (4.4)

where f(r) is given by (3.5) above. The crucial part of the proof of the lower bound
in (2.15) is estimating (4.4) from above.

Proposition 4.1. Let d ≥ 4. There exist constants c(α), c′ such that

Pvis(r) ≥ c rd−1f(r) for all r ≥ c′. (4.5)

Proof : The main part of the proof is dedicated to obtain the bound

E[y2
r ] ≤ c r−(d−1)f(r)

for large r, see Equation (4.13). First, we need some additional notation.
For x ∈ Sd−1 let L∞(x) be the infinite half-line starting in 0 and passing through

x. For x,x′ ∈ Sd−1 define θ = θ(x,x′) := arccos (〈x,x′〉) to be the angle between
the two half-lines L∞(x) and L∞(x′). From Lemma 3.2 and the remark thereafter
we know that there is a constant c1 such that for every r > 0, and every line L and
line-segment Lr of length r satisfying dist(L,Lr) ≥ c1, we have

ν(W ∗Lρr \W
∗
Lρ) ≥

1

2
ν(W ∗Lρr ). (4.6)

Now define g(θ) ∈ (0,∞) by the equation

dist(L∞(x),L∞(x′) \ [0,g(θ)x′]) = c1. (4.7)

Elementary trigonometry shows that if θ ∈ [0,π/2] we have

g(θ) =
c1

sin(θ)
,
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and for θ ∈ [π/2,π] it is easy to see that we have g(θ) ≤ c. Now, for x,x′ ∈ Sd−1,

P(x,x′ ∈ Yr) ≤ P ([0,rx] ⊂ V, [0,rx′] \ [0,g(θ)x′] ⊂ V)

= P
(
ωα

(
W ∗[0,rx]ρ

)
= 0,ωα

(
W ∗([0,rx′]\[0,g(θ)x′])ρ

)
= 0
)

≤ P
(
ωα

(
W ∗[0,rx]ρ

)
= 0,ωα

(
W ∗([0,rx′]\[0,g(θ)x′])ρ \W

∗
[0,rx]ρ

)
= 0
)

indep.
= P

(
ωα

(
W ∗[0,rx]ρ

)
= 0
)
P
(
ωα

(
W ∗([0,rx′]\[0,g(θ)x′])ρ \W

∗
[0,rx]ρ

)
= 0
)

= f(r) exp
{
−αν

(
W ∗([0,rx′]\[0,g(θ)x′])ρ \W

∗
[0,rx]ρ

)}
(4.6)

≤ f(r) exp
{
−α

2
ν
(
W ∗(0,((r−g(θ))∨0)x]ρ

)}
≤ f(r)e−(c2(α)(r−g(θ))∨0)c(α),

where the last inequality follows from Lemma 3.1. Hence, in order to get an upper
bound of (4.13) we want to get an upper estimate of

I =

∫
(Sd−1)2

exp{−c2((r − g(θ)) ∨ 0)}σ(dx)σ(dx′). (4.8)

The goal is now to prove that I ≤ cr−(d−1).
In spherical coordinates θ,θ1,...,θd−2, we get, with A(θ1,...,θd−2) = {(θ1,...θd−2) :

0 ≤ θi < 2π for all i},

I =

∫ π/2

θ=0

∫
A(θ1,...,θd−2)

exp

{
−c2((r − c1

sin(θ)
) ∨ 0)

}
× sind−2(θ) sind−3(θ1) · · · sin(θd−3)dθdθ1 · · · dθd−2

+

∫ π

θ=π/2

∫
A(θ1,...,θd−2)

exp {−c2((r − c) ∨ 0)}

× sind−2(θ) sind−3(θ1) · · · sin(θd−3)dθdθ1 · · · dθd−2

= I1 + I2.

We now find an upper bound on the integral I1. We get that

I1 ≤ c3
∫ π/2

0

exp

{
−c2((r − c1

sin(θ)
) ∨ 0)

}
sind−2(θ)dθ

= c3

(∫ arcsin c1/r

0

sind−2(θ)dθ +

∫ π/2

arcsin c1/r

e−c2(r− c1
sin(θ)

) sind−2(θ)dθ

)
. (4.9)

For the first of the two integrals above we get∫ arcsin c1/r

0

sind−2(θ)dθ ≤ c
∫ c1/r

0

θd−2dθ = c′r−(d−1). (4.10)

For the second integral in (4.9) we get (using that 1/ sin(θ)− 1/θ can be extended
to a uniformly continuous function on [0,π/2])∫ π/2

arcsin c1/r

e−c2(r− c1
sin(θ)

) sind−2(θ)dθ ≤ c e−c2r
∫ π/2

c1/r

ec1c2/θθd−2dθ =

= c e−c2r
∫ r/c1

2/π

ec1c2tt−ddt = c e−c2r
∫ c2r

2c1c2/π

eyy−ddy
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= c e−c2r
∫ c2r/2

2c1c2/π

eyy−ddy + c e−c2r
∫ c2r

c2r/2

eyy−ddy

≤ c e−c2r/2
∫ c2r/2

2c1c2/π

y−ddy + c

∫ c2r

c2r/2

y−ddy ≤ c r−(d−1). (4.11)

Moreover, it is easy to see that

I2 = O(e−cr). (4.12)

Putting equations (4.4), (4.8), (4.9), (4.10), (4.11) and (4.12) together, we obtain
that for all r large enough,

E[y2
r ] ≤ cf(r)r−(d−1). (4.13)

From (4.3), (4.13) and the Paley-Zygmund inequality we get that for all r large
enough

Pvis(r) ≥ E(yr)
2

E(y2
r)
≥ crd−1 f(r),

finishing the proof of the proposition. �

4.2. The upper bound. The next proposition is (2.15) in Theorem 2.3.

Proposition 4.2. There exists a constant c < ∞ depending only on d, ρ and α
such that

Pvis(r) = O
(
r2(d−1)f(r)

)
, d ≥ 3. (4.14)

Proof : Fix r > 0, x,y ∈ Rd and ε ∈ (0,ρ). Recall the notion of ωα defined in
Equation (2.13). Let M(x,y,ε) = ωα(W ∗[x,y]ρ−ε) and let A(x,y,ε) be the event that

there is a connected component of [x,y]ε∩V that intersects both B(x,ε) and B(y,ε).
Observe that on the event that M(x,y,ε) ≥ 1, there is some z ∈ [x,y] such that
d(z,BI) ≤ ρ− ε. For this z, we have B(z,ε) ⊂ BI. Any continuous curve γ ⊂ [x,y]ε

intersecting both B(x,ε) and B(y,ε) must also intersect B(z,ε). Hence, {M(x,y,ε) ≥
1} ⊂ A(x,y,ε)c, and we get that

A(x,y,ε) ⊂ {M(x,y,ε) = 0}. (4.15)

Now we let

N(ε,r) = inf

{
k ∈ N : ∃x1,x2,...,xk ∈ ∂B(r) such that

k⋃
i=1

B(xi,ε) ⊃ ∂B(r)

}
(4.16)

be the covering number for a sphere of radius r, and note thatN(ε,r) = O((r/ε)d−1).

For each r > 0, let (xi)
N(ε,r)
i=1 be a set of points on ∂B(r) such that ∂B(r) ⊂

∪N(ε,r)
i=1 B(xi,ε). If {0 g↔ ∂B(r)} occurs there exists a j ∈ {1,2,...,N(ε,r)} such

that A(0,xj ,ε) occurs. Hence, by the union bound and rotational invariance (Equa-
tion 2.28 in Sznitman (2013)),

Pvis(r) ≤ P

N(ε,r)⋃
i=1

A(0,xi, ε)

 ≤ N(ε,r)P (A(0,x1,ε))

(4.15)

≤ O((r/ε)d−1)P(M(0,x1,ε) = 0). (4.17)
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Fix x ∈ Sd−1 and let K1 = K1(r,ρ) = [0,rx]ρ and K2 = K2(r,ρ,ε) = [0,rx]ρ−ε.
Then

f(r) = e−αcap(K1)

and

P(M(0,x1,ε) = 0) = e−αcap(K2).

Hence,

P(M(0,x1,ε) = 0) = f(r)eα(cap(K1)−cap(K2)) (4.18)

We will now let ε = ε(r) = 1/r for r ≥ ρ−1 and show that

cap(K1)− cap(K2) = O(1), r →∞. (4.19)

Let ((Bi(t))t≥0)i≥1 be a collection of i.i.d. processes with distribution PẽK1
where

ẽK1
= eK1

/cap(K1). Recall that [Bi] stands for the trace of Bi. Using the local
description of the Brownian interlacements, see Equation (2.14), we see that

ωα(W ∗K1
\W ∗K2

)
d
=

NK1∑
i=1

1{[Bi] ∩K2 = ∅}, (4.20)

where NK1
is a Poisson random variable with mean αcap(K1) which is independent

of the collection ((Bi(t))t≥0)i≥1, and the sum is interpreted as 0 in case NK1
= 0.

Taking expectations of both sides in (4.20) we obtain that

αν(W ∗K1
\W ∗K2

) = E

NK1∑
i=1

1{[Bi] ∩K2 = ∅}


= E[NK1

]P ([B1] ∩K2 = ∅) = αcap(K1)P ([B1] ∩K2 = ∅),
(4.21)

where we used the independence between NK1
and ((Bi(t))t≥0)i≥1 and the fact

the Bi-processes are identically distributed.
Since K2 ⊂ K1, it follows that

ν(W ∗K1
\W ∗K2

) = cap(K1)− cap(K2). (4.22)

From (4.21) and (4.22) it follows that

cap(K1)− cap(K2) = cap(K1)P ([B1] ∩K2 = ∅). (4.23)

Next, we find a useful upper bound on the last factor on the right hand side
of (4.23). Recall that for t > 0 and x 6∈ B(0,t),

Px(H̃B(0,t) <∞) = (t/|x|)d−2, (4.24)

see for example Corollary 3.19 on p.72 in Mörters and Peres (2010). Now,

P ([B1] ∩K2 = ∅) = PẽK1

(
H̃K2

=∞
)

=

∫
∂K1

Py(H̃K2
=∞)ẽK1

(dy). (4.25)

For z ∈ ∂K1 let z′ be the orthogonal projection of z onto the line segment [0,rx].
Since B(z′,ρ− ε) ⊂ K2 we have

{H̃K2 =∞} ⊂ {H̃B(z′,ρ−ε) =∞}. (4.26)

We now get that

P ([B1] ∩K2 = ∅)
(4.25), (4.26)

≤
∫
∂K1

Py(H̃B(y′,ρ−ε) =∞)ẽK1
(dy)
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(4.24)
= 1−

(
ρ− ε
ρ

)d−2

= 1− (1− ε/ρ)d−2 = O(1/r),

where we recall that we made the choice ε = 1/r for r ≥ ρ−1 above. Combining this
with the fact that cap(K1) = O(r) and (4.23) now gives (4.19). Equations (4.17)
and (4.18) and (4.19) finally give that

Pvis(r) ≤ O
(
r2(d−1)

)
f(r)

as r →∞. This establishes the upper bound in (2.15). �

5. Visibility for Brownian excursions in the unit disk

In this section, we give the proof of Theorem 2.4. The method of proof we use
here is an adaption of the method used in paper III of Tykesson (2008), which is
an extended version of the paper Benjamini et al. (2009). We first recall a result of
Shepp (1972) concerning circle covering by random intervals. Given a decreasing
sequence (ln)n≥1 of strictly positive numbers, we let (In)n≥1 be a sequence of inde-
pendent open random intervals, where In has length ln and is centered at a point
chosen uniformly at random on ∂D/(2π) (we divide by 2π since Shepps result is for-
mulated for a circle of circumference 1). Let E := lim supn In be the random subset
of ∂D which is covered by infinitely many intervals from the sequence (In)n≥1 and
let F := Ec. If

∑∞
n=1 ln = ∞ then F has measure 0 a.s. but one can still ask if F

is empty or non-empty in this case. Shepp (1972) proved that

Theorem 5.1. P (F = ∅) = 1 if

∞∑
n=1

1

n2
el1+l2+...+ln =∞, (5.1)

and P (F = ∅) = 0 if the above sum is finite.

Theorem 5.1 is formulated for open intervals, but the result holds the same if
the intervals are taken to be closed or half-open, see the remark on p.340 of Shepp
(1972).

A special case of Theorem 5.1, which we will make use of below, is that if c > 0
and ln = c/n for n ≥ 1, then (as is easily seen from (5.1))

P (F = ∅) = 1 if and only if c ≥ 1. (5.2)

Before we explain how we use Theorem 5.1, we introduce some additional no-
tation. If γ ⊂ D̄ is a continuous curve, it generates a ”shadow” on the boundary
of the unit disc. The shadow is the arc of ∂D which cannot be reached from the
origin by moving along a straight line-segment without crossing γ. More precisely,
we define the arc S(γ) ⊆ ∂D by

S(γ) = {eiθ : [0,eiθ) ∩ γ 6= ∅},

and let Θ(γ) = length(S(γ)), where length stands for arc-length on ∂D.
We now explain how we use Theorem 5.1 to prove Theorem 2.4. First we need

some additional notation. For ω =
∑
i≥1 δ(wi,αi) ∈ ΩD and α > 0 we write ωα =∑

i≥1 δ(wi,αi)1{αi ≤ α}. Then under PD, ωα is a Poisson point process on WD with
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intensity measure αµ. Each (wi,αi) ∈ ωα generates a shadow S(wi) ⊆ ∂D and a
corresponding shadow-length Θ(wi) ∈ [0,2π]. The process of shadow-lengths

Ξα :=
∑

(wi,αi)∈supp(ωα)

δΘ(wi)1{Θ(wi) < 2π}

is a non-homogeneous Poisson point process on (0,2π), and we calculate the
intensity measure of this Poisson point process below, see (5.17). Since Brownian
motion started inside D stopped upon hitting ∂D has a positive probability to make
a full loop around the origin, there might be a random number of shadows that have
length 2π which we have thrown away in the definition of Ξα. However, this number
will be a Poisson random variable with finite mean (see the paragraph above (5.16)),
so those shadows will not cause any major obstructions. Now, for i ≥ 1, we denote
by Θ(i),α the length of the i:th longest shadow in supp(Ξα). We then show that∑

n=1

1

n2
e(Θ(1),α+Θ(2),α+...+Θ(n),α)/(2π) =∞ a.s. (5.3)

if α ≥ π/4 and finite a.s. otherwise, from which Theorem 2.4 easily will follow
using Theorem 5.1.

We now recall some facts of one-dimensional Brownian motion which we will
make use of. If (B(t))t≥0 is a one-dimensional Brownian motion, its range up to
time t > 0 is defined as

R(t) = sup
s≤t

B(s)− inf
s≤t

B(s).

The density function of R(t) is denoted by h(r,t) and we write h(r) for h(r,1).
An explicit expression of h(r,t) can be found in Feller (1951). The expectation of
R(t) is also calculated in Feller (1951). In particular,

E[R(1)] = 2

√
2

π
. (5.4)

Let (B(t))t≥0 be a one-dimensional Brownian motion with B(0) = a ∈ R. Let
Ha = inf{t ≥ 0 : B(t) = 0} be the hitting time for the Brownian motion of the
value 0. The density function of Ha is given by

fa(t) = |a|e−a
2/2t/

√
2πt3, t ≥ 0. (5.5)

Now let W = (W (t))t≥0 be a two-dimensional Brownian motion with W (0) =
x ∈ D\{0} stopped upon hitting ∂D. Observe that the distribution of the length of
the shadow generated by W , Θ(W ), depends on the starting point x only through
|x|. The distribution of Θ(W ) might be known, but since we could not find any
reference we include a derivation, which is found in Lemma 5.2 below. We thank
K. Burdzy for providing a version of the arguments used in the proof of the lemma.

Lemma 5.2. Suppose that W = (W (t))t≥0 is a two-dimensional Brownian motion
started at x ∈ D \ {0}, stopped upon hitting ∂D. Then, for θ ∈ (0,2π],

P (θ ≤ Θ(W ) ≤ 2π) =

∫
{(r,t) : r

√
t≥θ}

flog(|x|)(t)h(r)dtdr. (5.6)

Proof : Without loss of generality, suppose that the starting point x ∈ (0,1). We
write W (t) = s(t)eiα(t) where α(t) is the continuous winding number of W around
0, and s(t) = |W (t)|. Consider the process (φ(t))t≥0 living in the left half-plane
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defined by Imφ(t) = α(t) and Reφ(t) = log(s(t)). For use below, we note that for
β ∈ [0,2π),

log
({
reiβ : 0 < r < 1

})
= {x+ i(β + 2πk) : x < 0, k ∈ Z} . (5.7)

By conformal invariance of Brownian motion, the law of the image of φ is the same
as the law of the image of a two-dimensional Brownian W̃ = (W̃ (t))t≥0 started at
log(x) ∈ (−∞,0) and stopped upon hitting {z ∈ C : Re z = 0}. Let

T = inf
{
t > 0 : Re W̃ (t) = 0

}
and R(t) = sup

s≤t
Im W̃ (s)− inf

s≤t
Im W̃ (s).

Using (5.7), we see that whenever θ ∈ (0,2π],

P (θ ≤ Θ ≤ 2π) = P (θ ≤ R(T )). (5.8)

Moreover, T and Im W̃ (t) are independent since T is determined by Re W̃ (t) and

Re W̃ (t) and Im W̃ (t) are independent. Since T and Im W̃ (t) are independent we
have by Brownian scaling

R(T )
d
=
√
TR(1). (5.9)

Hence

P (θ ≤ Θ ≤ 2π)
(5.8), (5.9)

= P (
√
TR(1) ≥ θ) =

∫
r
√
t≥θ

f| log(x)|(t)h(r)dtdr, (5.10)

finishing the proof of the lemma. �

In the next lemma, we calculate the intensity measure of Ξα. For θ ∈ (0,2π]
define

Aθ = {w ∈WD : θ ≤ Θ(w)} . (5.11)

Lemma 5.3. For θ ∈ (0,2π]

µ(Aθ) =
8

θ
. (5.12)

Proof : By the definition of µ, we must show that

lim
ε↓0

2π

ε
Pσ1−ε(θ ≤ Θ) =

8

θ
.

We now get that

2π

ε
Pσ1−ε(θ ≤ Θ) =

2π

ε

∫
∂B(0,1−ε)

Pz(θ ≤ Θ)σ1−ε(dz)

=
2π

ε
P1−ε(θ ≤ Θ) =

2π

ε

∫
r
√
t≥θ

f| log(1−ε)|(t)h(r)dtdr,

where we used rotational invariance in the second equality and Lemma 5.2 in the
last equality. We have

2π

ε

∫
r
√
t≥θ

f| log(1−ε)|(t)h(r)dtdr

(5.5)
=
− log(1− ε)

ε

∫
r
√
t≥θ

e− log2(1−ε)/2t
√

2π

t3
h(r)dtdr.
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Note that − log(1 − ε)/ε → 1 as ε → 0 and that e− log2(1−ε)/2t increases mono-
tonically to 1 as ε → 0 for t > 0. Hence, the monotone convergence theorem gives
that

µ(Aθ) = lim
ε↓0

2π

ε

∫
r
√
t≥θ

f| log(1−ε)|(t)h(r)dtdr
(5.5)
=

∫
r
√
t≥θ

√
2π

t3
h(r)drdt. (5.13)

This integral is easily computed as∫
r
√
t≥θ

√
2π

t3
h(r)drdt =

√
2π

∫ ∞
0

∫
t≥(θ/r)2

1

t3/2
dth(r)dr (5.14)

=
√

2π
2

θ

∫ ∞
0

rh(r)dr =
√

2π
2

θ
E[R(1)]

(5.4)
=

8

θ
, (5.15)

finishing the proof of the lemma. �

Remark 5.4. Lemma 5.3 implies that µ(A2π) = 4/π. Hence, under PD, ωα(A2π) is
a Poisson random variable with mean α4/π. In particular,

PD(ωα(A2π) = 0) > 0. (5.16)

We will now use Lemma 5.3 to prove Theorem 2.4.
Proof of Theorem 2.4. Define the measure m on (0,2π) by letting

m(A) =

∫
A

8

t2
dt, A ∈ B((0,2π)).

Lemma 5.3 implies that under PD,

Ξα is a Poisson point process on (0,2π) with intensity measure αm. (5.17)

We now consider the Poisson point process on (1/(2π),∞) defined by

Ξ−1
α :=

∑
(wi,αi)∈supp(Ξα)

δΘ(wi)−1 . (5.18)

Now note that for 1/(2π) < t1 < t2 we have that

m([1/t2, 1/t1]) = 8(t2 − t1).

Hence, Ξ−1
α is a homogeneous Poisson point process on (1/(2π),∞) with intensity

8α. Note that 1/Θ(n),α is the n:th arrival time in this process, where we recall the
definition of Θ(n),α above Equation (5.3). Now let ∆1 = 1/Θ(1),α and for n ≥ 2 let

∆n := 1/Θ(n),α − 1/Θ(n−1),α.

Then ∆n is a sequence of i.i.d. exponential random variables, with mean 1/(8α).
Since

1/Θ(n),α =

n∑
i=1

∆i,

we get that

P

(∣∣∣∣ 1

Θ(n),α
− n

8α

∣∣∣∣ > n3/4 i.o.

)
= 0. (5.19)

Since ∣∣∣∣Θ(n),α −
8α

n

∣∣∣∣ =

∣∣∣∣1/Θ(n),α − n/(8α)

n/(8αΘ(n),α)

∣∣∣∣ ,
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and 1/Θ(n),α > cn for all but finitely many n for some constant c > 0 a.s., Equa-
tion (5.19) implies that for some constant c′(α) <∞,

P

(∣∣∣∣Θ(n),α −
8α

n

∣∣∣∣ ≤ c′(α)n−5/4 for all but finitely many n

)
= 1. (5.20)

Let Yn,α =
∑n
i=1 Θ(i),α −

∑n
i=1

8α
i . From (5.20) and the triangle inequality we

see that a.s., Y∞,α := limn→∞ Yn,α exists and |Y∞,α| <∞ a.s. Hence,

Ỹ∞,α := lim
n→∞

(
n∑
i=1

Θ(i),α

2π
− 4α log(n)

π

)
exists and is finite a.s. Hence, the sum in (5.3) is finite a.s. if α < π/4 and infinite

a.s. if α ≥ π/4. Let Ṽ α∞ denote the event that there is some θ ∈ [0,2π) such that
[0,eiθ) intersects only a finite number of trajectories in the support of ωα. The

above, together with (5.16), shows that PD(Ṽ α∞) = 1 if α < π/4 and PD(Ṽ α∞) = 0 if
α ≥ π/4. It remains to argue that PD(V α∞) > 0 when α < π/4. So now fix α < π/4.

Let Ṽ α∞,R be the event that there is some θ ∈ [0,2π) such that [0,eiθ) intersects only

trajectories in the support of ωα which also intersect the ball B(0,R). If Ṽ α∞ occurs,

then for some random R0 < 1, the event Ṽ α∞,R occurs for every R ∈ (R0,1). Hence

for some R1 < 1, PD(Ṽ α∞,R1
) > 0. Suppose that ω̄ ∈ ΩD and write

ω̂α = 1WB(0,R1)
ω̄α + 1W c

B(0,R1)
ωα.

Observe that if ωα ∈ Ṽ α∞,R1
and ω̄α(WB(0,R1)) = 0, then ω̂α ∈ V α∞. Hence

P⊗2
D (ω̂α ∈ V α∞) ≥ PD(Ṽ α∞,R1

)PD(ω̄α(WB(0,R1)) = 0) > 0.

The result follows, since ωα under PD has the same law as ω̂α under P⊗2
D . �

Remark 5.5. From Equation (5.20) it follows that∑
n≥1

Θ(n),α =∞ (5.21)

almost surely for all α > 0. Thus by Borel-Cantelli it follows that for any fixed
θ ∈ [0,2π) the line-segment [0, eiθ) is almost surely intersected by infinitely many
excursions and from this Equation (2.24) follows.
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