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Exponent for sets of frequently visited points of
a simple random walk in two dimensions
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Abstract. Herein, we present a study on frequently visited sets in a simple random
walk in Z2. We estimate the expectation of numbers of j-tuples of favorite points
and obtain an exact exponent.

1. Introduction

We study properties of special points, called favorite points in a random walk
range in Z2, which are sites at which the local time of a simple random walk is close
to the most frequently visited site. In particular, we observe the number of sets of
favorite points in Z2. We call these sets favorite sets. We will define the favorite
set Rj,n(α) and obtain certain asymptotic estimates of

|{~x ∈ Rj,n(α) : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j}|

for ~x = (x1, . . . , xj), 0 < α, β < 1 and j ∈ N.
Our motivation behind this study is to understand the relationship between the

special points of a random walk and that of the Gaussian free field, such as late
points and high points. In fact, there are several known related results. Dembo
et al. (2006) and Brummelhuis and Hilhorst (1991) computed the number of pairs
of late points in two dimensions. Daviaud (2006) estimated that the high points
of the Gaussian free field in two dimensions has the same forms as that in Brum-
melhuis and Hilhorst (1991); Dembo et al. (2006). We obtain the same form for
favorite points in Okada (2019+). In each case, there is a certain consistency of the
exponents.

To state our main result, we introduce the following notations. Let d be the
Euclidean distance and N := {1, 2, · · · }. For n ∈ N, let D(x, r) := {y ∈ Z2 :
d(x, y) < r} and for any G ⊂ Z2, ∂G := {y ∈ Gc : d(x, y) = 1 for some x ∈ G}.
For x ∈ Z2, we sometimes omit {} while writing a one-point set {x}. Let (Sk)∞k=0

be a simple random walk on the 2-dimensional square lattice. Let P x denote the
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probability of the simple random walk starting at x. Then, we simply write P
for P 0. For any A ⊂ Z2, let K(n,A) be the number of times the simple random
walk visits A up to time n, that is, K(n,A) =

∑n
i=0 1{Si∈A}. For x ∈ Z2, let

Tx := inf{m ≥ 1 : Sm = x} and τn := inf{m ≥ 0 : Sm ∈ ∂D(0, n)}.
In two dimensions, favorite points of simple random walks have been studied.

Originally, Erdös and Révész (1987) suggested several problems related to the local
time of the simple random walk. Approximately forty years later, Dembo, Peres,
Rosen and Zeitouni (Dembo et al., 2007, 2001, 2004) solved many open problems
regarding the simple random walk in Z2. Dembo et al. (2001) showed that for the
simple random walk in Z2

lim
n→∞

maxx∈Z2 K(n, x)

(log n)2
=

1

π
a.s.

It can easily yield the following

lim
n→∞

maxx∈Z2 K(τn, x)

(log n)2
=

4

π
a.s.

given that log τn/ log n2 → 1 almost surely as n → ∞. In Okada (2019+), we set
x to be α-favorite point for 0 < α < 1 if K(τn, x) is larger than 4α(log n)2/π. In
Dembo (2005, 2006); Dembo et al. (2004, 2006), the authors suggested the open
problem for structures of α-favorite points. Next, for 0 < α < 1, we define α-favorite
sets in Z2 such that

Rj,n(α) :=

{
~x ∈ D(0, n)j : K(τn, {x1, . . . , xj}) ≥

⌈
4αj

π
(log n)2

⌉}
,

where dae denotes the smallest integer n with n ≥ a.
Now, we provide our main result on the structures of favorite sets.

Theorem 1.1. For any 0 < α, β < 1

lim
n→∞

logE[|{~x ∈ Rj,n(α) : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j}|]
log n

= ρ̂j(α, β),

where

ρ̂j(α, β) :=

{
2 + 2(j − 1)β − 2jα

(1−β)(j−1)+1 (β ≤ 1 + 1−
√
jα

j−1 ),

2(j + 1− 2
√
jα) (β ≥ 1 + 1−

√
jα

j−1 ).

The above exponent is the same as that of the main result in Okada (2019).

Remark 1.2. We expect the following: the limit of log |{~x ∈ Rj,n(α) : d(xi, xl) ≤
nβ for any 1 ≤ i, l ≤ j}|/ log n as n→∞ exists almost surely. However, we expect
that this proof does not contribute to this study. Hence, we have omitted the result.

Now, we explain the basic approach of this paper. To show Theorem 1.1, we find
an appropriate estimate of

E[|{~x ∈ Rj,n(α) : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j}|]

=
∑

d(xi,xl)≤nβ ,
xi∈Z2,1≤∀i,l≤j

P (~x ∈ Rj,n(α)).

Note that the position of a j-tuple of points determines the value of P (~x ∈ Rj,n(α)).
This value can be expressed by a matrix constructed from Gn(x, y) :=
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∑∞
m=0 P

x(Sm = y,m < τn) for x, y ∈ D(0, n), which is a Green’s function of
the walk killed when it exits D(0, n). We shall show that uniformity is achieved in
x1, . . . , xj ∈ D(0, n/10),

P (~x ∈ Rj,n(α)) ≈ exp

(
− 2αjλ

((
πGn(xi, xl)

2 log n

)
1≤i,l≤j

)−1

log n

)
, (1.1)

where an ≈ bn means log an/ log bn → 1 as n→∞ for any sequence and λ(A) is the
maximal eigenvalue of A. We obtain (1.1) using the same argument as that of Csáki
et al. (2005) in Lemma 2.9. After computing (1.1), we sum it using the similarity
between Green’s functions and ultrametric matrices (see Section 2.2) as well as
Okada (2019). As a different point from the proof of the result in Okada (2019),
we deal with the maximal eigenvalues of ultrameric matrices while we compute
the summation over all the entries of inverse matrices of ultrameric matrices in
Okada (2019). Then, the key estimate in this paper corresponds to Proposition 2.2.
Essentially, we need original computations.

2. Proofs

In this section, we provide the proof for Theorem 1.1. In Sections 2.1 and 2.2,
we prepare estimates to show Theorem 1.1 and show it in Section 2.3. Hereafter,
the values of the constants c and C may vary from place to place.

2.1. Green’s function. In this section, we introduce estimates of a Green’s function
for a simple random walk in Z2. From Exercise 1.6.8 of Lawler (1991) or (4.1) and
(4.3) in Rosen (2005), we have that, uniformly in 0 < |x| < R,

P x(T0 < τR) =
log(R/|x|) +O(|x|−1)

logR
(1 +O((log |x|)−1)). (2.1)

Recall that for x, y ∈ D(0, n), we set Gn(x, y) =
∑∞
m=0 P

x(Sm = y,m < τn). In
addition, by Proposition 1.6.7 in Lawler (1991) or (2.1) in Rosen (2005), we have
that for any x ∈ D(0, n)

Gn(x, 0) =

∞∑
m=0

P x(Sm = 0,m < τn) =
2

π
log

(
n

d(x, 0)+

)
+O((d(x, 0)+)−1 + n−1),

Gn(0, 0) =
2

π
log n+O(1),

where a+ := a ∨ 1. Therefore, we have that for x, y ∈ D(0, n/3)

Gn(x, y) =
2

π
log

(
n

d(x, y)+

)
+O(1) (2.2)

since

Gn(x, y) ≤
∞∑
m=0

P x−y(Sm = 0,m < τ4n/3) =
2

π
log

(
n

d(x, y)+

)
+O(1),

Gn(x, y) ≥
∞∑
m=0

P x−y(Sm = 0,m < τ2n/3) =
2

π
log

(
n

d(x, y)+

)
+O(1).



1132 I. Okada

2.2. Matrix argument. In this section, we provide matrix properties for ultrametric
matrices. We introduce the following notations and introduce the results proved by
Okada (2019) et al. Our main aim in this section is to prove Proposition 2.4.

Fix 0 < α, β < 1 and j ∈ N. Given 0 < η < (1 − β) ∧ β, let Mβ,η
j be a subset

of j × j-(symmetric) strictly ultrametric matrices (ai,l)1≤i,l≤j satisfying ai,i = 1,
1− β ≤ ai,l ≤ 1− η for 1 ≤ i 6= l ≤ j (see the explanation of ultrametric matrices
in Dellacherie et al., 2014; Martínez et al., 1994). Hereafter, we denote (ai,l)1≤i,l≤j

as A. For jk ∈ N, let Ak := (a
(k)
i,l )1≤i,l≤jk ∈ M

β,η
jk

(∀k = 1, . . . ,m) and j =∑m
k=1 jk. For the injective function σk : {1, . . . , jk} → {1, . . . , j} (∀k = 1, . . . ,m)

with ∪mk=1Im σk = {1, . . . , j} and s ≤ min{a(k)
i,l | k ∈ {1, . . . ,m}, i, l ∈ {1, . . . , jk}},

we let A = Aσ1
1 �s ...�s Aσmm if

ai,l :=

{
a

(k)

σ−1
k (i),σ−1

k (l)
for i, l ∈ Im σk, k = 1, . . . ,m,

s otherwise.

Proposition 3.4 in Dellacherie et al. (2014) or Proposition 5.1 in Okada (2019) yields
the following:

Proposition 2.1. It holds that for j ≥ 2 with j ∈ N, A ∈ Mβ,η
j satisfies the

following: there exist Ak ∈ Mβ,η
jk

and σk for k = 1, . . . ,m with m ≥ 2 such that
A = Aσ1

1 �s ...�s Aσmm , where s < min{a(k)
i,l | k ∈ {1, . . . ,m}, i, l ∈ {1, . . . , jk}}.

To state the following proposition, for a regular matrix A, let y1(A), . . . , yj(A)

be the solution that satisfies A(y1(A), . . . , yj(A))T = ~1T , where ~1 = (1, . . . , 1) and
χ(A) :=

∑j
i=1 yi(A) if χ(A) is well defined. Note that if A is a regular matrix,

χ(A) corresponds to the summation over all the entries of A−1. Theorem 3.5 in
Dellacherie et al. (2014) yields that a matrix included inMβ,η

j is a regular matrix.
In Okada (2019), we defined Ξ inductively as follows: for A ∈ Mj which is equal
to Aσ1

1 �s ...�s Aσmm , set

Ξ(A) :=

m∑
k=1

Ξ(Ak) + (m− 1)(1− s),

where Ξ(A) := 0 for A ∈ Mβ,η
1 . Remark 5.3 in Okada (2019) verified that Ξ is

well defined. Let g := |Im σ1|, h := |Im σ2| and A(x) := xE − A for x ∈ R and
a matrix A, where E is an identity of appropriate size. Recall that λ(A) is the
maximum eigenvalue of A. Let A(j)

r0 := (ai,l)1≤i,l≤j if ai,i = 1 and ai,l = r0 for any
1 ≤ i 6= l ≤ j.

Proposition 2.2. For any j ≥ 2, A ∈ Ξ−1({(j − 1)(1 − r̃)}) ∩Mβ,η
j with A =

Bσ1 �r Cσ2 , 0 < r ≤ r̃ < 1 and x > λ(A
(j)
r̃ ),

(i)det(B(x)),det(C(x)) > 0,

(ii)there exist y1(A(x)), . . . , yj(A(x)) and yi(A(x)) > 0 for any 1 ≤ i ≤ j,

(iii)λ(A) ≤ λ(A
(j)
r̃ ) = 1 + (j − 1)r̃,

(iv)0 ≤ χ(A(x)) ≤ χ(A
(j)
r̃ (x)).

Proof : Without loss of generality, we assume that σ1(i) = i for 1 ≤ i ≤ g and
σ2(i) = i + g for 1 ≤ i ≤ h. We pick r1 and r2 such that 0 < r ≤ r̃ ≤ r1, r2 < 1,
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(j− 1)r̃ = (g− 1)r2 + (h− 1)r1 + r, B ∈ Ξ−1({(g− 1)(1− r2)}) and C ∈ Ξ−1({(h−
1)(1− r1)}). Given that (ii) yields that A(x) is a regular matrix, we obtain (iii) by
(ii). Then, we only show (i), (ii) and (iv) by induction on j. For j = 2, it is trivial
that (i), (ii) and (iv) hold. For j ∈ N ∩ {1, 2}c, we assume that the claim holds
for 2, . . . , j − 1. First, we show (i). Given that λ(A

(g)
r2 ) = 1 + (g − 1)r2, λ(A

(h)
r1 ) =

1+(h−1)r1 and λ(A
(j)
r̃ ) = 1+(j−1)r̃, we have λ(A

(g)
r2 )∨λ(A

(h)
r1 ) < λ(A

(j)
r̃ ). Thus,

assuming (iii) results in det(B(x)) > 0 under x > λ(A
(g)
r2 ) and det(C(x)) > 0 under

x > λ(A
(h)
r1 ). Therefore, we obtain (i).

Next, we show (ii). First, we prove the following:

1− r2χ(B(x))χ(C(x)) > 0. (2.3)

The simple computation yields the following:

χ(A(g)
r2 (x)) =

g

x− (g − 1)r2 − 1
, χ(A(h)

r1 (x)) =
h

x− (h− 1)r1 − 1

and hence for x > λ(A
(j)
r̃ )

1− r2χ(A(g)
r2 (x))χ(A(h)

r1 (x)) =
(x− (g − 1)r2 − 1)(x− (h− 1)r1 − 1)− r2gh

(x− (g − 1)r2 − 1)(x− (h− 1)r1 − 1)

>
((h− 1)r1 + r)((g − 1)r2 + r)− r2gh

(x− (g − 1)r2 − 1)(x− (h− 1)r1 − 1)

≥ ((h− 1)r + r)((g − 1)r + r)− r2gh

(x− (g − 1)r2 − 1)(x− (h− 1)r1 − 1)
= 0.

Then, given that λ(A
(j)
r̃ ) ≥ λ(A

(g)
r2 ) ∨ λ(A

(h)
r1 ), the assumption of (iv) yields that

for x > λ(A
(j)
r̃ )

0 ≤ χ(B(x)) ≤ χ(A(g)
r2 (x)), 0 ≤ χ(C(x)) ≤ χ(A(h)

r1 (x))

and

1− r2χ(B(x))χ(C(x)) ≥ 1− r2χ(A(g)
r2 (x))χ(A(h)

r1 (x)) > 0.

Then, we obtain (2.3). In addition, the assumption of (ii) results in x > λ(A
(j)
r̃ ) >

λ(A
(g)
r̃ ) ∨ λ(A

(h)
r̃ ), yi(B(x)) > 0 for 1 ≤ i ≤ g and yi(C(x)) > 0 for 1 ≤ i ≤ h. By

the same argument as that of the proof of Proposition 5.2 in Okada (2019), (2.3)
and the assumption of (ii), we find the existence of y1(A(x)), . . . , yj(A(x)),

(y1(A(x)), . . . , yg(A(x))) = (1 + r

j∑
i=g+1

yi(A(x)))(y1(B(x)), . . . , yg(B(x))),

(yg+1(A(x)), . . . , yj(A(x))) = (1 + r

g∑
i=1

yi(A(x)))(y1(C(x)), . . . , yh(C(x)))

and
g∑
i=1

yi(A(x)) =

∑g
i=1 yi(B(x)) + r

∑g
i=1 yi(B(x))

∑h
i=1 yi(C(x))

1− r2
∑g
i=1 yi(B(x))

∑h
i=1 yi(C(x))

> 0,

j∑
i=g+1

yi(A(x)) =

∑h
i=1 yi(C(x)) + r

∑g
i=1 yi(B(x))

∑h
i=1 yi(C(x))

1− r2
∑g
i=1 yi(B(x))

∑h
i=1 yi(C(x))

> 0.
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Hence, we have the desired result.
Finally, we show (iv). For s, a, b ≥ 0 with 1− s2ab > 0, set

f(s, a, b) :=
a+ b+ 2sab

1− s2ab
.

Since (ii) yields that A(x), B(x) and C(x) are regular matrices, by the Schur
complement, we have

(Bσ1 �r C
σ2)(x)−1

=

(
(B(x)−R(C(x))−1RT )−1 −(B(x)−R(C(x))−1RT )−1R(C(x))−1

−(C(x))−1RT (B(x)−R(C(x))−1RT )−1 (C(x)−RT (B(x))−1R)−1

)
where R is the g × h-matrix all of whose entries are equal to −r. Hence, by the
simple computation, each summation of all the entries are given as follows:

χ(B(x))

1− r2χ(B(x))χ(C(x))
,

rχ(B(x))χ(C(x))

1− r2χ(B(x))χ(C(x))
,

rχ(B(x))χ(C(x))

1− r2χ(B(x))χ(C(x))
and

χ(C(x))

1− r2χ(B(x))χ(C(x))

given that 1− r2χ(B(x))χ(C(x)) > 0. Since det(B(x)), det(C(x)) ≥ 0, we have

χ((Bσ1 �r C
σ2)(x)) = f(r, χ(B(x)), χ(C(x))) (2.4)

(see another proof in Proposition 5.2 in Okada, 2019). Then, by the assumption of
(iv), we obtain

0 ≤ f(r, χ(B(x)), χ(C(x))) ≤ f(r, χ(A(g)
r2 (x)), χ(A(h)

r1 (x)))

since f(s, a, b) monotonically increases in a and b (see the proof of Lemma 5.2 in
Okada, 2019). Hence, it suffices to show

f(r, χ(A(g)
r2 (x)), χ(A(h)

r1 (x))) ≤ f(r̃, χ(A
(g)
r̃ (x)), χ(A

(h)
r̃ (x))). (2.5)

First, we show that if the maximum of f(r, χ(A
(g)
r2 (x)), χ(A

(h)
r1 (x))) is attained

at r = r1 fixing the value (h− 1)r1 + r and (g − 1)r2 if r1 ≤ r2 or g = 1. If we set
p = x− (g − 1)r2 − 1 and q = x− (h− 1)r1 − r − 1,

f(r, χ(A(g)
r2 (x)), χ(A(h)

r1 (x))) =
ph+ g(q + r) + 2rgh

p(q + r)− r2gh
:= f̂(r).

In addition, if r1 ≤ r2, (−q − 1 + x)/h ≤ r2 holds. Hence, it suffices to show the
maximum of f̂(r) for 0 ≤ r ≤ (−q − 1 + x)/h is attained at r = (−q − 1 + x)/h.
Moreover, fixing the values p and q, we obtain

∂f̂(r)

∂r
=
g2h(2h+ 1)(r + gq+hp

g+2gh )2 − h(gq+hp)2

1+2h + 2qpgh− hp2

(p(q + r)− r2gh)2
.

Note that p, q ≥ 0 for x ≥ (j − 1)r̃ + 1 and hence −(gq + hp)/(g + 2gh) ≤ 0.
Thus, the maximum of f̂(r) is attained at r = (−q − 1 + x)/h or 0. Then, by an
elementary computation, we have that f̂((−q−1+x)/h) ≥ f̂(0) for x > (j−1)r̃+1.
Therefore, given that the maximum of f̂(r) is attained at r = (−q − 1 + x)/h, the
maximum of f̂(r) is attained at r = r1.

Now, we show (2.5). By the symmetry of r1 and r2, it suffices to show (2.5) if
r1 ≤ r2 and g∧h ≥ 2. In addition, since the maximum of f̂(r) is attained at r = r1
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fixing the value (h − 1)r1 + r and (g − 1)r2, it suffices to show (2.5) if r = r1 and
r1 ≤ r2. Note that

f(r, χ(A(g)
r2 (x)), χ(A(h)

r (x))) = f(r, χ(A(g)
r2 �r A

(1)(x)), χ(A(h−1)
r (x))).

Set ri+1 := ((g + i − 3)ri + r)/(g + i − 2) for 2 ≤ i ≤ h + 1. With the aid of the
result for g ∧ h = 1, we obtain

f(r, χ(A(g)
r2 (x)), χ(A(1)(x))) ≤ f(r3, χ(A(g)

r3 (x)), χ(A(1)(x))) = χ(A(g+1)
r3 (x)).

Since f(s, a, b) is increasing on a, we have

f(r, χ(A(g)
r2 (x)), χ(A(h)

r (x))) ≤ f(r, χ(A(g+1)
r3 (x)), χ(A(h−1)

r (x))).

If h ≥ 3, we inductively obtain

f(r, χ(A(g+i−2)
ri (x)), χ(A(h−i+2)

r (x))) ≤ f(r, χ(A(g+i−1)
ri+1

(x)), χ(A(h−i+1)
r (x))).

Hence, we have

f(r, χ(A(g)
r2 (x)), χ(A(h)

r (x))) ≤f(r, χ(A(g+h−1)
rh+1

(x)), χ(A(1)(x)))

≤f(rh+2, χ(A(g+h−1)
rh+2

(x)), χ(A(1)(x))).

Thus, given that rh+2 = r̃, we obtain (2.5) if r = r1 and r1 ≤ r2. Therefore, we
obtain (2.5) and hence (iv). �

To state the following propositions, we provide some definitions concerning the
configuration of points in Z2. Given real valued j × j-matrices M := (mi,l)1≤i,l≤j ,
M ′ := (m′i,l)1≤i,l≤j , let

E [M,M ′] =E [M,M ′](j, n)

:={~x ∈ (Z2)j : mi,l ≤ d(xi, xl) ≤ m′i,l for any 1 ≤ i 6= l ≤ j}.
Note that the set is independent of diagonal elements of a matrix. When for 1 ≤ i 6=
l ≤ j, mi,l is constant and m′i,l be, we simply write E [(mi,l), (m

′
i,l)]. For A ∈M

β,η
j ,

δ′ > 0 let

Êδ′ [A] = Êδ′ [A](j, n) :=E
[(

1

2j
n1−ai,l

)
1≤i,l≤j

, (2jn1−ai,l+δ′)1≤i,l≤j

]
.

Now, we provide the following proposition. The proof is given in Proposition 4.1
in Okada (2019).

Proposition 2.3. For any δ′ > 0 and 0 < η ≤ (1 − β) ∧ β there exists n0 ∈ N
such that for any n ≥ n0 and ~x ∈ E [(nη), (nβ)] there exists A ∈ Mβ,η

j such that
~x ∈ Êδ′ [A] holds.

Next, we select δ0 > 0. As per Proposition 2.3, for δ′ > 0, ~x ∈ E [(nη), (nβ)] and
all sufficiently large n ∈ N, we can set

gδ′(~x) := inf{jλ(B)−1 : ~x ∈ Êδ′ [B], B ∈Mβ,η
j }.

Next, we provide the following key proposition.

Proposition 2.4. For any ε > 0 there exists C > 0 such that for any n ∈ N and
0 < δ′ < δ0 ∑

~x∈E[(nη),(nβ)]

n−2αgδ′ (~x) ≤ Cnρ̂j(α,β)+ε. (2.6)
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Proof : (iii) in Proposition 2.2 implies

min
A∈Ξ−1({t})

jλ((ai,l)1≤i,l≤j)
−1 =

j

j − t
.

Hence, we obtain

min
A∈Ξ−1({t})

gδ′(~x) =
j

j − t
.

Thus, applying the same argument as the proof of Proposition 5.4 in Okada (2019)
yields the following result: for any δ′ > 0 there exists C > 0 such that for any
n ≥ n0, the left-hand side in (2.6) is bounded by

C max
0≤t≤(j−1)β

max
A∈Ξ−1({t})

∑
~x∈Êδ′ [A]

n−2αgδ′ (~x)

≤C max
0≤t≤(j−1)β

n2t+2+ε/2 max
A∈Ξ−1({t})

n−2αgδ′ (~x) ≤ C max
0≤t≤(j−1)β

n2t+2+εn−2αj/(j−t).

Therefore, given that

max
0≤t≤(j−1)β

2t+ 2− 2αj

j − t
= ρ̂j(α, β),

we obtain the desired result. �

Finally, we give the following proposition and remark. We use them to show
Proposition 2.10 in the next section. Let ‖‖ be the matrix norm.

Proposition 2.5. For any ε > 0, there exists δ > 0 such that for any A ∈ Mβ,η
j ,

symmetric matrix Ã with ‖A− Ã‖ ≤ δ, Ã is a regular matrix and∣∣∣∣λ(A)−1 − λ(Ã)−1

∣∣∣∣ ≤ ε.
Remark 2.6. It is trivial that Proposition 2.5 yields the following. For any ε > 0,
there exists δ > 0 such that for any n ∈ N and A ∈ Mβ,η

j , symmetric matrix Ã
with ‖nA− Ã‖ ≤ δn, ∣∣∣∣λ(A)−1

n
− λ(Ã)−1

∣∣∣∣ ≤ ε

n
.

Proof of Proposition 2.5: Since we showed the first claim in Proposition 5.5 in
Okada (2019), we now prove the second claim. Let

M̂β,η
j := {(ai,l)1≤i,l≤j : symmetric, 1− η ≤ ai,i ≤ 1 + η,

1− β − η ≤ ai,l ≤ 1− η/2 for any 1 ≤ i 6= l ≤ j}.

Since roots of polynomial are continuous as for polynomial coefficients, λ : M̂β,η
j →

R is continuous. Thus, by the compactness of M̂β,η
j (see a similar proof in Propo-

sition 5.5 in Okada, 2019), it suffices to show

inf
A∈M̂β,η

j

λ(A) > 0. (2.7)

Note that all the entries of A ∈ M̂β,η
j are positive. Then, the application of

the Perron-Frobenius Theorem yields the following: λ(A) > 0 for any A ∈ M̂β,η
j
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(see Reed and Simon, 1978). Hence, by the compactness of M̂β,η
j , we have (2.7).

Therefore, we obtain the desired result. �

To state the following lemmas, we let the eigenvalues of a symmetric matrix A
be λ(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λj(A), φi = (φi,1, . . . , φi,j) the corresponding
orthonormal eigenvectors to λi(A) and hi(A) :=

∑j
l=1 φi,lφi,1.

Lemma 2.7. There exist δ′ > 0 and δ > 0 such that if ‖A(j)
1−b − Ã‖ ≤ δn hold for

η ≤ b ≤ β + η, n ∈ N and symmetric matrix Ã, then

|λ(Ã)−1 − λ2(Ã)−1| ≥ δ′

n
.

Lemma 2.8. There exist δ′ > 0 and δ > 0 such that if ‖nA(j)
1−b− Ã‖ ≤ δn hold for

η ≤ b ≤ β + η, n ∈ N and symmetric matrix Ã, then

h1(Ã) ≥ δ′.

Proof of Lemma 2.7: (2.7) makes it sufficient to show that there exist δ′ > 0 and
δ > 0 such that if ‖nA(j)

1−b − Ã‖ ≤ δn holds for n ∈ N, then

|λ(Ã)− λ2(Ã)| ≥ δ′n.
Note that the simple computation yields

λ(A
(j)
1−b) = 1 + (j − 1)(1− b),

λ2(A
(j)
1−b) = b.

Given that the roots of polynomials are continuous for polynomial coefficients, we
obtain the desired result. �

Proof of Lemma 2.8: Using the Perron-Frobenius Theorem, we have the following:
φ1,i > 0 for any 1 ≤ i ≤ j and A ∈ M̂β,η

j . Thus, there exists c > 0 such that
φ1,i ≥ c for any 1 ≤ i ≤ j and A ∈ M̂β,η

j , which satisfies the assumption, since
λ(A

(j)
1−b) = 1 + (j − 1)(1− b). Therefore, we obtain the desired result. �

2.3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1 using the results
from the previous section. To show Theorem 1.1, we first prepare the following
lemma and proposition.

Lemma 2.9. Fix x1, . . . , xj ∈ D(0, n). It holds that

P x1(K(τn, {x1, . . . , xj}) > u) =

j∑
i=1

hi

(
λi − 1

λi

)u
for u = 0, 1, . . ., where λi = λi((Gn(xv, xl))1≤v,l≤j) and hi :=
hi((Gn(xv, xl))1≤v,l≤j).

Proof : Note that for any m ∈ N

Ex1 [K(τn, {x1, . . . , xj})m] =Ex1 [(

τn∑
l=0

1{Sl∈{x1,...,xj}})
m]

=

∞∑
i1,...,im=0

Ex1 [

m∏
b=1

1{Sib∈{x1,...,xj},Sib−1
,...,Sib 6∈∂D(0,n)}],
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where i−1 = 0. By the Markov property, it equals to

m∑
k=1

∑
c1,...,ck∈[1,m]
c1+...+ck=m

(
m

c1, . . . , ck

) ∑
zi∈{x1,...,xj}

1≤∀i≤k

∑
0≤u1<...<uk<∞

k∏
b=1

qub−ub−1
(zb−1, zb),

where qu(z, z′) = Ez[1{Su=z′,u<τn}], z0 = x1 and u0 = 0. Given that the remaining
proof is the same as that of Csáki et al. (2005), we omit it. �

Proposition 2.10. For any ε > 0 there exist C, c > 0 and δ′ > 0 such that for
any n ∈ N and uniformly in ~x ∈ Êδ′ [A] with x1, . . . , xj ∈ D(0, n),

P (~x ∈ Rj,n(α)) ≤ Cn−2αgδ′ (~x)+ε

and uniformly in ~x ∈ Êδ′ [A(j)
1−b] with x1, . . . , xj ∈ D(0, n/10) and η ≤ b ≤ β + η,

cn−2αgδ′ (~x)−ε ≤ P (~x ∈ Rj,n(α)).

Proof : We fix ε > 0. First, we show the upper bound. Lemma 2.9 yields

P (K(τn, {x1, . . . , xj}) ≥ u, Tx1
= min

1≤i≤j
Txi)

≤P (K(τ3n, {x1, . . . , xj}) ≥ u, Tx1 = min
1≤i≤j

Txi)

≤
j∑

k=1

|hk|
(

1− λk((G3n(xi, xl))1≤i,l≤j)
−1

)u−1

.

Since max1≤i,l≤j |φi,l| ≤ 1, it holds that max1≤i≤j |hi| ≤ j. In addition, by (2.2) to
achieve uniformity in ~x ∈ Êδ′ [A] with x1, . . . , xj ∈ D(0, n),∣∣∣∣G3n(xi, xl)− ai,l

2 log n

π

∣∣∣∣ ≤∣∣∣∣ 2π (log n− log d(xi, xl)
+ + o(1))− ai,l

2 log n

π

∣∣∣∣
≤max

2 log n

π
(|bi,l − ai,l|+ δ′)

=(o(1) + o(δ′)) log n, (2.8)

where the above-mentioned maximum is over bi,l = ai,l + o(1) with 1 ≤ i, l ≤ j and
o(δ′) means that it goes to 0 when δ′ converges to 0. Therefore, by Proposition 2.5
and the symmetry of x1, . . . , xj ,

P (K(τn, {x1, . . . , xj}) ≥ u) ≤ Cn−2αgδ′ (~x)+ε

if we select u = d4αj(log n)2/πe and hence the desired upper bound is completed.
Next, we show the lower bound. By (2.1), there exists c > 0 such that for any

n ∈ N and x1 ∈ D(0, n/10)

P (Tx1
< τn) ≥ c.
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Again, Lemma 2.9 provides that for ~x ∈ Êδ′ [A(j)
1−b] with x1, . . . , xj ∈ D(0, n/10) and

η ≤ b ≤ β + η,

P (K(τn, {x1, . . . , xj}) ≥ u)

≥P (Tx1
< τn)P x1(K(τn, {x1, . . . , xj}) ≥ u)

≥c
(
h1

(
1−λ((Gn(xi, xl))1≤i,l≤j)

−1

)u
−

j∑
k=2

|hk|
(

1−λk((Gn(xi, xl))1≤i,l≤j)
−1

)u)
.

(2.9)

Then, if we select u = d4αj(log n)2/πe, with the aid of (2.8), Proposition 2.5 and
Lemmas 2.7 and 2.8 indicates that the most right-hand side in (2.9) is larger than

c

(
1− λ((Gn(xi, xl))1≤i,l≤j)

−1

)d4αj(logn)2/πe

≥ exp

(
− 2αjλ

((
πGn(xi, xl)

2 log n

)
1≤i,l≤j

)−1

log n+ o(log n)

)
≥cn−2αgδ′ (~x)−ε

for x1, . . . , xj ∈ D(0, n/10). Therefore, we obtain the desired lower bound. �

Proof of the upper bound in Theorem 1.1: Propositions 2.4 and 2.10 yield that for
any ε > 0, there exists C > 0 such that for any n ∈ N,∑

~x∈E[(nη),(nβ)]

P (~x ∈ Rj,n(α)) ≤ Cnρ̂j(α,β)+ε. (2.10)

Hence, we need only extend the result for “E [(nη), (nβ)]" to “E [(0), (nβ)]”. This
proof is the same as that of the upper bound in Theorem 2.1 in Okada (2019), and
hence we have omitted it. �

Proof of the lower bound in Theorem 1.1: It is trivial that jλ(A
(j)
1−b)

−1 = j/(1 +

(j − 1)(1 − b)). Therefore, if we consider ~x ∈ E [(nb), (5jnb)] with x1, . . . , xj ∈
D(0, n/10) for η < b < β + η, then applying Proposition 2.10 yields the following
result:

P (~x ∈ Rj,n(α)) ≥ exp

(
− 2jα log n

1 + (j − 1)(1− b)
+ o(log n)

)
.

The proof is omitted as it is the same as that of the lower bound in Theorem 2.1
in Okada (2019). �
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