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Abstract. We consider random permutation matrices following a one-parameter
family of deformations of the uniform distribution, called Ewens’ measures, and
modifications of these matrices where the entries equal to one are replaced by i.i.d
uniform random variables on the unit circle. For each of these two ensembles of
matrices, rescaling properly the eigenangles provides a limiting point process as
the size of the matrices goes to infinity. If J is an interval of R, we show that, as
the length of J tends to infinity, the number of points lying in J of the limiting
point process related to modified permutation matrices is asymptotically normal.
Moreover, for permutation matrices without modification, if a and a + b denote
the endpoints of J , we still have an asymptotic normality for the number of points
lying in J , in the two following cases: [a fixed and b → ∞] and [a, b → ∞ with b
proportional to a].

1. Introduction

1.1. Spectrum of random permutation matrices. Looking at the counting function
of eigenvalues of a random permutation matrix, Wieand (2000) establishes that
the fluctuation of the number of eigenvalues on a fixed arc of the unit circle is
asymptotically Gaussian when the size of the matrix goes to infinity, and gives
asymptotic expressions of the expectation and variance.

In Wieand (2003), Wieand tackles more general ensembles of matrices involving
random permutations, and shows that her normality result on the fluctuation of
the number of eigenvalues holds for these models, with similar behaviors of the
expectations and variances.
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In these results, Wieand considers uniformly distributed permutations on the
symmetric group Sn. Other measures can be relevant to work with. For instance,
the family of Ewens measures are of great interest in population genetics, and have
many nice properties which make the study of random permutations simple (some
of these properties will be highlighted in the present paper). Arratia, Barbour
and Tavaré (Arratia et al., 2003) give and show many results on Ewens measures.
Formally, these measures can be defined in the following way:

Let θ > 0 and n ≥ 1. A random permutation σn of Sn follows the Ewens(θ)
distribution if

∀π ∈ Sn, P(σn = π) = P(n)
θ (π) =

θK(π)

θ(θ + 1) · · · (θ + n− 1)

where K(π) denotes the total number of cycles of π once decomposed into disjoint
cycles. The case θ = 1 corresponds to the uniform measure.

In this paper we deal with this family of measures on the sets of permutation
matrices (we identify the set of the n-by-n permutation matrices with Sn). We also
consider modifications of these matrices, where the entries equal to one are replaced
by complex numbers of modulus one. These modified permutation matrices can be
seen as elements of the wreath product S1 o Sn, and for the non-zeros entries we
take i.i.d random variables uniformly distributed on the unit circle. One main moti-
vation of taking such a law is to bring closer the analogy with the Circular Unitary
Ensemble (the n-by-n modified permutation matrices form an infinite subgroup of
the set of n-by-n unitary matrices).

A remarkable property that we would like to point out in this work is the in-
variance of the behavior of the counting function of eigenvalues by change of scale.
Indeed, we observe that the leading coefficients in the asymptotic variances are
typically the same through the two following approaches:

• Count the eigenvalues in macroscopic or mesoscopic arcs of the unit circle
and then let the size of the matrix go to infinity.

• Start from the limiting point process of the microscopic landscape of eige-
nangles, then count the points in any interval and let the length of this
interval tend to infinity.

In order to precise this phenomenon, let us recall a few results which will be
helpful for comparison purposes. We use the following notations:

Let (Mn)n≥1 be a sequence of random permutation matrices following the
Ewens(θ) distribution, and let (M̃n)n≥1 be the sequence of matrices Mn where the
entries equal to one are replaced by i.i.d random variables uniformly distributed on
the unit circle.
For n ≥ 1, define XI

n and X̃I
n as the respective numbers of eigenvalues of Mn and

M̃n which lie in the arc I :=
(
e2iπα, e2iπβ

]
of the unit circle, for some α, β such that

0 ≤ α < 1 and α < β ≤ α+ 1.
For all real numbers α and β, we set:

c1 = c1(α, β) = lim
n→∞

1

n

n∑
j=1

({jβ} − {jα}), (1.1)

c2 = c2(α, β) = lim
n→∞

1

n

n∑
j=1

({jβ} − {jα})2, (1.2)
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` = `(β − α) = lim
n→∞

1

n

n∑
j=1

{j(β − α)}(1− {j(β − α)}), (1.3)

where {x} denotes the fractional part of x. These limits exist and are finite (see
e.g. Bahier, 2019 for a proof).

Macroscopic scale. The following result has been first established by Wieand (2000,
2003) in the particular case θ = 1, then by Ben Arous and Dang (2015) for per-
mutation matrices in the general case θ > 0, and can be deduced under stronger
assumptions from a result of Dang and Zeindler (2014) on the logarithm of the
characteristic polynomial of permutation matrices.

Proposition 1.1. Let 0 ≤ α < 1 and α < β ≤ α+ 1. As n→∞,

E(XI
n) = n(β − α)− θc1 log n+ o(log n)

Var(XI
n) = θc2 log n+ o(log n)

and

E(X̃I
n) = n(β − α)

Var(X̃I
n) = θ` log n+ o(log n).

See Bahier (2019) for a proof of the two last asymptotic equalities.

Mesoscopic scale. In Bahier (2019), the author of the present paper establishes the
following result:

Proposition 1.2. Assume I to be depending on n, of the form

I = In :=
(

e2iπα, e2iπ(α+δn)
]
,

where α ∈ [0, 1) and (δn) is a sequence of positive real numbers satisfying{
δn −→

n→∞
0

nδn −→
n→∞

+∞.

Then, as n→ +∞,

E(XI
n) = nδn − θc1 log(nδn) + o(log(nδn))

Var(XI
n) = θc2 log(nδn) + o(log(nδn))

and

E(X̃I
n) = nδn

Var(X̃I
n) = θ` log(nδn) + o(log(nδn)),

with, denoting by κ any arbitrary irrational number, c1 = c1(α, κ), c2 = c2(α, κ),
and ` = `(κ) = 1

6 .

In fact, the asymptotic of E(XI
n) is not computed in Bahier (2019) but can be

deduced by the same method as for Var(XI
n).

Moreover, in both macroscopic and mesoscopic scales, the fluctuations of XI
n and

X̃I
n are asymptotically Gaussian (see Bahier, 2019).
In this paper we focus on the microscopic landspace of eigenvalues.
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Microscopic scale. A virtual permutation is defined as a sequence of permutation
σ = (σn)n≥1 where for all n, σn ∈ Sn and σn can be obtained from σn+1 by sim-
ply removing the element n+ 1 in the cycle-decomposition of σn+1. A remarkable
property of the Ewens measures is that if σn+1 follows the Ewens(θ) distribution
on Sn+1, then σn follows the Ewens(θ) distribution on Sn, for every θ > 0. Conse-
quently the Ewens measures naturally extend to the space of virtual permutations
S.

Let θ > 0 and let σ = (σn)n≥1 be a random virtual permutation following the
Ewens(θ) distribution. For n ≥ 1, let `n,j be the length of the j-th cycle of σn
in order of appearance (that is to say, in the increasing order of their smallest
elements). We complete the sequence (`n,j)j≥1 by zeros. A result of Tsilevich
(1995) states that for all j ≥ 1, as n→∞,

y
(n)
j :=

`n,j
n

a.s.−→ yj , (1.4)

where (y1, y2, . . . ) is a random vector following the GEM(θ) distribution. The
rearrangement in decreasing order of the coordinates of a GEM(θ) vector follows
the Poisson-Dirichlet distribution of parameter θ (PD(θ)), and conversely a size-
biased permutation of a PD(θ) vector has GEM(θ) distribution.
For all j ≥ 1, yj has the same law as a product of independent Beta random
variables (in the literature this representation of the GEM(θ) distribution is called
stick breaking process, or residual allocation model, see e.g. Kerov and
Tsilevich (1997) and Patil and Taillie (1977)), and a direct calculation shows that
there exist r ∈ (0, 1) depending on θ and independent on j, such that

E(yj) ≤ rj . (1.5)

Now, a basic property on permutation matrices is that their eigenvalues are fully
determined by the cycle-structure of their associated permutation. More precisely,
each j-cycle of any arbitrary given permutation (once decomposed into disjoint
cycles) corresponds to a set of eigenvalues equal to the set of j-th roots of unity.
This supplies us the equalities in distribution

XI
n =

n∑
j=1

1`n,j>0

∑
w`n,j=1

1w∈I (1.6)

and

X̃I
n =

n∑
j=1

1`n,j>0

∑
w`n,j=e2iπΦn,j

1w∈I , (1.7)

where the Φn,j are i.i.d random variables uniformly distributed on [0, 1), indepen-
dent of the `n,j .

Following the same approach as Najnudel and Nikeghbali (2013), since all the
eigenvalues of (modified) permutation matrices are on the unit circle, it can be
more practical to consider the eigenangles. The corresponding random measures
τ(Mn) and τ(M̃n) can be written as

τ(Mn) =

∞∑
j=1

1`n,j>0

∑
x≡0(mod. 2π/`n,j)

δx (1.8)
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and

τ(M̃n) =

∞∑
j=1

1`n,j>0

∑
x≡2πΦn,j(mod. 2π/`n,j)

δx. (1.9)

In particular, this immediately implies that τ(Mn)([0, 2π)) = τ(M̃n)([0, 2π)) = n,
in other words, the average spacing of two consecutive points of their respective cor-
responding point processes is equal to 2π/n. Thus, if we want to have a convergence
of these measures for n going to infinity, we need to rescale them in order to have a
constant average spacing, say, one. That is why we introduce the rescaled measures
τn and τ̃n, defined as the respective images of τ(Mn) and τ(M̃n) by multiplication
by n/2π. One checks that

τn =

+∞∑
j=1

1
y

(n)
j >0

∑
k∈Z

δ k

y
(n)
j

(1.10)

and

τ̃n =

+∞∑
j=1

1
y

(n)
j >0

∑
k∈Z

δ k+Φn,j

y
(n)
j

. (1.11)

Define also the random measures

τ∞ :=

+∞∑
j=1

∑
k∈Z\{0}

δ k
yj

(1.12)

and

τ̃∞ :=

+∞∑
j=1

∑
k∈Z

δ k+Φj
yj

(1.13)

where the yj are given by (1.4), and the Φj are i.i.d random variables uniformly
distributed on [0, 1), independent of the yj .

Proposition 1.3 (Najnudel and Nikeghbali, 2013). For all continuous functions
f : R→ R with compact support included in (0,+∞),

< τn, f >
a.s.−→

n→+∞
< τ∞, f >

under the coupling of virtual permutations, and

< τ̃n, f >
d−→

n→+∞
< τ̃∞, f > .

Najnudel and Nikeghbali (2013) tackle more general modifications of permuta-
tion matrices where the non-zero entries are C-valued (not necessarily of modulus
one, so that the matrices are no longer unitary). For the wreath product S1 oSn

they also consider more general distributions on S1 (not necessarily the uniform
distribution) and provide analog results on their limiting point processes of eigen-
values.

In the present paper we will restrain ourselves to the study of the limiting point
processes related to (Mn)n≥1 and (M̃n)n≥1, though the techniques are expected to
extend to other ensembles of matrices involving permutations under Ewens mea-
sures.
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1.2. Main results and outline of the paper. In the next section we establish that
Proposition 1.3 also holds for indicator functions of intervals. This gives a natural
meaning to the convergence of the counting function of the microscopic eigenangles,
to a limiting counting function. More precisely, we have the following result:

Proposition 1.4. For all positive real numbers α and β such that α < β,

τn((α, β])
a.s−→

n→+∞
τ∞((α, β])

under the coupling of virtual permutations, and

τ̃n((α, β])
d−→

n→+∞
τ̃∞((α, β]).

Remark 1.5. It is easy to notice that the laws of the measures τ̃n and τ̃∞ are
invariant by translation. Thus the second point of Proposition 1.4 is equivalent to
say that for all positive real numbers A, τ̃n((0, A])

d−→
n→+∞

τ̃∞((0, A]). Moreover,

the choice of including or excluding the endpoints of the interval (0, A] does not
have importance for τ̃n since for all x ∈ R, τ̃n(x) = 0 almost surely. This is clearly
not true for τn, but it can be proven that for all fixed x > 0, τn(x) → 0 = τ∞(x)
almost surely as n → ∞ under the coupling of virtual permutations. Indeed,
τn(x) =

∑
j≥1:`n,j>0 1xy(n)

j ∈Z
, so if 0 < x < 1 we have τn(x) = 0 (since y(n)

j ∈ (0, 1]

for all j such that `n,j > 0) and if x ≥ 1 we have for all j,

1
y

(n)
j >0,xy

(n)
j ∈Z

≤ 1
xy

(n)
j ≥1

≤ 1
supn y

(n)
j ≥1/x

≤ 1Cρj≥1/x

(see Lemma 2.1 for the last inequality) which is summable, and then by dominated
convergence we get τn(x) → 0 a.s., since xyj 6∈ Z a.s. and then 1

xy
(n)
j ∈Z

→ 0 a.s.
for each j ≥ 1.
More generally, Proposition 1.4 extends to finite numbers of intervals, which im-
mediately implies that both convergences hold for finite combinations of indicator
functions.

Now, we present our two main results, involving τ∞ and τ̃∞:

Theorem 1.6. Let A > 1.
τ̃∞([0, A])−A√

θ
6 logA

d−→
A→+∞

N (0, 1).

Theorem 1.7. Let a and b be two positive real numbers such that a < b,
(i) As b→ +∞,

E(τ∞((a, a+ b])) = b− θ

2
log b+Oθ(1)

and

Var(τ∞((a, a+ b])) =
θ

3
log b+Oθ(

√
log b).

Moreover,

τ∞((a, a+ b])− E(τ∞((a, a+ b]))√
Var(τ∞((a, a+ b]))

d−→ N (0, 1).
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(ii) Let ν be a real number greater than 1. As a→ +∞ and b = (ν − 1)a,

E(τ∞((a, νa]) = (ν − 1)a+Oθ(1)

and

Var(τ∞((a, νa])) =

{
θ
6

(
1− 1

rs

)
log a+Oθ(

√
log a) if ν = r

s with gcd(r, s) = 1
θ
6 log a+Oθ(

√
log a) if ν is irrational.

Moreover,

τ∞((a, νa])− E(τ∞((a, νa]))√
Var(τ∞((a, νa]))

d−→ N (0, 1).

Remark 1.8. Note that Theorem 1.7 can be related to Propositions 1.1 and 1.2. In
fact, the coefficients in the asymptotic expressions of the expectation and of the
variance behave similarly, in the following sense:

• Point (i) is linked to the case of a macroscopic arc of the form I =(
e2iπα, e2iπβ

]
with α = 0 and β irrational, and also to the case of a meso-

scopic arc with the same α = 0 and replacing β by δn (where δn decreases
to 0 slower than 1/n as n goes to ∞). Indeed, a direct computation (see
Wieand (2000)) of c1 and c2 gives c1 = 1

2 and c2 = 1
3 for this particular

case.
• Point (ii) is linked to the case of a macroscopic arc of the form I =(

e2iπα, e2iπβ
]
with α irrational and β irrational, and also to the case of

a mesoscopic arc with α irrational and β = α+δn. Indeed, a direct compu-
tation (see Wieand, 2000 and Bahier, 2019, Appendix B) of c1 and c2 gives
c1 = 0 and

c2 =

{
1
6

(
1− 1

rs

)
if β = r

sα with gcd(r, s) = 1 and r
s > 1

1
6 if α and β are Z-linearly independent.

The empirical measures τ∞ and τ̃∞ are related to each other by the following
special link:

Proposition 1.9. Let f ∈ C(R,C) with compact support. Let A > 0. Then

< τ∞ ◦ TA, f >
d−→

A→+∞
< τ̃∞, f >,

where TA is the shift operator defined by TA : x 7→ x+A.

The paper follows a linear structure: In Section 2 we motivate the study of the
considered limiting objects and give a proof of Proposition 1.4. In Section 3 we
prove Theorem 1.6. In Section 4, we introduce a main tool that we use in Section 5
for proving Theorem 1.7. This tool is an analog of the ubiquitous Feller coupling,
and has interest beyond our study. Finally, in Section 6 we prove Proposition 1.9.

2. Two natural limiting counting functions. Proof of Proposition 1.4

We begin with the following lemma:

Lemma 2.1. There exist ρ ∈ (0, 1) depending on θ, and a random number C > 0
such that a.s., for all j ≥ 1,

sj := sup
m≥1

y
(m)
j ≤ Cρj . (2.1)



72 V. Bahier

Proof : First, it can be checked that for all j, the sequence
(
`N,j
N+θ

)
N≥1

is a sub-

martingale with respect to the filtration (FN ) (see e.g. Tsilevich, 1995 for a proof),
where FN is the σ-algebra generated by (`p,q, 1 ≤ p ≤ N, q ≤ p). Moreover, as this
submartingale is positive and bounded in L2 (clear since the terms are bounded by
1), then it follows from Doob’s inequality

E

((
sup
N≥1

`N,j
N + θ

)2
)
≤ 4 sup

N≥1
E

((
`N,j
N + θ

)2
)

and then, since `N,j
N+θ is lower than 1,

E(s2
j ) ≤ 4(1 + θ)2 sup

N≥1
E
(
`N,j
N + θ

)
= 4(1 + θ)2 lim

N→+∞
E
(
`N,j
N + θ

)
≤ 4(1 + θ)2 lim

N→+∞
E(y

(N)
j )

= 4(1 + θ)2E( lim
N→+∞

y
(N)
j )

= 4(1 + θ)2E(yj)

≤ 4(1 + θ)2rj .

where we use the submartingale property for the first equality, the dominated con-
vergence theorem for the second and third equalities, and (1.5) for the last inequal-
ity. Moreover, using Cauchy-Schwarz inequality we deduce E(sj) ≤ 2(1 + θ)rj/2,
and finally ρ := 1+r1/2

2 ∈ (0, 1) gives

P(sj > ρj) ≤ 1

ρj
E(sj) ≤ 2(1 + θ)

(
r1/2

ρ

)j
which is summable in j, therefore Borel-Cantelli lemma applies. �

Let α and β two real numbers such that 0 ≤ α < 1 and α < β ≤ α + 1. For all
n, the random numbers XI

n and X̃I
n of eigenvalues of Mn and M̃n lying in the arc

I
(
e2iπα, e2iπβ

]
are given by the following expressions (see Wieand, 2000):

XI
n =

n∑
j=1

1`n,j>0(b`n,jβc − b`n,jαc)

= n(β − α)−
n∑
j=1

1`n,j>0({`n,jβ} − {`n,jα})

and

X̃I
n =

n∑
j=1

1`n,j>0(b`n,jβ − Φn,jc − b`n,jα− Φn,jc)

= n(β − α)−
n∑
j=1

1`n,j>0

(
{`n,jβ} − {`n,jα} − 1Φn,j≤{`n,jβ} + 1Φn,j≤{`n,jα}

)
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where (Φn,j)n,j≥1 is an array of i.i.d random variables uniformly distributed on
[0, 1), independent of (σn)n≥1.
If we replace α and β respectively by α/n and β/n, we get

X
(e2iπα/n,e2iπβ/n]
n = β − α−

n∑
j=1

1
y

(n)
j >0

({y(n)
j β} − {y(n)

j α})

and

X̃
(e2iπα/n,e2iπβ/n]
n

= β − α−
n∑
j=1

1
y

(n)
j >0

(
{y(n)
j β} − {y(n)

j α} − 1
Φn,j≤{y(n)

j β} + 1
Φn,j≤{y(n)

j α}

)
.

From this it seems reasonable to consider the version n =∞ of these quantities,
in order to count the points of the limiting point process obtained as the limit of
the sequence of eigenangles multiplied by n/2π (microscopic scale). The following
proposition gives a meaning to the convergence.

Proposition 2.2. We have the following convergences:

X
(e2iπα/n,e2iπβ/n]
n

a.s.−→
n→∞

β − α−
+∞∑
j=1

({yjβ} − {yjα}) (2.2)

under the coupling of virtual permutations, and

X̃
(e2iπα/n,e2iπβ/n]
n

d−→
n→∞

β−α−
+∞∑
j=1

(
{yjβ} − {yjα} − 1Φj≤{yjβ} + 1Φj≤{yjα}

)
(2.3)

where the Φj are i.i.d. random variables uniformly distributed on [0, 1), independent
of the yi.

Remark 2.3. Note that this proposition is a reformulation of Proposition 1.4.

Proof : First, we know that a.s., for all j, yj > 0, hence 1
y

(n)
j >0

−→
n→∞

1.

Let x > 0. We are going to show that a.s.,
+∞∑
j=1

{y(n)
j x} −→

n→∞

+∞∑
j=1

{yjx}. By

Lemma 2.1, almost surely there exists ρ ∈ (0, 1) and a random number C > 0

such that for all j and n, y(n)
j ≤ Cρj , then

∃j0 ∈ N∗, ∀j > j0, ∀n ≥ 1, y
(n)
j x ≤ 1

2
.

Fix j0. Letting n tend to infinity, as y(n)
j −→ yj a.s., we have for all j > j0, yjx ≤ 1

2
and then

|{y(n)
j x} − {yjx}| = |x(y

(n)
j − yj)| −→

n→∞
0.

Moreover, obviously for all j and n,

{y(n)
j x} ≤ y(n)

j x ≤ Cxρj

which is summable in j. Hence, by dominated convergence it follows
+∞∑

j=j0+1

{y(n)
j x} −→

n→∞

+∞∑
j=j0+1

{yjx} (2.4)
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almost surely.
For j ≤ j0 the idea is to take n large enough such that the only yjx that could pose
a challenge are integers (discontinuities of the fractional part function). Let ε > 0.
There exists N ∈ N∗ such that for all n ≥ N , for all j ≤ j0,

|{y(n)
j x} − {yjx}| ≤

{ ε
j0

if yjx 6∈ N
1 if yjx ∈ N ,

and then
j0∑
j=1

|{y(n)
j x} − {yjx}| ≤ ε+

j0∑
j=1

1yjx∈N.

In addition
∑
j≤j0 1yjx∈N = 0 a.s. since it is a finite sum of indicators of negligible

events. From (2.4) we deduce that a.s.,

+∞∑
j=1

{y(n)
j x} −→

n→∞

+∞∑
j=1

{yjx}.

It just remains to prove the convergence in distribution of

Qn :=

+∞∑
j=1

(
1

Φn,j≤{y(n)
j β} − 1Φn,j≤{y(n)

j α}

)
to

Q :=

+∞∑
j=1

(
1Φj≤{yjβ} − 1Φj≤{yjα}

)
.

Let t ∈ R. Denoting ωj,n := {y(n)
j β} − {y(n)

j α}, we have:

E
[
eitQn |(y(m)

j )j,m≥1

]
=

+∞∏
j=1

(
eitωj,n1ωj,n>0 + e−it(−ωj,n)1ωj,n<0 + 1× (1− |ωj,n|)

)
=

+∞∏
j=1

(
1 + (eit − 1)ωj,n1ωj,n>0 − (e−it − 1)ωj,n1ωj,n<0

)
.

Taking the logarithm for j large enough, and noting that a.s. there is no j such
that yjα or yjβ is integer (α, β > 0), the dominated convergence theorem ensures
that

E
[
eitQn |(y(m)

j )j,m≥1

]
−→
n→∞

E
[
eitQ|(yj)j≥1

]
for almost every realization of (yj)j≥1. Applying once again the dominated conver-
gence theorem, we get

lim
n→∞

E
[
E
[
eitQn |(y(m)

j )j,m≥1

]]
= E

[
lim
n→∞

E
[
eitQn |(yj)j≥1

]]
= E

[
eitQ

]
.

�
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3. Limiting point process related to permutation matrices with modifi-
cation. Proof of Theorem 1.6

For A > 0, define

X̃(A) = A+

+∞∑
j=1

(
1Φj≤{Ayj} − {Ayj}

)
.

According to the previous section, this random variable counts the number of points
in [0, A] of the limiting point process of normalized eigenangles of M̃n when n goes
to infinity, i.e we have X̃(A) = τ̃∞([0, A]). Then, proving Theorem 1.6 amounts to
show

X̃(A)−A√
θ
6 log(A)

d−→
A→∞

N (0, 1). (3.1)

Let A > 1. We first notice that we can write

X̃(A)−A =

+∞∑
j=1

B(pj)

where the B(pj) are centred Bernoulli random variables of random parameters
pj := {Ayj}, which are independent conditionally on the yj .
Let λ0 ∈ R and denote λ := λ0√

θ
6 log(A)

.

E

e
iλ

+∞∑
j=1

B(pj)

| (ym)m≥1

 =

+∞∏
j=1

E
[
eiλB(pj) | (ym)m≥1

]

=

+∞∏
j=1

(
1 + pj

(
eiλ(1−pj) − 1

)
+ (1− pj)

(
e−iλpj − 1

))

=
A→∞

+∞∏
j=1

(
1− λ2

2
pj(1− pj)(1 +O(λ))

)
.

Moreover, since the sequence (pj(1 − pj))j≥1 is bounded (uniformly in A) and
using the fact that for all complex numbers z sufficiently close to zero we have
1 + z = exp(z +O(z2)), it follows that for all A large enough,

E

e
iλ

+∞∑
j=1

B(pj)

 = E

exp

−λ2

2
(1 +O(λ))

+∞∑
j=1

pj(1− pj)

 .

Thus we want to show that

E

exp

−λ2

2
(1 +O(λ))

+∞∑
j=1

pj(1− pj)

 −→
A→∞

e−
λ2

0
2 .

For this purpose, it suffices to show that the random variable ZA := 1
logA

+∞∑
j=1

pj(1−

pj) converges in probability to θ
6 when A goes to +∞. Indeed, if we show this, then

ZA(1+O(λ)) will clearly converge in probability to θ
6 and it will just remain to apply

the definition of the convergence in distribution of ZA(1 +O(λ)) (which is positive
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for all A large enough) to the bounded continuous function f : x 7→ exp
(
− 3λ2

0

θ x
)

on [0,+∞).
Let ε > 0. We cut the sum in ZA into three parts: j > (1+ε)θ logA, (1−ε)θ logA <
j ≤ (1 + ε)θ logA and j ≤ (1− ε)θ logA.

In the first regime, we have, noticing that for all integers k ≥ 1,
+∞∑
j=k+1

yj
d
=

k∏
j=1

Uj

where the random variables Uj are independent and follow Beta distribution of
parameters θ and 1,

P

 ∑
j>(1+ε)θ logA

pj(1− pj) ≥ 1


≤ P

 ∑
j>(1+ε)θ logA

Ayj ≥ 1


= P

 ∏
j≤(1+ε)θ logA

Uj ≥
1

A


= P

 1

(1 + ε)θ logA

∑
j≤(1+ε)θ logA

logUj ≥ −
1

(1 + ε)θ

 .

As E(logU1) =
∫ 1

0
log(x)θxθ−1dx = −1

θ and −1
(1+ε)θ > −1

θ , then the weak law of
large numbers yields

P

 ∑
j>(1+ε)θ logA

pj(1− pj) ≥ 1

 −→
A→∞

0,

and then
1

logA

∑
j>(1+ε)θ logA

pj(1− pj)
P−→ 0. (3.2)

For the j satisfying (1− ε)θ logA < j ≤ (1 + ε)θ logA,
1

logA

∑
(1−ε)θ logA<j≤(1+ε)θ logA

pj(1− pj) ≤
1

logA

∑
(1−ε)θ logA<j≤(1+ε)θ logA

1

< 2θε+
1

logA
.

(3.3)

Finally, for j ≤ (1− ε)θ logA, let us show that the sum converges in probability to
θ
6 (1− ε). To this end, it is enough to show that its two first moments respectively
converge to θ

6 (1− ε) and
(
θ
6 (1− ε)

)2
.

Recall that for all j, pj = {Ayj}, so the computation of the moments is not obvious.
Note that pj(1 − pj) = 1

6 − B2(pj), where B2 is the second Bernoulli polynomial
(B2(x) = x2 − x + 1

6 ), which gives a simple expression of its Fourier series. More
precisely, for all x ∈ R we have the following expansion in Fourier series:

{x}(1− {x}) =
1

6
− 1

2π2

∑
k 6=0

e2iπkx

k2
.
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Hence,
1

logA

∑
j≤(1−ε)θ logA

pj(1− pj)

=
b(1− ε)θ logAc

6 logA
− 1

2π2 logA

∑
j≤(1−ε)θ logA

∑
k 6=0

e2iπkAyj

k2
.

For k 6= 0,

E
(
e2iπkAyj

)
= E

[
E
[
e2iπkAU1...Uj−1(1−Uj) | (Um)m≤j−1

]]
= E

[∫ 1

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx

]
Let α ∈ (1− ε, 1) and η ∈ (0, 1) that we will precise at the end of the proof.
We write∫ 1

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx =

∫ 1

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1≤A−α

+

∫ η

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1>A−α

+

∫ 1

η

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1>A−α

For the first term on the right-hand side of the equality,

E
[∣∣∣∣∫ 1

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1≤A−α

∣∣∣∣]
≤
∫ 1

0

θxθ−1dxP(U1 . . . Uj−1 ≤ A−α)

≤ P

 ∏
m≤(1−ε)θ logA

Um ≤ A−α


= P

 1

(1− ε)θ logA

∑
m≤(1−ε)θ logA

logUm ≤ −
α

(1− ε)θ


−→

A→+∞
0

by the weak law of large numbers, since −α
(1−ε)θ < E(logU1) = −1

θ . Note that the
convergence is uniform in j and k.
For the second term,∣∣∣∣∫ η

0

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1>A−α

∣∣∣∣ ≤ ∫ η

0

θxθ−1dx = ηθ.

For the third term, an integration by parts gives∫ 1

η

e2iπkAU1...Uj−1(1−x)θxθ−1dx =

[
−e2iπkAU1...Uj−1(1−x)

2iπkAU1 . . . Uj−1
θxθ−1

]1

η

+

∫ 1

η

e2iπkAU1...Uj−1(1−x)

2iπkAU1 . . . Uj−1
θ(θ − 1)xθ−2dx,
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so ∣∣∣∣∫ 1

η

e2iπkAU1...Uj−1(1−x)θxθ−1dx1U1...Uj−1>A−α

∣∣∣∣
≤ 2θ

2π|k|AU1 . . . Uj−1
(1 + ηθ−1)1U1...Uj−1>A−α

≤ θ

π
(1 + ηθ−1)Aα−1.

It remains to show that we can choose η (depending on A) such that the quantity
max(ηθ, ηθ−1Aα−1) converges to 0 when A goes to infinity. If θ ≥ 1 it is clear, for
instance we can take η = A−1. If θ < 1, η = A

1−α
2(θ−1) works.

We deduce
E
(
e2iπkAyj

)
=

A→+∞
o(1)

where the o(1) is independent of k and j. Consequently,

E

 1

logA

∑
j≤(1−ε)θ logA

pj(1− pj)


=

A→+∞

(
θ

6
(1− ε) + o(1)

)
−

 1

2π2 logA

∑
j≤(1−ε)θ logA

∑
k 6=0

1

k2

 o(1)

=
θ

6
(1− ε) + o(1).

Now, let us show that the second moment converges to
(
θ
6 (1− ε)

)2
. We have ∑

j≤(1−ε)θ logA

pj(1− pj)

2

=
b(1− ε)θ logAc2

36
− b(1− ε)θ logAc

6π2

∑
j≤(1−ε)θ logA

∑
k 6=0

e2iπkAyj

k2

+
1

4π4

∑
j1,j2≤(1−ε)θ logA

∑
k,l 6=0

e2iπA(kyj1+lyj2 )

k2l2
.

Let j1, j2 ≥ 1 and k, l 6= 0.
• If j2 > j1, then

E
(

e2iπA(kyj1+lyj2 )
)

= E
[
E
[
e2iπAkU1...Uj1−1(1−Uj1 )e2iπAlU1...Uj2−1(1−Uj2 ) | (Um)m≤j2−1

]]
= E

[
e2iπAkU1...Uj1−1(1−Uj1 )

∫ 1

0

e2iπAlU1...Uj2−1(1−x)θxθ−1dx

]
and ∣∣∣∣e2iπAkU1...Uj1−1(1−Uj1 )

∫ 1

0

e2iπAlU1...Uj2−1(1−x)θxθ−1dx

∣∣∣∣
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=

∣∣∣∣∫ 1

0

e2iπAlU1...Uj2−1(1−x)θxθ−1dx

∣∣∣∣
so, dividing into three pieces as previously we get E

(
e2iπA(kyj1+lyj2 )

)
= o(1)

where the o(1) is independent of k, l, j1 and j2.
• If j1 = j2 and k + l 6= 0, then

E
(

e2iπA(kyj1+lyj2 )
)

= E
(

e2iπA(k+l)yj1

)
= o(1)

as above.
• If j1 = j2 and k + l = 0, then

E
(

e2iπA(kyj1+lyj2 )
)

= 1.

Thus,

E

 ∑
j1,j2≤(1−ε)θ logA

∑
k,l 6=0

e2iπA(kyj1+lyj2 )

k2l2


= o((logA)2) +

∑
j1≤(1−ε)θ logA

∑
k 6=0

1

k2(−k)2

= o((logA)2),

and it follows

E


 1

logA

∑
j≤(1−ε)θ logA

pj(1− pj)

2
 =
A→+∞

(
θ

6
(1− ε)

)2

+ o(1).

Consequently,
1

logA

∑
j≤(1−ε)θ logA

pj(1− pj)
P−→ θ

6
(1− ε). (3.4)

Let us now finish to prove the convergence in probability of ZA to θ
6 . For the sake

of simplicity, denote
ZA,> := 1

logA

∑
j>(1+ε)θ logA

pj(1− pj)

ZA,? := 1
logA

∑
(1−ε)θ logA<j≤(1+ε)θ logA

pj(1− pj)

ZA,≤ := 1
logA

∑
j≤(1−ε)θ logA

pj(1− pj).

Combining (3.2), (3.3) and (3.4), we have shown:
ZA,>

P−→ 0
ZA,? ≤ 2εθ + 1

logA

ZA,≤
P−→ θ

6 (1− ε).
Let η > 0. We have

P
(∣∣∣∣ZA − θ

6

∣∣∣∣ > η

)
≤ P

(
ZA,> >

η

4

)
+ P

(
ZA,? >

η

4

)
+ P

(∣∣∣∣ZA,≤ − θ

6
(1− ε)

∣∣∣∣ > η

4

)
+ P

(
θ

6
ε >

η

4

)
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with
P
(
ZA,> >

η

4

)
−→

A→+∞
0,

P
(
ZA,? >

η

4

)
≤ 12εθ+ 1

logA>
η
4
,

and

P
(∣∣∣∣ZA,≤ − θ

6
(1− ε)

∣∣∣∣ > η

4

)
−→

A→+∞
0

whence taking ε sufficiently close to 0 (only depending on η and θ, for example
ε = η

12θ fits well), we get

P
(∣∣∣∣ZA − θ

6

∣∣∣∣ > η

)
−→

A→+∞
0,

and the proof is complete.

4. Continuous analog of the Feller coupling

Let X be a Poisson process with intensity θ
xdx on (0,∞).

In this section we are going to show that one can couple the set of random vari-
ables {yk, k ≥ 1} with a set of independent random variables which has the same
distribution as X ∩ (0, 1), in such a way that these sets are close to each other in
L2, in a sense which is made precise below.

We choose to label the points of X in the following way:

0 < · · · < X3 < X2 < X1 < 1 ≤ X0 < X−1 < X−2 < · · · <∞. (4.1)

For all k ∈ Z, set Yk := Xk−1 −Xk.
Denote V := {1−X1, X1 −X2, X2 −X3, . . . } and W := {Yk : k ∈ Z, Yk < 1}.

To begin with, note that we have the equalities in law {yk, k ≥ 1} d
= V and

W d
= X ∩ (0, 1). Indeed, this is a direct consequence of the two following lemmas:

Lemma 4.1.

(y1, y2, y3, . . . )
d
= (1−X1, X1 −X2, X2 −X3, . . . ).

Lemma 4.2 (Scale invariant spacing lemma).

{Yk, k ∈ Z} d
= {Xk, k ∈ Z}.

We refer to Arratia (1998) for a proof of Lemma 4.1, and Arratia et al. (2006)
for a proof of Lemma 4.2. As mentioned by Arratia (1998), the scale-invariant
Poisson process X is a continuum analog of the sequence (ξj)j≥1 of independent
Bernoulli variables involved in the Feller coupling for generating permutations (see
e.g. Arratia et al. (2003) for a description of the Feller coupling and related results).
Indeed, for j ≥ 1, the numbers of j-spacings between two consecutive ones in the
infinite word ξ1 ξ2 . . . are independent, and similarly by Lemma 4.2 the spacings
obtained from the process X also form an independent process (in the sense that
the numbers of points on disjoint intervals are independent).

Now, we show that the sets V and W are close from each other in the following
sense:
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Lemma 4.3. There exists a constant number C(θ) such that

E((#V∆W)2) ≤ C(θ).

In particular, for all measurable functions f : R→ R,

E

(∑
x∈V

f(x)−
∑
x∈W

f(x)

)2
 ≤ C(θ)‖f‖2∞.

Proof : We write

V = {1−X1} ∪ ({Yk, k ∈ Z} \ {Yk, k ≤ 1})
= {1−X1} ∪ (W \ {Yk : k ≤ 1, Yk < 1}).

Thus,
V∆W ⊆ {1−X1} ∪ {Yk : k ≤ 1, Yk < 1}

and then it suffices to show that the number of points in {Yk : k ≤ 0, Yk < 1} is
square-integrable. We write

E((#{Yk : k ≤ 0, Yk < 1})2)

=
∑

k=0,−1,−2,...

P(Yk < 1) + 2
∑

k=−1,−2,...

∑
`=0,−1,...,k+1

P(Y` < 1, Yk < 1).

For all k ≤ 0 and all x ∈ (0,∞),

P(Yk ≥ x) =

∫ +∞

1

P(Yk ≥ x | Xk = s)fXk(s)ds

=

∫ +∞

1

exp

(
−
∫ s+x

s

θ

t
dt

)
fXk(s)ds

where, using basic properties of Poisson processes, fXk (the density function of Xk)
is given by

∀s ≥ 1, fXk(s) =
Λ(s)−k

(−k)!
Λ′(s)e−Λ(s),

with Λ(s) :=
∫ s

1
θ
ydy. Consequently,∑

k=0,−1,−2,...

P(Yk < 1) =

∫ +∞

1

(
1− exp

(
−
∫ s+1

s

θ

t
dt

))
θ

s
ds

=

∫ +∞

1

(
1−

(
s

s+ 1

)θ)
θ

s
ds < +∞

(4.2)

since 1−
(

s
s+1

)θ
∼

s→∞
θ
s .

Remark 4.4.
∑
k≤0 fXk(s) is the density probability function of having a point of

the Poisson process at s, which directly gives θ/s.

Now, for all k, ` such that 0 ≥ ` > k, denoting by f(X`,Xk) the density function
of the couple (X`, Xk),

P(Y` < 1, Yk < 1)

=

∫ +∞

s=1

∫ +∞

t=s

P(Y` ≤ 1, Yk ≤ 1 | (X`, Xk) = (s, t))f(X`,Xk)(s, t)dtds,
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where P(Y` ≤ 1, Yk ≤ 1 | (X`, Xk) = (s, t)) is equal to the probability that there
exist at least one point of the Poisson process in the interval (s, s+ 1] and at least
one point in the interval (t, t + 1], that we will denote by A1((s, s + 1], (t, t + 1]).
Moreover, the numbers of points of every Poisson process in disjoint intervals are
independent. Thus, denoting Aj(J) the probability that there exists at least j
points of the Poisson process in the interval J ,

P(Y` < 1, Yk < 1) =

∫ +∞

s=1

∫ s+1

t=s

A1((s, s+ 1], (t, t+ 1])f(X`,Xk)(s, t)dtds

+

∫ +∞

s=1

∫ +∞

t=s+1

A1((s, s+ 1])A1((t, t+ 1])f(X`,Xk)(s, t)dtds.

Let us compute an explicit expression for f(X`,Xk). For x, y > 1,

P(X` ≤ x, Xk ≤ y) =

∫ +∞

1

P(X` ≤ x, Xk ≤ y | X` = s)fX`(s)ds

=

∫ x

1

P(Xk ≤ y | X` = s)fX`(s)ds

=

∫ x

1

A`−k((s, y])fX`(s)ds.

Thus, for x < y,

∂2

∂x∂y
(P(X` ≤ x, Xk ≤ y))

=
∂

∂y
(A`−k((x, y])fX`(x))

= fX`(x)
∂

∂y

(
1−

`−k−1∑
m=0

(∫ y
x
θ
t dt
)m

m!
exp

(
−
∫ y

x

θ

t
dt

))

= fX`(x)
θ

y

(∫ y
x
θ
t dt
)`−k−1

(`− k − 1)!
exp

(
−
∫ y

x

θ

t
dt

)
=
θ2

xy
exp

(
−
∫ y

1

θ

t
dt

)
1

(−k − 1)!

(
−k − 1

−`

)(∫ x

1

θ

t
dt

)−`(∫ y

x

θ

t
dt

)−k−1−(−`)

.

Hence ∑
k=−1,−2,...

∑
`=0,−1,...,k+1

f(X`,Xk)(x, y) =
θ2

xy
.

Remark 4.5. This sum is the density probability function of having points of the
Poisson process simultaneously at x and y, which corresponds to the product of
intensities θ

x ×
θ
y .

We deduce∑
k=−1,−2,...

∑
`=0,−1,...,k+1

∫ +∞

s=1

∫ s+1

t=s

A1((s, s+ 1], (t, t+ 1])f(X`,Xk)(s, t)dtds

=

∫ +∞

s=1

∫ s+1

t=s

θ2

st
dtds
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≤ θ2

∫ +∞

s=1

1

s2
ds = θ2 < +∞

and ∑
k=−1,−2,...

∑
`=0,−1,...,k+1

∫ +∞

s=1

∫ +∞

t=s+1

A1((s, s+ 1])A1((t, t+ 1])f(X`,Xk)(s, t)dtds

=

∫ +∞

s=1

∫ +∞

t=s+1

A1((s, s+ 1])A1((t, t+ 1])
θ2

st
dtds

≤
(∫ +∞

s=1

A1((s, s+ 1])
θ

s
ds

)2

< +∞

by (4.2). Consequently,∑
k=−1,−2,...

∑
`=0,−1,...,k+1

P(Y` < 1, Yk < 1) < +∞.

This shows the first part of the lemma. The second part of the lemma immediately
derives from the first part and the classical inequalities∣∣∣∣∣∑

x∈V
f(x)−

∑
x∈W

f(x)

∣∣∣∣∣ ≤ ∑
x∈V∆W

|f(x)| ≤ ‖f‖∞#V∆W.

�

A key result for proving Theorem 1.7 is the following simple version of the
Campbell’s theorem:

Theorem 4.6 (Campbell). Let N be a Poisson process with intensity Λ on R.
Let f : R → R be a measurable function, and denote T :=

∑
x∈N f(x). Assume∫

R min(|f(x)|, 1)Λ(dx) < +∞.
Then for all real numbers t,

E(eitT ) = exp

(∫
R

(
eitf(x) − 1

)
Λ(dx)

)
.

Moreover,

E(T ) =

∫
R
f(x)Λ(dx)

and
Var(T ) =

∫
R
f(x)2Λ(dx)

if these integrals converge.

We refer to Kingman (1993) for a proof of Theorem 4.6.
From Campbell’s theorem, we deduce the following lemma, which will be useful

in the next section.

Lemma 4.7. For all u ∈ R∗+, let fu be function from R to R, and let Tu :=∑
y∈X∩(0,1)

fu(y). We assume that the following conditions are satisfied:

• There exists K > 0 such that for all u, |fu| ≤ K.

• For all u,
1∫
0

|fu(x)| θxdx < +∞.
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•
∫ 1

0
fu(x)2 θ

xdx −→
u→+∞

+∞.

Then as u→ +∞,
Tu − E(Tu)√

Var(Tu)

d−→ N (0, 1).

Proof : Denote Nu := Tu−E(Tu)√
Var(Tu)

, and vu :=
√

Var(Tu). By Theorem 4.6 the Fourier

transform of Nu is given by

∀t ∈ R, E
(
eitNu

)
= exp

(∫ 1

0

(
ei

t
vu
fn(x) − 1

) θ
x

dx

)
e−i

t
vu

E(Tu)

= exp

(
− t

2

2
+

∫ 1

0

(
+∞∑
k=3

1

k!

(
i
t

vu
fu(x)

)k)
θ

x
dx

)
with ∣∣∣∣∣

+∞∑
k=3

1

k!

(
i
t

vu
fu(x)

)k∣∣∣∣∣ ≤
+∞∑
k=3

|t|kKk−2fu(x)2

k!vku

≤ |t|
3Kfu(x)2

v3
u

exp

(
|t|K
vu

)
.

Thus ∫ 1

0

∣∣∣∣∣
+∞∑
k=3

1

k!

(
i
t

vu
fu(x)

)k∣∣∣∣∣ θxdx ≤ exp

(
|t|K
vu

)
|t|3K
v3
u

∫ 1

0

fu(x)2 θ

x
dx

= exp

(
|t|K
vu

)
|t|3K
vu

=
u→+∞

exp(o(1))o(1) = o(1)

and finally

E
(
eitNu

)
=

u→+∞
exp

(
− t

2

2

)
exp(o(1))

= exp

(
− t

2

2

)
+ o(1).

�

5. Limiting point process related to permutation matrices. Proof of
Theorem 1.7

Let us introduce the random variable X(s, t) which counts the number of points,
between the positive real numbers s and t, of the limiting point process related to
permutation matrices (without modification), i.e

X(s, t) = t− s−
+∞∑
j=1

({tyj} − {syj}).

Here, we choose to generate the ensemble {yj , j ≥ 1} using the continuous analog
of the Feller coupling described above.

Let us begin with three lemmas before stating results about X(s, t). Since their
proofs are technical we postpone them in Appendix.
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Lemma 5.1. Let n be a positive integer. Then
• ∫ 1

0

{nx}
x

dx =
n→∞

1

2
log n+O(1).

• ∫ 1

0

{nx} log xdx =
n→∞

−1

2
+

1

12n
log n+O

(
1

n

)
.

Lemma 5.2. Let ` ∈ N∗. Then
n−1∑
k=1

(
2

{
`
k

n

}
− 1

)
log

k

n
=

n→∞

[
`

2
+ 2

`−1∑
m=1

m

`
log

m

`

]
n− 1

2
log n+O(1)

n−1∑
k=1

(
2

{
−` k

n

}
− 1

)
log

k

n
=

n→∞
−

[
`

2
+ 2

`−1∑
m=1

m

`
log

m

`

]
n+

1

2
log n+O(1)

Lemma 5.3. Let p, q be two positive integers. Then∫ 1

0

({px} − {qx})2

x
dx

= −2(p− q)
∫ 1

0

({px} − {qx}) log xdx−
p−1∑
k=1

(
2

{
q
k

p

}
− 1

)
log

(
k

p

)

−
q−1∑
j=1

(
2

{
p
j

q

}
− 1

)
log

(
j

q

)
− 2

gcd(p,q)−1∑
m=1

log

(
m

gcd(p, q)

)
.

Let a, b > 0. Define fa,b : x 7→ {(a+ b)x} − {ax}, and denote S :=
∑
y∈V

fa,b(y) =

b−X(a, a+ b) and T :=
∑
y∈W

fa,b(y).

5.1. Approximation of S by T . Using Lemma 4.3,

|E(S)− E(T )| ≤ E|S − T | ≤ ‖fa,b‖∞C(θ) ≤ C(θ) (5.1)

and

|
√

Var(S)−
√

Var(T )|

≤
√

Var(S − T ) ≤
√
E((S − T )2) ≤ ‖fa,b‖∞

√
C(θ) ≤

√
C(θ).

(5.2)

Therefore, as soon as Var(T )→ +∞ we will get

E(S)− S√
Var(S)

− E(T )− T√
Var(T )

P−→ 0.

Moreover, it is easy to check that
∫ 1

0
|fa,b(x)|

x dx < +∞, as for all x ∈
(

0, 1
a+b

)
we

have fa,b(x) = bx. We deduce by Lemma 4.7 and Slusky’s theorem that as soon as
Var(T )→ +∞, we have E(S)−S√

Var(S)

d−→ N (0, 1), i.e X(a,a+b)−E(X(a,a+b))√
Var(X(a,a+b))

d−→ N (0, 1).

Furthermore, Theorem 4.6 applies and gives

E(T ) = θ

∫ 1

0

fa,b(x)

x
dx
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and

Var(T ) = θ

∫ 1

0

fa,b(x)2

x
dx.

5.2. Proof of point (i) of Theorem 1.7.

5.2.1. Proof for a, b ∈ N∗. Assume a, b ∈ N∗. Then Lemmas 5.1, 5.2 and 5.3
provides all we need for the computation of the asymptotics of E(T ) and Var(T )
when b tends to infinity.

Denote p = a and q = a+ b.
If a is fixed and b goes to infinity, then using Lemma 5.1,

E(T ) =
θ

2
log b+Oθ(1) (5.3)

and

− 2(p− q)
∫ 1

0

({px} − {qx}) log xdx

= 2(q − p)
(∫ 1

0

{px} log xdx+
1

2
− 1

12

log q

q
+O

(
1

q

))
=
q − p
q

((
1 + 2

∫ 1

0

{px} log xdx

)
q − 1

6
log q +O(1)

)
with q−p

q = 1 +O( 1
q ). Besides, clearly since p is fixed

p−1∑
k=1

(
2

{
k
q

p

}
− 1

)
log

(
k

p

)
= O(1),

and using Lemma 5.2,
q−1∑
j=1

(
2

{
p
j

q

}
− 1

)
log

(
j

q

)
=

[
p

2
+ 2

p−1∑
m=1

m

p
log

m

p

]
q − 1

2
log q +O(1).

Furthermore, as gcd(p, q) ≤ p,
gcd(p,q)−1∑

m=1

log

(
m

gcd(p, q)

)
= O(1).

We deduce by Lemma 5.3∫ 1

0

({px} − {qx})2

x
dx

=

(
1 + 2

∫ 1

0

{px} log xdx− p

2
− 2

p−1∑
m=1

m

p
log

m

p

)
q +

(
−1

6
+

1

2

)
log q +O(1)

=
1

3
log q +O(1).

Indeed,∫ 1

0

{px} log xdx =

p−1∑
k=0

∫ k+1
p

k
p

(px− k) log xdx
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= p

∫ 1

0

x log xdx

−
p−1∑
k=1

( k∑
j=1

1

)((
k + 1

p
log

k + 1

p
− k + 1

p

)
−
(
k

p
log

k

p
− k

p

))

= −p
4

+

p∑
j=1

(
j

p
log

j

p
− j

p

)
+ p

=
p

4
+

p−1∑
j=1

j

p
log

j

p
− 1

2
.

It follows

Var(T ) =
θ

3
log b+Oθ(1), (5.4)

and as
∣∣∣√Var(T )−

√
Var(S)

∣∣∣ = Oθ(1), then

Var(X(a, a+ b)) = Var(S) =

((
θ

3
log b+Oθ(1)

)1/2

+Oθ(1)

)2

=
θ

3
log b+Oθ(

√
log b).

From the previous paragraph we deduce

X(a, a+ b)− E(X(a, a+ b))√
Var(X(a, a+ b))

d−→
b→∞

N (0, 1). (5.5)

5.2.2. Generalization for all a, b. Assume now a, b to be positive real numbers, with
b > 1. We have the inequalities

0 ≤ X(a, a+ b)−X(dae, bac+ bbc) = X(a, dae) +X(bac+ bbc, a+ b)

≤ X(a, dae) +X(bac+ bbc, bac+ 2 + bbc),

with
E(X(bac+ bbc, bac+ 2 + bbc)) =

b→∞
Oθ(1) (5.6)

by (5.1) and Lemma 5.1.
Moreover,∣∣∣√Var(X(a, a+ b))−

√
Var(X(dae, bac+ bbc))

∣∣∣
≤
√

Var(X(a, a+ b)−X(dae, bac+ bbc))

=
√

Var(X(a, dae) +X(bac+ bbc, a+ b)

≤
√

3
√

Var(X(a, dae)) + Var(X(bac+ bbc, bac+ b)) + Var(X(bac+ b, a+ b))

≤ 3 + Var(X(a, dae)) + Var(X(bac+ bbc, bac+ b)) + Var(X(bac+ b, a+ b)).

Let us show that Var(X(bac+ bbc, bac+ b)) + Var(X(bac+ b, a+ b)) = Oθ(1).
For the first term, from (5.2) it is enough to show∫ 1

0

({(bac+ b)x} − {(bac+ bbc)x})2

x
dx =

b→∞
O(1). (5.7)
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For the sake of simplicity, denote m = bac. We have, for all x ∈ [0, 1),

{(m+ b)x} − {(m+ bbc)x}
= {(m+ b)x− (m+ bbc)x} − 1{(m+b)x−(m+bbc)x}+{(m+bbc)x}>1

= {b}x− 1{b}x+{(m+bbc)x}>1

so that ∫ 1

0

({(bac+ b)x} − {(bac+ bbc)x})2

x
dx =

b→∞
Ib +O(1)

where Ib :=
∫ 1

0
1
x1{b}x+{(m+bbc)x}>1dx. We want to show Ib = O(1). We cut the

integral as follows:

Ib =

∫ 1/(m+bbc)

0

1

x
1{b}x+{(m+bbc)x}>1dx

+

m+bbc−1∑
k=1

∫ (k+1)/(m+bbc)

k/(m+bbc)

1

x
1{b}x+{(m+bbc)x}>1dx.

We have∫ 1/(m+bbc)

0

1

x
1{b}x+{(m+bbc)x}>1dx =

∫ 1/(m+bbc)

0

1

x
1(m+b)x>1dx

=

∫ 1/(m+bbc)

1/(m+b)

1

x
dx = log

(
m+ b

m+ bbc

)
−→
b→∞

0,

and for all k ≥ 1,∫ (k+1)/(m+bbc)

k/(m+bbc)

1

x
1{b}x+{(m+bbc)x}>1dx =

∫ (k+1)/(m+bbc)

k/(m+bbc)

1

x
1x>(k+1)/(m+b)dx

≤ 1

k/(m+ bbc)

∫ (k+1)/(m+bbc)

(k+1)/(m+b)

dx

=
k + 1

k
(m+ bbc)

(
1

m+ bbc
− 1

m+ b

)
≤ 2

m+ bbc
.

Hence Ib ≤ o(1) + 2 = O(1). A very similar computation gives Var(X(bac+ b, a+
b)) = Oθ(1).
We deduce √

Var(X(a, a+ b)) =
√

Var(X(dae, bac+ bbc)) +Oθ(1)

which, combining with (5.2), yields√
Var(X(a, a+ b)) =

√
θ

3
log b+Oθ(1). (5.8)

Using Markov inequality, (5.6) and (5.8) imply

X(a, a+ b)−X(dae, bac+ bbc)√
Var(X(a, a+ b))

P−→
b→∞

0
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and applying Slutsky’s lemma it follows

X(a, a+ b)− E(X(a, a+ b))√
Var(X(a, a+ b))

d−→
b→∞

N (0, 1)

which completes the proof.

5.3. Proof of point (ii) of Theorem 1.7.

5.3.1. Case ν rational.

Lemma 5.4. Let f be a non-negative function on [0, 1] such that f is integrable on
[0, 1] and x 7→ f(x)

x is integrable in the neighbourhood of 0. Let t ∈ R. Then∫ 1

0

f({tx})
x

dx =
t→+∞

(log t)

∫ 1

0

f(x)dx+O(1).

Proof : Let t ≥ 2. It suffices to write∫ 1

0

f({tx})
x

dx =

∫ t

0

f({x})
x

dx

=

∫ 1

0

f(x)

x
dx+

btc−1∑
k=1

∫ k+1

k

f({x})
x

dx+

∫ t

btc

f({x})
x

dx

and to notice that
btc−1∑
k=1

1

k + 1

∫ 1

0

f(x)dx ≤
btc−1∑
k=1

∫ k+1

k

f({x})
x

dx ≤
btc−1∑
k=1

1

k

∫ 1

0

f(x)dx

and ∫ t

btc

f({x})
x

dx ≤ 1

btc

∫ 1

0

f(x)dx.

�

We are ready to prove point (ii) of the theorem for the case ν = r
s with r

s > 1
and gcd(r, s) = 1.

Let a ∈ R. We want to show

X
(
a, rsa

)
−
(
r
s − 1

)
a√

θ log a
(

1
6 −

1
6sr

) d−→
a→+∞

N (0, 1).

With the notation T =
∑
y∈W
{(a + b)y} − {ay}, we established that as soon as

Var(T )→∞,
X(a, a+ b)− b+ E(T )√

Var(T )

d−→ N (0, 1).

Set b =
(
r
s − 1

)
a. Using twice Lemma 5.4 with the identity function and t = r

sa
and then t = a, we get by subtraction

E(T ) = θ

(
1

2
log
(r
s
a
)
− 1

2
log a+O(1)

)
= Oθ(1).
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Now, denoting t := a
s , for all x ∈ [0, 1],

{ax} −
{r
s
ax
}

= {stx} − {rtx} = (s− r){tx} −
s−1∑
m=1

1{tx}≥ms +

r−1∑
n=1

1{tx}≥nr .

Hence applying Lemma 5.4 with the function

f : x 7→

(
(s− r)x−

s−1∑
m=1

1x≥ms +

r−1∑
n=1

1x≥nr

)2

we get∫ 1

0

(
{ax} −

{
r
sax

})2
x

dx =

∫ 1

0

f({tx})
x

dx =
t→+∞

log t

∫ 1

0

f(x)dx+O(1).

The author in Bahier (2019, Appendix B) shows that∫ 1

0

f(x)dx = lim
n→∞

1

n

n∑
j=1

({sjα} − {rjα})2

where α is any arbitrary irrational number, and computes this limit explicitly, equal
to 1

6 −
1

6sr , which gives the claim.

5.3.2. Case ν irrational. Let ν be an irrational number. For all a > 0, let µa be the
empirical measure of (Ua, νUa) on (R/Z)2, where Ua is a uniform random variable
on [0, a].

Then, the Fourier transform of µa is given for all (k, l) ∈ Z2 by

µ̂a(k, l) =
1

a

∫ a

0

e2iπ(k+lν)xdx −→
a→∞

1k+lν=0.

Since ν is irrational, then k + lν = 0 if and only if (k, l) = (0, 0). We deduce that
µa converges to the Lebesgue measure of dimension 2 on [0, 1]2.

Let f be a function from (R/Z)2 to R defined by f(x, y) = (x − y)2. f is
continuous everywhere, excepted on R/Z×{0̄} and {0̄}×R/Z, which are of measure
zero with respect to the Lebesgue measure of dimension 2. Hence by the continuous
mapping theorem, ∫

fdµa −→
a→∞

∫ 1

0

∫ 1

0

(x− y)2dxdy =
1

6
,

so that by a change of variables we get∫ 1

0

({ax} − {νax})2dx =
1

a

∫ a

0

({x} − {νx})2dx =

∫
fdµa −→

a→∞

1

6
. (5.9)

It remains to show that this implies

1

log a

∫ 1

0

({ax} − {νax})2

x
dx −→

a→∞

1

6
. (5.10)

Assume a > 1. We write∫ a

0

f({x}, {νx})
x

dx

=

∫ 1

0

f({x}, {νx})
x

dx+

bac−1∑
k=1

∫ k+1

k

f({x}, {νx})
x

dx+

∫ a

bac

f({x}, {νx})
x

dx
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with
∫ 1

0
f({x},{νx})

x dx < +∞, and
∫ a
bac

f({x},{νx})
x dx = O(1) since f is bounded.

Moreover, for all integers k ≥ 1,

1

k + 1

∫ k+1

k

f({x}, {νx})dx ≤
∫ k+1

k

f({x}, {νx})
x

dx ≤ 1

k

∫ k+1

k

f({x}, {νx})dx.

For the right-hand side inequality, denoting ak := 1
k and bk :=

∫ k+1

k
f({x}, {νx})dx,

a summation by parts gives, for all n ≥ 1,
n∑
k=1

akbk = an

n∑
k=1

bk −
n−1∑
k=1

k∑
m=1

bm(ak+1 − ak)

=
1

n

∫ n+1

1

f({x}, {νx})dx+

n−1∑
k=1

1

k(k + 1)

∫ k+1

1

f({x}, {νx})dx

and from (5.9) we deduce

n∑
k=1

akbk =
1

6
+ o(1) +

n−1∑
k=1

1

k

(
1

6
+ o(1)

)
=

1

6
log n+ o(log n)

as n → ∞. Replacing ak by 1
k+1 leads to the same asymptotic expression. Hence,

from the squeeze theorem,

1

log a

bac−1∑
k=1

∫ k+1

k

f({x}, {νx})
x

dx −→
a→∞

1

6
,

which gives (5.10).

6. Translation of the limiting point process related to permutation ma-
trices. Proof of Proposition 1.9

In this section we show that the translation of the limiting point process related
to permutation matrices converges to the limiting point process related to modified
permutation matrices. The precise statement corresponds to Proposition 1.9. We
will need the following lemma:

Lemma 6.1. For all j ∈ N∗,

({Ay1}, {Ay2}, . . . , {Ayj}, y1, . . . , yj)
d−→

A→∞
(Φ1, . . . ,Φj , y1, . . . , yj)

where Φ1, . . . ,Φj are i.i.d random variables uniformly distributed on [0, 1) and in-
dependent of y1, . . . , yj.

Proof : Let j ∈ N∗. We know that ~y := (y1, . . . , yj) has a density with respect to
the Lebesgue measure (see Arratia et al., 2003). Hence, for all ~k ∈ Zj and ~λ ∈ Rj ,

E
[
e2iπA~k·~y+i~λ·~y

]
= E

[
ei~y·(2πA

~k+~λ)
]

= µ̂~y(2πA~k + ~λ) −→
A→∞

0

as soon as ~k 6= 0, applying Riemann-Lebesgue lemma. �
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We are ready to prove Proposition 1.9.
Let f be a continuous function from R to C such that suppf ⊂ [−M,M ] for any

M > 0. With the same notations as in the previous lemma, we want to show:∑
k∈Z\{0}
j≥1

f

(
k

yj
−A

)
d−→

A→∞

∑
k∈Z
j≥1

f

(
k − Φj
yj

)
. (6.1)

Let j0 ∈ N∗. The probability that there exists non-zero terms in the sum∑
k∈Z
j≥j0

f
(
k−Φj
yj

)
is

P
(
∃k ∈ Z, ∃j ≥ j0,

∣∣∣∣k − Φj
yj

∣∣∣∣ ≤M)
≤
∑
j≥j0

∑
k∈Z

P
(∣∣∣∣k − Φj

yj

∣∣∣∣ ≤M)

=
∑
j≥j0

P(Φj ≤Myj) + P(1− Φj ≤Myj) +

−1∑
k=−bMc−1

P
(
yj ≥

|k − Φj |
M

)

+

bMc+1∑
k=2

P
(
yj ≥

|k − Φj |
M

)
≤
∑
j≥j0

Mrj +Mrj +

−1∑
k=−bMc−1

Mrj

−k
+

bMc+1∑
k=2

Mrj

k − 1


≤ 2M(1 + log(M + 1))

1− r
rj0

where we recall that r is the constant given by (1.5). Thus

P
(
∃j ≥ j0, ∃k ∈ Z, f

(
k − Φj
yj

)
6= 0

)
−→
j0→∞

0. (6.2)

Let A > 2M . The probability that there exists non-zero terms in the sum∑
k∈Z\{0}
j≥j0

f
(
k
yj
−A

)
is

P
(
∃k ∈ Z \ {0}, ∃j ≥ j0,

∣∣∣∣ kyj −A
∣∣∣∣ ≤M)

= P
(
∃k ∈ Z ∩ [1,M +A], ∃j ≥ j0,

k

M +A
≤ yj ≤

k

A−M

)
since 0 < yj < 1 a.s. for all j. Moreover, the intervals

[
k

M+A ,
k

A−M

]
and[

k+1
M+A ,

k+1
A−M

]
overlap if and only if k ≥ A−M

2M .
On the one hand,

P
(
∃k ∈ Z ∩

[
A−M

2M
,M +A

]
, ∃j ≥ j0,

k

M +A
≤ yj ≤

k

A−M

)
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≤ P

(
∃j ≥ j0, yj ≥

A−M
2M

M +A

)

≤
∑
j≥j0

P
(
yj ≥

1

6M

)
≤ 6M

∑
j≥j0

rj

−→
j0→+∞

0.

On the other hand, assuming j0 ≥ 3, it is easy to check that (yj)j≥j0
d
= (Pyj)j≥2

where P := U2 . . . Uj0−1 is a product of j0 − 2 independent Beta(θ, 1) random
variables, and we deduce

P
(
∃k ∈ Z ∩

[
1,
A−M

2M

]
, ∃j ≥ j0,

k

M +A
≤ yj ≤

k

A−M

)
= P

(
∃k ∈ Z ∩

[
1,min

(
A−M

2M
,P (M +A)

)]
,

∃j ≥ 2,
k

P (M +A)
≤ yj ≤

k

P (A−M)

)
.

Conditionally to P , the corresponding quantity is bounded by the probability that
there is at least one point of X located in the disjoint union⋃

k∈Z∩[1,min(A−M2M ,P (M+A))]

[
k

P (M +A)
,

k

P (A−M)

]
,

hence

P
(
∃k ∈ Z ∩

[
1,
A−M

2M

]
, ∃j ≥ j0,

k

M +A
≤ yj ≤

k

A−M

)

≤ E

1− exp

− ∑
1≤k≤min(A−M2M ,P (M+A))

∫ k
P (A−M)

k
P (M+A)

θ

x
dx




≤ 1− E
(

exp

(
−θmin

(
A−M

2M
,P (M +A)

)
log

(
A+M

A−M

)))
≤ 1− E

(
exp

(
−θP 2M(M +A)

A−M

))
≤ 1− E (exp (−6MθP )) .

In addition, P converges almost surely to 0 when j0 goes to +∞, and 0 ≤
exp(−6MθP ) ≤ 1, then by dominated convergence E (exp (−6MθP )) −→

j0→+∞
1.

Consequently,

sup
A

P
(
∃j ≥ j0, ∃k ∈ Z \ {0}, f

(
k

yj
−A

)
6= 0

)
−→
j0→∞

0. (6.3)

Furthermore, it is easy to check that
j0∑
j=1

∑
k∈Z

f

(
k − Φj
yj

)
=

∑
(j,k)∈Sj0

f

(
k − Φj
yj

)
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and
j0∑
j=1

∑
k∈Z\{0}

f

(
k

yj
−A

)
=

∑
(j,k)∈Sj0

f

(
k − {Ayj}

yj

)
where Sj0 := {(j, k) : 1 ≤ j ≤ j0, |k| ≤M + 1} is finite. Using the previous lemma
and the continuous mapping theorem we deduce∑

(j,k)∈Sj0

f

(
k − {Ayj}

yj

)
d−→

A→∞

∑
(j,k)∈Sj0

f

(
k − Φj
yj

)
. (6.4)

Now, let g be a continuous and bounded function from R to R. For all j and A,
let Vj,A :=

∑
k∈Z\{0}

f
(
k
yj
−A

)
, and Vj :=

∑
k∈Z

f
(
k−Φj
yj

)
. For all j0 ≥ 1, denoting

Ωj0 := {∀j > j0, Vj,A = 0}, we have

E

g
∑
j≥1

Vj,A

 = E

g
∑
j≤j0

Vj,A

1Ωj0

+ E

g
∑
j≥1

Vj,A

1Ω{
j0


= E

g
∑
j≤j0

Vj,A

− E

g
∑
j≤j0

Vj,A

1Ω{
j0


+ E

g
∑
j≥1

Vj,A

1Ω{
j0


= E

g
∑
j≤j0

Vj,A

+O(P(Ω{
j0)).

Hence

lim
A→∞

E

g
∑
j≥1

Vj,A


= lim
A→∞

E

g
∑
j≤j0

Vj,A

+O(sup
A

P(∃j ≥ j0, Vj,A 6= 0))

= E

g
∑
j≤j0

Vj

+O(sup
A

P(∃j ≥ j0, Vj,A 6= 0))

= E

g
∑
j≥1

Vj

+O(P(∃j ≥ j0, Vj 6= 0) + sup
A

P(∃j ≥ j0, Vj,A 6= 0))

=
j0→∞

E

g
∑
j≥1

Vj

+ o(1)

where the second equality derives from the convergence in distrbution (6.4), and
the last equality follows from (6.2) and (6.3). This gives (6.1).
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Remark 6.2. This result can be easily extended to simple functions (linear com-
bination of indicator functions) with compact support. In particular we have the
following corollary:

Corollary 6.3. Let s, t ∈ R+. Using the notations of Sections 3 and 5, we have

X(s, s+ t)
d−→

s→+∞
X̃(t).

Proof : It suffices to write

X(s, s+ t) = τ∞((s, s+ t]) =
∑

k∈Z\{0}
j≥1

1 k
yj
−s∈(0,t],

X̃(t) = τ̃∞((0, t]) =
∑
k∈Z
j≥1

1 k−Φj
yj
∈(0,t]

,

and for all x ∈ R, a.s.,
∑
k∈Z
j≥1

1 k−Φj
yj

=x
= 0, so the continuous mapping theorem applies

with f = 1(0,t] under a similar reasoning as in the previous proof. �

Appendix

In this section we prove Lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1. Let n ∈ N∗. A simple change of variables (t = nx) gives∫ 1

0

{nx}
x

dx =

n−1∑
k=0

∫ 1

0

t

t+ k
dt = 1 +

n−1∑
k=1

∫ 1

0

t

t+ k
dt,

with for all k ≥ 1 and t ∈ [0, 1], 1
k+1 ≤

1
t+k ≤

1
k , thus

1 +
1

2

n−1∑
k=1

1

k + 1
≤
∫ 1

0

{nx}
x

dx ≤ 1 +
1

2

n−1∑
k=1

1

k

so that ∫ 1

0

{nx}
x

dx =
n→∞

1

2
log n+O(1).

The same change of variables leads to∫ 1

0

{nx} log xdx

=

n−1∑
k=0

∫ 1

0

t

n
log

(
t+ k

n

)
dt

= −1

2
log n+

1

n

n−1∑
k=0

∫ 1

0

t log(t+ k)dt

= −1

2
log n+

1

n

n−1∑
k=0

(
1

2
log(1 + k)− 1

2

∫ 1

0

t2

t+ k
dt

)

= −1

2
log n+

1

2n
log(n!)− 1

4n
− 1

2n

n−1∑
k=1

(
1

2
− k + k2 log

(
1 +

1

k

))
.
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Moreover, as a consequence of Stirling’s formula,

log(n!) =
n→∞

n log n− n+
1

2
log n+O(1),

and furthermore we have
1

2
− k + k2 log

(
1 +

1

k

)
=

k→∞

1

3k
+O

(
1

k2

)
.

We deduce∫ 1

0

{nx} log xdx =
n→∞

−1

2
+

1

4n
log n+O

(
1

n

)
− 1

6n
log n+O

(
1

n

)
= −1

2
+

1

12n
log n+O

(
1

n

)
.

Proof of Lemma 5.2. Let `, n ∈ N∗. A summation by parts gives
n∑
k=1

k

n
log

k

n
= −

n−1∑
k=1

log

(
1 +

1

k

) k∑
j=1

j

n

= −
n−1∑
k=1

(
1

k
+O

(
1

k2

))
k(k + 1)

2n

= −
n−1∑
k=1

(
k

2n
+O

(
1

n

))
= −n(n+ 1)

4n
+O(1)

= −n
4

+O(1).

Besides, for all fixed t ∈ (0, 1),

n∑
k=1

1 k
n≥t

log
k

n
= −

n−1∑
k=dnte

log

(
1 +

1

k

) k∑
j=dnte

1

= −
n−1∑

k=dnte

(
1

k
+O

(
1

k2

))
(k − dnte+ 1)

= −
n−1∑

k=dnte

(
1− dnte

k
+O

(
1

k

))
=

n→∞
−n(1− t+ t log t) +O(1).

Thus, on the one hand,
n−1∑
k=1

{
`
k

n

}
log

k

n
= `

(
n−1∑
k=1

k

n
log

k

n

)
−

`−1∑
m=1

n−1∑
k=1

1 k
n≥

m
`

log
k

n

= `
(
−n

4
+O(1)

)
−

`−1∑
m=1

(
−n
(

1− m

`
+
m

`
log

m

`

)
+O(1)

)
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=

[
− `

4
+

`−1∑
m=1

(
1− m

`
+
m

`
log

m

`

)]
n+O(1)

=

[
`

4
− 1

2
+

`−1∑
m=1

m

`
log

m

`

]
n+O(1),

and on the other hand,
n−1∑
k=1

{
−` k

n

}
log

k

n
= −`

(
n−1∑
k=1

k

n
log

k

n

)
+

`−1∑
m=0

n−1∑
k=1

1 k
n>

m
`

log
k

n

=

[
`

4
−

`−1∑
m=1

(
1− m

`
+
m

`
log

m

`

)]
n+O(1) +

n−1∑
k=1

1 k
n>0 log

k

n

=

[
− `

4
+

1

2
−

`−1∑
m=1

m

`
log

m

`

]
n+O(1) +

n−1∑
k=1

log
k

n
.

Finally, it just remains to see
n∑
k=1

log
k

n
= −

n−1∑
k=1

k log

(
1 +

1

k

)
= −n+

1

2
log n+O(1).

Proof of Lemma 5.3. Let f : x 7→ ({px} − {qx})2. Denote for all positive integers
m, Em =

{
k
m ; 1 ≤ k ≤ m− 1

}
, and let Ep,q = Ep ∪ Eq. Noticing that x 7→

({px} − {qx}) is a piecewise linear function with constant slope equal to p− q and
jumps at multiples of 1/p and multiples of 1/q, the derivative of the distribution
Tf related to f on (0, 1) is given by

(Tf )′ = Tf ′ +
∑

r∈Ep,q

(f(r + 0)− f(r − 0))δr

= 2(p− q)({p·} − {q·}) +
∑

r∈Ep,q

(f(r + 0)− f(r − 0))δr

Thus, integrating by parts gives∫ 1

0

f(x)

x
dx = −2(p− q)

∫ 1

0

({px}−{qx}) log xdx−
∑

r∈Ep,q

(f(r+ 0)− f(r− 0)) log r.

If r ∈ Ep ∩ Eq, it is easy to check that f(r + 0)− f(r − 0) = 0.

If r = k
p 6∈ Eq then f(r + 0)− f(r − 0) =

{
q kp

}2

−
(

1−
{
q kp

})2

= 2
{
q kp

}
− 1.

Symmetrically if r = j
q 6∈ Ep then f(r + 0)− f(r − 0) = 2

{
p jq

}
− 1.

Finally we get∑
r∈Ep,q

(f(r + 0)− f(r − 0)) log r

=
∑

1≤k≤p−1
1
q -
k
p

(
2

{
q
k

p

}
− 1

)
log

(
k

p

)
+

∑
1≤j≤q−1

1
p -
j
q

(
2

{
p
j

q

}
− 1

)
log

(
j

q

)
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=

p−1∑
k=1

(
2

{
q
k

p

}
− 1

)
log

(
k

p

)
+

q−1∑
j=1

(
2

{
p
j

q

}
− 1

)
log

(
j

q

)

+ 2

gcd(p,q)−1∑
m=1

log

(
m

gcd(p, q)

)
.
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