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Abstract. In this paper, we prove convergence in distribution of Langevin pro-
cesses in the overdamped asymptotics. The proof relies on the classical perturbed
test function (or corrector) method, which is used both to show tightness in path
space, and to identify the extracted limit with a martingale problem. The result
holds assuming the continuity of the gradient of the potential energy, and a mild
control of the initial kinetic energy.

1. Introduction

This paper focuses on the overdamped asymptotics of Langevin dynamics. The
Langevin Stochastic Differential Equation (SDE) describes the dynamics of a clas-
sical mechanical system perturbed by a stochastic thermostat. The system state at
time t ≥ 0 is encoded by its position Qt and its momentum Pt. More formally, the
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equation reads: {
dQt = Ptdt,

dPt = −∇V (Qt)dt− Ptdt+
√

2β−1dWt,

where in the above, Qt takes values in the d-dimensional torus Td, Pt takes values
in Rd, the function V : Td → R is the particles’ potential energy, β > 0 the inverse
temperature, and t 7→Wt ∈ Rd is a standard d-dimensional Brownian motion. The
term

√
2β−1dWt is a fluctuation term bringing energy into the system, while this

energy is dissipated through the friction term −Ptdt; the sum of these two terms
forming the so-called thermostat part. The remaining terms are simply Newton’s
equation of motion. For more details on this equation, we refer to Lelièvre et al.
(2010, Section 2.2).

The case we consider here is the so-called overdamped asymptotics, where the
time scale of the large damping due to friction is much smaller than the time
scale of the Hamiltonian dynamics, so that the momentum becomes a fast variable
compared to the slow position variable. We introduce a parameter ε for the ratio
of the time scales, and consider{

dQεt = 1
εP

ε
t dt,

dP εt = − 1
ε∇Vε(Q

ε
t )dt− 1

ε2P
ε
t dt+ 1

ε

√
2β−1dWt.

(1.1)

Note that we allow the potential Vε ∈ C1(Td) to depend on ε and will only suppose
that it converges to a limit V ; see below for a precise statement. The Markov
generator Lε associated with (1.1) is given by

Lεf(q, p) :=
1

ε2

(
1

β
∆pf − p · ∇pf

)
+

1

ε
(p · ∇qf −∇qVε · ∇pf) , (1.2)

where f denotes any smooth test function of the variables (q, p) ∈ Td × Rd.
Overdamped processes are stochastic dynamics on the system position (Qt)t≥0

only. The overdamped Langevin SDE is given by:

dQt = −∇V (Qt)dt+
√

2β−1dBt, (1.3)

where V : Td → Rd is a potential energy, limit of Vε when ε→ 0 in some appropriate
sense, and t 7→ Bt ∈ Rd is a standard d-dimensional Wiener process. The Markov
generator L associated with (1.3) acts on smooth test functions f of the variable q
as follows:

Lf(q) := −∇qV · ∇qf +
1

β
∆qf.

Our main result is the proof of the convergence in distribution of the Langevin
position process (Qεt )t≥0 towards its overdamped counterpart (Qt)t≥0, assuming
the uniform convergence of the gradient potential as well as a control of moments
of the initial kinetic energy.

Theorem 1.1 (Overdamped limit of the Langevin dynamics). For any ε > 0,
suppose that (Qεt , P

ε
t )t≥0 ∈ Td × Rd is a weak solution to the SDE (1.1). Assume

that the following conditions hold:
(1) Vε is C1(Td), and converges to V in the sense that ‖∇Vε −∇V ‖∞ −−−→

ε→0
0,

(2) The following moment bound holds true:

lim
ε→0

εE(|P ε0 |3) = 0
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(3) The initial position distribution is converging to some limit: Law (Qε0) −−−→
ε→0

Law (Q0).
Then, when ε→ 0, the process (Qεt )t≥0 ∈ C(R+ → Td) converges in distribution to
the unique weak solution of the overdamped SDE (1.3).

Remark 1.2. In Theorem 1.1, the space of trajectories C(R+ 7→ Td) is endowed with
uniform convergence on compact sets; making it Polish (metrizable for a separable
and complete metric).

The literature on diffusion approximations is very rich; we refer for instance
to Pavliotis and Stuart (2008) for a recent pedagogical overview of related issues.
Historically, a possible chain of seminal references is given by Stratonovich (1963),
Khas’minskii (1966), Papanicolaou and Varadhan (1973), as well as Papanicolaou
and Kohler (1974); complemented with the more modern viewpoint of Ethier and
Kurtz (1986, Chapter 12 “Random evolutions”).

In the present case, the momentum variable is averaged out with the diffusion
approximation, so that the problem may be labeled as “diffusion approximation
with averaging”. Broadly speaking, the problem can be approached using strong or
weak convergence techniques. For an example of the strong convergence approach,
the results in Sancho et al. (1982) rely on estimating the dynamics of Qεt and its
limit using a Gronwall argument; this approach requires the Lipschitz continuity of
∇Vε uniformly in ε. Similar strong convergence results for more advanced models
(infinite dimensional, inhomogeneous in space) can be found for instance in Cerrai
and Freidlin (2006); Hottovy et al. (2015).

On the other hand, weak convergence results rely on the so-called “perturbed”
test function or “corrector” approach, that have been developed in Papanicolaou
et al. (1977). The case of the overdamped limit (1.1) is not directly covered by
these results. Indeed, the correctors are not bounded in the present case, due to
the fact that the state space of the momentum variable is not compact.

In Pardoux and Veretennikov (2001, 2003, 2005), the authors extend the classical
diffusion approximation with averaging to the non-compact state space case. In the
latter setting however, the fast variable has a dynamics independent of the slow one,
which is not the case in the Langevin case (1.1).

We now give a physically motivated example that satisfies our assumptions but
was not covered by previous works.

Example 1.3. Let
Vε(q) = V (q) + αεχ(kεq),

where χ ∈ C∞(Td), and the scaling coefficients kε ∈ N and αε ∈ R satisfy

kε →∞, αεkε → 0.

Physically, the potential αεχ(kεq) may model the interaction between a particle
with unit energy and a periodic crystal of small period k−1ε , and small energy range
of order αε. When kε → +∞ but αεkε = 1 and ε is kept constant, the effective
action of the periodic crystal on the particle cannot be neglected, especially for
grazing velocities co-linear to the principal directions of the crystal. Indeed, in the
latter case, on times of order 1, the crystal exerts on the particle a total force also
of order 1, making it deviating from its trajectory.

Our result shows that the physically necessary condition αεkε → 0 is in fact
sufficient for neglecting the crystal effect in the overdamped regime. Note that if
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αεk
2
ε → +∞, when ε→ 0, then

‖∇Vε −∇V ‖∞
ε→0−−−→ 0,

but still
‖∇2Vε‖∞ ∼ αεk2ε‖∇2χ‖∞

ε→0−−−→ +∞,
preventing ∇Vε from being Lipschitz uniformly in ε; and hence forbidding results
based on strong convergence.

In order to prove Theorem 1.1, we will establish a more general weak convergence
result. We consider a sequence (indexed by a small parameter ε > 0) of Markov
processes of the form t 7→ (Qεt , P

ε
t ) ∈ Td × Rd taking value in the Skorokhod path

space DTd×Rd . Our general convergence result, namely Theorem 3.5, gives general
conditions under which (Qεt )t≥0 converges in distribution to the unique solution of a
particular martingale problem. The proof follows the usual pattern: first we prove
tightness for the family of distributions of (Qεt ), and then characterize the limit
through martingale problems. For both steps, we use the perturbed test function
method. The key sufficient criteria yielding the results of both steps is given in
Assumption 3.4, and states that to any smooth f : Td → R, we can associate a
perturbed test function fε : Td × Rd → R such that for all T > 0 first,

lim
ε→0

E
(

sup
t≤T
|f(Qεt )− fε(Qεt , P εt )|

)
= 0,

and second,

lim
ε→0

E

(∫ T

0

|Lf(Qεt )− Lεfε(Qεt , P εt )| dt

)
= 0.

Remark 1.4 (On the choice of the state space). Theorem 3.5 can be useful for càd-làg
processes, which explains the fact that we work in Skorokhod space. We have chosen
to work in Td×Rd for notational simplicity, but Theorem 3.5 could be extended to
more general product spaces of the type E × F , where E and F are Polish spaces.
If E is compact, the extension is straightforward. If E is locally compact, then one
can work with E ∪{∞}, the one point compactification of E at infinity (see Ethier
and Kurtz, 1986, Chapter 4). If E is not locally compact, then one needs to use
Theorem 9.1 in Ethier and Kurtz (1986, Chapter 3) instead of Theorem 2.12 below
which is a corollary of the former. In the latter case: (i) the a priori compact
containment condition (9.1) of Theorem 9.1 in Ethier and Kurtz (1986, Chapter 3)
has to be proven; and (ii) one has to show the tightness of

(
Law (f(Qεt ))t≥0

)
ε≥0 for

all f in a space of functions dense in Cb(E) for the topology of uniform convergence
on compacts. Such extensions to infinite dimensional spaces are left for future work.

The paper is organized as follows. Section 2 starts with some notation and
preliminaries. In Section 3, we state and prove the general convergence result
Theorem 3.5. This general method is then applied in Section 4 to the overdamped
Langevin limit, proving Theorem 1.1.

2. Notation and Preliminaries

In what follows, we introduce notation and recall some known results.
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2.1. General notation. Let (E, d) be a Polish space, that is, a topological space
which is metric, complete and separable. Denote C(E) the Banach space of all con-
tinuous functions and Cb(E) the Banach space of all bounded continuous functions.
We denote by P(E) the space of probability measures on the Borel σ-field B(E).
The notation FXt means the natural filtration of càd-làg processes (Xt)t≥0, that is
FXt = σ(Xs, 0 ≤ s ≤ t). For any (s, t) ∈ R×R, we denote by s∧ t the minimum of
s and t.

2.2. The Skorokhod space. A càd-làg function (from the French “continu à droite,
limité à gauche”, also called RCLL for “right continuous with left limits”) is a func-
tion defined on R+ that is everywhere right-continuous and has left limits every-
where. The collection of càd-làg functions on a given domain is known as the
Skorokhod space. We denote DE the space of càd-làg functions with values in a
Polish space E. We recall that this path space DE may be equipped with the
Skorokhod topology (see Section 5 of Ethier and Kurtz, 1986, Chapter 3): a fam-
ily of trajectories (qεs)s≥0 indexed by ε converges to a limit trajectory (q0s)s≥0 if
there exists a sequence (λε)ε≥0 in the space of strictly increasing continuous bi-
jections of [0,∞[, such that for each T > 0: limε→0 supt≤T |λε(t) − t| = 0 and

limε→0 supt≤T d
(
qεt , q

0
λε(t)

)
= 0. The following result will be useful in the proof of

Theorem 3.5.

Lemma 2.1. Integration with respect to time is continuous with respect to the
Skorokhod topology: if (qεt )t≥0 converges to (q0t )t≥0 in DE, and ψ : E → R is
bounded and continuous, then for each T > 0,∫ T

0

ψ(qεt )dt −−−→
ε→0

∫ T

0

ψ(q0t )dt.

Proof : Let us denote by JT :=
{
t ∈ [0, T ], q0t− 6= q0t

}
the countable set of jump

times in [0, T ] of q0. By definition of convergence in the Skorokhod space,

lim
ε→0

qεs = q0s ∀s ∈ [0, T ] \ JT .

Since JT has Lebesgue measure 0 and ψ is continuous and bounded, dominated
convergence yields the result. �

2.3. Martingale problems. Let us first recall some basics on martingales and sto-
chastic calculus. Let (Ω,F ,P, (Ft)t≥0) a filtered probability space. A càd-làg real-
valued process (Xt)t≥0 is said to be adapted if Xt is Ft-measurable for all t ≥ 0,
and is called a (Ft)t≥0-martingale if E(|Xt| |Fs) < +∞ and E(Xt|Fs) = Xs for any
0 ≤ s ≤ t.

We will often need the technical tool of localization by stopping times, to deal
with the unboundedness of the momentum variable. We follow here the presentation
of Ethier and Kurtz (1986, Chapter 4).

Definition 2.2 (Local martingale). A càd-làg real-valued process (Xt)t≥0 defined
on (Ω,F ,P, (Ft)t≥0) is called a local martingale with respect to (Ft)t≥0 if there
exists a non-decreasing sequence (τn)n∈N of (Ft)t≥0-stopping times such that τn →
∞ P-almost surely, and for every n ∈ N,

(
Xt∧τn

)
t≥0 is an (Ft)t≥0-martingale.

Let us now state precisely what it means for a process to solve a martingale
problem.
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Definition 2.3 (Martingale problem). Let E be a Polish space. Let L be a linear
operator mapping a given space D ⊂ Cb(E) into bounded measurable functions.
Let µ be a probability distribution on E. A càd-làg process (Xt)t≥0 with values
in E solves the martingale problem for the generator L on the space D with initial
measure µ — in short, X solves MP(L,D(L), µ) — if Law (X0) = µ and if, for any
ϕ ∈ D,

t 7→Mt(ϕ) := ϕ(Xt)− ϕ(X0)−
∫ t

0

Lϕ(Xs)ds (2.1)

is a martingale with respect to the natural filtration
(
FXt = σ (Xs, 0 ≤ s ≤ t)

)
t≥0.

Moreover, the martingale problem MP(L,D, µ) is said to be well-posed if:
• There exists a probability space and a càd-làg process defined on it that

solves the martingale problem (existence);
• whenever two processes solve MP(L,D, µ), then they have the same dis-

tribution on DE (uniqueness).

2.4. Weak solutions of SDEs. Let b : Rd 7→ Rd and σ : Rd 7→ Rd×n be locally
bounded. Consider a stochastic differential equation in Rd of the form:

dXt = b(Xt)dt+ σ(Xt)dWt, (2.2)

with an initial condition Law (X0) = µ0. Let L be the formal generator

L :=

d∑
i=1

bi∂i +
1

2

d∑
i,j=1

aij∂i∂j , (2.3)

where a = σσT .

Definition 2.4 (Weak solution of the SDE). A continuous process (Xt)t≥0 is a
weak solution of (2.2) if there exists a filtered probability space (Ω,F ,P, (Ft)t≥0)
such that:

• t 7→ Wt is a (Ft)t≥0-Brownian motion, that is, an (F)t≥0-adapted process
such that Law(Wt+h −Wt|Ft) = N (0, h).

• X is a continuous, (Ft)t≥0-adapted process and satisfies the stochastic in-
tegral equation

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs a.s.

We now quote two results from Ethier and Kurtz (1986) concerning existence and
uniqueness of solutions to SDEs and martingale problems. The first is an existence
result, and can be found in Ethier and Kurtz (1986, Section 5.3) (Corollary 3.4 and
Theorem 3.10).

Theorem 2.5. Assume that b, σ are continuous. If there exists a constant K such
that for any t ≥ 0, x ∈ Rd:

|σ(x)|2 ≤ K(1 + |x|2); (2.4)

x · b(x) ≤ K(1 + |x|2), (2.5)

then there exists a weak solution of the stochastic differential equation (2.2) cor-
responding to (σ, b, µ), which is also solution of the martingale problem MP(L,
C∞c (Rd), µ), C∞c (Rd) being the set of smooth functions with compact support.
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Remark 2.6. For the Langevin equation (1.1)) we first remark that the latter
can be set in Rd × Rd using the Zd-periodic extension of Vε. Then b(q, p) =(
1
εp,−

1
ε∇Vε(q)−

1
ε2 p
)
and σ = (0, 1ε

√
2β−1 IdRd) are continuous since Vε ∈ C1(Rd).

Moreover, |σ|2 = σσ> = (0, 2
βε2 IdRd), and on the other hand

(q, p) · b(q, p) =
1

ε
pq − 1

ε
p∇Vε(q)−

1

ε2
p2 ≤ 1

2ε
(1 + ‖∇Vε‖∞)(1 + |p|2 + |q|2),

which implies the existence of weak solution of (1.1) in Rd. One then obtains
existence of a weak solution in Td of the original (1.1) using the canonical continuous
mapping Rd → Td := Rd/Zd.

The next result follows from Ethier and Kurtz (1986) (Theorem 1.7 in Sec-
tion 8.1) and Stroock and Varadhan (1979) (Theorem 10.2.2 and the discussion
following their Corollary 10.1.2) .

Theorem 2.7. Assume that the bounds (2.4) and (2.5) hold. Suppose that a :=
σσ> is continuous and uniformly elliptic:

∃Ca > 0,∀ξ ∈ Rd,∀x ∈ Rd, ξ>a(x)ξ ≥ Ca|ξ|2.
Then for any initial condition µ, there is a unique weak solution of the stochastic
differential equation (2.2). This solution is also the unique solution of the martin-
gale problem MP(L,C∞c (Rd), µ).

Remark 2.8. For the overdamped Langevin equation (1.3), we remark again that
the latter can be set in Rd using the Zd-periodic extension of Vε. One then ob-
tains well-posedness of the martingale problem MP(L,C∞c (Rd), µ) in Rd since
∇V is bounded and continuous by assumption. This solution obviously solves
MP(L,C∞(Td), µ) in Td. The fact that uniqueness of MP(L,C∞c (Rd), µ) implies
uniqueness of MP(L,C∞c (Td), µ) is technically less obvious. It can be treated us-
ing the localization technique of Theorem A.1 stated in appendix. More precisely,
using the notation of Theorem A.1, one can defines the covering of Rd by the open
sets

Uk :=
{

(x1, . . . , xd) ∈ Rd| |xi − ki/8| ≤ 1/4 ∀i = 1 . . . d
}

where k ∈ Zd and then remark that by partition of unity for smooth functions,
any ϕ ∈ C∞c (Rd) can be written as a finite sum of smooth functions with compact
support in each given Uk, k ∈ Zd.

2.5. Convergence in distribution. As we said before, we are interested here in prov-
ing convergence in distribution for processes. Let us briefly recall several key results
that will be used later.

For completeness, we start by recalling the very classical Prohorov theorem,
characterizing relative compactness by tightness (see for example Section 2 in Ethier
and Kurtz, 1986, Chapter 3).

Theorem 2.9 (Prohorov theorem). Let (µε)ε be a family of probability measures
on a Polish space E. Then the following are equivalent:

(1) (µε)ε is relatively compact for the topology of convergence in distribution.
(2) (µε)ε is tight, that is to say, for any δ > 0, there is a compact set Kδ such

that
inf
ε
µε(Kδ) ≥ 1− δ.
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Over the years several relative compactness criteria in Skorokhod space have been
developed. We will use the following one Ethier and Kurtz (1986, Theorem 8.6,
Chapter 4).

Theorem 2.10 (Kurtz-Aldous tightness criterion). Consider a family of stochastic
processes ((Xε

t )t≥0)ε in DR. Assume that
(
Law(Xε

0)
)
ε
is tight. ∀δ ∈ (0, 1) and

T > 0, there exists a family of nonnegative random variable Γε,δ, such that: ∀
0 ≤ t ≤ t+ h ≤ t+ δ ≤ T

E
(
|Xε

t+h −Xε
t |2|FX

ε

t

)
≤ E

(
Γε,δ|FX

ε

t

)
; (2.6)

with

lim
δ→0

sup
ε

E(Γε,δ) = 0. (2.7)

Then the family of distributions (Law ((Xε
t )t≥0))ε is tight.

Remark 2.11 (On using sequences). If instead of (2.7), one considers the con-
dition limδ→0 lim supε→0+ E(Γε,δ) = 0, then the conclusion becomes the follow-
ing: (Law ((Xεn

t )t≥0))εn is tight for any (εn)n≥1-sequence such that εn > 0 and
limn→+∞ εn = 0. This version will be the one used in the present paper.

If the processes, say (Qεt )t≥0, is defined in a general state space E, it is natural to
consider the image processes (f(Qεt ))t≥0 for various observables, or test functions,
f . The following result enables us to recover the tightness for the original process
from the tightness of the observed processes (Theorem 9.1 Chapter 3 in Ethier and
Kurtz, 1986).

Theorem 2.12 (Tightness from observables). Let E be a compact Polish space
and ((Qεt )t≥0)ε be a family of stochastic processes in DE. Assume that there is an
algebra of test functions D ⊂ Cb(E), dense for the uniform convergence, such that
for any f ∈ D, ((f(Qεt ))t≥0)ε is tight in DR. Then (Law(Qεt )t≥0)ε is tight in DE.

Remark 2.13. Again, the above theorem will be used for families indexed by se-
quences (εn)n≥1 such that εn > 0 and limn→+∞ εn = 0.

Finally, the following two lemmas will be useful when we considering martingale
problems. The first one states that the distribution of jumps of càd-làg processes
have atoms in a countable set (see Lemma 7.7 Chapter 3 in Ethier and Kurtz,
1986).

Lemma 2.14. Let (Xt)t≥0 be a random process in the Skorokhod path space DE.
The set of instants where no jump occurs almost surely:

CLaw(X) := {t ∈ R+|P(Xt− = Xt) = 1},

has countable complement in R+. In particular, it is a dense set.

The second one is a very useful way to check whether a process is a martingale
or not (see page 174 in Ethier and Kurtz, 1986).

Lemma 2.15 (Martingale equivalent condition). Let (Mt)t≥0 and (Xt)t≥0 be two
càd-làg proceses and let C be an arbitrary dense subset of R+. Then (Mt)t≥0 is
FXt -martingale if and only if

E
[
(Mtk+1

−Mtk)ϕk(Xtk)...ϕ1(Xt1)
]

= 0,

for any time ladder t1 ≤ ... ≤ tk+1 ∈ C ⊂ R+, k ≥ 1, and ϕ1, ..., ϕk ∈ Cb(E).
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3. A general perturbed test function method

In this section, we consider a sequence of stochastic processes, indexed by a small
parameter ε > 0, of the form

t 7→ (Qεt , P
ε
t ) ∈ Td × Rd,

taking value in the Skorokhod path space DTd×Rd associated with the (Polish)
product state space Td ×Rd. Our goal is to describe a general framework to prove
the convergence of the (slow) variablesQ towards a well-identified dynamics. We use
standard tightness arguments and characterization through martingale problems,
emphasizing the technical role of perturbed test functions.

3.1. Notation and Assumptions. For each ε, we consider a càd-lag process t 7→
(Qεt , P

ε
t ) ∈ Td × Rd. The natural filtration of the full process and the process

(Qεt )t≥0 are denoted respectively by FQ
ε, P ε

t := σ ((Qεs, P
ε
s ), 0 ≤ s ≤ t), and FQ

ε

t :=
σ (Qεs, 0 ≤ s ≤ t). We now state the key assumptions that will imply convergence in
distribution of the process (Qεt )t≥0 towards the solution of a martingale problem.

Assumption 3.1 (Generator of the process (Qεt , P
ε
t ) ). There exists a linear operator

Lε acting on C∞(Td ×Rd) which is the extended Markov generator of (Qεt , P
ε
t )t≥0

in the sense that, for all f ∈ C∞(Td × Rd), Lεf is locally bounded and

t 7→Mε
t (f) := f(Qεt , P

ε
t )− f(Qε0, P

ε
0 )−

∫ t

0

Lεf(Qεs, P
ε
s )ds

is a (FQ
ε, P ε

t )t≥0-local martingale.

Assumption 3.2 (The limit process). There exists a linear operator L mapping
C∞(Td) to C(Td) such that the martingale problem MP(L,C∞(Td), µ) is well-
posed for any initial condition µ.

Assumption 3.3 (Initial condition). The initial condition (Law(Qε0))ε>0 converge
to a limit µ0, when ε→ 0.

Assumption 3.4 (Existence of perturbed test functions). For all f ∈ C∞(Td), there
exists a perturbed test function fε ∈ C∞(Td×Rd), such that for all T , the remainder
terms

Rε1,t(f) := |f(Qεt )− fε(Qεt , P εt )| and Rε2,t(f) := |Lf(Qεt )− Lεfε(Qεt , P εt )|
satisfy the following bounds:

lim
ε→0

E
(

sup
0≤t≤T

Rε1,t(f)

)
= 0, (3.1)

lim
ε→0

E

(∫ T

0

Rε2,t(f)dt

)
= 0. (3.2)

3.2. The general convergence theorem. We are now in position to state our main
abstract result.

Theorem 3.5. Under the Assumptions 3.1, 3.2, 3.3, and 3.4, the family(
Law(Qεt )t≥0

)
ε>0

converges when ε→ 0 to the unique solution of martingale prob-

lem MP(L,C∞(Td), µ).
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The proof follows the classical pattern, in two steps: we first prove that the
processes Qεt are relatively compact in DTd ; then we show that any possible limit
must solve the martingale problem MP(L,C∞(Td), µ).

3.2.1. Step one: The proof of tightness. We want to prove that for each sequence
(εn)n≥1 satisfying limn εn = 0, (Law(Qεnt ))n≥1 is tight. By Theorem 2.12, it is
enough to prove the tightness of (Law (f(Qεnt )))n≥1 for all f ∈ C∞(Td). The latter
fact will follow from Theorem 2.10, if we are able to construct, for any function
f ∈ C∞(Td) and any ε, δ > 0 and any T > 0, a random variable Γε,δ(f) such that
for all 0 ≤ t ≤ t+ h ≤ t+ δ ≤ T , one has

E
[(
f(Qεt+h)− f(Qεt )

)2∣∣∣FQε

t

]
≤ E

[
Γε,δ(f)

∣∣∣FQε

t

]
, (3.3)

where lim
δ→0

lim sup
ε≥0

E [Γε,δ(f)] = 0. (3.4)

We claim that the following variant:

Lemma 3.6. For any g ∈ C∞(Td), and any δ, ε, T > 0, there exists a random
variable Γ′ε,δ(g) such that for all 0 ≤ t ≤ t+ h ≤ t+ δ ≤ T ,∣∣∣E [g(Qεt+h)− g(Qεt )

∣∣∣FQε

t

]∣∣∣ ≤ E
[
Γ′ε,δ(g)

∣∣∣FQε

t

]
, (3.5)

where lim
δ→0

lim sup
ε≥0

E
[
Γ′ε,δ(g)

]
= 0. (3.6)

is a sufficient condition. Indeed, the required estimates (3.3), (3.4) will follow
easily from the basic decomposition(

f(Qεt )− f(Qεt+h)
)2

=
(
f(Qεt+h)

)2 − (f(Qεt ))
2 − 2f(Qεt )

(
f(Qεt+h)− f(Qεt )

)
.

since we get

E
[(
f(Qεt+h)− f(Qεt )

)2∣∣∣FQε

t

]
≤ E

[
Γ′ε,δ(f

2)
∣∣∣FQε

t

]
+ 2‖f‖∞E

[
Γ′ε,δ(f)

∣∣∣FQε

t

]
,

(3.7)

and it is enough to let Γε,δ(f) = Γ′ε,δ(f
2) + 2‖f‖∞Γ′ε,δ(f) to conclude.

Let us now prove Lemma 3.6. Let g be an arbitrary smooth function, and let gε
be the perturbed test function given by Assumption 3.4. An elementary rewriting
leads to

g(Qεt+h)− g(Qεt ) =
(
g(Qεt+h)− gε(Qεt+h, P εt+h)

)
− (g(Qεt )− gε(Qεt , P εt ))

−
∫ t+h

t

(Lg(Qεs)− Lεgε(Qεs, P εs )) ds+

∫ t+h

t

Lg(Qεs)ds

−Mε
t (gε) +Mε

t+h(gε),

(3.8)

where (Mε
t (gε))t≥0 is a local FQε, P ε

-martingale by Assumption 3.1. Let τn be an
associated localizing sequence of stopping times. Applying (3.8) at times t∧ τn and
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(t+ h) ∧ τn, we get

g(Qε(t+h)∧τn)− g(Qεt∧τn)

= g(Qε(t+h)∧τn)− gε
(
Qε(t+h)∧τn , P

ε
(t+h)∧τn

)
−
(
g(Qεt∧τn)− gε(Qεt∧τn , P

ε
t∧τn)

)
−
∫ t+h

t

(Lg(Qεs)− Lεgε(Qεs, P εs ))1s≤τnds+

∫ t+h

t

Lg(Qεs)1s≤τnds

−Mε
t∧τn(gε) +Mε

(t+h)∧τn(gε).

Taking the conditional expectation with respect to FQ
ε

t , the martingale terms can-
cel out, and we get:

∣∣∣E [g(Qε(t+h)∧τn)− g(Qεt∧τn)
∣∣∣FQε

t

]∣∣∣
≤
∣∣∣E [g(Qε(t+h)∧τn)− gε

(
Qε(t+h)∧τn , P

ε
(t+h)∧τn

)∣∣∣FQε

t

]∣∣∣
+
∣∣∣E [g(Qεt∧τn)− gε(Qεt∧τn , P

ε
t∧τn)

∣∣∣FQε

t

]∣∣∣
+

∫ t+h

t

∣∣∣E [Lg(Qεs)− Lεgε(Qεs, P εs )|FQ
ε

t

]∣∣∣ ds+ h sup
q∈Td

|Lg(q)|

≤ E
[
Rε1,(t+h)∧τn +Rε1,t∧τn

∣∣∣FQε

t

]
+

∫ t+h

t

E
[
Rε2,s|F

Qε

t

]
ds+ δ sup

q∈Td

|Lg(q)|

≤ 2E

[
sup

s∈[0,T ]

Rε1,s

∣∣∣∣∣FQε

t

]
+

∫ T

0

E
[
Rε2,s|F

Qε

t

]
ds+ δ sup

q∈Td

|Lg(q)| .

The right hand side does not depend on n any longer. We then apply dominated
convergence for n→∞ on the left hand side to get∣∣∣E [g(Qε(t+h))− g(Qεt )

∣∣∣FQε

t

]∣∣∣ ≤ E
[
Γ′ε,δ(g)

∣∣∣FQε

t

]
with Γ′ε,δ(g) = 2 sup[0,T ]R

ε
1,t +

∫ T
0
Rε2,sds+ δ‖Lg‖∞. Using the controls on the re-

mainder terms given by Assumption 3.4, and the continuity of Lg (Assumption 3.2),
we obtain

lim
δ→0

lim sup
ε→0

Γ′ε,δ(g) = 0,

which conludes the proof of tightness.

3.2.2. Step two: identification of the limit. In this step, we suppose that a sequence
Qnt = Qεnt converges in distribution to a limit Q0

t , and we prove that necessarily,
Q0 solves the martingale problem for the generator L.

Let f ∈ C∞(Td), we have to check that

Mt(Q
0
t ) := f(Q0

t )− f(Q0
0)−

∫ t

0

Lf(Q0
s)ds (3.9)

is a martingale with respect to FQ
0

t = σ(Q0
s, 0 ≤ s ≤ t). Consider a time sequence

0 ≤ t1 ≤ · · · ≤ tp ≤ tp+1 for p ≥ 1, taken in the continuity set CLaw (Q) given by
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Lemma 2.14. Recall that CLaw (Q) is dense in R. Let ϕ1, ..., ϕp ∈ Cb(Td) be p test
functions. By Lemma 2.15, it is enough to prove that

I0 := E

[(
f(Q0

tp+1
)− f(Q0

tp)−
∫ tp+1

tp

Lf(Q0
s)ds

)
ϕ1(Q0

t1) · · ·ϕp(Q0
tp)

]
= 0.

Let Iε be the corresponding quantity for ε > 0, that is,

Iε := E

[(
f(Qεtp+1

)− f(Qεtp)−
∫ tp+1

tp

Lf(Qεs)ds

)
ϕ1(Qεt1) · · ·ϕp(Qεtp)

]
.

Let us first show that Iε converges to 0. We first condition on FQ
ε

tp to get:

|Iε| ≤ E

[∣∣∣∣∣E
[
f(Qεtp+1

)− f(Qεtp)−
∫ tp+1

tp

Lf(Qεs)ds

∣∣∣∣∣FQε

tp

]∣∣∣∣∣ ∣∣ϕ1(Qεt1)
∣∣ · · · ∣∣∣ϕp(Qεtp)

∣∣∣]

≤ E

[∣∣∣∣∣E
[
f(Qεtp+1

)− f(Qεtp)−
∫ tp+1

tp

Lf(Qεs)ds

∣∣∣∣∣FQε

tp

]∣∣∣∣∣
]
‖ϕ1‖∞ · · · ‖ϕp‖∞.

Using again the perturbed test function fε and the decomposition (3.8), we get by
the same localization argument as in Step 1 that

|Iε| ≤ E

[
Rε1,tp+1

(f) +Rε1,tp(f) +

∫ tp+1

tp

Rε2,s(f)

]
‖ϕ1‖∞...‖ϕp‖∞.

The estimates on the remainder term from Assumption 3.4 then imply that Iε → 0.

Let us now prove that Iε converges to I0. Let Φ : DTd → R be the functional

Φ : (qt)t≥0 7→

(
f(qtp+1

)− f(qtp)−
∫ tp+1

tp

Lf(qs)ds

)
ϕ1(qt1) · · ·ϕp(qtp)

so that Iε = E [Φ((Qεt )t≥0)] and I0 = E
[
Φ((Q0

t )t≥0)
]
. Let us first check that,

if q0 ∈ DTd satisfies q0
t−k

= q0tk for each 1 ≤ k ≤ p + 1, then the functional Φ

is continuous at the trajectory q0. Indeed, since Lf is continuous and bounded
by Assumption 3.2, Lemma 2.1 shows that the map (qt)t≥0 7→

∫ tp+1

tp
Lf(qs)ds is

continuous with respect to Skorokhod topology; moreover, by assumption, q0 is
continuous at the time tk for each 1 ≤ k ≤ p + 1, so the map (qt)t≥0 7→ ϕk(qtk) is
continuous at q0 ∈ DTd .

Let now (εn)n≥1 be any sequence such that εn → 0 and (Qεnt )t≥0 converges
in distribution to (Q0

t )t≥0. The Skorokhod representation theorem (Theorem 1.8
in Ethier and Kurtz, 1986, Chapter 3) ensures that one can construct a probability
space where the distribution of (Qεnt )t≥0 for each n is unchanged but for which
limn→+∞Qεn = Q0 almost surely in DTd . Since tk ∈ CLaw (Q0) for each k =

1 . . . p + 1, Ψ is almost surely continuous at Q0 and we can apply the dominated
convergence theorem to obtain limn→+∞ Iεn = I0. Since the choice of the vanishing
sequence (εn)n≥1 is arbitrary, we conclude that limε→0 Iε = I0. The limit process
thus solves the martingale problem MP(L,C∞(Td), µ).
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3.2.3. Conclusion. For each sequence (εn)n≥1 satisfying limn εn = 0, we have
proven that (Law(Qεnt ))n≥1 is tight and that any converging subsequence is so-
lution to the martingale problem MP(L,C∞(Td), µ). By uniqueness of the latter
according to Assumption 3.2, this identifies the limit, showing that (Law(Qεnt ))n≥1
converges to the solution of MP(L,C∞(Td), µ). Since the sequence (εn)n≥1 is ar-
bitrary and convergence in distribution is metrizable, (Law(Qεt ))ε>0 also converges
to the solution of MP(L,C∞(Td), µ), proving Theorem 3.5.

4. Overdamped limit of the Langevin dynamics

In this section, we use the perturbed test function method introduced in the
previous section to prove Theorem 1.1. We first state the key estimates on (|P εt |)t≥0.
These estimates are then used to check the assumptions of our general Theorem 3.5
in the specific case of Langevin processes. The details of the proof of the key
estimates is postponed to the end.

4.1. Some moments estimates for Langevin processes. We start by giving a few facts
about the solution to the Langevin SDE (1.1). We first check that the operator Lε
acting on C∞(Td,Rd) and defined by

Lεf(q, p) :=
1

ε2

(
1

β
∆pf − p · ∇pf

)
+

1

ε
(p · ∇qf −∇qVε · ∇pf) ,

is the generator of the process, in the sense that Assumption 3.1 holds.

Proposition 4.1. If (Qεt , P
ε
t )t≥0 is a weak solution of the Langevin SDE (1.1),

then for any smooth function f : Td × Rd → Rd, the process

t 7→Mε
t (f) = f(Qεt , P

ε
t )− f(Qε0, P

ε
0 )−

∫ t

0

Lεf(Qεs, P
ε
s )ds,

is a (FQ
ε,P ε

t )t≥0-local martingale.

Proof : This is a very classical result. By Itô calculus we write

dfε(Q
ε
t , P

ε
t ) = Lεfε(Q

ε
t , P

ε
t )dt+

1

ε

√
2β−1∇pfε(Qεt , P εt )dWt.

Defining the sequence of
(
FQ

ε,P ε

t

)
t≥0

-stopping time

τn = inf{t ≥ 0, |P εt | ≥ n}, (4.1)

which converges almost surely to infinity, we obtain that

Mε,n
t (fε) :=

1

ε

√
2β−1

∫ t

0

∇pfε(Qεs, P εs )1s≤τndWs

is a
(
FQ

ε,P ε

t

)
t≥0

-martingale for any n ≥ 0, which is the definition of a local mar-

tingale. �

We now state several bounds on the momentum variable P εt , which are the key
technical estimates needed later to control the remainder terms appearing in the
perturbed test function method. For any continuous V : Td → R we denote by
osc(V ) the oscillation defined by

osc(V ) = maxV −minV.
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Lemma 4.2 (Propagation of moments). For any γ ≥ 1, anyM > 0 and any β > 0,
there is a numerical constant C(γ,M, β) such that for any ε > 0, if osc(Vε) ≤ M ,
then

sup
t≥0

E
[
|P εt |2γ

]
≤ C(γ,M, β)

(
E
[
|P ε0 |2γ

]
+ 1
)
. (4.2)

Lemma 4.3 (Moment of suprema). For any M > 0, any β > 0 and any T > 0,
there is a numerical constant C(M,β, T ) such that for any ε ∈ (0, 1), if osc(Vε) ≤
M , then

E
[

sup
0≤t≤T

|P εt |2
]
≤ E

[
|P ε0 |2

]
+

1

ε
C(M,β, T )

(
E
[
|P ε0 |2

]
+ 1
)1/2

. (4.3)

In particular, if limε→0 ε
2E
[
|P ε0 |2

]
= 0, then

lim
ε→0

ε2E
[

sup
0≤t≤T

|P εt |2
]

= 0.

The proofs of these estimates use classical techniques of stochastic calculus and
are postponed to Section 4.3.

4.2. The perturbed test functions in the Langevin case. In this section we apply the
general method described in Section 3 to the specific Langevin case, in order to
prove Theorem 1.1.

We will use the following standard notation for multidimensional derivatives:

∇kqf · (p1, . . . , pk) :=

d∑
i1,...,ik=1

∂i1 . . . ∂ikf(q) p1i1 . . . p
k
ik

where in the above p1, . . . , pk ∈ Rd. Note that the standard canonical Euclidean
structure is implicitly considered, and as usual ∆f = Tr

(
∇2f

)
.

We first construct explicitly, for any f ∈ C∞(Td), a perturbed test function
fε ∈ C∞(Td × Rd). Let us look for fε in the following form (see Papanicolaou
et al., 1977)

fε(q, p) = f(q) + εg1(q, p) + ε2g2(q, p). (4.4)

Applying the generator Lε, using the fact that f does not depend on p, and grouping
terms with respect to powers of ε, we get

Lεfε(q, p) =
1

ε
p · ∇q[f(q) + εg1(q, p) + ε2g2(q, p)]

− 1

ε
∇qV (q) · ∇p[εg1(q, p) + ε2g2(q, p)]

− 1

ε2
p · ∇p[εg1(q, p) + ε2g2(q, p)]

+
1

ε2β
∆p[εg1(q, p) + ε2g2(q, p)]

=
1

ε

(
p · ∇qf − p · ∇pg1 +

1

β
∆pg1

)
+

(
p · ∇qg1 −∇qVε · ∇pg1 − p · ∇pg2 +

1

β
∆pg2

)
+ ε (p · ∇qg2 −∇pg2 · ∇qVε) . (4.5)
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In order for Lεfε to converge to Lf , the ε−1-order terms should vanish, and the
ε0-order terms should converge at least formally to L(f). As a consequence g1 and
g2 should solve the following equations:

0 = p · ∇qf − p · ∇pg1 +
1

β
∆pg1, (4.6)

Lf(q) = p · ∇qg1 −∇qV · ∇pg1 − p · ∇pg2 +
1

β
∆pg2. (4.7)

The function g1(q, p) = p · ∇qf(q) clearly solves (4.6). With this choice, (4.7)
becomes

Lf(q) = ∇2
qf · (p, p)−∇qV · ∇qf − p · ∇pg2 +

1

β
∆pg2.

Since Lf(q) = 1
β∆qf −∇qV · ∇qf , it is easy to check that g2(q, p) = 1

2∇
2
qf · (p, p)

solves the equation.
Therefore, in view of Eq. (4.4), we defined the perturbed test function by :

fε(q, p) = f(q) + εp · ∇qf +
1

2
ε2∇2

qf · (p, p). (4.8)

With this choice, we get using previous calculations and the last line of (4.5)

Lεfε(q, p)− Lf(q)

= (∇qV −∇qVε) · ∇qf + ε (p · ∇qg2 −∇pg2 · ∇qVε)

= (∇qV −∇qVε) · ∇qf +
1

2
ε
(
∇3
qf · (p, p, p)−∇2

qf · (p,∇qVε)
)
. (4.9)

We now need to show that Assumption 3.4 holds for this choice of a perturbed
test function, that is, we want to show that the differences fε − f and Lεfε − Lf
are small in the following appropriate sense. Recalling the notation

Rε1,t(f) = |f(Qεt )− fε(Qεt , P εt )| , Rε2,t(f) = |Lf(Qεt )− Lεfε(Qεt , P εt )| ,

we need to prove that

lim
ε→0

E
(

sup
0≤t≤T

Rε1,t(f)
)

= 0, (4.10)

lim
ε→0

E
(∫ T

0

Rε2,t(f)dt
)

= 0. (4.11)

Since f ∈ C∞(Td), there exists a Cf = max
(
‖∇f‖∞ ,

∥∥∇2f
∥∥
∞

)
such that for

all (q, p) and all δ ∈ (0, 1/2)

|fε(q, p)− f(q)| = ε |p · ∇qf(q)|+ 1

2
ε2
∣∣∇2

qf · (p, p)
∣∣

≤ Cf (ε |p|+ ε2 |p|2)

≤ δCf +
1

δ
Cfε

2 |p|2 ,

where we have used that for any δ > 0, ε |p| ≤ 1
2δ + 1

2ε
2 |p|2 /δ. Therefore

E

[
sup
t∈[0,T ]

Rε1,t(f)

]
≤ δCf +

1

δ
Cfε

2E

[
sup
t∈[0,T ]

|P εt |
2

]
.
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By assumption, limε→0 εE
[
|P ε0 |

3
]

= 0, so ε2E
[
|P ε0 |

2
]
≤ ε4/3(εE

[
|P ε0 |

3
]
)2/3 also

goes to zero by Jensen’s inequality. By the key Lemma 4.3 this entails that the last
term in the previous display disappears in the limit and we get

lim sup
ε→0

E

[
sup
t∈[0,T ]

Rε1,t(f)

]
≤ δCf ,

which proves (4.10) since δ is arbitrary.

We now turn to the proof of (4.11), that is, we want to compare Lεfε and Lf .
By the expression (4.9), we have for some constant Cf = max

(
‖∇f‖∞ ,

∥∥∇2f
∥∥
∞ ,∥∥∇3f

∥∥
∞

)
|Lεfε(q, p)− Lf(q)| ≤ Cf‖∇qV −∇qVε‖∞ + Cfε

(
|p|3 + ‖∇qVε‖∞ |p|

)
.

We get rid of the product term with Young’s inequality ab ≤ a3/3 + 2
3b

3/2 ≤
a3 + b3/2 and get

E
[
Rε2,t

]
≤ Cf‖∇qV −∇qVε‖∞ + εCfE

[
2 |P εt |

3
+ ‖∇Vε‖3/2∞

]
.

We integrate in t to obtain∫ T

0

E
[
Rε2,t

]
dt ≤ Cf‖∇qV −∇qVε‖∞T + εCfT

(
sup
t∈[0,T ]

E
[
2 |P εt |

3
]

+ ‖∇Vε‖3/2∞

)
.

By assumption, limε→0 εE
[
|P ε0 |

3
]

= 0, and by the uniform convergence of ∇Vε to
∇V we can find a uniform bound M such that osc(Vε) ≤ M for all ε, so we may
apply Lemma 4.2 with γ = 3/2 and get

lim
ε→0

ε sup
t∈[0,T ]

E
[
|P εt |

3
]

= 0,

for any T ≥ 0. Together with the convergence of ∇Vε to ∇V this yields

lim
ε→0

∫ T

0

E
[
Rε2,t

]
dt = 0.

from which (4.11) follows.

4.3. Proofs of the moment bounds. We now come back to the proofs of the moment
bounds (Lemmas 4.2 and 4.3). It will prove useful to work with the Hamiltonian of
the system rather than directly with P εt . For convenience’s sake we assume without
loss of generality that 0 ≤ Vε(q) ≤ osc(Vε).

Definition 4.4 (Hamiltonian). We denote by Hε the Hamiltonian of the system:

Hε(q, p) =
1

2
|p|2 + Vε(q).

We will also write Hε
t := Hε(Qεt , P

ε
t ).
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By Itô’s formula,

dHε
t = P εt dP

ε
t +∇qVε(Qεt )dQεt +

1

2

d∑
i,j=1

d〈(P ε)i, (P ε)j〉t

=

(
− 1

ε2
|P εt |

2
+

1

ε2β

)
dt+

1

ε

√
2β−1P εt dWt (4.12)

=

(
− 2

ε2
Hε
t +

2

ε2
Vε(Q

ε
t ) +

1

ε2β

)
dt+

√
2β−1

ε
P εt dWt. (4.13)

Again, by Itô’s formula, we thus get for any smooth function (t, h) 7→ φ(t, h)

dφ(t,Hε
t ) = ∂tφ(t,Hε

t )dt+ ∂hφ(t,Hε
t )dHε

t +
1

ε2β
∂2hφ(t,Hε

t ) |P εt |
2
dt. (4.14)

Proof of Lemma 4.2: Let γ ≥ 1. We apply (4.14) to φ(t, x) = eαt hγ and plug
in (4.13) to get:

d(eαt(Hε
t )γ) = γ(Hε

t )γ−1
(
α

γ
Hε
t −

2

ε2
Hε
t +

2

ε2
Vε(Q

ε
t ) +

1

ε2β

)
eαtdt

+

√
2β−1

ε
γ(Hε

t )γ−1P εt e
αtdWt +

γ(γ − 1)

ε2β
(Hε

t )γ−2 |P εt |
2
eαtdt.

The choice

α = 2γ/ε2

cancels the higher order term in the first bracket. We integrate in time, multiply
by e−αt and regroup the finite variation terms to get:

(Hε
t )γ = (Hε

0)γ

+

∫ t

0

(
γ(Hε

s )γ−1
(

2

ε2
Vε(Q

ε
s) +

1

ε2β

)
+
γ(γ − 1)

ε2β
(Hε

s )γ−2 |P εs |
2

)
e−α(t−s)ds

+

√
2β−1

ε

∫ t

0

γ(Hε
s )γ−1P εs e

−α(t−s)dWs.

Since (1/2) |P εs |
2 ≤ Hε

s ≤ (1/2) |P εs |
2

+ osc(Vε),

(Hε
t )γ ≤ (Hε

0)γ +
2γ

ε2

(
osc(Vε) +

γ

β

)∫ t

0

(Hε
s )γ−1e−α(t−s)ds

+

√
2β−1

ε

∫ t

0

(Hε
s )γ−1P εs e

−α(t−s)dWs.

(4.15)

To deal with the unboundedness of the momentum P , we define the following
stopping times:

τn := inf{t : |Pt| = n}. (4.16)

When s ≤ τn, we have |P εs | ≤ n and Hε
s ≤ (osc(Vε) + n2

2 ). This entails that
t 7→

∫ t∧τn
0

(Hε
s )γ−1P εs dWs is martingale. Writing (4.15) at time t ∧ τn and taking
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expectations, the martingale part disappears; recalling that α = 2γ/ε2 we get

E
[
(Hε

t∧τn)γ
]
≤ E [(Hε

0)γ ] +

(
osc(Vε) +

γ

β

)
αE
[∫ t∧τn

0

(Hε
s )γ−1e−α(t−s)ds

]
≤ E [(Hε

0)γ ] +

(
osc(Vε) +

γ

β

)
sup
s≤t

E
[
(Hε

s )γ−1
]
ds.

Sending n to infinity, we apply Fatou’s lemma to get

E [(Hε
t )γ ] ≤ E [(Hε

0)γ ] +

(
osc(Vε) +

γ

β

)
sup
s≤t

E
[
(Hε

s )γ−1
]
,

and thus

sup
t≥0

E [(Hε
t )γ ] ≤ E [(Hε

0)γ ] +

(
osc(Vε) +

γ

β

)
sup
t≥0

E
[
(Hε

s )γ−1
]
. (4.17)

We are now ready to conclude. Say that γ is good if there exists a C(γ,M, β) such
that for all ε,

sup
t

E [(Hε
t )γ ] ≤ C(γ,M, β)(1 + E [(Hε

0)γ ] ,

whenever osc(Vε) ≤ M . The bound (4.17) immediately shows that γ = 1 is good.
If γ is good and γ ≤ γ′ ≤ γ + 1, using the elementary inequality xa ≤ 1 + xb valid
for any x > 0 and any 1 ≤ a < b, we get

sup
t≥0

E
[
(Hε

t )γ
′
]
≤ E

[
(Hε

0)γ
′
]

+

(
osc(Vε) +

γ′

β

)
sup
t≥0

E
[
(Hε

s )γ
′−1
]

≤ E
[
(Hε

0)γ
′
]

+

(
M +

γ′

β

)(
1 + sup

t≥0
E [(Hε

s )γ ]

)
≤ E

[
(Hε

0)γ
′
]

+

(
M +

γ′

β

)
(1 + C(γ,M, β)E [(Hε

0)γ ])

≤ E
[
(Hε

0)γ
′
]

+

(
M +

γ′

β

)(
1 + C(γ,M, β)

(
1 + E

[
(Hε

0)γ
′
]))

showing that γ′ is itself good. Therefore all γ ≥ 1 are good. Using the bounds
(1/2)p2 ≤ Hε(q, p) ≤ (1/2)p2 + M it is easy to translate this into bounds on
E
[
|P εt |

2γ
]
, concluding the proof of Lemma 4.2. �

Proof of Lemma 4.3: Let us fix an arbitrary T > 0, and prove (4.3), that is, prove
the existence of a numerical constant C(β,M, T ) such for any ε ∈ (0, 1),

E
[

sup
0≤t≤T

|P εt |2
]
≤ E

[
|P ε0 |2

]
+

1

ε
C(β,M, T )

(
E
[
|P ε0 |2

]
+ 1
)1/2 (4.18)

whenever osc(Vε) ≤ M . As before, since 2Hε
t − 2M ≤ (P εt )2 ≤ 2Hε

t , it is enough
to prove the statement with Hε

t instead of |P εt |
2.

We start by recalling (4.15) for γ = 1 and α = 2/ε2:

Hε
t ≤ Hε

0 +

(
osc(Vε) +

1

β

)
+

√
2β−1

ε

∫ t

0

e−α(t−s)P εs dWs. (4.19)

Recall that this led by a localization argument to the following bound (4.17):

sup
t≥0

E [Hε
t ] ≤ E [Hε

0 ] +

(
M +

1

β

)
. (4.20)
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In order to control the expectation of the supremum, we must control the stochastic
integral. Define Mt =

∫ t
0
P εs dWs and integrate by parts:∣∣∣∣∫ t

0

e−α(t−s)P εs dWs

∣∣∣∣ =

∣∣∣∣∫ t

0

e−α(t−s)dMs

∣∣∣∣ =

∣∣∣∣Mt − α
∫ t

0

e−α(t−s)Msds

∣∣∣∣
≤ |Mt|+ sup

s∈[0,t]
|Ms|

≤ 2 sup
s∈[0,T ]

|Ms| .

Plugging this in (4.19) yields

sup
t∈[0,T ]

Ht ≤ Hε
0 +

(
osc(Vε) +

1

β

)
+

√
2β−1

ε
2 sup
t∈[0,T ]

|Mt| . (4.21)

By Doob’s martingale maximal inequality, Itô’s isometry and the bound (4.20) we
get

E
[

sup
0≤t≤T

|Mε
t |2
]
≤ 4E

[
|Mε

T |2
]

= 4E

∣∣∣∣∣
∫ T

0

P εs dWs

∣∣∣∣∣
2
 = 4E

[∫ T

0

(P εs )2ds

]

≤ 8T

(
osc(Vε) + sup

t∈[0,T ]

E [Hε
t ]

)

≤ 8T

(
2 osc(Vε) + E [Hε

0 ] +
1

β

)
.

Injecting this in (4.21) and applying Cauchy–Schwarz inequality yields

E

[
sup
t∈[0,T ]

Ht

]
≤ E [Hε

0 ]+

(
osc(Vε) +

1

β

)
+8

√
Tβ−1

ε

(
2 osc(Vε) + E [Hε

0 ] +
1

β

)1/2

,

(4.22)
concluding the proof of (4.18). �

Appendix A. Stopped martingale problem

Let E be a Polish space. Let L be a linear operator mapping a given space
D ⊂ Cb(E) into bounded measurable functions. Let µ be a probability distribution
on E. Let U ⊂ E be an open set. A càd-làg process (Xt)t≥0 with values in E solves
the stopped martingale problem for the generator L on the space D with initial
measure µ and domain U — in short, X solves sMP(L,D(L), µ, U) — if, denoting

τU := inf {t ≥ 0|Xt /∈ U or Xt− /∈ U} ,
(i) Law (X0) = µ; (ii) Xt = Xt∧τU ; and (iii) if for any ϕ ∈ D,

t 7→Mt(ϕ) := ϕ(Xt)− ϕ(X0)−
∫ t∧τU

0

Lϕ(Xs)ds

is a martingale with respect to the natural filtration
(
FXt = σ (Xs, 0 ≤ s ≤ t)

)
t≥0.

Moreover, the stopped martingale problem sMP(L,D, µ, U) is said to be well-
posed if:

• There exists a probability space and a càd-làg process defined on it that
solves the stopped martingale problem (existence);
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• whenever two processes solve sMP(L,D, µ, U), then they have the same
distribution on DE (uniqueness).

The following theorem is a synthesis of the localization technique of Theorem 6.1
and 6.2 of Ethier and Kurtz (1986, Chapter 4). It gives a simple criteria ensuring
equivalence of uniqueness between (i) a global martingale problem, and (ii) local
stopped martingale problems.

Theorem A.1. Let (Uk)k∈K be a countable family of open subsets of E such
that

⋃
k∈K Uk = E. Assume that for any initial ν, there exists a solution to

MP(L,D, µ). Then uniqueness of MP(L,D, µ) for all µ is equivalent to uniqueness
of sMP(L,D, µ, Uk) for all µ and all k ∈ K.
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