
ALEA, Lat. Am. J. Probab. Math. Stat. 16, 1165–1199 (2019)
DOI: 10.30757/ALEA.v16-44

Random cover times using
the Poisson cylinder process

Erik I. Broman and Filipe Mussini
Chalmers University of Technology and Gothenburg University
Chalmers tvärgata 3,
MV-huset
Gothenburg, Sweden.
E-mail address: broman@chalmers.se

Uppsala University
Lägerhyddsvägen 1,
Ångströmlaboratoriet
Uppsala, Sweden.
E-mail address: filipe.mussini@math.uu.se

Abstract. In this paper we deal with the classical problem of random cover times.
We investigate the distribution of the time it takes for a Poisson process of cylinders
to cover a set A ⊂ Rd. This Poisson process of cylinders is invariant under rotations,
reflections and translations, and in addition we add a time component so that
cylinders are “raining from the sky" at unit rate. Our main results concerns the
asymptotic of this cover time as the set A grows. If the set A is discrete and well
separated, we show convergence of the cover time to a Gumbel distribution. If
instead A has positive box dimension (and satisfies a weak additional assumption),
we find the correct rate of convergence.

1. Introduction

Many variants of coverage problems have been studied in the probabilistic liter-
ature. One of the first papers on this subject was by Dvoretzky (1956) and dealt
with the problem of covering the circle by using a sequence of sets placed randomly
around the circle. The related problem of covering Rd was then later studied by
Shepp (1972) for d = 1, Biermé and Estrade (2012) for general d and also by Bro-
man et al. (2017) for general d. A common feature of these papers was that no
time-component was involved. Instead, (infinite) measures µ on the set of compact
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subsets of Rd were considered. The papers studied a Poisson process using µ as the
intensity measure, and asked whether Rd would be completely covered. Of course,
this depends on the particular choice of µ and this dependence was investigated.

A variant of this covering problem is to do the following. Start with some
bounded set A ⊂ Rd, and throw down other (possibly random) sets (Bi)i≥1 se-
quentially and at random locations, and proceed until A is covered. It is then
natural to ask about the distribution of the number of sets needed to cover A. Al-
ternatively, if the sets are dropped at unit rate, one can ask about the distribution
of the cover time, i.e. the time it takes until A is covered. An example would be to
let A be the unit square in R2, and to let (Bi)i≥1 be a collection of squares of side
length ε with their centres uniformly distributed in A. Another example would be
to let the side length of the sets (Bi)i≥1 be random. Such problems were studied
by for instance Siegel and Holst (1982) and Janson (1983) on the circle, while a
much more general result was later obtained by Janson (1986). In particular, all of
these papers studied asymptotics of the cover times as the set A grew.

More recently, Belius (2012) studied the problem of covering a bounded set
A ⊂ Zd by what is known as random interlacements. This is basically a Poisson
process on the trajectories of bi-infinite random walks in Zd and was introduced by
Sznitman (2010). The major difference between the paper by Belius and the others
mentioned above, is that the interlacement trajectories are unbounded objects,
whereas in the classical setting, the corresponding sets are finite. The use of infinite
objects introduces a number of new challenges as the cover times of separated sets
no longer are independent.

The aim of this paper is to study the classical problem of covering sets A ⊂ Rd
of non-zero dimension (rather than say a subset of Zd), combined with the use of
unbounded objects to cover the set. In order to explain our main result, we will
give informal descriptions of the mathematical quantities and tools needed. Precise
definitions and explanations will be detailed in Section 2. For the models to make
sense, we will assume throughout the paper that the dimension d is at least 2.

We will use a Poisson process Ψ where an element (L, s) ∈ Ψ consists of a line
L ⊂ Rd and a “time-stamp” s ∈ R+. The set of lines with time-stamp smaller than
t will then be a Poisson process on the set of lines in Rd, and this process will be
invariant under rotations, reflections and translations (see Section 2). For such a
line L we consider the corresponding cylinder c(L) with base radius 1, i.e.

c(L) := {x ∈ Rd : d (x, L) ≤ 1}.

We then define the cover time of A to be

T (A) := inf

t > 0 : A ⊂
⋃

(L,s)∈Ψ:s≤t

c(L)

 ,

so that T (A) is the first time when A has been covered by the cylinders.
In order to state our main result, we will need to define the box dimension of a

bounded set A ⊂ Rd. A further (albeit brief) discussion of this concept is included
in Section 2.2. Let Nδ(A) be the minimum number of boxes of side length δ > 0
needed to cover A. The box dimension of A is then defined by

dimB(A) = lim
δ→0

logNδ(A)

− log δ
,
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whenever this limit exists.
We can now state our main theorem.

Theorem 1.1. For any set A ⊂ Rd such that dimB(A) is well defined, and which
satisfies the additional condition

0 < lim inf
δ→0

δdimB(A)Nδ(A) ≤ lim sup
δ→0

δdimB(A)Nδ(A) <∞, (1.1)

we have that the sequence

(T (nA)− dimB(A)(log n+ log log n))n≥1

is tight.

Remarks: nA is simply the set A scaled by a factor of n.
It is reasonable (in light of similar results such as the ones in Janson, 1986), to

expect that if A satisfies a strong enough regularity condition,

T (nA)− dimB(A)(log n+ log log n) + C

converges to a Gumbel distribution for a suitable choice of constant C. Our main
result does not quite achieve this. However, it does show that if T (nA) − f(n)
converges to a non-trivial random variable, then the function f(n) must in fact
take the form dimB(A)(log n + log log n) + O(1). See also the remark after the
proof of Theorem 1.1.

It might not be clear whether a “typical” set should satisfy condition (1.1).While
we will not discuss this question in full detail (as it is more a statement that belongs
to fractal geometry), we give a basic result (Proposition 8.1) and provide a few
examples in Section 8. That section provides sufficient motivation that assumption
(1.1) is satisfied for a rich family of sets.

In Theorem 2.1, we will provide an auxiliary (and somewhat weaker) result that
covers the case when (1.1) fails.

Our second main result deals with sequences of finite subsets of Rd. As this text
considers both finite subsets of Rd and non-discrete subsets, it will be convenient to
use different notations for the two. Therefore we let A,D etc denote finite subsets
of Rd, while A ⊂ Rd will be used to denote a non-discrete set. We let d(x, y) denote
the regular Euclidean distance between x, y ∈ Rd, and we will use the following
definition

Sep(D) := inf{d(x, y) : x, y ∈ D},
so that Sep(D) denotes the minimum distance between any two points in the set
D. A finite set D with Sep(D) ≥ ρ will be called ρ-separated.

Here and in the rest of the paper, | · | denotes cardinality.

Theorem 1.2. Let (Dn)n≥1 be a sequence of finite subsets of Rd. If limn→∞ |Dn| =
∞ and

lim inf
n

Sep(Dn) log |Dn| =∞,

then (T (Dn)− log |Dn|)n≥1 converges in distribution to the Gumbel distribution as
n→∞.

Remark: In Section 5, we will prove Theorem 5.7, which provides a bound for the
fluctuation of P(T (D) − log |D| ≤ z) from the Gumbel distribution function. This
theorem will then readily imply Theorem 1.2.
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The same fluctuation result will also be used later to prove Theorem 1.1. In
order to give an informal explanation of how this is done, consider Theorem 1.1
and some set A. We will consider a carefully chosen finite set sitting inside of nA,
and the cover time of this set will provide a lower bound to T (nA). In order to
find an upper bound on T (nA), we will consider the same discrete set, but require
that each point is singularly covered (meaning that a small ball around the point
is covered by a single cylinder of the process). If all points are singularly covered,
this will imply that the set nA is covered, and this allows us to obtain an upper
bound on the cover time of nA.

Before we wrap up this section, we want to provide a short intuitive explanation
of the overall strategy of proving our main results. Informally, if the cover time is τ,
then immediately before this time (i.e. at time τ(1− ε)), the set which is uncovered
will, with high probability, consist of small islands which are well separated. Indeed,
this is the case as Proposition 5.5 shows. In addition, Proposition 5.5 tells us that
the number of such islands will be highly concentrated around its expected value.
This can then be combined with Proposition 5.1 which tells us that the cover times
of these well separated islands are almost independent. These two results are then
combined into Theorem 5.7, which provides the final estimate on the fluctuations
of the cover time T (D). This result is then in turn used to prove both Theorem 1.1
and Theorem 1.2.

The structure of the rest of the paper is as follows: In Section 2 we define the
Poisson cylinder model and briefly discuss box dimensions. In Section 3 we present
some preliminary results concerning the Poisson cylinder model, while in Section 4
we prove some fundamental properties about ρ-separated sets. Then, Section 5 is
devoted to the proof of the fluctuation result, i.e. Theorem 5.7 which is used to
prove Theorem 1.2 in the same section. The overall strategy in this section is similar
to the strategy of Belius (2012) and described above. However, there will also be
many differences stemming from the fact that we are working in Rd as opposed to
the discrete space Zd. Section 6 is dedicated to proving Theorem 1.1 while Section 7
is used to prove our above mentioned secondary result, i.e. Theorem 2.1. Finally,
Section 8 contains some examples and Proposition 8.1 that pertains to assumption
(1.1) of Theorem 1.1.

We end this section with a comment on notation. We shall frequently use c to
denote a constant (depending only on d) which may change from line to line. In
contrast, numbered constants ck will be fixed.

2. Model and definitions

This section is divided into two subsections. The first one includes the defini-
tion and some preliminaries of the Poisson cylinder model. The second subsection
provides some basic background on box dimensions.

2.1. The Poisson cylinder model. Our first step is to define the Poisson line model.
To that end, let G(d, 1) be the set of infinite lines in Rd that pass through the origin
o, and let A(d, 1) be the set of infinite lines in Rd. Furthermore, let

LK := {L ∈ A(d, 1) : L ∩K 6= ∅},
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be the set of lines that intersectK whereK ⊂ Rd is a compact set. For convenience,
we let LA,B denote the set LA ∩ LB , i.e. the set of lines that intersect both sets
A,B ⊂ Rd. Furthermore, B(x, ρ) will denote the closed (d-dimensional) ball of
radius ρ centered at x.

We let νd,1 be the unique Haar measure on the space G(d, 1) normalized so that
νd,1(G(d, 1)) = 1. Furthermore, on A(d, 1) there is a unique (up to constants)
measure which is invariant under rotations, reflections and translations. We will
let µd,1 denote this latter measure, normalized so that µd,1

(
LB(o,1)

)
= 1 (see for

instance Schneider and Weil, 2008 Chapter 13). For any subspace H ⊂ Rd, and set
D ⊂ Rd, we let ΠH(D) denote the projection of D onto H. Here, we will consider
ΠH(D) to be a subset of Rd (and not just a subset of H). Furthermore, we will
let κd denote the volume of the unit ball B(o, 1) in Rd, and λd denote Lebesgue
measure on Rd so that κd = λd(B(o, 1)).

For any L ∈ G(d, 1) we will let L⊥ be the (d − 1)-dimensional hyperplane or-
thogonal to L and containing the origin o. The following representation (Schneider
and Weil (2008) Theorem 13.2.12) of the measure µd,1 will be useful for us. For
any K ⊂ Rd we have that

µd,1 (LK) =
1

κd−1

∫
G(d,1)

∫
L⊥

1(L+ y ∈ LK)λd−1(dy)νd,1(dL), (2.1)

where 1 denotes an indicator function. Informally, for a fixed line L, the inner
integral integrates over all lines parallel to L that intersect K. Then, the outer
integral integrates over all possible choices of L.

Our next step is to consider the following space of point measures on A(d, 1),

Ω = {ω =

∞∑
i=1

δLi : Li ∈ A(d, 1) and ω(LA) <∞ for all compact A ⊂ Rd},

where δL denotes point measure at L. By standard abuse of notation, we will
sometimes identify the random measure ω ∈ Ω with its support supp(ω), which is
really a subset of A(d, 1).

We define Ψ to be a Poisson point process on A(d, 1)×R+ with intensity measure
µd,1×λ+

1 where λ+
1 denotes Lebesgue measure on R+. We then think of an element

(L, s) ∈ Ψ as a line in Rd accompanied with a time-stamp s. We then let ωt =
ΠA(d,1){(L, s) ∈ Ψ : s ≤ t}, where ΠA(d,1) denotes projection onto the space A(d, 1).
Thus, ωt is the collection of lines which have been placed before or at time t, and
ωt ∈ Ω. By our definition, ωt is in fact a Poisson process on A(d, 1) with intensity
measure tµd,1. Similarly, we let ωt1,t2 = ΠA(d,1){(L, s) ∈ Ψ : t1 < s ≤ t2}, so that
ωt1,t2 is the set of lines placed between times t1 and t2. The intensity measure of
ωt1,t2 is therefore (t2 − t1)µd,1. Obviously we have that ωt1 ∪ ωt1,t2 = ωt2 , and we
will let (ωt)t≥0 denote the corresponding process.

We will sometimes slightly abuse notation by writing c (L) ∈ ωt instead of L ∈ ωt,
and we will often think of (and refer to) ωt as a collection of cylinders instead of
lines.

2.2. Box dimensions. In this subsection we will review some basic properties of
box dimensions, sometimes referred to as Minkowski dimensions (see Falconer, 2014
Chapter 3).
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Recall the definition of Nδ(A) from the introduction. Then, define

dimB(A) := lim sup
δ→0

logNδ(A)

− log δ
,

called the upper box dimension of the set A. Similarly, we define

dimB(A) := lim inf
δ→0

logNδ(A)

− log δ
,

to be the lower box dimension of the set A, and if these coincide, then

dimB(A) = dimB(A) = dimB(A)

is simply called the box dimension of A.
The two quantities in (1.1) are related to the upper and lower Minkowski content

(see Federer, 1969, Sections 3.2.37-3.2.44). It is beyond the scope of this paper to
investigate this relationship in detail. However, as mentioned already in the remarks
after the statement of Theorem 1.1, it will be the case that (1.1) is satisfied for many
sets. See in particular Proposition 8.1.

We can now present Theorem 2.1 mentioned in the remarks after Theorem 1.1.

Theorem 2.1. For any α < dimB(A), we have that for every z ∈ R,
lim
n→∞

P(T (nA)− α log n ≤ z) = 0.

Furthermore, for any α > dimB(A), we have that for every z ∈ R,
lim
n→∞

P(T (nA)− α log n ≤ z) = 1.

Remark: One can consider the cover times along a subsequence (nk)k≥1 such that

lim
k→∞

logN1/nk(A)

log nk
= dimB(A).

If in addition,

0 < lim inf
k→∞

n
−dimB(A)
k N1/nk(A) ≤ lim sup

k→∞
n
−dimB(A)
k N1/nk(A) <∞,

then, one will obtain a result resembling Theorem 1.1 but along this subsequence,
and with dimB(A) in place of dimB(A). We also see that Theorem 2.1 covers the
cases when

lim inf
δ→0

δdimB(A)Nδ(A) = 0 or lim sup
δ→0

δdimB(A)Nδ(A) =∞.

That is, for those sets A ⊂ Rd with a well defined box dimension but where as-
sumption (1.1) fails.

3. Preliminary results concerning the Poisson cylinder model

The next result allows us to estimate the measure of the set of cylinders inter-
secting two distant balls. This lemma was first published as Lemma 3.1 of Tykesson
and Windisch (2012). Here, we present a sketch for sake of completeness.

Lemma 3.1. Let x1, x2 ∈ Rd and let r = d(x1, x2). There exist constants c1 and
c2 depending only on d such that

c1
rd−1

≤ µd,1
(
LB(x1,1),B(x2,1)

)
≤ c2
rd−1

,

for every r ≥ 4.
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Sketch of proof. By translation invariance of µd,1, we can, without loss of general-
ity assume that x1 = o so that x2 is located on the surface of B(o, r). Furthermore,
we need order r(d−1) balls of radius 1 to cover the surface of B(o, r). By symmetry,
a random line passing through B(o, 1) will hit any fixed ball in the cover with equal
probability. Thus, the probability that it will hit B(x2, 1) must be of order r−(d−1).

The next lemma states that, despite the long-range correlation nature of the
Poisson cylinder process, events occurring in two distant sets are almost indepen-
dent. The key point of the proof is to note that the events become independent
after we conditioned on the event that no lines intersect both sets.

Lemma 3.2. Let K1,K2 ⊂ Rd be disjoint sets and let E1 and E2 be events de-
pending only on ωt in LK1 and LK2 respectively. Then:

|P (E1 ∩ E2)− P (E1)P (E2)| ≤ 4P (ωt(LK1,K2
) 6= 0) .

Proof. Note that

P (E1 ∩ E2) (3.1)
= P (E1|ωt(LK1,K2) = 0)P (E2|ωt(LK1,K2) = 0)P (ωt(LK1,K2) = 0)

+P (E1 ∩ E2|ωt(LK1,K2) 6= 0)P (ωt(LK1,K2) 6= 0) ,

since the events E1 and E2 are conditionally independent on ωt(LK1,K2
) = 0.

Furthermore, writing

P(Ei) = P (Ei|ωt(LK1,K2
) = 0)P (ωt(LK1,K2

) = 0)

+P (Ei|ωt(LK1,K2
) 6= 0)P (ωt(LK1,K2

) 6= 0)

for i = 1, 2 and using (3.1), a straightforward calculation gives us that

|P (E1 ∩ E2)− P (E1)P (E2)| ≤ 4P (ωt(LK1,K2
) 6= 0) ,

as desired.

As explained in the end of the introduction, one step in proving the main the-
orems is to show that the cover times of distant and small sets K1, . . . ,Kn+1 are
almost independent. If we consider one of these sets Kj , the next lemma gives us
bounds on the probability that there exists a line passing through Kj and any one
of the other sets Ki, i 6= j.

Lemma 3.3. Let {Ki}n+1
i=1 be a family of sets such that for every i, Ki ⊂ B(xi, 1)

for some xi ∈ Rd. Assume also that d (xi, xj) = rij ≥ 4 for every i 6= j and let
r = mini6=j rij. Then, for all 1 ≤ j ≤ n+ 1 we have

P
(
ωt

(
L⋃n+1

i=1 Ki\Kj ,Kj

)
6= 0
)
≤ ntc2
rd−1

,

where c2 is the same as in Lemma 3.1.

Proof. Fix j and let B =
⋃n+1
i=1 B(xi, 1). By Lemma 3.1 and a simple union bound

we have that for any i,

µd,1
(
L(B\B(xi,1)),B(xi,1)

)
≤ nc2

1

rd−1
.
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Therefore we get that

P
(
ωt

(
L⋃n+1

i=1 Ki\Kj ,Kj

)
6= 0
)
≤ P

(
ωt
(
LB\B(xj ,1),B(xj ,1)

)
6= 0
)

= 1− exp
(
−tµd,1

(
LB\B(xj ,1),B(xj ,1)

))
≤ 1− exp

(
−ntc2

1

rd−1

)
.

The result follows by using that e−x ≥ 1− x for all x ∈ R.

Lemma 3.1 applies to µd,1(LB(o,1)∩LB(re1,1)) for large values of r. Next, we need
to consider the same expression but for small values of r. In contrast to Lemma 3.1,
no such result exists in the literature, and so we provide a full proof.

Proposition 3.4. If d ≥ 3 and r ≤ 2
√

1− 4−1/(d−2) then we have that

µd,1
(
LB(o,1) ∩ LB(re1,1)

)
≤ 1− r

12
. (3.2)

In addition, (3.2) holds for every r ≤ 2 when d = 2.

Proof. Observe that for any fixed L ∈ G(d, 1), the set of y ∈ L⊥ such that
L+ y ∈ LK is precisely ΠL⊥(K). From (2.1) it then follows that

µd,1
(
LB(o,1) ∩ LB(re1,1)

)
(3.3)

= µd,1
(
LB(o,1)

)
+ µd,1

(
LB(re1,1)

)
− µd,1

(
LB(o,1)∪B(re1,1)

)
=

1

κd−1

∫
G(d,1)

∫
L⊥

1(L+ y ∈ LB(o,1)) + 1(L+ y ∈ LB(re1,1))

−1(L+ y ∈ LB(o,1)∪B(re1,1))λd−1(dy)νd,1(dL)

=
1

κd−1

∫
G(d,1)

∫
L⊥

1(L+ y ∈ LB(o,1))1(L+ y ∈ LB(re1,1))λd−1(dy)νd,1(dL)

=
1

κd−1

∫
G(d,1)

λd−1 (ΠL⊥(B(o, 1)) ∩ΠL⊥(B(re1, 1))) νd,1(dL).

If L ∈ G(d, 1) is written as L = {s(l1, ..., ld) : s ∈ R} where l21 + ... + l2d = 1,
then the projection matrix ΠL⊥ has elements (ΠL⊥)ii = 1− l2i and (ΠL⊥)ij = −lilj
for i 6= j. Let pr = pr(L) = ΠL⊥((r, 0, . . . , 0)) so that pr is the projection of the
center of B(re1, 1). Of course, the projection of B(o, 1) onto L⊥ is then a (d− 1)-
dimensional ball of radius 1 centred at o. Straightforward calculations yield that

pr = r(1− l21,−l1l2, . . . ,−l1ld),

so that

|pr|2 = r2((1− l21)2 + l21l
2
2 + · · ·+ l21l

2
d) = r2(1− 2l21 + l21(l21 + · · ·+ l2d)) = r2(1− l21).

Of course, ΠL⊥(B(o, 1)) and ΠL⊥(B(re1, 1)) intersect whenever |pr| ≤ 2, or equiv-
alently whenever r2(1 − l21) ≤ 4. Since we are assuming that r ≤ 2, this is always
satisfied. Furthermore, the ((d − 1)-dimensional) volume of the lens-shaped area
ΠL⊥(B(o, 1))∩ΠL⊥(B(re1, 1)) is then the sum of the volumes of two spherical caps
of height h = 1 − |pr|/2. The volume of one such spherical cap is (see Li (2011))
given by

1

2
κd−1J2h−h2

(
d

2
,

1

2

)
.
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As above, κd−1 is the volume of the unit ball in Rd−1 while Jx(a, b) denotes the
so-called regularized incomplete beta function defined by

Jx(a, b) =

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

.

We note that 2h− h2 = 1− |pr|2/4 = 1− r2(1− l21)/4, so that (3.3) becomes

µd,1
(
LB(o,1) ∩ LB(re1,1)

)
=

∫
G(d,1)

J1−r2(1−l21)/4

(
d

2
,

1

2

)
νd,1(dL). (3.4)

Furthermore,

J1−r2(1−l21)/4

(
d

2
,

1

2

)
=

∫ 1−r2(1−l21)/4

0
t
d
2−1(1− t) 1

2−1dt∫ 1

0
t
d
2−1(1− t) 1

2−1dt
.

Let Dd :=
∫ 1

0
t
d
2−1(1− t)− 1

2 dt so that

J1−r2(1−l21)/4

(
d

2
,

1

2

)
= 1− 1

Dd

∫ 1

1−r2(1−l21)/4

t
d
2−1(1− t)− 1

2 dt. (3.5)

Furthermore, we trivially have that (since d ≥ 2,)

Dd =

∫ 1

0

t
d
2−1(1− t)− 1

2 dt ≤
∫ 1

0

(1− t)−1/2dt = 2. (3.6)

We proceed to bound the integral on the right hand side of (3.5) from below.
We have that ∫ 1

1−r2(1−l21)/4

t
d
2−1(1− t)− 1

2 dt

≥ (1− r2(1− l21)/4)
d
2−1

∫ 1

1−r2(1−l21)/4

(1− t)− 1
2 dt

= (1− r2(1− l21)/4)
d
2−12

√
r2(1− l21)/4

= (1− r2(1− l21)/4)
d
2−1r

√
1− l21,

so that by (3.4), (3.5) and (3.6) we have that

µd,1
(
LB(o,1) ∩ LB(re1,1)

)
(3.7)

≤
∫
G(d,1)

1− 1

2

(
(1− r2(1− l21)/4)

d
2−1r

√
1− l21

)
νd,1(dL)

= 1− r

2

∫
G(d,1)

(1− r2(1− l21)/4)
d
2−1
√

1− l21νd,1(dL),

which uses that νd,1(G(d, 1)) = 1 (see Section 2).
In order to estimate the right hand side of (3.7), consider the sets Gk := {L ∈

G(d, 1) : l2k > 1/2}. Since l21 + · · · + l2d = 1, we clearly have that Gk ∩ Gm = ∅ if
k 6= m. Therefore

1 = νd,1(G(d, 1)) ≥ νd,1(∪dk=1Gk) = dνd,1(G1),

so that νd,1(G1) ≤ 1/d. We get that∫
G(d,1)

1(|l1| ≤ 1/
√

2)νd,1(dL) = 1− νd,1(G1) ≥ d− 1

d
. (3.8)
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We will split (3.7) into two cases. First, consider d = 2, so that

µ2,1(LB(o,1) ∩ LB(re1,1))

≤ 1− r

2

∫
G(2,1)

√
1− l21ν2,1(dL)

≤ 1− r

2

∫
G(2,1)

√
1− l211(|l1| ≤ 1/

√
2)ν2,1(dL)

≤ 1− r

2
√

2

∫
G(2,1)

1(|l1| ≤ 1/
√

2)ν2,1(dL) ≤ 1− r

4
√

2
,

where we use (3.8) in the last inequality.
Second, consider any d ≥ 3. Since r ≤ 2

√
1− 4−1/(d−2) it follows that

1− r2

4
≥ 2−2/(d−2).

We therefore get that

(1− r2(1− l21)/4)
d
2−1 ≥ (1− r2/4)

d−2
2 ≥ 1

2
.

Hence, by (3.7) and the above, we conclude that

µd,1
(
LB(o,1) ∩ LB(re1,1)

)
≤ 1− r

2

∫
G(d,1)

(1− r2(1− l21)/4)
d
2−1
√

1− l21νd,1(dL)

≤ 1− r

4

∫
G(d,1)

√
1− l21νd,1(dL)

≤ 1− r

8

∫
G(d,1)

1(|l1| ≤ 1/
√

2)νd,1(dL)

≤ 1− r

8

d− 1

d
≤ 1− r

12
,

where we use (3.8) in the penultimate inequality.

Define
β(ρ, k) := µd,1

(
LB(o,1)∪B(2kρe1,1)

)
(3.9)

The next lemma gives both upper and lower bounds for β(ρ, k), that will be used in
the proofs of Lemma 5.4. The proof is an application of the previous proposition.

Lemma 3.5. We have that 1 + 2k

12ρ < β(ρ, k) < 2, for all k such that 2kρ ≤
2
√

1− 4−1/(d−2) for d ≥ 3, or 2kρ ≤ 2 when d = 2.

Proof. Clearly, β(ρ, k) < 2µd,1
(
LB(o,1)

)
= 2. For the lower bound, note that,

β(ρ, k) = µd,1
(
LB(o,1) ∪ LB(2kρe1,1)

)
= µd,1

(
LB(o,1)

)
+ µd,1

(
LB(2kρe1,1)

)
− µd,1

(
LB(o,1) ∩ LB(2kρe1,1)

)
≥ 2−

(
1− 2k

ρ

12

)
= 1 +

2k

12
ρ,

by using Proposition 3.4 with r = 2kρ.
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4. The packing lemma

As explained in the introduction, if τ is the cover time of D, then the set which is
uncovered at time τ(1− ε) consists (with high probability) of small and distant sets
(this is Proposition 5.5). The proof of this is based on a second moment argument,
which involves a sum over pairs of points in D (see Lemma 5.4). In order to get
a good bound for this sum, we will have to get estimates on the maximal number
of points in D within a certain distance of a fixed point x ∈ D. In general, we
need to obtain an estimate on the maximum number of x ∈ D that belongs to
a certain bounded subset of Rd. This is the main purpose of this section, and
the result is presented in Lemma 4.2 below, sometimes referred to as the packing
lemma. However, in order to prove this lemma it is also convenient to introduce
the concept of a maximal (in the sense that it contains the maximum number of
points), ρ-separated subset of a bounded set A. This subset will play a crucial role
in transferring results for finite sets (i.e. Theorem 5.7) to the non-discrete case (i.e.
Theorem 1.1). However, obtaining a suitable ρ-separated set is somewhat technical
as we will now see.

Recall (from the Introduction) the definition of a ρ-separated set. Let A1 denote
the set of measurable A ⊂ Rd such that the diameter diam(A) = 1 and the centre
of mass of A is the origin o. It is not straightforward to define a choice function
which assigns a maximal ρ-separated subset to every A ∈ A1.

For fixed A ∈ A1 and ρ > 0, we let RA,ρ denote the collection of ρ-separated
subsets of A which contains the maximum number of points. Clearly, RA,ρ is always
non-empty, and in general, RA,ρ is an uncountable collection of ρ-separated subsets
of A. Then, we use the axiom of choice to pick a member Aρ from every RA,ρ. From
this choice, we define the “discretization” operator ∆ which maps (A, ρ) ∈ A1×R+

to the corresponding maximal ρ-separated set so that Aρ = ∆(A, ρ). Since we will
often think of ρ > 0 as being fixed, it will be convenient to write ∆ρ(A) in place of
∆(A, ρ).

Our next step is to enlarge the domain of ∆ρ from A1 to the collection of all
bounded measurable subsets of Rd. We will do this in a particular way to ensure
a specific invariance property (i.e. (4.1)). For any bounded and measurable set B,
and any α, y > 0, we let αB = {αx : x ∈ B} and B − y = {x− y : x ∈ B}. We will
also let cm(B) denote the centre of mass of B, and we note that B−cm(B)

diam(B) ∈ A1.
Then, we define

∆ρ(B) := diam(B)∆ρ/diam(B)

(
B − cm(B)

diam(B)

)
+ cm(B),

and we will often write Bρ in place of ∆ρ(B). The main point of defining ∆ρ in this
way, is that it is easily checked that for any α > 0, and any bounded A ⊂ Rd,

αAρ = α∆ρ(A) = ∆αρ(αA). (4.1)

The interpretation of (4.1) is simply that the discrete ρ-separated subset obtained
from A by ∆ρ, scaled by α > 0 (so that the separation is now αρ), is the same as if
we started with the (α-) scaled version of A, and then took the discrete αρ-separated
subset.

The introduction of ∆ρ will have the added benefit of also facilitating what would
otherwise be overly cumbersome notation; it is more convenient to write ∆ρ(A∪B)
or ∆ρ(αA) than any alternative.
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Our first lemma establishes three results for Aρ. This lemma will be used re-
peatedly in Section 6, but it will also be used in the proof of Lemma 4.2.

Lemma 4.1.
a) For any A ⊂ Rd bounded and all ρ < δ we have that

∣∣Aδ∣∣ ≤ |Aρ|.
b) Let A1 ∩ A2 = ∅ be bounded sets. Then we have that |∆ρ(A1 ∪ A2)| ≤
|Aρ1|+ |A

ρ
2|.

c) For any A ⊂ Rd bounded we have that for every 0 < ρ < 1,

|Aρ| ≤ 6dρ−d|A1|.

Proof. For part a), simply observe that any δ-separated set is also ρ-separated.
Thus, |Aδ| ≤ max{|D| : D ⊂ A,Sep(D) ≥ ρ} = |Aρ|.

For part b), assume that |∆ρ(A1 ∪A2)| > |Aρ1|+ |A
ρ
2|. Then we get that

|Aρ1|+ |A
ρ
2| < |∆ρ(A1 ∪A2) ∩A1|+ |∆ρ(A1 ∪A2) ∩A2|,

and so without loss of generality we may assume that |Aρ1| < |∆ρ(A1 ∪ A2) ∩ A1|.
However, ∆ρ(A1 ∪A2)∩A1 is a ρ-separated set in A1, so this would contradict the
maximality of Aρ1.

For part c), note first that A ⊂
⋃
x∈A1 B(x, 1). Next, let x1, . . . x|A1| be an

enumeration of the points in the set A1. Set D1 = B(x1, 1) and then iteratively, let
Dj = B(xj , 1) \ ∪j−1

i=1B(xi, 1). Obviously, Dj ⊂ B(xj , 1), Di ∩Dj = ∅ for i 6= j and
A ⊂ ∪|A

1|
i=1B(xi, 1) = ∪|A

1|
i=1Di. By using part b) of this lemma we have that

|Aρ| ≤

∣∣∣∣∣∣∆ρ

|A1|⋃
i=1

Di

∣∣∣∣∣∣ ≤
|A1|∑
i=1

|Dρi | ≤
∣∣A1
∣∣ |Dρ1|. (4.2)

Consistent with our previous notation, let B(x, r)ρ denote the maximal ρ-separated
subset of the ball B(x, r).We proceed to bound |Dρ1| = |B(o, 1)ρ|. To that end, note
that ⋃

x∈B(o,1)ρ

B(x, ρ/3) ⊂ B(o, 1 + ρ)

and that B(xi, ρ/3) ∩ B(xj , ρ/3) = ∅ for all distinct points xi, xj ∈ B(o, 1)ρ, since
d (xi, xj) ≥ ρ by the definition of B(o, 1)ρ. Therefore (recall that λd denotes d-
dimensional Lebesgue measure),

|B(o, 1)ρ|λd(B(x1, ρ/3)) ≤ λd(B(o, 1 + ρ)) = κd(1 + ρ)d ≤ κd2d,

where we used ρ < 1 in the last inequality. Since λd(B(x1, ρ/3)) = κd(ρ/3)d, it
follows that |B(o, 1)ρ| ≤ 6dρ−d. Inserting this into (4.2) yields the result.

We are now ready to state and prove our packing lemma. Recall that c represents
a constant, depending only on the dimension d, and that it may change from line
to line.

Lemma 4.2. There exists a constant c <∞ depending on d only such that for any
D with Sep(D) ≥ ρ we have that

a) For any ρ < r, |D ∩B(o, r)| ≤ cρ−drd.
b) For any y ∈ D and ρ < 1 we have that

∑
x∈D\B(y,1) d (y, x)

1−d ≤ cρ−d|D|1/d.
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Proof : a) Similar to the proof above, let {x1, . . . , xN} = D ∩ B(o, r) and observe
that B(xi, ρ) ⊂ B(o, r + ρ) for all i = 1, . . . , N . For any j 6= i we have that
B(xi, ρ/3) ∩B(xj , ρ/3) = ∅, since d (xi, xj) ≥ ρ. Therefore,

|D ∩B(o, r)|λd(B(x1, ρ/3)) ≤ λd(B(o, r + ρ)) = κd(r + ρ)d ≤ crd,

where we used ρ < r in the last inequality. Since λd(B(x1, ρ/3)) = κd(ρ/3)d we
have that

|D ∩B(o, r)| ≤ cρ−drd

and the proof is complete.

b) Let N(ρ, r,D) = |D ∩ (B(o, r + 1) \B(o, r))|. Our first step will be to
estimate N(ρ, r,D). Therefore, let {x1, . . . , xN(ρ,r,D)} denote the points in D ∩(
B(o, r + 1) \ B(o, r)

)
. For any i = 1, . . . , N(ρ, r,D) we have that B(xi, ρ/3) ⊂

(B(o, r + 2) \B(o, r − 1)). Also, for any j 6= i we have that B(xi, ρ/3)∩B(xj , ρ/3)
= ∅, since d (xi, xj) ≥ ρ by the assumption on D. Thus,

N(ρ, r,D)λd(B(x1, ρ/3))

≤ λd(B(o, r + 2) \B(o, r − 1)) = κd
(
(r + 2)d − (r − 1)d

)
≤ crd−1.

Since λd(B(x1, ρ/3)) = κd(ρ/3)d we conclude that

N(ρ, r,D) ≤ cρ−drd−1. (4.3)

We assume without loss of generality that y = o. Order the points {y1, . . . , yM} =
D \ {o} such that d (o, yi) ≤ d (o, yj) for all i < j. Then, let Nk = |B(o, k)ρ| and
observe that for any i > Nk we must have that d(o, yi) > k. Then, note that by
Lemma 4.1 part b), and (4.3), we get that for k ≥ 2,

Nk −Nk−1 = |B(o, k)ρ| − |B(o, k − 1)ρ| (4.4)
≤ |∆ρ (B(o, k) \B(o, k − 1))| ≤ cρ−dkd−1 ≤ c2d−1ρ−d(k − 1)d−1.

We now define K := max{k : Nk < |D|} and consider the box SK =

[−K/
√
d,K/

√
d]d ⊂ B(o,K). We then have that |SρK | ≤ |B(o,K)ρ| = NK . Con-

sider then the set ρZd∩SK where ρZd is the d-dimensional hypercubic lattice whose
vertices are at distance ρ. Trivially, ρZd ∩ SK is a ρ-separated set in SK and so we
have that |SρK | ≥

∣∣ρZd ∩ SK∣∣ ≥ cρ−dKd, by the maximality of |SρK |. Therefore,

cρ−dKd ≤ |SρK | ≤ NK < |D|,

and therefore, K ≤ cρ|D|1/d.
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By part a), N1 ≤ cρ−d and so by letting N0 = 0 and using Equation (4.4) we
get that, ∑

x∈D\B(o,1)

d (o, x)
1−d ≤

M∑
i=1

max(d (o, yi) , 1)1−d (4.5)

=

K+1∑
k=1

min(Nk,M)∑
i=Nk−1+1

max(d (o, yi) , 1)1−d

≤ N1 +

K+1∑
k=2

(Nk −Nk−1)(k − 1)1−d

≤ N1 +

K+1∑
k=2

cρ−d(k − 1)d−1(k − 1)1−d

≤ cρ−d +Kcρ−d ≤ cρ−d + cρ1−d|D|1/d ≤ cρ−d|D|1/d

where we use that max(d(o, xi), 1) ≥ 1 for 1 ≤ i ≤ N1 and the observation above
that d(o, xi) ≥ k − 1 for Nk−1 + 1 ≤ i ≤ Nk. �

5. The fluctuation theorem and proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. This will be done by proving
Theorem 5.7, which provides a bound for the fluctuation of P((T (D)− log |D| ≤ z)
from the Gumbel distribution function. As mentioned in the introduction, the
strategy is similar to that of Belius (2012).

In our first result we compare the cover time of a set with prescribed separation,
and the cover time of an “independent” (or infinitely separated if you will) set of
the same cardinality. The proof uses Lemmas 3.2 and 3.3.

Proposition 5.1. Let m > 0 and let D be a finite set in Rd such that Sep(D) ≥
max((n/2)

m+2
d−1 , 4). Then, for t ≥ 0 we have that

|P (T (D) ≤ t)− P (T (o) ≤ t)n| ≤ tc(n/2)−m.

Proof. Let D = {xi}ni=1, Di := D \ {xk}ik=1 and Bi =
⋃
x∈Di B(x, 1) . Then

|P (T (D) ≤ t)− P (T (o) ≤ t)n|
≤ |P (T (D) ≤ t)− P (T (D1) ≤ t)P (T (x1) ≤ t)|

+P (T (o) ≤ t)
∣∣∣P (T (D1) ≤ t)− P (T (o) ≤ t)n−1

∣∣∣ ,
by translation invariance. Using Lemma 3.2, we get

|P (T (D) ≤ t)− P (T (D1) ≤ t)P (T (x1) ≤ t)| ≤ 4P
(
ωt
(
LB1,B(x1,1)

)
6= 0
)
,

and thus

|P (T (D) ≤ t)− P (T (o) ≤ t)n|

≤ 4P
(
ωt
(
LB1,B(x1,1)

)
6= 0
)

+
∣∣∣P (T (D1) ≤ t)− P (T (o) ≤ t)n−1

∣∣∣ .
Repeating the same steps n− 1 more times, we get:

|P (T (D) ≤ t)− P (T (o) ≤ t)n|
≤ 4

(
P
(
ωt
(
LB1,B(x1,1)

)
6= 0
)

+ · · ·+ P
(
ωt(LB(xn,1),B(xn−1,1)) 6= 0

))
.
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We let r := Sep(D) (we chose not to use ρ, since here we think of the separation as
being large rather than small). Applying Lemma 3.3 (which requires r ≥ 4) to the
above gives

|P (T (D) ≤ t)− P (T (o) ≤ t)n|

≤ c
(

(n− 1)
t

rd−1
+ (n− 2)

t

rd−1
+ · · ·+ t

rd−1

)
= c

n(n− 1)

2

t

rd−1
.

Therefore,

|P (T (D) ≤ t)− P (T (o) ≤ t)n| ≤ n2c
t

rd−1
.

Since r ≥ (n/2)
m+2
d−1 , we have that r−(d−1) ≤ (n/2)−(m+2) and thus

|P (T (D) ≤ t)− P (T (o) ≤ t)n| ≤ n2c
t

rd−1
≤ tc(n/2)−m.

Before we can proceed, we need to introduce some convenient notation. For
0 < ε < 1, let

Dε := {x ∈ D : T (x) > (1− ε) log |D|} (5.1)

for any finite set D. The set Dε corresponds to the subset of points x ∈ D that are
not covered at time (1− ε) log |D|. Furthermore, we will let

Cd :=
√

1− 4−1/(d−2) (5.2)

where we interpret C2 = 1. Furthermore, let

C̃d :=
Cd

12(1 + Cd)
. (5.3)

Our next aim is Lemma 5.4, which will provide bounds on two sums (over pairs
of points in D) of the probabilities of two distinct points being in the set Dε.
This lemma is a preparation for the second moment argument of Proposition 5.5
(mentioned in the introduction). The strategy of the proof of Lemma 5.4 is to split
the sum into three parts. The first part is a sum over all pairs of points that are
within distance Cd of each other, the second sums over pairs within the intermediate
region between Cd and log |D|, while the last sums over distant points. In order to
obtain the desired result, we then use properties of µd−1 along with the packing
Lemma 4.2 and the estimate provided in Proposition 3.4.

As we have mentioned before, our key results require that our sets are separated
“enough”. To that end we shall have need of the following definition.

Definition 5.2. Let D be a finite set and let ρ = Sep(D). We say that D is good if
it satisfies the following conditions: |D|ρ/800 ≥ 2, |D|1/(2d) ≥ 4 and ρ−d(log |D|)d ≤
|D|C̃d/2 .

Remarks: The definition of D being good might look somewhat artificial. However,
it will be convenient to have such a definition as we will appeal to it on many
occasions below. It can be useful to simply think of a good set D as being “large
enough” and “separated enough”, and the notion of goodness makes this precise.
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The following lemma is stated without a proof as it is trivial to check. One
might argue that the condition in this lemma can be taken as the definition of
good. However, it will be more convenient to have the three explicit conditions of
Definition 5.2 at hand.

Lemma 5.3. There exists a constant D = D(d) <∞ such that any D with

Sep(D) ≥ log 2
800

log |D|
and |D| ≥ D is good.

Lemma 5.4. Let D be a good set. Then, for every ε such that ε < min
(
ρ
36 ,

5
36 ,

Cd
148

)
and |D|ε ≥ 2 we have that

a)
∑

x,y∈D
x6=y

P (x, y ∈ Dε) < c |D|−ε + |D|2ε

b)
∑

x,y∈D
0<d(x,y)<b|D|1/2d

P (x, y ∈ Dε) < cbd |D|−ε ,

for every b ≥ 1, and where c is a constant depending only on the dimension d.

Remark: If it is the case that ρ is so small that no such ε exists, then the statement
is vacuous. A similar comment applies to other statements below.

Proof. We will prove both statements by considering the sum

I =
∑
x,y∈D

0<d(x,y)≤a

P (x, y ∈ Dε)

and choosing appropriate values for a later. Let us split I into three parts:

I1 =
∑
x,y∈D

ρ≤d(x,y)<Cd

P (x, y ∈ Dε) , (5.4)

I2 =
∑
x,y∈D

Cd≤d(x,y)<log|D|

P (x, y ∈ Dε) , (5.5)

and
I3 =

∑
x,y∈D

log|D|≤d(x,y)≤a

P (x, y ∈ Dε) . (5.6)

Of course, it could be that ρ ≥ Cd or even that ρ ≥ log |D|. If so, I1 and/or I2 are
simply zero while the analysis of I3 remains the same. We will therefore assume
that ρ < Cd without any further comment.

In all three sums, we will use the following.

P (x, y ∈ Dε) (5.7)
= P ({T (x) > (1− ε) log |D|} ∩ {T (y) > (1− ε) log |D|})
= P

(
ω(1−ε) log |D|

(
LB(x,1) ∪ LB(y,1)

)
= 0
)

= exp
(
−(1− ε) log |D|µd,1

(
LB(x,1) ∪ LB(y,1)

))
.

The sum I1: Let K = b logCd−log ρ
log 2 c, where b·c denotes the integer part. Note that

2K+1ρ ≤ 2
logCd−log ρ

log 2 +1ρ = 2Cd while 2K+1ρ ≥ 2
logCd−log ρ

log 2 ρ = Cd.
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Note also that K ≥ 0 since ρ < Cd. Thus, (5.4) becomes

I1 =
∑
x,y∈D

ρ≤d(x,y)<Cd

P (x, y ∈ Dε) ≤
K∑
k=0

∑
x,y∈D

2kρ≤d(x,y)<2k+1ρ

P (x, y ∈ Dε) . (5.8)

For 2kρ ≤ d (x, y) < 2k+1ρ, we have that

µd,1
(
LB(x,1) ∪ LB(y,1)

)
= µd,1

(
LB(o,1) ∪ LB(d(x,y)e1,1)

)
= µd,1

(
LB(o,1)

)
+ µd,1

(
LB(d(x,y)e1,1)

)
− µd,1

(
LB(o,1) ∩ LB(d(x,y)e1,1)

)
≥ µd,1

(
LB(o,1)

)
+ µd,1

(
LB(2kρe1,1)

)
− µd,1

(
LB(o,1) ∩ LB(2kρe1,1)

)
= µd,1

(
LB(o,1) ∪ LB(2kρe1,1)

)
where the inequality follows since any line L ∈ LB(o,1) ∩ LB(d(x,y)e1,1) must also
belong to LB(o,1) ∩ LB(2kρe1,1). Thus

exp
(
−(1− ε) log |D|µd,1

(
LB(x,1) ∪ LB(y,1)

))
≤ exp

(
−(1− ε) log |D|µd,1

(
LB(o,1) ∪ LB(2kρe1,1)

))
= exp (−(1− ε) log |D|β(ρ, k)) .

Therefore, (5.7), (5.8) and the above gives us that

I1 ≤
K∑
k=0

∑
x,y∈D

2kρ≤d(x,y)<2k+1ρ

exp (−(1− ε) log |D|β(ρ, k))

≤
K∑
k=0

|D|1−(1−ε)
(

1+ 2k

12 ρ
)
c(2k+1ρ)dρ−d,

where we used Lemma 4.2 part a) and Lemma 3.5 (which we can use since 2Kρ ≤ Cd
as noted above). Furthermore, for any k we claim that

1− (1− ε)
(

1 +
2k

12
ρ

)
= −2k

12
ρ+ ε+

2k

12
ερ ≤ −2kε. (5.9)

Indeed, (5.9) is equivalent to

ε ≤ ρ
1
122k

1 + 1
122kρ+ 2k

= ρ
1
12

2−k + 1
12ρ+ 1

,

and this holds since ε ≤ ρ
36 ≤ ρ

1
12

2−k+ 1
12ρ+1

by our assumption on ε. Using (5.9) we
get that

I1 ≤ c
K∑
k=0

|D|−2kε
2d(k+1) ≤ c |D|−ε

∞∑
k=0

|D|−(2k−1)ε
2d(k+1)

= c|D|−ε
(

2d + |D|−ε22d +

∞∑
k=2

|D|−(2k−1)ε
2d(k+1)

)

≤ c|D|−ε
(

1 +

∞∑
k=1

|D|−2kε2dk

)
.
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Furthermore,
∞∑
k=1

|D|−2kε2dk ≤ c
∞∑
k=1

∫ 2k

2k−1

|D|−xεxd−1dx ≤ c
∫ ∞

0

e−xε log |D|xd−1dx

= c

[
xd−1 e

−xε log |D|

−ε log |D|

]∞
0

+ c
d− 1

ε log |D|

∫ ∞
0

e−xε log |D|xd−2dx

= · · · = c

(log |D|ε)d
,

and by assumption log |D|ε ≥ log 2 and so

I1 ≤ c|D|−ε. (5.10)

The sum I2: Consider now Equation (5.5). Equation (5.7) implies that

I2 =
∑
x,y∈D

Cd≤d(x,y)<log|D|

P (x, y ∈ Dε)

=
∑
x,y∈D

Cd≤d(x,y)<log|D|

exp
(
−(1− ε) log |D|µd,1

(
LB(o,1) ∪ LB(d(x,y)e1,1)

))
≤

∑
x,y∈D

Cd≤d(x,y)<log|D|

exp
(
−(1− ε) log |D|µd,1

(
LB(o,1) ∪ LB(Cde1,1)

))
,

since d(x, y) ≥ Cd. Now, Lemma 3.5 applied to ρ = Cd and k = 0, implies that
µd,1

(
LB(o,1) ∪ LB(Cde1,1)

)
≥ 1 + Cd

12 , which gives

I2 ≤
∑
x,y∈D

Cd≤d(x,y)<log|D|

exp
(
−(1− ε) log |D|µd,1

(
LB(o,1) ∪ LB(Cde1,1)

))
≤ c |D| ρ−d(log |D|)d exp (−(1− ε) (1 + Cd/12) log |D|)

= cρ−d(log |D|)d |D|ε−Cd/12+εCd/12 ≤ c |D|ε−C̃d/2+εC̃d

where we used Lemma 4.2 part a) in the second inequality and the goodness of D
(in order to estimate ρ−d(log |D|)d) in the last inequality. Furthermore, we claim
that ε− C̃d/2 + εC̃d ≤ −ε. Indeed, this follows since

C̃d

2(2 + C̃d)
=

Cd
2(24(1 + Cd) + Cd)

≥ Cd
148
≥ ε,

by our assumption on ε. We conclude that

I2 ≤ c |D|−ε . (5.11)

The sum I3: We now turn to Equation (5.6) and the sum I3. Here we have that
d(x, y) ≥ log |D| ≥ log 42d ≥ 4 by the goodness of D. Therefore, we can apply
Lemma 3.1 to see that

µd,1(LB(x,1) ∪ LB(y,1))

= 2µd,1(LB(x,1))− µd,1(LB(x,1) ∩ LB(y,1)) ≥ 2− c2

d (x, y)
d−1

.
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Then, we see from (5.6) that

I3 ≤
∑
x,y∈D

log|D|≤d(x,y)≤a

exp

(
−(1− ε) log |D|

(
2− c2

d (x, y)
d−1

))

= |D|−2(1−ε) ∑
x,y∈D

log|D|≤d(x,y)≤a

exp
(

(1− ε) log |D| c2 d (x, y)
1−d
)
.

Since log |D| ≤ d (x, y), we have that

(1− ε) log |D| c2 d (x, y)
1−d ≤ (1− ε)c2(log |D|)2−d ≤ c2.

It is easy to prove that for any x ≤ c2 we must have that ex ≤ 1 + ec2x, and so we
get that

|D|−2(1−ε) ∑
x,y∈D

log|D|≤d(x,y)≤a

exp
(

(1− ε) log |D| c2 d (x, y)
1−d
)

(5.12)

≤ |D|−2(1−ε) ∑
x,y∈D

log|D|≤d(x,y)≤a

(
1 + ec2(1− ε) log |D| d (x, y)

1−d
)

≤ min
(
|D|2ε , cρ−d |D|2ε−1

ad
)

+c(1− ε) |D|−2(1−ε)
log |D|

∑
x,y∈D

log|D|≤d(x,y)≤a

d (x, y)
1−d

where the minimum comes from summing 1 and using part a) of Lemma 4.2 to
bound the number of elements in the sum.

Next, we provide a bound to the last term on the right hand side of (5.12). To
that end, note that∑

x,y∈D
log|D|≤d(x,y)≤a

d (x, y)
1−d ≤

∑
x∈D

∑
y∈D\B(x,1)

d (x, y)
1−d ≤

∑
x∈D

c
|D|1/d

ρd
≤ c |D|

1+1/d

ρd
,

where we used part b) of Lemma 4.2 in the second inequality. Furthermore, this
and the fact that ρ−d(log |D|)d ≤ |D|C̃d/2 by the goodness of D implies that

c(1− ε) |D|−2(1−ε)
log |D|

∑
x,y∈D

log|D|≤d(x,y)≤a

d (x, y)
1−d (5.13)

≤ c(1− ε)ρ−d log |D| |D|−2(1−ε)+1+1/d

≤ cρ−d(log |D|)d |D|−2(1−ε)+1+1/d

≤ c |D|−2(1−ε)+1+1/d+C̃d/2 ≤ c |D|−ε .

where we in the last inequality use that −2(1− ε) + 1 + 1/d+ C̃d/2 ≤ −ε. Indeed,
this follows since

1− 1

d
− C̃d

2
= 1− 1

d
− Cd

24(1 + Cd)
≥ 1− 1

d
− 2

24
≥ 5

12
≥ 3ε,
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by our assumption on ε. Combining (5.13) and (5.12) we see that

I3 < min
(
|D|2ε , cρ−d |D|2ε−1

ad
)

+ c |D|−ε . (5.14)

By summing the contributions from I1, I2 and I3 ((5.10), (5.11) and (5.14)), we
then conclude that

I =
∑
x,y∈D

0<d(x,y)≤a

P (x, y ∈ Dε) < min
(
|D|2ε , cρ−d |D|2ε−1

ad
)

+ c |D|−ε .

Taking the limit a→∞, we obtain∑
x,y∈D
x 6=y

P (x, y ∈ Dε) < |D|2ε + c |D|−ε ,

and the first statement is proved.
Furthermore, taking a = b |D|1/2d, we have that

cρ−d |D|2ε−1
ad = cρ−d |D|2ε−1/2

bd = cbd|D|−ε
(
ρ−d|D|3ε−1/2

)
≤ cbd|D|−ε

(
|D|3ε−1/2+C̃d/2

)
≤ cbd|D|−ε,

where we used that ρ−d ≤ ρ−d(log |D|)d ≤ |D|C̃d/2 by the goodness of D and that
|D|3ε−1/2+C̃d/2 ≤ 1 (which as above follows by our assumption that ε < 5/36). Thus∑

x,y∈D
0<d(x,y)<b|D|1/2d

P (x, y ∈ Dε) < cbd |D|−ε

and the proof is complete.

The next proposition is another crucial step towards the proof of Theorem 1.2.
Consider first

GD,ε = {K ⊂ D : ||K| − |D|ε| ≤ |D|2ε/3 and (5.15)

d (x, y) ≥ |D|1/2d for all distinct x, y ∈ K},

so that GD,ε is a collection of subsets of D that are well separated and close in
cardinality to |D|ε. Also note that the condition ||K| − |D|ε| ≤ |D|2ε/3 implies that
GD,ε consists only of non-empty sets.

Proposition 5.5. Let D be a good set. Then, for every positive ε such that ε <
min

(
ρ
36 ,

5
36 ,

Cd
148

)
and |D|ε ≥ 2 we have that

P (Dε /∈ GD,ε) ≤ c |D|−ε/3 .

Here, the constant c only depends on d.

Proof : We will get the result by proving that

P
(
∃x, y ∈ Dε : 0 < d (x, y) < |D|1/2d

)
≤ c |D|−ε , (5.16)

and
P
(
||Dε| − |D|ε| > |D|2ε/3

)
≤ c |D|−ε/3 . (5.17)
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For (5.16) we have:

P
(
∃x, y ∈ Dε : 0 < d (x, y) < |D|1/2d

)

= P

 ⋃
x,y∈D

0<d(x,y)<|D|1/2d

{x, y ∈ Dε}


≤

∑
x,y∈D

0<d(x,y)<|D|1/2d

P (x, y ∈ Dε) ≤ c |D|−ε ,

where the last inequality come from part b) of Lemma 5.4 with b = 1, and (5.16) is
done.

For (5.17), we observe that since P(T (x) > t) = e−t,

E(|Dε|) =
∑
x∈D

P(T (x) > (1− ε) log |D|) = |D| exp (−(1− ε) log |D|) = |D|ε.

By Chebyshev’s inequality,

P
(
||Dε| − |D|ε| > |D|2ε/3

)
≤ E|Dε|2 − |D|2ε

|D|4ε/3
. (5.18)

Now

E|Dε|2 =
∑
x,y∈D

P (x, y ∈ Dε)

=
∑
x∈D

P (x ∈ Dε) +
∑
x,y∈D
x 6=y

P (x, y ∈ Dε) ≤ |D|ε + c |D|−ε + |D|2ε ,

by part a) of Lemma 5.4. Plugging this into (5.18) yields

P
(
||Dε| − |D|ε| > |D|2ε/3

)
≤ |D|

ε
+ c |D|−ε + |D|2ε − |D|2ε

|D|4ε/3
≤ |D|−ε/3 + c |D|−7ε/3 ≤ c |D|−ε/3 ,

and the proof is complete. �

We shall make use of the following inequality which we state here (without
argument) for convenience.

− x− x2 ≤ log(1− x) ≤ −x for every x ∈ [0, 1/2], (5.19)

We need a simple auxiliary result before we can present our fluctuation theorem.

Lemma 5.6. Let D be a finite set, and let ε > 0 be such that |D|ε ≥ 4. We then
have that for any z ≥ − ε

4 log |D|∣∣∣∣∣
(

1− e−z

|D|ε
)|D|ε+|D|2ε/3

− exp
(
−e−z

)∣∣∣∣∣ ≤ 3 |D|−ε/12
, (5.20)
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and similarly, ∣∣∣∣∣
(

1− e−z

|D|ε
)|D|ε−|D|2ε/3

− exp
(
−e−z

)∣∣∣∣∣ ≤ |D|−ε/12
. (5.21)

Remark: As the proof of this lemma is a straightforward, albeit somewhat tedious,
exercise we shall only provide a sketch.

Sketch of proof. We only address (5.20), as (5.21) is proved in essentially the
same way.

Let a = e−z and b = |D|ε, and note that a/b ≤ |D|−3ε/4 ≤ 1/2 by the assumption
on z and since |D|ε ≥ 4. Using this and (5.19), it is then elementary to prove that(

1− a

b

)b+b2/3
≤ exp (−a) . (5.22)

One can then continue to show that∣∣∣∣exp (−a)−
(

1− a

b

)b+b2/3∣∣∣∣
≤ exp (−a)

(
1− exp

(
−
(
a2

b
+

a

b1/3
+

a2

b4/3

)))
≤
(

1− exp
(
−3b−1/12

))
,

where we use (5.22), the lower bound in (5.19) and the definitions of a, b. Finally,
it is easy to see that(

1− exp
(
−3b−1/12

))
≤ 3b−1/12 ≤ 3 |D|−ε/12

.

Thus, (5.20) is proved.

We are now ready to prove a theorem which gives an explicit bound on the dif-
ference between the (centred) cover time T (D) of a good set D, and the distribution
function of a Gumbel distribution.

Theorem 5.7. For any good set D with ρ = Sep(D) and any ε such that |D|ε ≥ 216

and ε < min
(
ρ
36 ,

1
12 ,

Cd
148

)
we have that

sup
z∈R

∣∣P (T (D)− log |D| ≤ z)− exp(−e−z)
∣∣ ≤ c3 |D|−ε/12

,

where c3 is a constant depending on d only.

Remarks: Note that the Theorem is only useful if |D|−ε/12 is small or goes to
0 for a sequence (Dn)n≥1. Thus, the assumption that |D|ε ≥ 216 (which can be
somewhat relaxed with additional work) will turn out not to be a limitation.

Proof : We are going to split the proof into three cases and start with the easy ones.
Case 1: Consider z ≤ − ε

4 log |D|. Then

P (T (D) ≤ (log |D|+ z)) ≤ P
(
T (D) ≤

(
log |D| − ε

4
log |D|

))
= P

({
x ∈ D : T (x) >

(
1− ε

4

)
log |D|

}
= ∅
)

= P
(
Dε/4 = ∅

)
.

We have that P
(
Dε/4 = ∅

)
≤ P

(
Dε/4 /∈ GD,ε/4

)
, since GD,ε/4 only contains non-

empty sets. Thus, by Proposition 5.5 we have that,

P (T (D) ≤ (log |D|+ z)) ≤ P
(
Dε/4 /∈ GD,ε/4

)
≤ c |D|−ε/12

. (5.23)
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Using that z ≤ − log |D|ε/4 we have that exp(−e−z) ≤ exp
(
− |D|ε/4

)
≤ |D|−ε/4.

Therefore, ∣∣P (T (D) ≤ (log |D|+ z))− exp(−e−z)
∣∣ (5.24)

≤ P (T (D) ≤ (log |D|+ z)) + exp(−e−z)
≤ c |D|−ε/12

+ |D|−ε/4 < c |D|−ε/12
,

and this ends the first case.
Case 2: Assume z ≥ ε log |D|. This gives

P (T (D) > (log |D|+ z)) ≤ P (T (D) > (1 + ε) log |D|)

= P

(⋃
x∈D
{T (x) > (1 + ε) log |D|}

)
≤ |D|P (T (o) > (1 + ε) log |D|)

= |D| exp(−(1 + ε) log |D|) = |D|−ε .

Using that z ≥ ε log |D| we have that exp(−e−z) ≥ exp(− |D|−ε) ≥ 1− |D|−ε by the
inequality ex ≥ 1 + x, which holds for all x. This, and the above equation gives∣∣P (T (D) ≤ (log |D|+ z))− exp(−e−z)

∣∣ (5.25)

=
∣∣1− P (T (D) > (log |D|+ z))− exp(−e−z)

∣∣
≤ P (T (D) > (log |D|+ z)) +

∣∣1− exp(−e−z)
∣∣ ≤ |D|−ε + |D|−ε ,

which proves the case z ≥ ε log |D|.
Case 3: Assume that z ∈ (− ε

4 log |D| , ε log |D|) and start by observing that∣∣P (T (D) ≤ log |D|+ z)− exp
(
−e−z

)∣∣ (5.26)
≤ |P (T (D) ≤ log |D|+ z)− P (T (D) ≤ log |D|+ z,Dε ∈ GD,ε)|

+
∣∣exp(−e−z)P (Dε ∈ GD,ε)− exp(−e−z)

∣∣
+
∣∣P (T (D) ≤ log |D|+ z,Dε ∈ GD,ε)− exp(−e−z)P (Dε ∈ GD,ε)

∣∣ .
We will now consider the three terms on the right hand side.

To deal with the first term, note simply that

|P (T (D) ≤ log |D|+ z)− P (T (D) ≤ log |D|+ z,Dε ∈ GD,ε)|

= P (T (D) ≤ log |D|+ z,Dε /∈ GD,ε) ≤ P (Dε /∈ GD,ε) ≤ c |D|−ε/3 ,

by Proposition 5.5.
For the second term of the right hand side in (5.26), note that∣∣exp
(
−e−z

)
P (Dε ∈ GD,ε)− exp

(
−e−z

)∣∣ = exp
(
−e−z

)
P (Dε /∈ GD,ε) ≤ c |D|−ε/3

again by Proposition 5.5.
We now turn to the third term of the right hand side in (5.26), and this is where

all our previous efforts come together. We will show that for any K ∈ GD,ε,∣∣P (T (D) ≤ log |D|+ z| Dε = K)− exp
(
−e−z

)∣∣ ≤ c |D|−ε/12
. (5.27)

Then, multiplying by P (Dε = K) and summing over all K ∈ GD,ε on both sides, we
get ∣∣P (T (D) ≤ log |D|+ z,Dε ∈ GD,ε)− exp

(
−e−z

)
P (Dε ∈ GD,ε)

∣∣ ≤ c |D|−ε/12
.
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We can then conclude from (5.26), that∣∣P (T (D) ≤ (log |D|+ z))− exp
(
−e−z

)∣∣ ≤ c |D|−ε/12 (5.28)

for all z ∈
(
− ε

4 log |D| , ε log |D|
)
, and the proof will be complete.

In order to prove (5.27), define

ω1 = {L ∈ ω(1−ε) log|D| : ∃x ∈ D such that x ∈ c (L)},

so that ω1 is the subset of ω(1−ε) log |D| consisting of the cylinders actually covering
a point x ∈ D. Similarly, let

ω2 = {L ∈ ω(1−ε) log|D|,log|D|+z : ∃x ∈ D such that x ∈ c (L)}

so that a cylinder c (L) ∈ ω2 arrives between times (1− ε) log |D| and (log |D|+ z),
and in addition covers some x ∈ D. Finally, let ω3 = ω1 ∪ ω2. For any ω ∈ Ω, let
C(ω,D) be the set of points in D that are covered by the cylinders in ω.

Fix K ∈ GD,ε and define the event

E1 := {Dε = K} = {D \K = C(ω1,D)}.

The equality holds since K ⊂ D is the uncovered set iff D \ K is the covered set.
Furthermore, {T (D) ≤ log |D|+ z} is the event that all the points of D are covered
by time (log |D|+ z). Hence, by the definition of ω3, {T (D) ≤ log |D|+ z} = {D =
C(ω3,D)} so that E1 ∩ {T (D) ≤ log |D| + z} = E1 ∩ {K ⊂ C(ω2,D)}. Letting
E2 = {K ⊂ C(ω2,D)} and using that ω1 and ω2 are independent, we have that
P (E1 ∩ E2) = P (E1)P (E2). Furthermore, since ω2 has the same distribution as a
Poisson line process with intensity ε log |D|+ z, we get that

P(E2) = P
(
K ⊂ C(ω2,D)

)
= P (T (K) ≤ ε log |D|+ z) .

On the other hand,

P (E2) =
P (E1 ∩ E2)

P (E1)

=
P (E1 ∩ {T (D) ≤ log |D|+ z})

P (E1)
= P

(
T (D) ≤ log |D|+ z

∣∣∣E1

)
,

so we conclude that

P
(
T (D) ≤ log |D|+ z

∣∣∣Dε = K
)

= P (T (K) ≤ ε log |D|+ z) . (5.29)

Therefore, using (5.29) we have∣∣P(T (D) ≤ ε log |D|+ z | Dε = K)− exp
(
−e−z

)∣∣ (5.30)

=
∣∣P (T (K) ≤ ε log |D|+ z)− exp

(
−e−z

)∣∣
≤
∣∣∣P (T (K) ≤ ε log |D|+ z)− P (T (o) ≤ ε log |D|+ z)

|K|
∣∣∣

+
∣∣∣P (T (o) ≤ ε log |D|+ z)

|K| − exp
(
−e−z

)∣∣∣ .
We will deal with the two terms on the right hand side of (5.30) separately.

For the first term, let x, y ∈ K be distinct. By the definition of GD,ε we have
d (x, y) ≥ |D|1/(2d)

= (|D|ε)1/(2εd). Furthermore, since ||K| − |D|ε| ≤ |D|2ε/3, we
have that

|D|ε − |D|2ε/3 ≤ |K| ≤ |D|ε + |D|2ε/3 . (5.31)
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In particular, Equation (5.31) implies |K| ≤ 2 |D|ε, so that d (x, y) ≥ (|D|ε)1/(2εd) ≥
(|K| /2)1/(2εd). If we let m = 1

2ε
d−1
d − 2, we conclude that d (x, y) ≥ (|K| /2)

2+m
d−1 .

Moreover, by the goodness of D we have that d(x, y) ≥ |D|1/(2d) ≥ 4 and so we can
use Proposition 5.1 with n = |K| together with the fact that z ≤ ε log |D| to get∣∣∣P (T (K) ≤ ε log |D|+ z)− P (T (o) ≤ ε log |D|+ z)

|K|
∣∣∣ ≤ cε log |D| (|K| /2)−m.

(5.32)
Furthermore, since |D|ε/3 ≥ 216/3 ≥ 2 by assumption, we see that

2

|K|
≤ 2

|D|ε − |D|2ε/3
≤ 1

|D|ε/3
,

where we use (5.31) in the first inequality and the fact that x3 − x2 ≥ 2x if x ≥ 2
in the second. Furthermore, since also ε < 1

12 ≤
d−1
6d by assumption, we get that

m > 1. We conclude that (|K| /2)−m ≤ |D|−mε/3 ≤ |D|−ε/3. Thus,

cε log |D| (|K| /2)−m ≤ cε(log |D|) |D|−ε/3 . (5.33)

Using that log x ≤ x1/4 for any x ≥ 216 and using the assumption that |D|ε ≥
216, we see that ε log |D| ≤ |D|ε/4 so that cε(log |D|) |D|−ε/3 ≤ c |D|ε/4 |D|−ε/3 =

c |D|−ε/12
. We conclude from (5.32) and (5.33) that∣∣∣P (T (K) ≤ ε log |D|+ z)− P (T (o) ≤ ε log |D|+ z)

|K|
∣∣∣ ≤ c |D|−ε/12

. (5.34)

We can now turn to the second term of (5.30). We have that

P (T (o) ≤ ε log |D|+ z)
|K|

= (1− exp(−ε log |D| − z))|K| =

(
1− e−z

|D|ε
)|K|

.

Then by (5.31),(
1− e−z

|D|ε
)|D|ε+|D|2ε/3

≤ P (T (o) ≤ ε log |D|+ z)
|K| ≤

(
1− e−z

|D|ε
)|D|ε−|D|2ε/3

.

(5.35)
Then, since |D|ε ≥ 216 ≥ 4 and since we are assuming that z ≥ − ε

4 log |D|, we can
use Lemma 5.6 to get that (with the obvious meaning of ±)∣∣∣P (T (o) ≤ ε log |D|+ z)

|K| − exp
(
−e−z

)∣∣∣
≤

∣∣∣∣∣
(

1− e−z

|D|ε
)|D|ε±|D|2ε/3

− exp
(
−e−z

)∣∣∣∣∣ ≤ c |D|−ε/12
.

Combining this with (5.30), (5.34) and (5.35), the inequality (5.27) is proved. This
completes the proof. �

The proof of Theorem 1.2 is now easy.
Proof of Theorem 1.2. Let ρn = Sep(Dn) and let

εn := min

(
ρn
50
,

1

24
,
Cd
150

)
.

Note that
lim
n→∞

|Dn|ρn =∞, (5.36)
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by assumption. We want to apply Theorem 5.7 (for every n large enough), and
therefore we need to verify the three conditions of that theorem.

Firstly, by using (5.36) together with Lemma 5.3 we conclude that there exists
some N <∞ such that Dn is good for every n ≥ N.

Secondly, we clearly have that

εn < min

(
ρn
36
,

1

12
,
Cd
148

)
.

Thirdly, we can again use (5.36) together with the definition of εn to see that
limn→∞ |Dn|εn = ∞. Thus, by perhaps increasing N even further we have that
|Dn|εn ≥ 216 for every n ≥ N.

We can therefore apply Theorem 5.7 to conclude that

sup
z∈R

∣∣P (T (Dn)− log |Dn| ≤ z)− exp(−e−z)
∣∣ ≤ c3 |Dn|−εn/12

,

for every n ≥ N. The statement now follows since limn→∞ |Dn|εn =∞.

6. Proof of Theorem 1.1

In order to prove Theorem 1.1, we will study two quantities that are closely
related to T (A). Firstly, recall the definition of Aρ from Section 4. We will think of
T (A) and T (Aρ) as being generated by the same cylinder process, and sometimes
we will write T (Aρ, (ωt)t≥0) for emphasis. We have the following easy proposition
which we will not use, but we include for completeness and motivation.

Proposition 6.1. We have that for any ρ > 0,

T (Aρ) ≤ lim sup
δ→0

T (Aδ) = T (A),

where the inequality and equality holds for a.e. (ωt)t≥0.

Proof. Obviously, T (Aρ, (ωt)t≥0) ≤ T (A, (ωt)t≥0) for every ρ > 0. Assume that
T (A, (ω)t≥0) > τ and let

Cτ :=
⋃

(L,s)∈Ψ:s≤τ

c(L).

Then, there exists a point x ∈ A \ Cτ and some δ > 0 such that B(x, δ) ⊂ Rd \ Cτ .
This follows since a.s. Cτ is a closed set. Therefore we must have that T (Aδ/2) > τ.
We conclude that lim supδ→0 T (Aδ) ≥ T (A).

Of course, Proposition 6.1 tells us that in order to get a good approximation of
T (A) from below, one should estimate by T (Aρ) and take ρ as small as possible.
However, by taking ρ too small, the estimates that we will obtain for T (Aρ) from
Theorem 5.7 will become useless. Therefore, it will be important to pick ρ in an
optimal way. Later, we shall see that the “sweet-spot” is provided by letting ρ be
of order (log |A1|)−1.

In order to define our second quantity, we start by saying that a ball B(x, ρ)
is singularly covered by time t if there exists L ∈ ωt such that B(x, ρ) ⊂ c (L).
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Alternatively, the point x is ρ-singularly covered by time t if the corresponding ball
B(x, ρ) is singularly covered. Thus,

T ρs (x) := inf{t > 0 : ∃L ∈ ωt such that B(x, ρ) ⊂ c (L)}
is then the time at which the point x is ρ-singularly covered. Finally, we define the
(ρ-) well cover time

T ρw (A) := inf {t > 0 : T ρs (x) ≤ t ∀x ∈ Aρ} . (6.1)

Again, T ρw (A) is generated by using the same cylinder process used to generate
T (A) and T (Aρ). It is an easy consequence of the above definitions that

T (Aρ, (ωt)t≥0) ≤ T (A, (ωt)t≥0) ≤ T ρw (A, (ωt)t≥0), (6.2)

and these inequalities will provide the bridge between the fluctuation result for
discrete sets, i.e. Theorem 5.7 and Theorem 1.1. For the lower bound this is
obvious, while for the upper we shall have use of the following proposition.

Proposition 6.2. We have that

(1− ρ)d−1T ρw (A)
d
= T (∆ρ/(1−ρ) ((1− ρ)−1A

)
),

where d
= denotes equality in distribution.

Proof. Firstly, observe that the ρ-well cover time of A equals the cover time of Aρ,
provided that the cylinders in our cylinder process were of radius 1 − ρ instead of
1. Let T 1−ρ(Aρ) denote this cover time so that

T 1−ρ(Aρ) = T ρw (A).

Secondly, we can scale space by a factor of (1 − ρ)−1 in order to re-obtain a
cylinder process of radius 1. However, this scaling results in a cylinder process of
rate (1−ρ)d−1 (rather than 1). Indeed, start by recalling the notation from Section
2.1 and the meaning of ∆ρ from Section 4. As in the proof of Proposition 3.4,
observe that for any fixed L ∈ G(d, 1) the set of y ∈ L⊥ such that L + y ∈ LK is
ΠL⊥(K). Furthermore, we see that∫

L⊥
1(L+ y ∈ LK)λd−1(dy) = λd−1 (ΠL⊥(K)) ,

for any compact K ⊂ Rd. Thus, by equation (2.1),

µd,1
(
LK/(1−ρ)

)
=

1

κd−1

∫
G(d,1)

λd−1 (ΠL⊥(K/(1− ρ))) νd,1(dL)

=
1

κd−1(1− ρ)d−1

∫
G(d,1)

λd−1 (ΠL⊥(K)) νd,1(dL) =
µd,1 (LK)

(1− ρ)d−1
,

from which the scaling claim follows. Of course, after this scaling is performed, the
set Aρ is now ρ/(1− ρ)-separated and we obtain that (see (4.1))

(1− ρ)−1Aρ = ∆ρ/(1−ρ) ((1− ρ)−1A
)
.

Therefore, the cover time T 1−ρ(Aρ) equals the cover time of ∆ρ/(1−ρ) ((1− ρ)−1A
)

when using a Poisson cylinder process with radius 1 and intensity (1−ρ)d−1. Thus,

(1− ρ)d−1T ρw (A) = (1− ρ)d−1T 1−ρ(Aρ) d
= T (∆ρ/(1−ρ) ((1− ρ)−1A

)
),

as desired.
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Remark: Intuitively, when ρ is small there will be little difference between ρ and
ρ/(1− ρ) and so

(1− ρ)−(d−1)T (∆ρ/(1−ρ) ((1− ρ)−1A
)
) ≈ T (Aρ).

This means that we should be able to “almost” match the upper and lower bound
in (6.2). Of course, this is indeed the strategy of the proof of Theorem 1.1.

Before we proceed, we observe that for any A and ρ > 0,

N2ρ(A) ≤ |Aρ| ≤ Nρ/(2√d)(A). (6.3)

Indeed, a ball of radius ρ can be inscribed within a box of side-length 2ρ, and this
gives the lower bound. Furthermore, a box of side-length ρ

2
√
d
has diameter ρ/2, and

therefore it cannot contain more than one point of Aρ. This gives the upper bound
of (6.3). As a consequence, Nρ(A) can be replaced by |Aρ| in all the definitions of
Section 2.2 as well as in (1.1).

We are now ready to prove the main theorem of the paper.

Proof of Theorem 1.1. We need to show that for any ε > 0, there exists a
constant Cε independent of n, such that for any set A satisfying (1.1) we have that

P(|T (nA)− dimB(A)(log n+ log log n)| ≥ Cε) ≤ ε,

for every n.
Fix ε > 0. For brevity, we define An := nA so that we can write Aρn in place of

∆ρ(nA). Our first step is to let

ρn :=
D

log |A1
n|
,

where 800 log 2 ≤ D < ∞, and observe that by Lemma 4.1 part a) we have that
ρn ≥ 800 log 2(log |Aρnn |)−1. Then, according to Lemma 5.3, the set Aρnn is good
whenever |A1

n| (and therefore also |Aρnn |) is large enough. From now one we will
simply assume that n is so large that Aρnn is a good set. For reasons that will
transpire, we shall further assume that D is such that c3e−D/600 ≤ ε/4, and (again
for reasons that will become clear) we choose Cε ≥ 12dD such that e−Cε/8 ≤ ε/4
and exp(−eCε/8) ≤ ε/4.

Assume first that A satisfies the assumption that for some 0 < cA <∞,

lim
ρ→0

ρdimB(A)|Aρ| = cA. (6.4)

This assumption is clearly stronger than (1.1), and the reason for this stronger
assumption is to illustrate how the constant cA comes in to play (see also the
remark after this proof). We will also let c̃A := dimB(A)dimB(A)cA.

It follows from (4.1) that for every n ≥ 1, |Aρnn | =
∣∣nAρn/n∣∣ =

∣∣Aρn/n∣∣ since
enlarging a set does not change its cardinality. Therefore,

lim
n→∞

log |A1
n|

log n
= lim
n→∞

log |A1/n|
log n

= dimB(A),
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by the definition of dimB(A) (see Section 2.2). We then get that(
D

n log n

)dimB(A)

|Aρnn | =
(

log |A1
n|

log n

)dimB(A)(
D

n log |A1
n|

)dimB(A)

|Aρnn |

=

(
log |A1

n|
log n

)dimB(A) (ρn
n

)dimB(A)

|Aρn/n| → dimB(A)dimB(A)cA = c̃A,

by (6.4) since ρn/n→ 0. Thus,

1

c̃A

(
D

n log n

)dimB(A)

|Aρnn | → 1. (6.5)

Note further that | logDdimB(A)| ≤ |d logD| ≤ dD ≤ Cε/12 by one of our assump-
tions on Cε. Thus, by (6.5) we have that

| logDdimB(A)|+

∣∣∣∣∣log

(
1

c̃A

(
D

n log n

)dimB(A)

|Aρnn |

)∣∣∣∣∣ ≤ Cε/2,
for every n larger than some N(D,Cε). Thus, for n ≥ N(D,Cε) we get

P(|T (An)− dimB(A)(log n+ log log n)− log c̃A| ≥ Cε) (6.6)

= P
(∣∣∣T (An)− log |Aρnn | − logDdimB(A)

+ log

(
1

c̃A

(
D

n log n

)dimB(A)

|Aρnn |

)∣∣∣∣∣ ≥ Cε
)

≤ P (|T (An)− log |Aρnn || ≥ Cε/2)

≤ P (T (Aρnn )− log |Aρnn | ≤ −Cε/2) + P (T ρnw (An)− log |Aρnn | ≥ Cε/2) ,

where the last inequality follows since T (Aρnn ) ≤ T (An) ≤ T ρnw (An).
We shall now address the two probabilities of the right hand side of (6.6) sepa-

rately. First, we can apply Theorem 5.7 with εn = ρn/50 to conclude that

|P (T (Aρnn )− log |Aρnn | ≤ −Cε/2)− exp(−eCε/2)| ≤ c3|Aρnn |−ρn/600

for every n ≥ N(D,Cε) (by perhaps making N(D,Cε) even larger than before).
Then, by using Lemma 4.1 part a) we see that

P (T (Aρnn )− log |Aρnn | ≤ −Cε/2) ≤ exp(−eCε/2) + c3|Aρnn |−ρn/600 (6.7)

≤ exp(−eCε/2) + c3|A1
n|−ρn/600 = exp(−eCε/2) + c3e

−D/600 ≤ ε/2,

because of our choices of D and Cε.
We now turn to the second term of the right hand side of (6.6). By Propo-

sition 6.2 we have that (1 − ρn)d−1T ρnw (An) = T (∆ρn/(1−ρn)((1 − ρn)−1An)).
Furthermore, as above it follows from (4.1) that |∆ρn/(1−ρn)((1 − ρn)−1An)| =
|(1− ρn)−1Aρnn | = |Aρnn |. We can therefore use Theorem 5.7 to conclude that∣∣P ((1− ρn)d−1T ρnw (An)− log |Aρnn | ≤ z

)
− exp

(
−e−z

)∣∣ ≤ c3|Aρnn |−ρn/600 (6.8)

for every z ∈ Rd. Indeed, since we have that ρn/(1− ρn) > ρn ≥ D/ log |Aρnn |, the
set ∆ρn/(1−ρn)((1 − ρn)−1An) is good and Theorem 5.7 can be applied for every
n ≥ N(D,Cε).

By yet again picking N(D,Cε) perhaps even larger than before, we have that
ρn = D/ log |A1

n| ≤ 1 − 2−1/d for n ≥ N(D,Cε). We can then use the inequality
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(1− x)−d+1 ≤ 1 + 2dx which holds for 0 < x ≤ 1− 2−1/d to conclude that for such
n, (1− ρn)−(d−1) ≤ 1 + 2dρn. Therefore, by Lemma 4.1 part c) we get that

log |Aρnn |
(

(1− ρn)−(d−1) − 1
)
≤ log(6dρ−dn |A1

n|)2dρn

= (d log 6 + log |A1
n|+ d log log |A1

n| − d log logD)2d
D

log |A1
n|
.

Clearly, there exists an N(D,Cε) perhaps even larger than before, such that for
every n ≥ N(D,Cε),

log |Aρnn |
(

(1− ρn)−(d−1) − 1
)
≤ 3dD ≤ Cε/4,

where we use the fact that Cε ≥ 12dD by assumption.
Hence, for n ≥ N(D,Cε),

P (T ρnw (An)− log |Aρnn | ≥ Cε/2)

= P
(
T ρnw (An)− log |Aρnn |

(1− ρn)d−1
+

log |Aρnn |
(1− ρn)d−1

− log |Aρnn | ≥ Cε/2
)

≤ P
(
T ρnw (An)− log |Aρnn |

(1− ρn)d−1
≥ Cε/4

)
= P

(
(1− ρn)d−1T ρnw (An)− log |Aρnn | ≥ (1− ρn)d−1Cε/4

)
≤ P

(
(1− ρn)d−1T ρnw (An)− log |Aρnn | ≥ Cε/8

)
where the last inequality holds for every n such that (1−ρn)d−1 ≥ 1/2. This clearly
holds for every n ≥ N(D,Cε) where N(D,Cε) might be even larger than before.

We can now use (6.8) to see that

P (T ρnw (An)− log |Aρnn | ≥ Cε/2) (6.9)
≤ P

(
(1− ρn)d−1T ρnw (An)− log |Aρnn | ≥ Cε/8

)
= 1− P

(
(1− ρn)d−1T ρnw (An)− log |Aρnn | ≤ Cε/8

)
≤ 1− exp(−e−Cε/8) + c3|Aρnn |−ρn/600 ≤ e−Cε/8 + c3e

−D/600 ≤ ε/2,

much as when we dealt with the first term of the right hand side of (6.6).
Finally, combining (6.6), (6.7) and (6.9) we conclude that

P(|T (An)− dimB(A)(log n+ log log n)− log c̃A)| ≥ Cε) ≤ ε (6.10)

for every n ≥ N(D,Cε). However it is now easy to see that (6.10) must in fact hold
for every n ≥ 1 by (perhaps) increasing Cε even further.

The full statement (i.e. assuming (1.1) instead of (6.4)) is proved in a very
similar way, and therefore we will only indicate the changes. Again we get that
limn→∞

log |A1
n|

logn = dimB(A) and the first change is that (6.5) is replaced by

0 < lim inf
n→∞

(
D

n log n

)dimB(A)

|Aρnn | ≤ lim sup
n→∞

(
D

n log n

)dimB(A)

|Aρnn | <∞.

Then, one can pick Cε perhaps even larger so that

| logDdimB(A)|+ lim sup
n→∞

∣∣∣∣∣log

((
D

n log n

)dimB(A)

|Aρnn |

)∣∣∣∣∣ ≤ Cε/3.
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This can then be inserted into a slightly modified version of (6.6) in order to obtain
the statement

P(|T (An)− dimB(A)(log n+ log log n)| ≥ Cε)
≤ P (T (Aρnn )− log |Aρnn | ≤ −Cε/2)

+P
(
(1− ρn)d−1T ρnw (An)− log |Aρnn | ≥ Cε/2

)
,

for every n large enough, and then we can proceed as above.

Remark: Recall the remark after the statement of Theorem 1.1 where it is specu-
lated that under strong enough regularity conditions (T (nA) − dimB(A)(log n +
log log n) + C)n≥1 might converge to a Gumbel distribution for some constant
C. Then, (6.10) indicates that the constant C might be the same as − log c̃A =
− dimB(A) log dimB(A) − log cA. This is our reason for first proving Theorem 1.1
under the stronger assumption (6.4).

7. Proof of Theorem 2.1

In this section we shall prove our secondary result, i.e. Theorem 2.1.
Proof of Theorem 2.1. The proof is similar to the proof of Theorem 1.1 and so
we shall be brief. One of the main differences is that here we let

ρn :=
log log n

log |A1
n|
,

where An = nA as before. We remark that the choice of log log n in the numerator
is somewhat arbitrary. Indeed, any function that goes to infinity sufficiently slow
as n → ∞ would do. The purpose is to make sure that |Aρnn |−ρn/600 vanishes in
the limit and Aρnn is good.

Observe also that by (4.1),

lim inf
n→∞

log |A1
n|

log n
= lim inf

n→∞

log |A1/n|
− log(1/n)

≥ lim inf
ρ→0

log |Aρ|
− log ρ

= dimB(A).

Letting δ := (dimB(A)− α)/2 we then get that

(
log log n

n log n

)dimB(A)−δ

|Aρnn |

=

(
log |A1

n|
log n

)dimB(A)−δ (
log log n

n log |A1
n|

)dimB(A)−δ

|Aρnn |

=

(
log |A1

n|
log n

)dimB(A)−δ (ρn
n

)dimB(A)−δ
|Aρn/n| → ∞,

by the definition of dimB(A) (see Section 2.2).
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We then see that for n larger than some N ,

P(T (An)− α log n ≤ z)

= P
(
T (An)− log |Aρnn |+ δ log n+ (dimB(A)− δ) log log n

− log((log log n)dimB(A)−δ) + log

((
log log n

n log n

)dimB(A)−δ

|Aρnn |

)
≤ z

)
≤ P (T (An)− log |Aρnn |+ δ log n ≤ z)
≤ P (T (Aρnn )− log |Aρnn | ≤ z − δ log n) .

where the last inequality follows since T (An) ≥ T (Aρnn ). Using Theorem 5.7 and
Lemma 4.1 part a), we then get that

P(T (An)− α log n ≤ z) ≤ c3|Aρnn |−ρn/600 + exp(−e−z+δ logn)

≤ c3|A1
n|−ρn/600 + exp(−e−znδ) = c3e

− log logn/600 + exp(−e−znδ)→ 0.

The second statement is proved in the same way so we omit the proof.

8. Applications

The purpose of this section is two-fold. Firstly, we will demonstrate that any
set containing a d-dimensional closed box satisfies (6.4), and so there are many
examples of sets for which our main result apply. Presumably, results such as
Proposition 8.1 are well known, even though we could not find a reference for this
exact statement. Secondly we will consider examples of sets where dimB(A) < d
and see what our main results imply for those sets.

Proposition 8.1. Let A = [0, 1]d. Then,

0 < lim
ρ→0

ρd|Aρ| <∞,

and in particular the limit exists. It follows that any bounded set A such that
[x, x+ δ]d ⊂ A for some x ∈ Rd and δ > 0, must satisfy (1.1).

Proof. Let c > 0 and note that A = [0, 1]d is contained in the union of (d(cρ)−1e)d
translates of the set Acρ = [0, cρ]d. It follows from (4.1) that |Aρcρ| = |Aρ/(cρ)| =

|A1/c|. Then, by using Lemma 4.1 part b), we get that

|Aρ| ≤ (d(cρ)−1e)d|Aρcρ| ≤ ((cρ)−1 + 1)d|A1/c|. (8.1)

Therefore,
lim sup
ρ→0

ρd|Aρ| ≤ lim sup
ρ→0

(c−1 + ρ)d|A1/c| = c−d|A1/c|,

and so
lim sup
ρ→0

ρd|Aρ| ≤ lim inf
c→∞

c−d|A1/c| = lim inf
ρ→0

ρd|Aρ|.

This proves that the limit exists.
We then observe that (8.1) immediately implies that the limit is finite. Further-

more, we must have that

|Aρ| ≥ |A ∩ (ρZd)| ≥ (ρ−1 − 1)d,

and so limρ→0 ρ
d|Aρ| ≥ 1.
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We now turn to the second statement. To that end, A ⊂ Rd is now any bounded
set that includes some box B = [x, x+ δ]d. Thus,

lim inf
ρ→0

ρd|Aρ| ≥ lim inf
ρ→0

ρd|Bρ| > 0,

by the first statement of the proposition. Similarly, for large enough ∆, we let
D = [y, y + ∆]d ⊃ A and then we find that

lim sup
ρ→0

ρd|Aρ| ≤ lim sup
ρ→0

ρd|Dρ| <∞.

Example 8.2. Proposition 8.1 lets us apply Theorem 1.1 to the set [0, 1]d. Informally,
we then know that T (n[0, 1]d) will be of order d(log n+ log log n).

A discrete analogue of n[0, 1]d might be taken to be Dn = [0, n − 1]d ∩ Zd.
However, Theorem 1.2 implies that T (Dn) will be of order log |Dn| = d log n. Thus,
the sequence (T (Dn))n≥1 behaves differently from the sequence (T (n[0, 1]d))n≥1 in
that the first is “missing” the extra factor d log log n. We point out that the results
of Belius (2012) are similar to the ones for (Dn)n≥1, while the results of Janson
(1986) are similar to when the ones for (n[0, 1]d)n≥1. This seems to indicate that
the extra factor d log log n arises from the covered sets being non-discrete rather
then from the fact that we are using unbounded cylinders to perform our covering.

Of course, it is important to point out that the sequence (Dn)n≥1 is not obtained
by starting with some B and then multiplying it by n.

Example 8.3. In this example we consider a two-dimensional Cantor set. Since this
is a well known set we shall be somewhat informal in its description (see Falconer,
2014 Example 4.3 for details when d = 1). We also remark that one can easily
generalize this set into higher dimensions. We start with the unit box F0 = [0, 1]2,
and in our first step we delete everything except the corner cubes of side length
1/3. Thus, we let F1 = [0, 1/3]2∪ ([0, 1/3]× [2/3, 1])∪ ([2/3, 1]× [0, 1/3])∪ [2/3, 1]2.
We then continue by repeating the exact same procedure on a smaller scale within
each of the four retained sub-boxes in order to obtain F2. Continuing, we obtain a
sequence Fk ⊃ Fk+1 ⊃ · · · where Fk consists of 4k boxes of side length 3−k. We
then define

F := ∩∞k=1Fk,

and it is easy to check that dimB(F ) = log 4
log 3 .

It is not hard to see that F3−k must consist of the union of all four corner points
of the sub boxes of Fk. Indeed, each sub box has side length 3−k so that the distance
between two adjacent corner points is exactly 3−k. Therefore, each sub box cannot
contain more than these four points. Thus, |F3−k | = 4k and we see that

lim
k→∞

(
3−k

) log 4
log 3 |F3−k | = lim

k→∞
4−k44k = 4,

and by interpolating we get that

1 = lim inf
ρ→0

ρ
log 4
log 3 |Fρ| ≤ lim sup

ρ→0
ρ

log 4
log 3 |Fρ| = 4.
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Therefore, Theorem 1.1 can be applied to show that the sequence(
T (nF )− log 4

log 3
(log n+ log log n)

)
n≥1

is tight. Informally, we can say that the cover time T (nF ) will be of order
log 4
log 3 (log n+ log log n) with some fluctuations.

Example 8.4. Here we let A = [0, 1]k × {0}d−k ⊂ Rd. As in Proposition 8.1 it
is easy to verify that Theorem 1.1 is applicable. Then, we conclude that for any
dimensions d, the sequence

(T (nA)− k (log n+ log log n))n≥1

is tight. However, the constants in our results are allowed to depend on d, so it
is possible that a stronger or at least different result can be obtained by letting
d→∞ at the same time as n→∞. However, we choose not to pursue this here.

Example 8.5. Our last example will be of a sequence of finite sets. To that end,
consider In consisting of n logn

log logn equidistant points on the interval [0, n]. Then, let
Bn = Idn = In × · · · × In. Clearly,

Sep(Bn) log |Bn| =
n

n logn
log logn

log

(
n log n

log log n

)d
= d log log n+O((log n)−1/2)→∞,

so that Theorem 1.2 tells us that T (Bn)− log |Bn| = T (Bn)− d(log n+ log log n−
log log log n) converges to a Gumbel distributed random variable.

Note that if In would instead consist of n log n points, then Theorem 1.2 would
not be applicable. However, estimates can be obtained by using Theorem 5.7 on
approximations of the set.
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