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Abstract. We consider a version of ballistic annihilation with particles placed at
the integer points on the real line. Each is independently assigned either speed-
0 with probability p, or speed-±1 symmetrically with the remaining probability.
All particles simultaneously begin moving at their assigned speeds and mutually
annihilate upon colliding. A renewal property lets us equate survival of a particle
to the survival of a Galton-Watson process. An immediate application of our result
is an upper bound for the critical probability when particles have unit spacings.
This comes from a rigorous, computer-assisted approximation of the Galton-Watson
process offspring distribution.

1. Introduction

Two decades ago, physicists devoted considerable attention to a simple but dif-
ficult to analyze process called ballistic annihilation (Elskens and Frisch, 1985;
Carnevale et al., 1990; Belitsky and Ferrari, 1995; Droz et al., 1995; Martin and
Piasecki, 1994; Krapivsky et al., 1995; Redner, 1997; Trizac, 2002). Particles are
placed on the real line according to a unit intensity Poisson point process and each
is independently assigned a speed according to a probability measure ν. After this
assignment, the model is deterministic; particles move at their speed and mutually
annihilate upon colliding. The canonical example is with speeds from {−1, 0, 1}
sampled according to the symmetric measure

ν =
1− p

2
δ−1 + pδ0 +

1− p
2

δ1. (1.1)
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Physicists refer to this as an A + A → 0 process. Ballistic annihilation was
introduced in Elskens and Frisch (1985) with just two speeds. The goal was to
study interactions of ideal gas particles. A few years later, it was discussed in the
context of arbitrary continuous ν (Ben-Naim et al., 1993). The authors’ motiva-
tion was to understand “intriguing features" in the decay kinetics of irreversible
aggregation, Ai + Aj → Ai+j , which has been used to model coalescence of fluid
vortices (McWilliams, 1984) and planet formation by accretion (Weaver and Danly,
1989). The authors gave heuristics for the decay rate of particles, and conjectured
it responds continuously to perturbations in the speed measure.

The followup work Krapivsky et al. (1995) predicted more interesting behavior in
ballistic annihilation with discrete speeds. It is thought that the process undergoes
an abrupt phase transition. Consider ballistic annihilation with the measure from
(1.1). We will call speed-0 particles inert and speed-±1 particles active. Let θt(p)
be the probability an inert particle survives up to time t, and θ(p) = θ∞(p) be the
probability it is never annihilated. Krapivsky et al. (1995) inferred that the critical
value

pc = inf{p : θ(p) > 0}

is equal to 1/4. They also made precise predictions for the behavior of θt:

θt(p) ∼


Cpt
−1, p < pc

Ct−2/3, p = pc

2− p−1/2, p > pc

, with Cp =
2p

(1− 4p)π
and C =

22/3

4Γ(2/3)2
. (1.2)

A simple heuristic is given in Droz et al. (1995) for why pc = 1/4. Active particles
move towards one another at relative speed 2, while the gap between a moving and
inert particle is covered at relative speed 1. Thus, collisions between active particles
ought to occur twice as often as those between inert and active particles. If we look
at all of the collisions in a large interval, then each is one of three possibilities:

(0,−1), (1, 0), and (1,−1). (1.3)

Doubling the (1,−1)-collisions to account for the prediction that these occur twice
as often, we expect on average that for every eight particles removed, two are inert
particles. So, when p = 1/4 the collision types balance.

Symmetry ensures that active particles are annihilated almost surely (see Dygert
et al., 2019, Proposition 16.) Note that Krapivsky et al. (1995) also provides a de-
scription of the decay density of speed-±1 particles in the different regimes of p.
For p < 1/4 the right tail is predicted to have exponent −1. At criticality it is
claimed to be −2/3, and for p > pc they infered that the survival time decays at an
exponential rate. The article Droz et al. (1995) addressed these conjectures (includ-
ing those for θt(p) predicted by Krapivsky et al., 1995) by deriving a complicated
differential equation involving the distance between particles at time t. However,
the argument makes a non-rigorous assumption that configurations are independent
at different times. Krapivsky et al. (1995) point out in that there is still need for
methods “that would provide better intuitive insights into the intriguing qualitative
features of ballistic annihilation."
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Remark added in revision. While our paper was in revision, several tremendous
advances were made by Haslegrave, Sidoravicius, and Tournier. They effectively
solved the case with symmetric speeds in Haslegrave et al. (2018). This includes
a proof that pc = 1/4, confirmation of (1.2), and the bounds .2354 < p′c < .2406
(the last bound confirming one of our conjectures). Their results hold for general
spacings and establishes universality of the phase transition. Junge and Lyu (2018)
generalized parts of Haslegrave et al. (2018) to the asymmetric 3-velocity ballistic
annihilation. While the criterium proven in our paper was not used in Haslegrave
et al. (2018) nor Junge and Lyu (2018), it may yet find applications in followup
work.

Results. In this article, we consider ballistic annihilation with an inert particle,
which we will call the seed, at the origin, and particles placed on Z+ with i.i.d.
speeds sampled according to ν from (1.1). To distinguish our case from ballistic
annihilation with exponentially distributed spacings, we define ψ(p) as the proba-
bility the seed is never annihilated. Considering one- rather than two-sided ballistic
annihilation does not change whether ψ(p) is positive. Using independence of the
process on either side of the seed, we have ψ(p) is the square root of the two-sided
survival probability.

Our main result relates the structure of surviving inert particles to a Galton-
Watson tree. The idea is that there is a random index η for which (a) when restricted
to just particles in [0, η] only inert particles survive, and (b) the process regenerates
at the rightmost surviving particle. If Z is the number of surviving inert particles in
the process restricted to [0, η], then (b) guarantees that each of these particles will
independently spawn Z-distributed more surviving inert particles. Because each
new generation is determined independently, we obtain a Galton-Watson process
that counts surviving particles. Using the standard criteria for survival of a Galton-
Watson process, we obtain our main result.

Theorem 1.1. Let Z be as in Proposition 2.4. It holds that ψ(p) > 0 if and only
if EZ > 1.

Note that we suppress the p-dependence in the expectation and write EZ in place
of EpZ. In 1082 2.5, we explain how to adapt Theorem 1.1 to the usual setting
with exponentially-distributed spacings. Thus, a similar equivalence holds for θ(p).
The resulting Galton-Watson tree encodes the dependence structure between inert
particles in a new way. In the construction of Z, we see that the main contribution
to the survival of inert particles comes from what happens in a finite window to the
right of where a 1-particle annihilates an inert particle. This provides a connection
between the lifespans of inert and active particles. We may be able to control EZ by
understanding the survival time of active particles. For example, proving ψ(p) = 0
implies active particles have infinite expected lifetimes may be a useful step in a
proof by contradiction.

There has also been interest in proving upper bounds on pc. Our result has
an application for this, but first we describe the history. Dygert et al. (2019)
proved that pc ≤ .3313. Additionally, Sidoravicius and Tournier (2017) considered
ballistic annihilation. Sidoravicius and Tournier proved that pc ≤ 1/3, and outline
an approach to prove pc ≤ 0.3280. Their proof, like the one contained in this work,
is recursive in nature. The configuration of particle speeds is revealed in blocks,
and the number of surviving particles can be estimated by the sub-configuration



1080 D. Burdinski, S. Gupta and M. Junge

in these blocks. The main difference is that the renewal time in Proposition 2.4
leads to a particularly useful Galton-Watson process. We are not trying to start a
hunt for bounds closer and closer to the conjectured value. Rather, by improving
the known bound, we reveal a new perspective into what promotes survival of inert
particles.

For ballistic annihilation with unit spacings, triple collisions may slightly change
the critical threshold. Define the critical probability as

p′c = inf{p : ψ(p) > 0}.
Let q = (1− p)/2, so that the probability three consecutive particles triple collide
is pq2 (i.e. a (1, 0,−1) configuration). This is ≈ .07 when p = 1/4. With expo-
nential spacings, the process loses one inert and one active particle whenever this
configuration occurs. However, with the triple collision, an extra active particle is
destroyed. The heuristic at (1.3) predicts that, after one time unit, the density of
0-particles is

w = p− 2pq + pq2.

The 2pq term accounts for the configurations (1, 0) and (0,−1). We add pq2 to
prevent double counting triple collisions. Similarly, the density of active particles
is

z = 2(q − q2 − pq).
The heuristic at (1.3) suggests we solve w = 1

4 (z + 2w), which yields p ≈ .2450.
Accordingly, we conjecture that p′c < .2450. Note that this was confirmed by
Haslegrave et al. (2018).

Understanding survival of inert particles appears to be equally interesting and
challenging whether the spacings are deterministic, or Exponential(1) distributed.
This is supported by recent findings (Broutin and Marckert, 2017) for the closely
related bullet process with finitely many particles and a non-atomic probability
measure on speeds. They find that the law for the number of surviving particles
is independent of the initial spacings. An immediate benefit of our approach is an
upper bound on p′c.

Proposition 1.2. p′c ≤ .2870.

We obtain this estimate from Theorem 1.1 and a lower bound that gives EZ > 1
when p > .2870. The lower bound comes from considering certain random times
before η at which we can stochastically lower bound Z. We then use a computer
to estimate these probabilities. This is completely rigorous, but requires too many
calculations to be done by hand.

Notation. We call particles with speed-±1 active. When the speed is relevant, we
call them ±1-particles. The randomness in ballistic annihilation is an initial vector
of particle speeds X = (Xi)

∞
i=0 with X0 = 0 and the Xi for i ≥ 1 are i.i.d. with

law ν from (1.1). Let X[i, j] = (Xi, . . . , Xj) be the restriction to the coordinates
between i ≤ j.

Let ai denote the particle initially at i. We will let ai ↔ aj mean that particles
at i and j mutually annihilate. We will sometimes use the more specific notation
ai 7→ aj for when the active particle from i annihilates the inert particle at j.
Given x = (xi, xi+1, . . . , xj), we define BA(x) to be ballistic annihilation on R with
particles at i, i + 1, . . . , j where the particle at k has speed xk. Run BA(x) until
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every collision that could occur has occurred (this takes at most j − i time units).
Let ξ(x) = (ξi, . . . , ξj) with

ξk(x) = xk1{ak survives}+ 2 · 1{ak is annihilated}. (1.4)

This records the speeds of surviving particles from BA(x) and labels annihilated
particles with a 2. For example if x = (0, 1,−1, 1) then ξ(x) = (0, 2, 2, 1).

2. An embedded Galton-Watson process

To show that inert particles survive with positive probability, it suffices to es-
tablish that the seed is never annihilated with positive probability. This is because
an inert particle, say an, has n particles to its left, and thus has some positive
probability of not being annihilated from that side. For example, all left particles
are inert with probability pn−1. Conditional on surviving from the left, the prob-
ability that n is never annihilated by a particle from the right is the same as the
probability the seed survives. This follows via the coupling that aligns the speeds
to the right of the seed with those to the right of an in two independent processes.

The construction of a Galton-Watson process hinges upon a renewal structure
that starts with two simple observations about the range of dependence caused by
collisions.

Lemma 2.1. Let i < j and condition that Xj = −1. The random variables (Xk)k>j
are ν-distributed and independent of the event {ai ↔ aj}.

Proof : The particles to the right of aj cannot influence the event {ai ↔ aj}, thus
the speeds are independent of the event. �

If an active particle destroys an inert particle, then this induces a short range
dependence. We know that all of the active particles that could reach the inert
particle before its destroyer arrives must be annihilated. However, if we look suffi-
ciently far away the particle speeds are once again independent.

Lemma 2.2. Let i < j and condition that Xj = 0. The random variables
(Xk)k>j+(j−i) are independent of the event {ai 7→ aj}.

Proof : It is elementary to work out that the particles beyond j + (j − i) cannot
reach aj before ai does, thus their speeds are independent of the event. �

Remark 2.3. The speed Xj+(j−i) is independent of {ai 7→ aj}, but possibly aj+(j−i)
triple collides with aj .

For the event in Lemma 2.1, we call [i, j] the window of dependence, because
particle speeds with indices beyond j are independent of {ai ↔ aj}. For Lemma 2.2,
the window of dependence is [i, 2j − i]. We obtain a renewal by looking out to the
first time the window of dependence stops growing.

Proposition 2.4. There is a random index η with Z surviving inert particles and
no surviving active particles in BA(X[0, η]). η and Z almost surely satisfy one of
the following three conditions:

(i) η =∞, Z ≥ 1.
(ii) η = 1, Z = 0.
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(iii) 1 ≤ η, Z < ∞. Let κ be the index of the rightmost particle counted by Z.
There exist independent copies η′ and Z ′ of η and Z such that there are no
surviving active particles, and Z ′ surviving inert particles in BA(X[κ, η +
η′]). Moreover, the speeds (Xi)i>η+η′ are i.i.d. ν-distributed.

Proof : We define η via an algorithm that constructs a non-decreasing sequence (ηt)
of integers that starts with η0 = 1. Subsequent terms are defined recursively in the
following way.

(I) If X1 ∈ {−1, 0}, then set η = 1.
(II) If X1 = 1, then ηt+1 ≥ ηt is given by one of the following:

(II.a) If there is a surviving 1-particle in BA(X[1, ηt]), then let τt be the
index of the left-most one, and let ηt+1 > ηt be such that the particle
started at τt collides with the one started at ηt+1.

(II.b) If there is no surviving 1-particle in BA(X[1, ηt]), then let ηt+1 be the
rightmost value in the union of all windows of dependence induced by
the collisions in BA(X[1, ηt]).

(III) If ηt = ηt+1, then halt the algorithm and set η = ηt.
(IV) If the algorithm never terminates, then set η = sup ηt =∞.
We start by considering the three simplest cases. If η = 1 and X1 = −1, then

(ii) occurs. If instead X1 = 0, then (iii) is satisfied, since we can view the inert
particle at 1 as the new seed in the process shifted right by 1. If η =∞, then Case
(I) did not occur and the seed must survive. Thus, (i) holds.

To have 1 < η <∞ requires that Case (II.b) occurs. This ensures that the seed
is not destroyed in BA(X[0, η]) and the only surviving particles are inert. Let κ be
the index of the rightmost such particle. Since aκ survives in BA(X[0, η]), all of the
particles started in [κ + 1, η] mutually annihilate. By Lemma 2.1 and Lemma 2.2
this mutual annihilation does not influence the speeds of particles started beyond
η. To obtain η′ and Z ′, imagine the particle at κ is at η and repeat the algorithm
shifted by η. Since only a −1-particle can destroy aκ, the presence of a gap η − κ
does not change the way we obtain η′ and Z ′. Both are independent and have the
claimed distribution because the window of dependence is [1, η] and so the speeds
of particles started beyond η are i.i.d. ν-distributed, �

Remark 2.5. A similar statement holds when particles are placed according to a
unit intensity Poisson process. Lemma 2.1 and Lemma 2.2 still hold in this setting,
and thus we can follow the same steps to obtain a renewal as in Proposition 2.4.

Because the process renews after η we can link the expected number of surviving
inert particles in BA(X[0, η]) to ψ(p) via a Galton-Watson process.

Proof of Theorem 1.1: If ψ(p) > 0, then (i) happens with probability ψ(p). It
follows from the Birkhoff ergodic theorem that, on the event the seed survives,
there are almost surely infinitely many surviving inert particles in BA(X). Thus,
P (Z =∞) = ψ(p), and EZ =∞.

Next, suppose that EZ > 1. Let (ηi, Zi)i≥0 be i.i.d. copies of η and Z, re-
spectively. By Proposition 2.4, BA(X[0, η]) has Z0 surviving inert particles. We
consider three cases:

• If Z0 = 0, then the process terminates. If not, then (iii) ensures that
the rightmost surviving particle at κ1 counted by Z0 will spawn Z1 more
surviving inert particles in BA(X[κ1, η0 + η1]).
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• If Z1 = 0, then aκ1
is destroyed. We then consider the second rightmost

particle at κ2 counted by Z0. By repeating the construction in Proposi-
tion 2.4 we obtain Z2 more inert particles in BA(X[κ2, η0 + η1 + η2]). We
then repeat this procedure from the rightmost particle counted by Z2.

• If Z1 > 0, then we repeat this procedure again from the rightmost surviving
particle.

Call the Zi inert particles counted at each step the children of whatever inert particle
was being considered. Because the (Zi) are i.i.d., this results in a Galton-Watson
process. Since we always consider the rightmost surviving inert particle, we explore
the corresponding tree in a depth-first manner. The assumption EZ > 1 ensures
there is a positive probability that a path to infinity is discovered and so the seed
is never annihilated. �

Remark 2.6. Each unexplored site on the infinite path from Theorem 1.1 corre-
sponds to an inert particle that survives for all time in BA(X). By keeping track
of the values Zi and κi, this tree encodes the set of all surviving particles.

3. Approximating EZ

The recursive definition of η from Proposition 2.4 suggests it would be difficult
to calculate EZ explicitly. However, there are certain indices before η at which we
can obtain lower bounds on EZ. It helps to explain in stages. First, we consider
the effect of a1.

3.1. The effect of BA(X[0, 1]). The simplest lower bound on Z is to look at what
happens in BA(X[0, 1]). If X1 = −1, then Z = 0, and if X1 = 0, then Z = 2. This
gives

Z � 1{X1 = 0}2. (3.1)

Thus, if p > 1/2, we have EZ > 1. Equivalently, p′c ≤ 1/2. This is a start, but not
so interesting. The same statement could be proven by accounting for the number
of inert particles versus active particles with a p-biased random walk. Survival of
the seed is equivalent to the walk never returning to 0, which happens with positive
probability when p > 1/2.

Let us go one step further by considering the case η > 1. If X1 = 1, then the
construction of η ensures that the seed survives in BA(X[0, η]). Thus, Z � 1 on
this event. This gives the more meaningful bound

Z � 1{X1 = 0}2 + 1{X1 = 1}. (3.2)

Taking expectation in (3.2) yields EZ ≥ 2p + 1−p
2 . When p > 1/3, this is larger

than 1. Thus, we arrive easily at the bound p′c ≤ 1/3, which is proven in Dygert
et al. (2019) and proven for pc in Sidoravicius and Tournier (2017).

3.2. The effect of aγ1 . We can further extract some benefit from the 1-particle at
1. Let γ1 be the index of the particle that destroys a1. Let Y be 1 plus the
number of surviving inert particles in the window of dependence induced by the
event {a1 ↔ aγ1}. The plus 1 is to count the seed. Depending on whetherXγ1 = −1
or 0, this window is either [1, γ1] or [1, 2γ1 − 1].
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0 9 16 · · ·

Figure 3.1. In this example, γ1 = 9. We are left with Y = 2
surviving inert particles in BA(X[0, 2γ1 − 1]).

If the window of dependence is [1, 2γ1 − 1], then the surviving particles in
BA(X[1, 2γ1−1]) will consist of an uninterrupted sequence of surviving inert parti-
cles, and to their right an uninterrupted sequence of surviving 1-particles. The pro-
cess will renew once all of the surviving 1-particles have been dealt with by the algo-
rithm in Proposition 2.4. Thus, the inert particles that survive in BA(X[1, 2γ1−1])
also survive in BA(X[0, η]). It follows that 1{X1 = 1}Y � 1{X1 = 1}Z. This lets
us improve (3.2) to the following dominance relation

Z � 1{X1 = 0}2 + 1{X1 = 1}Y. (3.3)

Figure 3.1 depicts a realization in which Y = 2. To better understand Y , we
decompose it relative to the behavior of γ1:

Y =

∞∑
n=2

1{γ1 = n}Y

=

∞∑
n=2

1{Xγ1 = −1, γ1 = n}+ 1{Xγ1 = 0, γ1 = n}Y

= 1 +

∞∑
n=2

1{Xγ1 = 0, γ1 = n}(Y − 1). (3.4)

Note that γ1 ≥ 2 since we only introduce γ1 when X1 = 1, and so the particle
that destroys a1 must start at 2 or beyond. All of the cases where Xγ1 = −1 are
included in the leading 1 summand, so we devote our attention to when Xγ1 = 0.
Let

An = {Xγ1 = 0, γ1 = n} ⊆ {0} × {1} × {−1, 0, 1}2n−2 (3.5)

be the set of sub-configurations for which γ1 = n and Xγ1 = 0. Notice we only
need to know the entries up to 2n− 1 to determine if a1 7→ an.

In light of (3.4), we would like to understand E[1{An}(Y − 1)]. An important
observation is that Y −1 ≥ 0 since the seed always survives in BA([0, 2γ1−1]). This
means we can lower bound the expectation by computing its value for finitely many
n. We do so by counting surviving inert particles in the final state of BA(X[0, 2γ1−
1]) in each of the 32n−2 possible realizations of particle speeds from {0} × {1} ×
{−1, 0, 1}2n−2.
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Given x ∈ An, let I(x) be the number of 0-entries in x. By the definition of ν
at (1.1), the probability x occurs is

qn(x) := pI(x)
(

1− p
2

)2n−2−I(x)

.

Letting Y (x) be the number of surviving inert particles in BA(x), we then have

E[1{An}(Y − 1)] =
∑
x∈An

qn(x)[Y (x)− 1]. (3.6)

This is possible for a computer to calculate for small values of n. For instance,
if we compute for n ≤ 18 (approximately 400 million cases) and take expectation
in (3.4), we obtain the bound

EY ≥ 1 +

18∑
n=2

∑
x∈An

qn(x)[Y (x)− 1]. (3.7)

Call the quantity on the right in (3.7) m(p). By (3.3) we have

EZ ≥ 2p+
1− p

2
m(p). (3.8)

By numerically checking the boundary values of p, we find that EZ > 1 when
p > .2914. Note that m(.2914) ≈ 1.1178. So the “gain" we had from the previous
calculation is ≈ .1178 more expected surviving inert particles.

3.3. Using a surviving 1-particles from BA(X[0, 2γ1−1]). A simple way to optimize
further is by re-using the previous calculation for configurations from An in which
there is a single surviving 1-particle at 2n− 1, and otherwise only inert particles.

Formally, let

A′n = {x ∈ An : ξ2n−1(x) = 1, ξi(x) ∈ {0, 2} for 0 ≤ i ≤ 2n− 2}

be the set of all such configurations. Recall that ξ is defined at (1.4). We claim that
each x′ ∈ A′n provides an independent Y − 1 distributed number of inert particles.
This is because the particle speeds to the right of a2γ1−1 are independent. Thus,
we can couple the number of surviving inert particles induced by a2γ1−1 to Y − 1.
We subtract 1 so we do not double count the seed. Let b(p) =

∑18
n=1

∑
x′∈A′

n
qn(x′)

be the probability of a configuration from A′n. Each time this occurs we obtain
an expected m(p)− 1 more inert particles with m(p) from (3.7). This will happen
geometric(b(p))-distributed many times, which has expectation b(p)/(1 − b(p)). It
follows that we can improve our bound from (3.8) to the following

EZ ≥ 2p+
1− p

2

(
m(p) +

b(p)

1− b(p)
(m(p)− 1)

)
.

It takes a computer about three hours to obtain an algebraic expression for b(p).
After doing so, we find that EZ > 1 when p > .2870. In this case we have m(p) ≈
1.1713 and b(p) ≈ .1226.
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3.4. Further benefit from surviving active particles. The bound we obtain on p′c is
as far as seemed reasonable to push our technique. More complicated calculations
can be done where one considers the effect of other configurations of surviving 1-
particles to the right of γ1. For example, one might consider the case that there
is a single surviving 1-particle at 2γ1 − k with k ≥ 1 (we only consider k = 1).
However, we found that the improvements to our bound were very small, trimming
about .004 from our bound on pc, and did not justify the added complexity to the
argument. It is our belief that the main benefit to estimating EZ would come out
of extending our approach and looking out to distances n > 18. When p = .2870
we exactly compute P (γ1 ≤ 18) = .9018. So, we are missing about 1/10 of the
right tail, which ought to contain a significant number of surviving inert particles.
However, without a clever insight, extending much further appears computationally
intractable.

Acknowledgments. Thanks to Laurent Tournier and Rick Durrett for helpful sug-
gestions. We also appreciate the careful readings and useful comments from the
anonymous referees.
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