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Abstract. We analyze the metastable behavior near criticality for bootstrap
percolation on Galton-Watson trees. We find that, depending on the exact choice
of the offspring distribution, it is possible to have several distinct metastable states,
with varying scaling of their duration while approaching criticality.

1. Introduction

Bootstrap percolation is a deterministic dynamics in discrete time first intro-
duced in Chalupa et al. (1979) in order to model disordered magnetic systems, and
broadly studied since in many different contexts. Fix a graph G and a parameter
r ∈ N. Each vertex of the graph can be in one of two states – infected or healthy,
which are initially distributed independently with probabilities p and q = 1− p. At
each time step we update these states, so that the infected vertices remain infected,
and a healthy vertex becomes infected if it has at least r infected neighbors. One
may also consider more general infection conditions, such as the oriented bootstrap
percolation – when the graph G is oriented, and we require at least r edges to point
at infected vertices.

Bootstrap percolation on various deterministic graphs has been the subject of
extensive research. On the grid [n]

d, the probability that all vertices are eventually
infected, as a function of p (or equivalently q), has been profoundly studied in
Aizenman and Lebowitz (1988); Holroyd (2003); Balogh et al. (2012). For (d+ 1)-
regular infinite trees, with 2 ≤ r ≤ d, it is shown in Balogh et al. (2006) that a phase
transition occurs. Defining qc to be the supremum over all q such that starting with
probability q to be healthy all vertices end up being infected with probability 1, an
explicit expression for qc is found, and it is furthermore proven that qc lies in the
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open interval (0, 1). In addition, it is determined, depending on d and on r, when
the transition is continuous and when it is discontinuous. In Biskup and Schonmann
(2009) the details of the metastability properties are studied, describing the time
evolution of the probability that the root stays healthy near criticality.

Random environments have also been of interest in this field, e.g., the bootstrap
percolation on a polluted grid (Gravner and McDonald, 1997; Gravner and Holroyd,
2019), the random graph Gn,p (Janson et al., 2012), the random regular graph
(Balogh and Pittel, 2007; Janson, 2009), and the Galton-Watson tree (Bollobás
et al., 2014).

In this paper, we will analyze the metastability of the bootstrap percolation
on a directed Galton-Watson tree. The questions we address are analogous to
those studied for regular trees in Biskup and Schonmann (2009), where the authors
analyze the behavior of the infection probability close to the phase transition, that
is, when q = qc − ε for small (positive) ε. They study the time dependence of the
probability that the root stays healthy, that we denote by φt(q). By definition of qc
whenever q < qc the limit of this probability at long times φ∞(q) = 0, but in some
cases at qc this probability is strictly positive, and we say that the phase transition
is discontinuous. In these cases, as ε tends to 0, the behavior of φt(q) seems at first
like its behavior at criticality, decreasing to the constant φ∞(qc) and staying at this
value for a long time. However, after some time it leaves the plateau and decays
to 0. They find that the length of the plateau scales as ε−1/2, and indeed at qc it
becames infinite, explaining the discontinuity of the phase transition.

The behavior for the Galton Watson tree is much richer. In particular, we will
prove that varying the offspring distribution can result in a multiple plateau behav-
ior for φξt the expected value (over the offspring distribution ξ) of the probability
that the root is healthy. The main result, Theorem 3.8, gives an explicit construc-
tion of an offspring distribution that attains any possible choice for the widths of
the multiple plateaux.

The structure of the paper is the following. In Section 2 we introduce the model.
In section §3.1 we prove that φξt corresponds to the limiting ratio of the number of
infected vertices in a large ball around the root (Proposition 3.1). In section §3.2
we study the zoology of the metastabilities for different offspring distributions, and
state our main results Theorem 3.5 and Theorem 3.8, showing that bootstrap per-
colation on Galton Watson trees has a vast variety of possible metastable behaviors.
Finally, in section §5 we comment on other phase transitions that may occur and
address some open questions.

2. Model and notations

Fix an infection threshold r ≥ 2, and consider a Galton-Watson tree G whose
offspring distribution is supported on r, r + 1, . . . That is, defining ξk to be the
probability that a vertex has k children, we require ξk = 0 for k < r.

In the beginning, we decide for each vertex of G whether it is infected or healthy,
independently with probabilities p and q = 1 − p respectively. Then, at each time
step t, a healthy vertex will get infected if it has at least r infected children. Let
us denote by φGt the probability that the root is healthy at time t, so in particular
φG0 = q. For t > 0 this probability is a random variable, since it depends on the
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graph G. Note also that φGt is decreasing in t. The expected value of φGt over all
graphs G, generated with offspring distribution ξ, will be denoted φξt .

One particular case, that has been studied in Balogh et al. (2006); Biskup and
Schonmann (2009); Fontes and Schonmann (2008); Chalupa et al. (1979), is the
case of a rooted d-ary tree, i.e., ξk = 1k=d. Here, one can find φdt recursively using
the relation

φdt+1 = hd
(
φdt
)
; (2.1)

hd (x) = qP [Bin (d, 1− x) ≤ r − 1] . (2.2)

For the GW tree, such a recursion still holds for the expected value φξt :

φξt+1 = hξ

(
φξt

)
; (2.3)

hξ(x) =

∞∑
k=r

ξkhk(x). (2.4)

Remark 2.1. For convenience we have defined the model on the directed tree, where
infections could only propagate in the direction of the root. As for the undirected
tree, it has been observed in Biskup and Schonmann (2009) that the infection time
of the root remains the same (deterministically for all initial conditions). Therefore,
the main results of this article, theorems 3.5 and 3.8, will also hold for the infection
time of the root in that case. Note, however, that Proposition 3.1 is concerned
with the infection time of more sites other than the root, and adapting it to the
undirected case is not immediate.

3. Results

3.1. Prevalence and φt. Before stating the main results concerning the critical be-
havior of the bootstrap percolation we will state a small result that gives more
motivation for the study of φt. It is separate from the results of the next section,
and will not be used in their proofs.

The relation in equation (2.3) allows us to find the expected value of φGt , but
for a specific realization of G, φGt may differ from that value. For example, fixing
t, there is a nonzero probability that a finite neighborhood of the root will have
many vertices of high degree, which will result in a smaller φGt . However, we will
see that φξt describes almost surely another observable – the prevalence, i.e., the
limiting fraction of infected vertices. Namely, we define the R-prevalence at time t
as

ρR(t) =
|{infected vertices in B(R) at time t}|

|B(R)|
,

where B(R) denotes the ball of radius R around the root.
It is natural to expect ρR (t) to be close to 1 − φξt , and this is indeed the case,

as shown in the following proposition:

Proposition 3.1. Fix t. Then limR→∞ ρR (t) = 1− φξt almost surely (in both the
graph and the initial state measures).
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3.2. Critical behavior. Following Balogh et al. (2006); Bollobás et al. (2014), we
define the critical probability

qc = sup
[0,1]

{
q : φξ∞ = 0

}
. (3.1)

In order to analyze this criticality, define

gk(x) =
hk(x)

qx
, (3.2)

gξ(x) =
hξ(x)

qx
, (3.3)

for hk and hξ defined in equations (2.2) and (2.4) respectively.
In Bollobás et al. (2014), the following fact is shown:

Fact 3.2. Fix ξ. Then:
(1) For a given q, φξ∞ is the maximal solution in [0, 1] of gξ(x) = 1

q , and 0 if
no such solution exists.

(2) qc = 1
max[0,1] gξ(x)

.

The metastability behavior of the infection probability (1 − φξt ) near the phase
transition, when q is slightly smaller than qc, will be characterized using the fol-
lowing two definitions. They will describe the behavior illustrated in figure 3.1.

Definition 3.3. For 0 < x < 1 and some positive δ, the δ-entrance time of x is

τ−x,δ(q) = min{t : φξt < x+ δ},
and the δ-exit time is defined as

τ+x,δ(q) = min{t : φξt < x− δ}.

Definition 3.4. Fix δ > 0. We say that the critical point is δ-(ν1, . . . , νn)-
metastable at x1 > · · · > xn > 0 if, for q ↗ qc, the following hold:

(1) τ−x1,δ
= O (1).

(2)
log
(
τ+
xi,δ
−τ−xi,δ

)
log(qc−q)

q↗qc−−−→ −1 + 1
2νi

for i = 1, . . . , n.
(3) τ−xi+1,δ

− τ+xi,δ = O (1) for i = 1, . . . , n and xn+1 = 0.
We say that the critical point is (ν1, . . . , νn)-metastable at x1 > · · · > xn if it is
δ-(ν1, . . . , νn)-metastable at x1 > · · · > xn for small enough δ.

The following theorem gives a full classification of the metastability properties
of the phase transition, using gξ defined in equation (3.3).

Theorem 3.5. Fix ξ. Then the metastable behavior of φξt at the phase transition
is determined by one of the following cases:

(1) gξ attains its maximum at 1. In this case the critical probability is 1.
(2) gξ has a unique maximum at 0. In this case the phase transition is contin-

uous, i.e., φξ∞ = 0 at q = qc. Then at the critical point

gξ(x) =
1

qc
− Cxν + o (xν) (3.4)

for some ν ∈ N and a positive constant C, and

log(φξt )

log t

t→∞−−−→ −1

ν
. (3.5)
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Figure 3.1. A schematic picture of φξt as a function of t for a
(ν1, . . . , νn)-metastable criticality at x1 > · · · > xn.

(3) The maximum of gξ is attained at the points x1, . . . , xn for 1 > x1 >
· · · > xn > 0, and possibly also at 0. In this case the phase transition is
discontinuous. For i = 1, . . . , n we may write around xi

gξ(x) =
1

qc
− Ci (x− xi)2νi + o

(
(x− xi)2νi

)
(3.6)

for some Ci > 0.
Then the critical point is (ν1, . . . , νn)-metastable at x1 > · · · > xn.

Remark 3.6. In the first case, where the critical probability is 1, it is not clear
whether or not an asymptotic expansion exists, since gξ is not guaranteed to be
analytic. When it does exist, one can recover a result similar to Case 3.

Remark 3.7. The position x1 has a clear interpretation – it is the probability to
stay healthy when q = qc. As q approaches criticality, the first plateau becomes
longer and longer, and at qc it is infinite, explaining the discontinuity of the phase
transition. The other positions x2, ..., xn, however, do not have such an interpreta-
tion.

We can now state our main result, proving that all the different metastable
behaviors described above can be attained. Actually, the proof of Theorem 3.8 is
constructive: we provide for any choice of the widths of the multiple plateaux, an
offspring distribution which realizes the corresponding metastable behavior.

Theorem 3.8.

(1) Let ν ∈ N. Then there exists ξ such that the phase transition is continuous,
and satisfies equation (3.5) at criticality.

(2) Let (ν1, . . . , νn) ∈ Nn. Then there exist ξ and x1 > · · · > xn such that the
critical point is (ν1, . . . , νn)-metastable at x1 > · · · > xn.

Remark 3.9. The proof of the second part is perturbative, showing that an appro-
priate ξ exists when x1, . . . , xn are small enough, and could be found by solving
an explicit system of linear equations. A more general result that charecterizes the
possible positions x1, . . . , xn in beyond the scope of this article.
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4. Proofs

Proof of Proposition 3.1: The idea of the proof is to notice that the main contri-
bution to the prevalence comes from the sites close to the boundary, and then use
their independence. Thus, we fix a width w, and consider

ρR,w (t) =
|{infected vertices in B (R) \B (R− w) at time t}|

|B (R) \B (R− w)|
.

First, we claim that ρR (t) is approximated by ρR,w (t) for large w. More accu-
rately, we have |B (R− w)| ≤ 2−w |B(R)|, which also implies that the number of
infected vertices in B (R)\B (R− w) is the same as the number of infected vertices
in B (R), up to a correction of order 2−w|B(R)|. Then

ρR (t) = ρR,w (t) +O
(
2−w

)
. (4.1)

We would now like to bound the distance between ρR,w (t) and 1 − φξt . Let
ε > 0, and, by equation (4.1), take w big enough such that |ρR (t)− ρR,w (t)| < ε

2
uniformly in R. Note that ρR,w (t) is a weighted average of the w random variables
ρR,1 (t) , ρR−1,1 (t) , . . . , ρR−w+1,1 (t), and consider one of these variables, ρr,1 (t).
This variable is the average of the random variables 1v is infected for all vertices v
of distance r from the root, and since these are independent Bernoulli random
variables with mean 1− φξt , and since there are at least 2R−w+1 such variables, we
can use a large deviation estimate, yielding

P
[∣∣∣ρr,1(t)− (1− φξt)∣∣∣ > ε

2

]
≤ e−c 2

R−w+1

for a positive c that only depends on ε and on φξt . Since for 1− φξt to be far from
ρR,w (t) it must be far from at least one of the variables ρR,1 (t) , ρR−1,1 (t) , . . . ,
ρR−w+1,1 (t), we have

P
[∣∣∣ρR,w (t)−

(
1− φξt

)∣∣∣ > ε

2

]
≤ we−c 2

R−w+1

. (4.2)

Hence, ρR(t) is ε-close to 1 − φξt with probability larger than 1 − we−c 2R−w+1

,
which concludes the proof by the Borel-Cantelli lemma. �

Before proving Theorems 3.5 and 3.8, we will need a couple of properties of the
funtions gk defined in equation (3.2).

Claim 4.1. gk is a polynomial of degree k− 1, whose lowest degree monomial is of
degree k − r.
Proof : By equations (3.2) and (2.2)

gk(x) =
P [Bin (k, 1− x) ≤ r − 1]

x

=

r−1∑
i=0

(
k

i

)
(1− x)i xk−i−1;

therefore all monomials are of degree between k − r and k − 1. The coefficient
of xk−r is

(
k
r−1
)
6= 0, and the coefficient of xk−1 is

∑r−1
i=0

(
k
i

)
(−1)i, which is also

nonzero since 0 < r − 1 < k. This concludes the proof. �

Claim 4.2. gr (x) , . . . , gm (x) , xm−r+1, . . . , xm−1 is a basis of the linear space of
polynomials of degree smaller or equal to m− 1.
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Proof : Denote v1 (x) = gr (x) , . . . , vm−r+1 (x) = gm (x) , vm−r+2 (x) = xm−r+1,
vm (x) = xm−1. By Claim 4.1, all v’s are of degree smaller or equal to m − 1.
Moreover, the matrix whose (i, j) entry is the coefficient of xj in the polynomial
vi is upper triangular, with nonzero diagonal. This shows that {vi}mi=1 is indeed a
basis. �

We will also use the following result from Bollobás et al. (2014):

Claim 4.3 (Claim 3.9 of Bollobás et al., 2014). Let ξ = (ξk)k≥1 where ξk = r−1
k(k−1) .

Then gξ(x) = 1 for all x ∈ [0, 1].

We are now ready to prove Theorems 3.5 and 3.8.

Proof of Theorem 3.5: First, we note that gk(1) = 1 for all k, so in particular the
series

∑∞
k=r ξkgk(x) converges at x = 1. By Claim 4.1, the monomials of degree up

to n of the partial sum
∑N
k=r ξkgk (x) are fixed once N > n+ r. This allows us to

write gk as a power series, taking the coefficient of xn to be the one that appears
in these partial sums. Hence, gξ(x) is analytic in (−1, 1) and continuous at 1, and
thus cases 1, 2 and 3 exhaust all possibilities.

The result will then follow from general arguments of dynamical systems near a
bifurcation point. Since the exact calculations are a bit tedious, we only give here
a short sketch of the argument, referring to the appendix for the complete proof
(Theorem A.4 for case 2 and Lemma A.13 for case 3).

For case 2, recall equations (2.3), (3.3) and (3.4). These yield the expression

φt+1 = φt − Cqc(φt)ν+1 + o((φt)
ν+1),

that could be estimated by comparing to the differential equation
dφ
dt

= −Cqc(φt)ν+1.

This equation could be solved explicitly, obtaining the asymptotics of equation (3.5).
For case 3 equations (2.3), (3.3) and (3.6) yield, around xi, the relation

φt+1 = φt −
xi
qc
(qc − q)− Ciqxi(φt − xi)2νi + error,

with an error term which is negligible as q → qc and φt → xi. The approximate
differential equation will be

dφ
dt

= −xi
qc
(qc − q)− Ciqcxi(φ− xi)2νi .

The solution of this equation has a plateau around xi, whose length diverges as
(qc − q)−1+

1
2νi .

Finally, we should verify that the time spent between the plateaus (i.e., when
|φξt−xi| > δ for all i) in bounded uniformly in q. This could be proven by considering
the function A : [0, qc]× (0, 1)→ [0, 1] defined as

A(q, x) = hξ(x)− x,
where the dependence of the right hand side in q is implicit (see equations (2.4)
and (2.2)). This is a continuous function, and it only vanishes when q = qc and
x ∈ {x1, . . . , xn} (see Fact 3.2, equation (3.3) and recall that x1, . . . , xn are the
maxima of gξ). Therefore, choosing δ small enough, A is strictly positive on the
closed set [0, qc]×([δ, xn−δ]∪[xn+δ, xn−1−δ]∪· · ·∪[x1+δ, 1]). We can then choose
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a to be its minimun over this set. This would give by equation (2.3) a decrease rate
between the plateaus which is uniform in q, showing that the time spent there is
bounded as q → qc. �

Proof of Theorem 3.8 part 1: For the first part, according the Theorem 3.5, it will
be enough to show that there exist an offspring distribution ξ and a polynomial
Q(x) = b0 + · · ·+ br−2x

r−2 such that, for some positive constant C,
(1) gξ (x) = C − xνQ(x).
(2) Q(x) > 0 for all x ∈ [0, 1].
This ξ, according to Theorem 3.5 and the fact that b0 > 0, will indeed satisfy

equation (3.5). We will find a sequence {χk}∞k=r with a finite sum together with a
polynomial P (x) = a0 + · · ·+ ar−2x

r−2, such that
(1) gχ (x) =

∑
k χkgk (x) = 1− xνP (x).

(2) χk ≥ 0.
(3) P (x) > 0 for all x ∈ [0, 1].

Taking ξ = 1∑
χk
χk will then conclude the proof.

Let

χk =

{
r−1

k(k−1) r ≤ k ≤ ν + r − 1

0 k ≥ ν + r
, (4.3)

so that gχ(x) =
∑ν+r−1
k=r

r−1
k(k−1)gk(x). Using Claim 4.3, we may write

gχ(x) = 1−
∞∑

k=ν+r

r − 1

k (k − 1)
gk(x).

By Claim 4.1 gχ is a polynomial of degree ν+r−2, therefore
∑∞
k=ν+r

r−1
k(k−1)gk (x)

equals a polynomial of degree ν + r − 2. Using again Claim 4.1, we can define the
polynomial

P (x) =

∞∑
k=ν+r

r − 1

k (k − 1)

gk (x)

xν
.

It is left to show that P (x) > 0 for all x ∈ [0, 1]. By equations (3.2) and
(2.2), P (x) is non-negative and could only vanish at x = 0. But by Claim 4.1,
P (0) = r−1

(ν+r)(ν+r−1)

(
gν+r(x)
xν

)
x=0
6= 0. This concludes the first part. �

Before moving on to the proof of the second part, we make a remark that would
be useful in the following.

Remark 4.4. Note that, by Claim 4.2, we can define the projection Pr from the space
of polynomials of degree at most r+ν−2 to its subspace spanned by xν , . . . , xν+r−2
with kernel spanned by gr(x), . . . , gν+r−1(x). Define also M0 to be the map from
the space of polynomials of degree at most r − 2 to the space of polynomials of
degree at most r + ν − 2 given by the multiplication by xν . Then the first of the
conditions on P in the proof of the first part of Theorem 3.8 can be written as

PrM0 P = Pr 1.

Since Pr◦M0 is bijective, this equation has a unique solution; and what we have
shown in the proof is that this solution satisfies the necessary positivity conditions.
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Proof of Theorem 3.8 part 2: We will now prove the second part of the theorem.
In analogy with the first one, we will find ξ, Q(x) = b0 + · · · + br−2x

r−2 and
x1 > · · · > xn such that, for some positive constant C,

(1) gξ (x) = C − (x− x1)2ν1 . . . (x− xn)2νn Q (x).
(2) Q(x) > 0 for all x ∈ [0, 1].
Similarly to the previous part, we will look for {χk}

ν+r−1
k=r and P (x) = a0+ · · ·+

ar−2x
r−2 satisfying:

(1) gχ (x) =
∑
k χkgk (x) = 1− (x− x1)2ν1 . . . (x− xn)2νn P (x).

(2) χk > 0.
(3) P (x) > 0 for all x ∈ [0, 1].
We stress that the inequality χk > 0 is strict, which will allow us to use a

perturbation argument. Indeed, choosing ν = 2ν1 + · · · + 2νn, χk (defined in
equation (4.3)) is strictly positive for r ≤ k ≤ ν + r − 1. Since P was required
to be strictly positive, we may hope that also after adding a small perturbation
(x1, . . . , xn) around 0 there still exists a positive solution P . More precisely, let us
denote by Mx1,...,xn the multiplication by (x− x1)2ν1 . . . (x− xn)2νn , acting on the
polynomials of degree at most r − 2. In particular, for x1, . . . , xn = 0 this is M0

defined in Remark 4.4. Then, we want to show that the solution of

PrMx1,...,xn P = Pr 1

satisfies the positivity conditions 2 and 3. By continuity of the determinant, when
(x1, . . . , xn) is in a small neighborhood of 0 the operator PrMx1,...,xn is invertible.
Moreover, in an even smaller neighborhood of 0 the polynomial (PrMx1,...,xn)

−1 Pr1
will satisfy the positivity condition 3 – matrix inversion is continuous, and the set
of polynomials satisfying this condition is open and contains (PrM0)

−1 Pr1 by the
first part of the proof. Finally, since coordinate projections of 1−(x−x1)2ν1 . . . (x−
xn)

2νn (PrMx1,...,xn)
−1 Pr1 with respect to the basis defined in Claim 4.2 are con-

tinuous in (x1, . . . , xn), and since for (x1, . . . , xn) = 0 condition 2 is satisfied, by
taking (x1, . . . , xn) in a further smaller neighborhood of 0 we are guaranteed to find
a polynomial P satisfying the required conditions. �

5. Remarks on two other phase transitions and open questions

5.1. More discontinuities of φt. Consider, for example, r = 2 and ξk = 3
51k=2 +

2
51k=5. The function gξ (x) is maximal at gξ (0) = 6

5 , then it has a local minimum,
followed by a local maximum (see Figure 5.2). In this case, recalling Fact 3.2, φξt
will have a discontinuity at this local maximum, that is, a second phase transition
occurs. We may then expect that one can find ξ giving rise to as many (decreasing)
local maxima of gξ as we wish:

Conjecture 5.1. Let ν(1)1 , . . . , ν
(1)
n1 , ν

(2)
1 , . . . , ν

(2)
n2 , . . . , ν

(m)
nm . Then there exist ξ,

{qi}mi=1 ,
{
x
(i)
j

}
1≤i≤m, 1≤j≤ni

such that qi is a critical point which is
(
ν
(i)
1 , . . . , ν

(i)
ni

)
-

metastable at x(i)1 , . . . , x
(i)
ni .

5.2. Percolation of infection. Another possible phase transition, studied in Fontes
and Schonmann (2008) for the case of regular trees, is when infinite infected clusters
start to appear, but the prevalence is still smaller than 1. Following the proof of
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Figure 5.2. gξ for r = 2 and ξk = 3
51k=2 + 2

51k=5. We show
three lines 1

q for three parameters q, intersecting gξ at φξ∞. One
sees here the discontinuity when 1

q equals the value of gξ at the
local maximum.

Proposition 3.9 in Fontes and Schonmann (2008), one sees that it applies also for
the bootstrap percolation on GW trees, showing that the critical probability q(∞)

c

above which infinite clusters no longer appear is strictly bigger than qc defined in
equation (3.1), unless ξk = 1r.

5.3. More questions. The problem of bootstrap percolation in disordered systems
raises many questions. Related to the work presented here, one may be interested
in the metastable regime for other systems, such as Gn,p or the random regular
graph. Another natural problem is the analysis of the bootstrap percolation on the
random graph with a given degree sequence, that has a GW local structure, with
analogy to the regular tree structure of the random regular graph.
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Appendix A. Appendix

This paper concerns the analysis of a phase transition originating in the appear-
ance of a new fixed point for a certain recurrence relation, i.e., a bifurcation. In
this appendix, we will try to understand in a more general context the time scaling
in systems of that type. Let us then consider a sequence of reals {xn}∞n=0, defined
by the value x0 and a recursion formula for n > 0:

xn = f(xn−1). (A.1)

We will also fix now some positive δ ∈ (0, 1), that will be used throughout this
appendix as the window around the new fixed point in which we are interested.
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First, we will study the time scaling at the bifurcation point, when the new
fixed point is first created. In this case, we may expect f to be tangent to the
identity function at the fixed point, so we will start our discussion with the following
assumptions on f and δ:

Assumption A.1. f has a fixed point y0, such that for y ∈ (y0, y0 + δ):

y − c (y − y0)α ≤ f(y) ≤ y − c (y − y0)α ,
for some α > 1, 0 < c ≤ c < δ−(α−1).

Assumption A.2. x0 ∈ (y0, y0 + δ).

We first mention the following fact:

Fact A.3. Under the assumptions A.1 and A.2 the sequence (xn) is decreasing and
bounded from below by y0.

Proof : By Assumption A.1, xn+1 < xn whenever xn ∈ (y0, y0 + δ). Moreover,

xn+1 − y0 ≥ xn − y0 − c (xn − y0)α

= (xn − y0)
(
1− c (xn − y0)α−1

)
≥ (xn − y0)

(
1− cδα−1

)
> 0.

Therefore, since x0 ∈ (y0, y0 + δ) by assumption A.2, the entire sequence is in
the interval (y0, y0 + δ), and it is decreasing. �

The following theorem will describe the asymptotic of the sequence:

Theorem A.4. Let {xn}∞n=0 be the sequence defined in equation (A.1), satisfying
Assumptions A.1 and A.2 for some δ ∈ (0, 1). Then

y0 + a (n+ n0)
− 1
α−1 ≤ xn ≤ y0 + an−

1
α−1 ,

where a =
[
(α− 1) (1− δ)−α c

]− 1
α−1

, a = [(α− 1)c]
− 1
α−1 , and n0 = (x0−y0)1−α

(α−1)(1−δ)−αc
are all positive constants.

Proof : Let us first define a sequence tn = (xn − y0)1−α, and note that tn is positive
for all n. Then using Fact A.3 and Assumption A.1, fixing c′ = (α− 1) (1− δ)−α c
and c′ = (α− 1) c, we can estimate:

tn = (f (xn−1)− y0)1−α tn = (f (xn−1)− y0)1−α

≤ (xn−1 − c (xn−1 − y0)α − y0)
1−α ≥ (xn−1 − c (xn−1 − y0)α − y0)

1−α

=

(
t

1
1−α
n−1 − ct

α
1−α
n−1

)1−α

=

(
t

1
1−α
n−1 − ct

α
1−α
n−1

)
= tn−1

(
1− ct−1n−1

)1−α
= tn−1

(
1− ct−1n−1

)1−α
≤ tn−1

(
1 + c′t−1n−1

)
≥ tn−1

(
1 + c′t−1n−1

)
= tn−1 + c′; = tn−1 + c′.

We have used here the fact that, for any 0 < z < δ < 1, we can approximate
(1− z)1−α using its derivatives at 0 and at δ:

−(1− α) ≤ (1− z)1−α − 1

z
≤ −(1− α)(1− δ)−α.
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We then also use ct−1n−1 = (xn − y0)α−1 < δα−1 < δ.
Finally,

xn = y0 + t
− 1
α−1

n xn ≥ y0 +
(
(x0 − y0)1−α + c′n

)− 1
α−1

≤ y0 +
(
(x0 − y0)1−α + c′n

)− 1
α−1

= y0 +
(
c′
(
n+ (x0−y0)1−α

c′

))− 1
α−1

≤ y0 + an−
1

α−1 ; = y0 + a (n+ n0)
− 1
α−1 .

�

Next, we will be interested in the behavior near the bifurcation point, just before
the new fixed point appears. For this purpose we will consider a family {xεn}

∞
n=0 of

sequences, each defined by the value xε0 and a recursion formula for n > 0:

xεn = fε
(
xεn−1

)
, (A.2)

and assume:

Assumption A.5. There is a point y0 such that for |y − y0| < δ and ε < ε0

y − c (y − y0)2α − ε ≤ fε (y) ≤ y − c (y − y0)2α − θε,
for an integer α > 1, positive constants c and c, and some fixed θ ∈ (0, 1].

Assumption A.6. 0 < x0 − y0 < δ.

In order to study the asymptotic behavior of xεn for small values of ε, we will
need the following definition:

Definition A.7. The exit time Nδ(ε) is the minimal n such that xεn < y0 − δ.
Replacing Fact A.3 will be the following:

Fact A.8. For all ε < ε0, Nδ(ε) is finite, and for n < Nδ(ε) the sequence xεn is
decreasing.

Proof : By Assumption A.5, for n < Nδ(ε), if xεn < y0 + δ then xεn+1 < xεn <
y0 + δ. Hence, the sequence remains in the interval (y0 − δ, y0 + δ) an long as
n < Nδ(ε). Since in this interval the sequence is decreasing, the result follows by
Assumption A.6. �

For our analysis, we will compare this sequence to the solution of the following
differential equations, that will approximate xεn − y0:

dζ
ds = −c ζ2α − ε, dζ

ds = −c ζ2α − θε,
ζ (0) = zε0 = xε0 − y0; ζ (0) = zε0 = xε0 − y0.

The solution ζ is strictly decreasing, and in particular one can define its inverse
t : [−∞, zε0] → [0,∞], and τn = t (xεn − y0). t and τn will be defined in the same
manner. Note that these all depend on ε, even though this dependence is omitted
from the notation. The next lemma will show that the continuous crossing times
τn and τn are close to the discrete one, namely n.

Lemma A.9. For all n ≤ Nδ(ε),
(1− κc,δ,θε)n ≤ τn ≤ τn ≤

(
1 + κc,δ,ε

)
n,

where for all c > 0, κc,δ,ε = max(C4ε
2α−1, 2αδ2α−1). C4 is a positive constant

depending on δ, c and ε0 given explicitly in the proof, and bounded when δ and ε0
are not too big. For example, if ε0 < 1 and cδ2α−1 < 1

2 , C4 < (3 + 4αc)4α.
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Proof : Let zn = xn − y0. Then

τn = t (fε (xn−1)− y0)
≤ t
(
zn−1 − cz2αn−1 − ε

)
=

zn−1−cz2αn−1−ε∫
z0

dz
−cz2α − ε

= t (zn−1)−

zn−1−cz2αn−1−ε∫
zn−1

dz
cz2αn−1 + ε

−

zn−1−cz2αn−1−ε∫
zn−1

(
dz

cz2α + ε
− dz
cz2αn−1 + ε

)

= τn−1 + 1−

zn−1−cz2αn−1−ε∫
zn−1

(
dz

cz2α + ε
− dz
cz2αn−1 + ε

)
.

In order to study the error term, we will use the following estimation:

Claim A.10. Fix w0 ∈ (−δ, δ), and c > 0. Let

I =

w0∫
w0−cw2α

0 −ε

(
1

cw2α + ε
− 1

cw2α
0 + ε

)
dw.

Then
|I| ≤ κc,δ,ε0 .

Proof : We will first consider the case in which the integration interval passes
through 0, that is 0 < w0 < cw2α

0 + ε. In this case,

w0 ≤ w0

(
1− cw2α−1

0

) (
1− cδ2α−1

)−1 ≤ C1ε,

cw2α
0 + ε ≤

[
1 + C2ε

2α−1] ε,
for C1 =

(
1− cδ2α−1

)−1 and C2 = c
(
1− cδ2α−1

)−2α.
We may then, for all for all w ∈

[
w0 − cw2α

0 − ε, w0

]
, bound the nominator of

the integrand by ∣∣cw2α
0 + ε− cw2α − ε

∣∣ ≤ cw2α
0 + cw2α ≤ C3ε

2α,

where C3 =
(
1 + C2ε

2α−1
0

)2α
+ C2α

1 .
For the denominator, (

cw2α + ε
) (
cw2α

0 + ε
)
≥ ε2.

Putting everything together

|I| ≤
w0∫

w0−cw2α
0 −ε

∣∣∣∣ cw2α
0 + ε− cw2α − ε

(cw2α + ε) (cw2α
0 + ε)

∣∣∣∣
≤

(
cw2α

0 + ε
)
C3ε

2α−2

≤ C4ε
2α−1,

for C4 =
[
1 + C2ε

2α−1
0

]
C3.
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Next, we consider the case where the integral is over a positive interval, i.e.,
w0 ≥ cw2α

0 + ε. We can bound the integrand using convexity – for all w ∈(
w0 − cw2α

0 − ε, w0

)
1

cw2α+ε −
1

cw2α
0 +ε

w − w0
≥ − 2αcw2α−1

(cw2α + ε)
2 .

This implies that

|I| ≤
(
cw2α

0 + ε
) 2αcw2α−1

(cw2α + ε)
2 (w0 − w)

≤ 2αcw2α−1 ≤ 2αcδ2α−1.

We are left with the case w0 ≤ −cw2α
0 − ε, which could be analyzed using the

exact same argument as the previous one to obtain the result. �

Using the claim we can continue with our estimation, obtaining

τn ≤ τn−1 + 1 + κc,δ,ε0 ,

and proving the upper bound. The lower bound could be found using the exact
same calculation replacing c by c and ε by θε. The result follows since c ≤ c, and
thus τn ≤ τn by monotonicity of the integral. �

We are now ready to formulate the final result:

Theorem A.11. Fix a family of sequences (indexed by ε) defined in equation (A.2)
satisfying Assumptions A.5 and A.6, and consider their exit times Nδ(ε) (see Def-

inition A.7). Let I =
∞∫
−∞

du
cu2α+1 , I =

∞∫
−∞

du
cu2α+1 , and κδ,0 = max(κc,δ,0, κc,δ,0),

where κc,δ,0 and κc,δ,0 are the positive constants given in Lemma A.9. Assume
further that κδ,0 < 1. Then

0 <
1
2I

1 + κδ,0
≤ lim inf

ε→0

Nδ(ε)

ε−1+
1
2α

≤ lim sup
ε→0

Nδ(ε)

ε−1+
1
2α

≤ I

θ (1− κδ,0)
<∞.

The factor 1
2 in front of I could be removed when ε−

1
2α (xε0 − y0)ε → ∞ as ε → 0

(e.g., when xε0 − y0 is bounded away from 0 uniformly in ε).

Proof : This theorem is a direct consequence of the fact that ζ shows an ε−1+
1
2α

time scaling behavior. First, note that

τNδ(ε)−1 ≤ t(−δ) ≤ t(−δ) ≤ τNδ(ε).

We will then be interested in finding t(−δ), t(−δ):

t(−δ) =
−δ∫
zε0

dz
−cz2α − ε

= ε−1+
1
2α

−δ∫
zε0

ε−
1
2α dz

−c
(
zε−

1
2α

)2α
− 1

= ε−1+
1
2α

ε−
1
2α δ∫

−ε−
1
2α zε0

du
cu2α + 1

,

and for t one should replace c by c and ε by θε.
All that is left is to use Lemma A.9, finding

t(−δ)
(1 + κδ,ε)

≤ Nδ(ε) ≤ 1 +
t(−δ)

(1− κδ,ε)
,
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which, since the integrals defining I and I converge, concludes the proof. �

Remark A.12. When fε satisfies not only Assumption A.5, but also

fε (y) = y − c (y − y0)2α − ε+ o
(
(y − y0)2α

)
+ o (ε) ,

we can consider δε that goes to 0 with ε, e.g. 1
|log ε| , so that κδ,0 will converge

to 0 as well. In this case, we may choose cδ and cδ that converge to c, and thus
Theorem A.11 will give the limit of Nδ(ε)

ε−1+ 1
2α

, rather than just bounds on its limsup
and liminf. Such a direct application of the theorem, however, forces us to choose
an initial condition xε0 that converges to y0 as ε goes to 0. To overcome this issue,
we can use the estimation above with a fixed δ until xn reaches δε, which happens

at n of order
δε∫
z0

dz
−cz2α−ε � ε−1+

1
2α . Then restart the dynamics using the estimation

with δε until reaching −δε, which takes an order ε−1+
1
2α of steps, and then using

again the estimation for our fixed δ show that the number of steps required to reach
−δ is much smaller than ε−1+

1
2α . This would yield

lim
ε→0

Nδ(ε)

ε−1+
1
2α

=

∞∫
−∞

du
cu2α + 1

.

Lemma A.13. Fix a family of sequences (indexed by ε) defined in equation (A.2).
Assume that there exist n points y1, . . . , yn, n exponents α1, . . . , αn and δ > 0 such
that, for ε small enough,

(1) x0 > y1
(2) For all i ≤ n, as y → yi and ε→ 0

fε(y) = y − c(y − yi)2αi − ε+ o((y − yi)2αi + ε).

(3) There exists a > 0 that may depend on δ but not on ε, such that if |y−yi| ≥ δ
for all i then fε(y) < y − a.

Let τ−i = min(n : xn < yi + δ) and τ+i = min(n : xn < yi − δ). Then
(1) τ1 < a(x0 − y1),
(2)

log(τ+
i −τ

−
i )

log(ε) → −1 + 1
2αi

as ε→ 0,
(3) τ−i+1 - τ+i < a(yi − yi+1).

Proof : Parts 1 and 3 are an immediate consequence of the assumptions 1 and 3.
Part 2 is a consquence of Theorem A.11 – for any fixed i, when starting from
xτ−i

assumptions A.6 and A.5 are satisfied. The result follows by noting that
τ+ − τ− = Nδ(ε). �
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