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Abstract. In a companion article we have introduced a notion of multiscale func-
tional inequalities for functions X(A) of an ergodic stationary random field A on
the ambient space Rd. These inequalities are multiscale weighted versions of stan-
dard Poincaré, covariance, and logarithmic Sobolev inequalities. They hold for all
the examples of fields A arising in the modelling of heterogeneous materials in the
applied sciences whereas their standard versions are much more restrictive. In this
contribution we first investigate the link between multiscale functional inequali-
ties and more standard decorrelation or mixing properties of random fields. Next,
we show that multiscale functional inequalities imply fine concentration properties
for nonlinear functions X(A). This constitutes the main stochastic ingredient to
the quenched large-scale regularity theory for random elliptic operators by the sec-
ond author, Neukamm, and Otto, and to the corresponding quantitative stochastic
homogenization results.
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1. Introduction and main results

Functional inequalities like Poincaré, covariance, or logarithmic Sobolev inequal-
ities are powerful tools to prove nonlinear concentration properties and central limit
theorem scalings (see e.g. Propositions 1.5 and 1.7 below). As emphasized in the
introduction of the companion article Duerinckx and Gloria (2020+), such inequal-
ities are also of remarkable use to study partial differential equations with random
coefficients, in particular to establish quantitative results in stochastic homogeniza-
tion. However, these functional inequalities only hold under very stringent assump-
tions on the underlying random coefficient field and do not meet the requirements
of practical models of interest to the applied sciences (see e.g. Torquato (2002)).
For this reason, we introduced in Duerinckx and Gloria (2020+) a new family of
weaker variants of these inequalities, which we refer to as multiscale functional
inequalities. The aim of the present contribution is twofold: first we relate multi-
scale functional inequalities to more standard mixing conditions and decorrelation
properties, and second we establish the concentration properties that are implied
by these new inequalities in a form to be directly used in stochastic homogeniza-
tion Gloria et al. (2020+b,+); Duerinckx et al. (2018). The present contribution
can thus be viewed as an intermediate step making use and adapting classical ar-
guments in the concentration-of-measure phenomenon literature (mainly borrowed
from Aida and Stroock (1994); Ledoux (1999); Bobkov and Ledoux (1997); Ledoux
(2001); Bakry et al. (2014)) towards the applications in stochastic homogenization.
That multiscale functional inequalities yield strong concentration properties will
indeed not come as a surprise to the expert and the proofs of these results con-
stitute variations around more or less standard techniques. For motivations and
specific examples of coefficient fields that satisfy multiscale functional inequalities,
we refer the reader to the companion article Duerinckx and Gloria (2020+). Exam-
ples include Poisson random inclusions with (unbounded) random radii, Voronoi or
Delaunay tessellations associated with a Poisson point process, the random park-
ing process (Penrose, 2001), and Gaussian fields with arbitrary covariance function.
More generally, all the random fields of the reference textbook Torquato (2002) are
covered. For the application of the results of the present contribution in stochastic
homogenization, we refer to Gloria et al. (2020+b,+); Duerinckx et al. (2018). We
believe that these results may be useful in other contexts for the study of partial
differential equations with random coefficients.

Notation.

• d is the dimension of the ambient space Rd;
• C denotes various positive constants that only depend on the dimension
d and possibly on other controlled quantities; we write . and & for ≤
and ≥ up to such multiplicative constants C; we use the notation ' if
both relations . and & hold; we add a subscript in order to indicate the
dependence of the multiplicative constants on other parameters;

• the notation a� b stands for a ≥ Cb for some large enough constant C ' 1;
• Q := [−1/2, 1/2)d denotes the unit cube centered at 0 in dimension d,

and for all x ∈ Rd and r > 0 we set Q(x) := x + Q, Qr := rQ and
Qr(x) := x+ rQ;

• we use similar notation for balls, replacing Q by B (the unit Euclidean ball
in dimension d);
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• for all subsets D of Rd we denote by
ffl
D

the average of D;
• B(Rk) denotes the Borel σ-algebra on Rk;
• E [·] denotes the expectation, Var [·] the variance, and Cov [·; ·] the covari-

ance in the underlying probability space (Ω,A,P), and the notation E [·‖·]
stands for the conditional expectation;

• for all a, b ∈ R, we set a∧b := min{a, b}, a∨b := max{a, b}, and a+ := a∨0.

1.1. Multiscale functional inequalities. We start by recalling the notion of mul-
tiscale functional inequalities introduced in Duerinckx and Gloria (2020+). Let
A : Rd × Ω → R be a jointly measurable random field on Rd, constructed on a
probability space (Ω,A,P). In what follows we assume that A is stationary with
respect to shifts on Rd, that is, for all z ∈ Rd the translate A(·+ z, ·) has the same
finite-dimensional distributions as A. A Poincaré inequality for A in the prob-
ability space is a functional inequality that allows to control the variance of any
σ(A)-measurable random variable X(A) in terms of its local dependence on A, that
is, in terms of some “derivative” of X(A) with respect to local restrictions of A. For
the continuum setting that we consider here, we recall two such possible notions.

• The oscillation ∂osc is formally defined by

∂oscA,S X(A) := sup ess
A,S

X(A)− inf ess
A,S

X(A)

“=” sup ess
{
X(A′) : A′ ∈ Mes(Rd;R), A′|Rd\S = A|Rd\S

}
− inf ess

{
X(A′) : A′ ∈ Mes(Rd;R), A′|Rd\S = A|Rd\S

}
, (1.1)

where the essential supremum and infimum are taken with respect to the
measure induced by the field A on the space of measurable real functions
Mes(Rd;R) (endowed with the cylindrical σ-algebra). This definition (1.1)
of ∂oscA,SX(A) is not measurable in general, and we rather define

∂oscA,S X(A) :=M[X‖A|Rd\S ] +M[−X‖A|Rd\S ]

in terms of the conditional essential supremumM[·‖ARd\S ] given σ(A|Rd\S),
as introduced in Barron et al. (2003). Alternatively, we may simply define
∂oscA,SX(A) as the measurable envelope of (1.1). These measurable choices
are equivalent for the application to stochastic homogenization, and one
should not worry about these measurability issues.

• The (integrated) functional (or Malliavin type) derivative ∂fct is the closest
generalization of the usual partial derivatives commonly used in the discrete
setting. Choose an open set M ⊂ L∞(Rd) containing the realizations of
the random field A. Given a σ(A)-measurable random variable X(A) and
given an extension X̃ : M → R of X, its Fréchet derivative ∂X̃(A)

∂A is defined
as follows, for all compactly supported perturbation B ∈ L∞(Rd), almost
surely,

lim
t→0

X̃(A+ tB)− X̃(A)

t
=

ˆ
Rd
B(x)

∂X̃(A)

∂A
(x) dx,

if the limit exists with ∂X̃(A)
∂A ∈ L2(Ω,L1

loc(Rd)). (The extension X̃ is only
needed to make sure that quantities like X̃(A + tB) make sense for small
t, while X is a priori only defined on realizations of A. In the sequel,
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we will always assume that such an extension is implicitly given; this is
typically the case in applications in stochastic homogenization.) Since we
are interested in the local averages of this derivative, we rather define for
all bounded Borel subset S ⊂ Rd,

∂fctA,SX(A) =

ˆ
S

∣∣∣∂X̃(A)

∂A
(x)
∣∣∣dx ∈ L2(Ω).

This derivative is additive with respect to the set S: for all disjoint Borel
subsets S1, S2 ⊂ Rd we have ∂fctA,S1∪S2

X(A) = ∂fctA,S1
X(A) + ∂fctA,S2

X(A).

Henceforth we use ∂̃ to denote either ∂fct or ∂osc. We are in position to recall
the definition of standard functional inequalities.

Definition 1.1. We say that A satisfies the (standard) Poincaré inequality or spec-
tral gap (∂̃-SG) with radius R > 0 and constant C > 0 if for all σ(A)-measurable
random variables X(A) we have

Var [X(A)] ≤ C E
[ˆ

Rd

(
∂̃A,BR(x)X(A)

)2
dx

]
;

it satisfies the (standard) covariance inequality (∂̃-CI) with radius R > 0 and con-
stant C > 0 if for all σ(A)-measurable random variables X(A) and Y (A) we have

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

E
[(
∂̃A,BR(x)X(A)

)2] 1
2

E
[(
∂̃A,BR(x)Y (A)

)2] 1
2

dx;

it satisfies the (standard) logarithmic Sobolev inequality (∂̃-LSI) with radius R > 0
and constant C > 0 if for all σ(A)-measurable random variables Z(A) we have

Ent
[
Z(A)2

]
:= E

[
Z(A)2 log

Z(A)2

E [Z(A)2]

]
≤ C E

[ˆ
Rd

(
∂̃A,BR(x)Z(A)

)2
dx

]
.

Next, we recall the definition of multiscale functional inequalities as introduced
in the companion article Duerinckx and Gloria (2020+). These are modifications
of standard functional inequalities, where derivatives with respect to the field A are
considered on all scales and suitably weighted. Standard inequalities are recovered
for compactly supported weight π.

Definition 1.2. Given an integrable function π : R+ → R+, we say that A satisfies
the multiscale Poincaré inequality (∂̃-MSG) with weight π if for all σ(A)-measurable
random variables X(A) we have

Var [X(A)] ≤ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`) d`

]
.

Likewise, we define the corresponding multiscale covariance inequality (∂̃-MCI) and
the multiscale logarithmic Sobolev inequality (∂̃-MLSI).

1.2. Decay of correlations and mixing. We show that the weight π in multiscale
functional inequalities is related to the decay of correlations of the random field A.
On the one hand, the weight is shown to control the decay of the covariance function
of A on large distances. On the other hand, multiscale functional inequalities are
shown to imply α-mixing with coefficient decay related to the weight (with a caveat
in the case of the functional derivative). We start with the decay of the covariance
function.
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Proposition 1.3. Let A be a jointly measurable stationary random field on Rd with
E
[
|A(0)|2

]
< ∞, and let C(x) := Cov [A(0);A(x)] denote its covariance function.

When using the derivative ∂̃ = ∂osc, further assume that A is bounded.

(i) If A satisfies (∂̃-SG) and if the covariance function C is nonnegative, then C
is integrable.

(ii) If A satisfies (∂̃-MSG) with weight π and if the covariance function C is
nonnegative, then C is integrable whenever

´∞
0
`dπ(`)d` <∞. More generally,

C satisfies

ˆ
Rd

(1 + |x|)−αC(x)dx ≤ Cα


´∞
0

(`+ 1)d−απ(`)d`, if 0 ≤ α < d;´∞
0

log2(2 + `)π(`)d`, if α = d;´∞
0
π(`)d`, if α > d.

(iii) If A satisfies (∂̃-CI) with radius R + ε for all ε > 0, then the range of de-
pendence of A is bounded by 2R (that is, for all Borel subsets S, T ⊂ Rd the
restrictions A|S and A|T are independent whenever d(S, T ) > 2R).

(iv) If A satisfies (∂̃-MCI) with weight π, then the covariance function satisfies
for all x ∈ Rd,

|C(x)| ≤ C
ˆ ∞

1
2 (|x|−2)∨0

π(`)d`.

Note in particular that (∂̃-MCI) gives much more information than (∂̃-MSG) on
the covariance function. As shown in the companion article Duerinckx and Gloria
(2020+, Corollary 3.1), Proposition 1.3 is sharp: in the Gaussian case each of the
necessary conditions is (essentially) sufficient.

We turn to ergodicity and mixing properties, and investigate the relation be-
tween multiscale Poincaré inequalities and standard mixing conditions. Let us first
recall some terminology. The random field A is said to be ergodic if for all σ(A)-
measurable random variables X(A) there holds almost surely

lim
R↑∞

 
BR

X(A(·+ x)) dx = E [X(A)] .

It is strongly mixing if we further have for all Borel subsets E,E′ ⊂ R

P [X(A) ∈ E, X(A(·+ x)) ∈ E′] |x|↑∞−→ P [X(A) ∈ E] P [X(A) ∈ E′] .

This qualitative property can be quantified into strong mixing conditions. A clas-
sical way to measure the dependence between two sub-σ-algebras G1,G2 ⊂ A is the
following α-mixing coefficient, first introduced by Rosenblatt (1956),

α(G1,G2) := sup
{
|P[G1 ∩G2]− P[G1]P[G2]| : G1 ∈ G1, G2 ∈ G2

}
.

Applied to the random field A, this leads to the following measure of mixing: for
all diameters D ∈ (0,∞] and distances R > 0 we set

α̃(R,D;A) := sup
{
α(σ(A|S1

), σ(A|S2
)) : S1, S2 ∈ B(Rd), d(S1, S2) ≥ R,

diam(S1),diam(S2) ≤ D
}
. (1.2)
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We say that the field A is α-mixing if for all diameters D ∈ (0,∞) we have
α̃(R,D;A)

R↑∞−→ 0. Note that α-mixing is the weakest of the usual strong mix-
ing conditions (see e.g. Doukhan, 1994), although it is in general strictly stronger
than qualitative strong mixing.

Proposition 1.4. Let A be a jointly measurable stationary random field on Rd.
(i) If A satisfies (∂̃-MSG) with integrable weight π, then A is ergodic.
(ii) If A satisfies (∂̃-MCI) with integrable weight π, then A is strongly mixing.
(iii) If A satisfies (∂̃-MCI) with weight π and derivative ∂̃ = ∂osc, then A is α-

mixing with coefficient α̃(R,D;A) . (1 + D
R )d

´∞
R−1 π(`)d`.

(iv) If A satisfies (∂̃-CI) with radius R + ε > 0 for all ε > 0, then α̃(r,∞;A) = 0
for all r > 2R.

1.3. Application to spatial averages. Although the primary aim of functional in-
equalities is to address concentration properties for general nonlinear functions of
the random field A, we illustrate (both for the non-specialist reader and for the ex-
pert in stochastic homogenization) the use of multiscale functional inequalities on
the simplest functions possible, that is, on (linear) spatial averages of the random
field itself (or of a possibly nonlinear local transformation hereof).

Given a jointly measurable stationary random field A, consider a σ(A)-
measurable random variable f(A) that is approximately 1-local with respect to
the field A in the following sense: for all ` ≥ 0 we assume

sup ess
A

∣∣f(A)− E [f(A) ‖ A|B` ]
∣∣ ≤ Ce− `

C . (1.3)

More precisely, we use the following finer notion of approximate 1-locality: for all
x ∈ Rd and ` ≥ 0 we assume

sup ess
A

∂̃A,B`+1(x)f(A) ≤ Ce− 1
C (|x|−`)+ . (1.4)

(An important particular case is when the random variable f(A) is exactly 1-local,
that is, when f(A) is σ(A|B1)-measurable.) Next we set F (x) := f(A(· + x)) for
all x ∈ Rd. By definition, F is a stationary random field, so that E [F (x)] does not
depend on x ∈ Rd and is simply denoted by E [F ]. For all L ≥ 0 we then consider
the random variable

XL := XL(A) := L−d
ˆ
Rd
e−

1
L |y|(F (y)− E [F ]) dy,

that is, the spatial average of (the nonlinear approximately local transformation F
of) the random field A at the scale L. Note that the results below hold in the same
form if XL is replaced by

ffl
QL

(F − E [F ]). We start with analyzing the scaling of
the variance of XL.

Proposition 1.5. If A satisfies (∂̃-MSG) with integrable weight π and derivative
∂̃ = ∂fct or ∂osc, and if the random variable f(A) satisfies (1.4), then we have for
all L > 0,

Var [XL] . π∗(L)−1,

where we define

π∗(`) :=
( 

B`

ˆ ∞
|x|

π(s)dsdx
)−1

.
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Remark 1.6. If π(`) ' (`+ 1)−1−β for some β > 0, then

π∗(`) '


(`+ 1)β , if β < d;

(`+ 1)d log−1(2 + `), if β = d;

(`+ 1)d, if β > d.

In particular if correlations are integrable (corresponding to the case β > d), we
recover the central limit theorem scaling: Var [XL] . π∗(L)−1 ' L−d for all L ≥ 1.

Next, we study the concentration properties of the spatial average XL. The
following result, which is the main stochastic ingredient of Gloria et al. (2020+b),
shows that the scaling crucially depends on three properties: the type of multiscale
functional inequality, the type of derivative, and the decay of the weight. The
proof of items (i) and (ii) directly follows from the general concentration results
of Propositions 1.11 and 1.12 below, whereas for (iii) we need to refine the Herbst
argument and exploit the form of the spatial averages.

Proposition 1.7. Assume that the random variable f(A) satisfies (1.4).
(i) If A satisfies (∂fct-MSG) with integrable weight π and if π∗ is defined as in

Proposition 1.5, then for all δ, L > 0,

P [XL ≥ δ] ≤ exp
(
− δ

Cπ∗(L)
1
2

)
. (1.5)

If in addition A satisfies (∂fct-MLSI) with weight π, then for all δ, L > 0,

P [XL ≥ δ] ≤ exp
(
− δ2

C π∗(L)
)
. (1.6)

(ii) If A satisfies (∂osc-MSG) with weight π(`) . (` + 1)−β−1 for some β > 0,
then for all δ, L > 0,

P [XL ≥ δ] ≤ Ce−
1
C δ
(
1 + δ−

2β
d | log δ|

)
L−β . (1.7)

(iii) If A satisfies (∂osc-MSG) with weight π(`) . exp(− 1
C `

β) for some β > 0, then
for all δ > 0 and L ≥ 1,

P [XL ≥ δ] ≤ exp
(
− δ∧δ2

C Lβ∧
d
2

)
. (1.8)

If in addition A satisfies (∂osc-MLSI) with weight π(`) . exp(− 1
C `

β) for some
β > 0, then for all δ > 0 and L ≥ 1,

P [XL ≥ δ] ≤ exp
(
− δ∧δ2

C Lβ∧d
)
. (1.9)

Remark 1.8. If the random variable f(A) is further assumed a.s. bounded by a
deterministic constant C0 ≥ 1, then there holds P [|XL| > C0] = 0, hence we may
replace δ ∧ δ2 by 1

C0
δ2 in (1.8) and (1.9).

In the case of a super-algebraic weight, it is instructive to compare these concen-
tration results to the corresponding results implied by the α-mixing properties of the
field A (see also Armstrong and Mourrat, 2016, Appendix A). (Since we are mostly
interested in the scaling in L, we do not try to optimize the |log δ|-dependence
below.)

Proposition 1.9. Given β > 0, assume that the random field A either is α-mixing
with coefficient α̃(`,D;A) . (1+D)C exp(− 1

C `
β) for all D, ` ≥ 0, or satisfies (∂osc-

MCI) with weight π(`) . exp(− 1
C `

β). Further assume that the random variable
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f(A) is a.s. bounded by a deterministic constant and that it satisfies (1.3). Then
for all δ > 0 and L ≥ 1,

P [XL > δ] ≤ C exp
(
− 1

C δ
2(|log δ|+ 1)−

dβ
d+β L

dβ
d+β

)
.

Let us briefly compare the concentration results of Propositions 1.7(iii) and 1.9.
Assume that the random field A satisfies a multiscale functional inequality with
super-algebraic weight π(`) . exp(− 1

C `
β) and derivative ∂osc and that it is α-

mixing with coefficient α̃(`,D;A) . (1 + D)d exp(− 1
C `

β) (these assumptions are
indeed compatible in view of Proposition 1.4(iii)). Then, the decay in L of the
probability P [XL ≥ δ] obtained from the α-mixing is stonger than the one obtained
from (∂osc-MSG) only for β > d, and is always weaker than the one obtained from
(∂osc-MLSI).

1.4. Nonlinear concentration. Similarly as their standard counterparts, multiscale
functional inequalities imply fine concentration properties for general random vari-
ables X(A). We no longer focus on (linear) spatial averages here and consider
general nonlinear measurable functions of A. We start with a control on higher
moments, which is a useful tool for applications (see e.g. Gloria et al., 2020+a;
Duerinckx et al., 2018). Note that the position of the weight in the right-hand
side differs whether the derivative is the functional derivative or the oscillation: in
particular, the control of higher moments is much weaker for the latter.

Proposition 1.10. Assume that A satisfies (∂̃-MSG) with integrable weight π :
R+ → R+. Then there exists C > 0 (depending only on d, π) such that for all
1 ≤ p <∞ and σ(A)-measurable random variables X(A),

(i) if ∂̃ = ∂fct,

E
[(
X(A)− E [X(A)]

)2p]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
,

where the multiplicative factor (Cp2)p can be upgraded to (Cp)p if the field A
further satisfies (∂̃-MLSI);

(ii) if ∂̃ = ∂osc,

E
[(
X(A)− E [X(A)]

)2p]
≤ (Cp2)p E

[ˆ ∞
0

(ˆ
Rd

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
.

From standard arguments we then deduce concentration for “Lipschitz” functions
of the field A. We start with the case of the functional derivative.

Proposition 1.11. Assume that A satisfies (∂fct-MSG) with integrable weight
π : R+ → R+. We define the Lipschitz norm of a σ(A)-measurable random vari-
able X(A) with respect to the derivative ∂fct and the weight π as

|||X |||∂fct,π := sup ess
A

(ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

) 1
2

.
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There exists a constant C > 0 (depending only on d, π) such for all σ(A)-measurable
random variables X(A) with |||X |||∂fct,π ≤ 1 we have exponential tail concentration
in the form

E
[
exp

(
1
C |X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e− r
C , for all r ≥ 0.

If in addition A satisfies (∂fct-MLSI) with weight π, then for all σ(A)-measurable
random variables X(A) with |||X |||∂fct,π ≤ 1 we have Gaussian tail concentration in
the form

E
[
exp

(
1
C |X(A)− E [X(A)] |2

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e− r
2∨r
C , for all r ≥ 0.

We turn to the case of the oscillation, which only yields weaker concentration
results due to the failure of the Leibniz rule.

Proposition 1.12.
(i) Assume that A satisfies (∂osc-SG) with radius R > 0. Then for all σ(A)-

measurable random variables X(A) with

|||X |||∂osc,R := sup ess
A

ˆ
Rd

(
∂oscA,BR(x) X(A)

)2
dx ≤ 1,

we have exponential tail concentration in the form

E
[
exp

(
1
C |X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e− r
C , for all r ≥ 0.

If in addition A satisfies (∂osc-LSI) with radius R > 0 and if the random
variable X(A) further satisfies

L := sup
x

sup ess
A

∂oscA,BR(x)X(A) <∞,

we have Poisson tail concentration in the form

E
[
exp

(
1
CψL(|X(A)− E [X(A)] |)

)]
≤ 2, ψL(u) := u

L log
(
1 + L

Cu
)
,

P [X(A)− E [X(A)] ≥ r] ≤ e− 1
CψL(r), for all r ≥ 0.

(ii) Assume that A satisfies (∂osc-MSG) with integrable weight π : R+ → R+. Let
X(A) be a σ(A)-measurable random variable and assume that for some κ > 0,
p0, α ≥ 0 we have for all p ≥ p0,

E
[ˆ ∞

0

(ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
≤ pαpκ. (1.10)

Then there is a constant C > 0 (depending only on d, π, p0, α but not on κ)
such that we have concentration in the form

E
[
ψp0,α

(
1
C |X(A)− E [X(A)] |

)]
≤ Cκ, ψp0,α(u) := (1 ∧ r2p0) exp(r

2
2+α ),

P [ |X(A)− E [X(A)] | ≥ r] ≤ Cκ
(
ψp0,α( rC )

)−1
, for all r ≥ 0.



142 M. Duerinckx and A. Gloria

2. Decay of correlations and mixing

This section is devoted to the proof of the results stated in Section 1.2, that are,
Propositions 1.3 and 1.4.

2.1. Proof of Proposition 1.3: Decay of correlations. We split the proof into four
steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-SG) with radius R. For any L ≥ 1, the standard

Poincaré inequality applied to the σ(A)-measurable random variable X(A) =
´
BL

A

(which is well-defined by measurability and moment bounds on A) yields

Var

[ˆ
BL

A

]
≤ CE

[ˆ
Rd

(
∂̃A,BR(x)

ˆ
BL

A
)2
dx

]
.

For each choice of the derivative ∂̃ (further assuming that A is bounded in the case
∂̃ = ∂osc), we have

E
[(
∂̃A,BR(x)

ˆ
BL

A
)2]
≤ C|BR(x) ∩BL|2 ≤ CR1|x|≤R+L.

Hence, for L ≥ 1,
ˆ
BL

ˆ
BL

Cov [A(x);A(y)] dxdy = Var

[ˆ
BL

A

]
≤ CR|BR+L| ≤ CR|BL|.

Therefore, if C is nonnegative, we deduceˆ
BL

C .
ˆ
BL

 
BL

C(x− y)dydx =

ˆ
BL

 
BL

Cov [A(x);A(y)] dydx ≤ CR.

Letting L ↑ ∞, we conclude that C is integrable.

Step 2. Proof of (ii).
Let the field A satisfy (∂̃-MSG) with weight π, and assume that C is nonnegative.

Repeating the argument of Step 1, we deduce for all L ≥ 1,

Ld
ˆ
BL

C(x)dx . E
[(ˆ

BL

(A(x)− E [A])dx
)2]

≤
ˆ ∞
0

ˆ
Rd
|B`+1(x) ∩BL|2dx (`+ 1)−dπ(`)d`

.
ˆ L

0

Ld(`+ 1)dπ(`)d`+

ˆ ∞
L

L2dπ(`)d`

. Ld
ˆ ∞
0

(`+ 1)dπ(`)d`,

which shows that C is integrable if
´∞
0

(`+ 1)dπ(`)d` <∞.
Let now α > 0 be fixed, and let γ := 1

2 (d + α). Assume that α 6= d (the case
α = d can be treated similarly and yields the logarithmic correction). For all L ≥ 1,
the multiscale Poincaré inequality applied to the σ(A)-measurable random variable
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X(A) =
´
BL

(1 + |y|)−γA(y)dy yields

Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

ˆ
BL

(1 + |y|)−γA(y)dy
)2
dx (`+ 1)−dπ(`)d`

]
≤ C

ˆ ∞
0

ˆ
Rd

(ˆ
BL∩B`+1(x)

(1 + |y|)−γdy
)2
dx (`+ 1)−dπ(`)d`.

Hence,
ˆ
B2L

(ˆ
BL(−x)

(1 + |x+ y|)−γ(1 + |y|)−γdy
)
C(x)dx

= Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ Cα

ˆ ∞
0

(`+ 1)(d−α)∨0π(`)d`,

which yields the claim by passing to the limit L ↑ ∞.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-CI) with radius R + ε for any ε > 0. Given two Borel

subsets S, T ⊂ Rd with d(S, T ) > 2R, choosing ε := 1
3 (d(S, T ) − 2R), and noting

that the sets S+BR+ε and T +BR+ε are disjoint, the covariance inequality (∂̃-CI)
with radius R+ ε implies for any G ∈ σ(A|S) and H ∈ σ(A|T ),

|Cov [1G;1H ] |

≤ Cε
ˆ
(S+BR+ε)∩(T+BR+ε)

E
[(
∂̃A,BR+ε(x)1G)

)2] 1
2

E
[(
∂̃A,BR+ε(x)1H

)2] 1
2

dx = 0,

hence P [G ∩H] = P [G]P [H], showing that the σ-algebras σ(A|S) and σ(A|T ) are
independent.

Step 4. Proof of (iv).
Let the field A satisfy (∂̃-MCI) with weight π. For all x ∈ Rd and all ε > 0,

the covariance inequality applied to the σ(A)-measurable random variables
ffl
Bε(x)

A

and
ffl
Bε
A yields∣∣∣∣ 

Bε(x)

 
Bε

C(y − z)dydz
∣∣∣∣ =

∣∣∣∣Cov

[ 
Bε(x)

A;

 
Bε

A

] ∣∣∣∣
≤
ˆ ∞
0

ˆ
Rd

E

[(
∂̃A,B`+1(y)

 
Bε(x)

A
)2] 1

2

E
[(
∂̃A,B`+1(y)

 
Bε

A
)2] 1

2

dy (`+ 1)−dπ(`)d`

≤
ˆ ∞
0

ˆ
Rd
ε−d|Bε(x) ∩B`+1(y)|ε−d|Bε ∩B`+1(y)|dy (`+ 1)−dπ(`)d`.

Letting ε ↓ 0 and using the continuity of the function C (as a consequence of the
stochastic continuity of the field A, which follows from its joint measurability), we
deduce for all x ∈ Rd,

|C(x)| ≤ C
ˆ ∞
0

|B`+1(x) ∩B`+1| (`+ 1)−dπ(`)d` ≤ C

ˆ ∞
1
2 (|x|−2)∨0

π(`)d`,

and the claim follows. �
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2.2. Proof of Proposition 1.4: Mixing. Item (iv) follows from Proposition 1.3. We
split the rest of the proof into three steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-MSG) with weight π. To prove ergodicity, it suffices to

show that for all integrable σ(A)-measurable random variables X(A) we have

lim
L↑∞

E
[∣∣∣  

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣] = 0.

By an approximation argument in L2(Ω), we may assume that X(A) is bounded
and is σ(A|BR)-measurable for some R > 0. The Poincaré inequality (∂̃-MSG)
applied to the σ(A)-measurable random variable

ffl
BL

X(A(·+ x))dx yields

SL := E
[∣∣∣ 

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣]2 ≤ Var

[ 
BL

X(A(x+ ·))dx
]

≤ E
[ˆ ∞

0

ˆ
Rd

( 
BL

∂̃A,B`+1(y)X(A(x+ ·))dx
)2
dy (`+ 1)−dπ(`)d`

]
,

and therefore

SL ≤ E
[ˆ ∞

0

ˆ
Rd

 
BL

 
BL

∂̃A,B`+1(y)X(A(x+ ·)) ∂̃A,B`+1(y)X(A(x′ + ·))dxdx′dy

× (`+ 1)−dπ(`)d`

]
.

By assumption, ∂̃A,B`+1(y)X(A(x + ·)) = 0 whenever BR(x) ∩ B`+1(y) = ∅, i.e.
whenever |x − y| > R + ` + 1. For the choices ∂̃ = ∂osc and ∂G, we also have
∂̃A,B`+1(y)X(A(x+ ·)) ≤ 2‖X‖L∞ , so that the above yields

SL

≤ 4‖X‖2L∞
ˆ ∞
0

ˆ
Rd

 
BL

 
BL

1|x−y|≤R+`+11|x′−y|≤R+`+1dxdx
′dy (`+ 1)−dπ(`)d`

= 4‖X‖2L∞L−2d
ˆ ∞
0

( ˆ
BL

ˆ
BR+`+1(x)

|BL ∩BR+`+1(y)|dydx
)

(`+ 1)−dπ(`)d`

≤ 4‖X‖2L∞
ˆ ∞
0

(R+ `+ 1)d
(R+ `

L
∧ 1
)d

(`+ 1)−dπ(`)d`,

where the RHS obviously goes to 0 as L ↑ ∞ whenever
´∞
0
π(`)d` < ∞. This

proves ergodicity for the choice ∂̃ = ∂osc.
It remains to treat the case ∂̃ = ∂fct. An additional approximation argument

is then needed in order to restrict attention to those random variables X(A) such
that the derivative ∂̃A,B`+1(x)X(A) is pointwise bounded. The stochastic conti-
nuity of the field A (which follows from its joint measurability) ensures that the
σ(A|BR)-measurable random variable X(A) is actually σ(A|Qd∩BR)-measurable. A
standard approximation argument then allows to construct a sequence (xn)n ⊂ BR
and a sequence (Xn(A))n of random variables such that Xn(A) is σ((A(xk))nk=1)-
measurable and converges to X(A) in L2(Ω). By definition, we may write Xn(A) =
fn(A(x1), . . . , A(xn)) for some Borel function fn : (Rk)n → R. Another standard
approximation argument now allows to replace the Borel maps fn’s by smooth func-
tions. We end up with a sequence that approximates X(A) in L2(Ω), and such that
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the elements have pointwise bounded ∂̃-derivative. For these approximations, the
conclusion follows as before.

Step 2. Proof of (ii).
Let the field A satisfy (∂̃-MCI) with weight π. To prove strong mixing, it suf-

fices to show that for all bounded σ(A)-measurable random variables X(A) and
Y (A) we have Cov [X(A);Y (A(x+ ·))]→ 0 as |x| → ∞ (since the desired property
then follows by choosing the random variables X(A), Y (A) to be any pair of indica-
tor functions). Again, a standard approximation argument allows one to consider
bounded σ(A|BR)-measurable random variables X(A), Y (A) for some R > 0. Given
x ∈ Rd, apply the covariance inequality (∂̃-MCI) to X(A) and Y (A(·+x)) to obtain∣∣Cov [X(A);Y (A(x+ ·))]

∣∣
≤
ˆ ∞
0

ˆ
Rd
E
[(
∂̃A,B`+1(y)X(A)

)2] 1
2

E
[(
∂̃A,B`+1(y)Y (A(x+ ·))

)2] 1
2

dy (`+ 1)−dπ(`)d`.

By assumption, ∂̃A,B`+1(y)X(A) = 0 whenever BR ∩ B`+1(y) = ∅, i.e. whenever
|y| > R + ` + 1. For ∂̃ = ∂osc, we have in addition ∂̃A,B`+1(y)X(A) ≤ 2‖X‖L∞ , so
that the above directly yields∣∣Cov [X(A);Y (A(x+ ·))]

∣∣
≤ 4‖X‖L∞‖Y ‖L∞

ˆ ∞
0

ˆ
Rd
1|y|≤R+`+11|x−y|≤R+`+1 dy (`+ 1)−dπ(`)d`

. ‖X‖L∞‖Y ‖L∞
ˆ ∞
0

(R+ `+ 1)d(`+ 1)−dπ(`)d`

where the RHS goes to 0 as |x| → ∞ whenever
´∞
0
π(`)d` <∞. This proves strong

mixing for the choice ∂̃ = ∂osc. In the case ∂̃ = ∂fct, an additional approximation
argument is needed as in Step 1 in order to restrict to random variables X(A) such
that ∂̃A,B`+1(y)X(A) is pointwise bounded.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-MCI) with weight π, and with derivative ∂osc. Given

Borel subsets S, T ⊂ Rd with diameter ≤ D and with d(S, T ) ≥ 2R, the covariance
inequality (∂̃-MCI) for this choice of derivatives yields for all bounded random
variables X(A) and Y (A), respectively σ(A|S)-measurable and σ(A|T )-measurable,∣∣Cov [X(A);Y (A)]

∣∣
≤
ˆ ∞
0

ˆ
Rd

E
[(
∂oscA,B`+1(x)

X(A)
)2] 1

2

E
[(
∂oscA,B`+1(x)

Y (A)
)2] 1

2

dx (`+ 1)−dπ(`)d`

≤ 4‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞
0

∣∣(S +B`+1) ∩ (T +B`+1)
∣∣ (`+ 1)−dπ(`)d`

. ‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞
R−1

(`+D + 1)d(`+ 1)−dπ(`)d`

≤ ‖X(A)‖L∞‖Y (A)‖L∞
(

1 +
D

R

)d ˆ ∞
R−1

π(`)d`,

from which the claim follows by choosing for X(A), Y (A) any indicator functions.
�
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3. Nonlinear concentration

This section is devoted to the proof of the results stated in Section 1.4, that
are, Proposition 1.10 and 1.12. The proof of Proposition 1.11 is obvious based on
Proposition 1.10 and is omitted.

3.1. Proof of Proposition 1.10: Higher moments. Let X(A) be σ(A)-measurable,
and let ∂̃ denote ∂osc or ∂fct. We may assume without loss of generality that
E [X(A)] = 0. We split the proof into two steps.

Step 1. Proof of (i) and (ii) for (∂̃-MSG).
Applying the Poincaré inequality (∂̃-MSG) to the σ(A)-measurable random vari-

able |X(A)|p yields

E
[
X(A)2p

]
≤ E [|X(A)|p]2

+ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (3.1)

For p > 2, Hölder’s and Young’s inequalities with exponents ( 2(p−1)
p−2 , 2(p−1)p ) and

(p−1p−2 , p− 1), respectively, imply for all δ > 0,

E [|X(A)|p]2 = E
[
|X(A)|p

p−2
p−1 |X(A)|

p
p−1

]2
≤ E

[
X(A)2p

] p−2
p−1 E

[
X(A)2

] p
p−1

≤ p− 2

p− 1
δ E
[
X(A)2p

]
+

1

p− 1
δ2−p E

[
X(A)2

]p
.

while for p ≤ 2 Jensen’s inequality simply yields E [|X(A)|p]2 ≤ E
[
X(A)2

]p. In-
jecting these estimates into (3.1) for some δ & 1 small enough, we conclude for all
1 ≤ p <∞,

E
[
X(A)2p

]
≤ p−1Cp E

[
X(A)2

]p
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
.

Since E
[
X(A)2

]
= Var [X(A)] follows from the centering assumption, the first

RHS term is estimated by the Poincaré inequality (∂̃-MSG). Further using Jensen’s
inequality, this leads to

E
[
X(A)2p

]
≤ p−1Cp E

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (3.2)

We split the rest of this step into two further substeps, and treat separately ∂fct
and ∂osc.
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Substep 1.1. Proof of (i) for ∂̃ = ∂fct.
By the Leibniz rule, ∂fctA,S(|X(A)|p) = p|X(A)|p−1∂fctA,SX(A), so that Hölder’s

inequality with exponents ( p
p−1 , p) yields

E
[ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2(p−1)

ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

.

(3.3)

Combined with (3.2) and Young’s inequality with exponents ( p
p−1 , p) to absorb the

factor E
[
X(A)2p

]
into the LHS, the conclusion of item (i) follows with the prefactor

(Cp2)p.

Substep 1.2. Proof of (ii) for ∂̃ = ∂osc.
The inequality ||a|p − |b|p| ≤ p|a− b|(|a|p−1 + |b|p−1) for all a, b ∈ R implies

∂oscA,S |X(A)|p ≤ 2p
(

sup
A,S
|X(A)|p−1

)
∂oscA,S X(A)

≤ 2p

(
|X(A)|+ ∂oscA,S X(A)

)p−1
∂oscA,S X(A). (3.4)

We then make use of the following inequality that holds for some constant C ' 1
large enough (independent of p): for all a, b ≥ 0, (a + b)p−1 ≤ 2ap−1 + (Cp)pbp−1.
This allows one to rewrite (3.4) in the form

∂oscA,S |X(A)|p ≤ 4p|X(A)|p−1 ∂oscA,S X(A) + (Cp)p(∂oscA,S X(A))p. (3.5)

Arguing as in Substep 1.1, we obtain by Hölder’s inequality,

E
[ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

|X(A)|p
)2
dx (`+ 1)−dπ(`)d`

]
≤ Cp2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

+ (Cp2)p E
[ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx (`+ 1)−dπ(`)d`

]
.

Combined with (3.2) and Young’s inequality to absorb the factor E[X(A)2p] into
the LHS, this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx (`+ 1)−dπ(`)d`

]
.
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It remains to reformulate the second RHS term. By the discrete `1 − `p inequality,
we have ˆ

Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx (3.6)

≤
∑

z∈ `+1√
d
Zd

ˆ
z+ `+1√

d
Q

(
∂oscA,B`+1(x)

X(A)
)2p

dx

≤
(`+ 1√

d

)d ∑
z∈ `+1√

d
Zd

(
∂oscA,B 3

2
(`+1)

(z) X(A)
)2p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

(
∂oscA,B 3

2
(`+1)

(z) X(A)
)2)p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

 
z+ `+1√

d
Q

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p

≤
( √d
`+ 1

)d(p−1)(ˆ
Rd

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p
. (3.7)

Combined with the above, this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

(ˆ
Rd

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
.

Since
´∞
0
π(`)d` < ∞, the first RHS term can be absorbed into the second RHS

term. Indeed, the triangle inequality and the Hölder inequality with exponents
(p, p

p−1 ) combine to

E
[( ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
≤

(ˆ ∞
0

E
[(ˆ

Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p] 1
p

(`+ 1)−dπ(`)d`

)p
=

(ˆ ∞
0

E
[(ˆ

Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)

] 1
p

π(`)1−
1
p d`

)p
≤

(ˆ ∞
0

π(`)d`

)p−1
E
[ˆ ∞

0

(ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
,

and the conclusion of item (ii) follows.

Step 2. Improvement of (i) for (∂fct-MLSI).
In this step, we argue that the prefactor (Cp2)p in item (i) can be upgraded to

(Cp)p if the field A satisfies the corresponding logarithmic Sobolev inequality (∂fct-
MLSI). Starting point is the following observation (see Aida and Stroock, 1994,
Theorem 3.4 and Bakry et al., 2014, Proposition 5.4.2): if the random variable
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X(A) satisfies Ent
[
X(A)2p

]
<∞, then we have

E
[
X(A)2p

] 1
p − E

[
X(A)2

]
=

ˆ p

1

1

q2
E
[
X(A)2q

] 1
q−1 Ent

[
X(A)2q

]
dq. (3.8)

It remains to estimate the entropy Ent[X(A)2q] for all 1 ≤ q ≤ p. Applied to the
σ(A)-measurable random variable |X(A)|q, (∂fct-MLSI) yields

Ent
[
X(A)2q

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

|X(A)|q
)2
dx (`+ 1)−dπ(`)d`

]
.

The argument of Substep 1.1, cf. (3.3), applied to the above RHS yields

Ent
[
X(A)2q

]
≤ Cq2 E

[
X(A)2q

]1− 1
q E
[(ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

.

Inserting this into (3.8), we obtain

E
[
X(A)2p

] 1
p ≤ E

[
X(A)2

]
+ C

ˆ p

1

E
[(ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

dq.

We then appeal to the Poincaré inequality (∂fct-MSG) (which follows from (∂fct-
MLSI)) to estimate the first RHS term, and use Jensen’s inequality on the second
RHS to obtain

E
[
X(A)2p

] 1
p ≤ CpE

[(ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

.

This upgrades the prefactor in item (i) to (Cp)p, as claimed. �

3.2. Proof of Proposition 1.12: Nonlinear concentration. We split the proof into
two steps, and prove (i) and (ii) separately.

Step 1. Proof of (i).
The exponential concentration result in (i) follows from Proposition 1.10(ii)

(with compactly supported weight π) by standard arguments (e.g. Ledoux, 1999,
Proposition 2.13). Let us now turn to the Poisson concentration result, and use
a variation of the Herbst argument. Let A satisfy (∂osc-LSI) and let X(A) satisfy
L := supx sup essA ∂

osc
A,BR(x)X(A) <∞ and |||X |||∂osc,R ≤ 1. For all t ∈ R, we apply

(∂osc-LSI) to the σ(A)-measurable random variable etX(A)/2,

Ent[etX(A)] ≤ C E
[ˆ

Rd

(
∂oscA,BR(x) e

tX(A)/2
)2
dx

]
. (3.9)

By the inequality |ea − eb| ≤ (ea + eb)|a − b| for all a, b ∈ R, the integrand turns
into (

∂oscA,S e
tX(A)/2

)2
≤ 2t2 sup

A,S
etX(A)

(
∂oscA,S X(A)

)2
≤ 2t2etX(A) exp

(
t ∂oscA,S X(A)

)(
∂oscA,S X(A)

)2
. (3.10)
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Inserting this inequality into (3.9) and using the assumptions on X(A), we obtain

Ent[etX(A)] ≤ Ct2etLE[etX(A)].

Compared to the standard Herbst argument, we have to deal here with the addi-
tional exponential factor etL. We may then appeal to Ledoux (1999, Corollary 2.12)
which indeed yields the desired Poisson concentration. We include a proof for the
reader’s convenience. In terms of the Laplace transform H(t) = E[etX(A)], the
above takes the form

tH ′(t)−H(t) logH(t) ≤ Ct2etLH(t),

or equivalently,
d

dt

(1

t
logH(t)

)
≤ CetL,

and hence by integration

H(t) ≤ exp
(Ct
L

(etL − 1) + t
H ′(0)

H(0)

)
= e

Ct
L (etL−1)+tE[X(A)].

The Markov inequality then implies for all r, t ≥ 0,

P [X(A) ≥ E [X(A)] + r] = P
[
etX(A) ≥ etE[X(A)]+tr

]
≤ e−tE[X(A)]−trE[etX(A)]

≤ e
Ct
L (etL−1)−tr. (3.11)

Let r ≥ 0 be momentarily fixed, and denote by t∗ ≥ 0 the value of t ≥ 0 that
minimizes fr(t) := Ct

L (etL − 1) − tr, that is the (unique) solution t∗ ≥ 0 of the
equation

Cet∗L = (Lr + C)/(1 + t∗L) (3.12)
(note that fr is strictly convex, fr(0) = 0, and f ′r(0) ≤ 0). We now give two
estimates on fr(t∗) depending on the value of r. Assume first that r ≥ 2eC

L . We
may then compute

fr(t∗) :=
Ct∗
L

(et∗L − 1)− t∗r
(3.12)

= − t
2
∗(Lr + C)

1 + t∗L
.

Using the bound 2t∗L ≥ t∗L+ log(1 + t∗L)
(3.12)

= log(1 + Lr/C), and the fact that
t 7→ − t

2(Lr+C)
1+tL is decreasing on R+, we obtain

fr(t∗) ≤ −
Lr + C

2L2

log(1 + Lr/C)2

2 + log(1 + Lr/C)
.

Hence, for r ≥ 2eC
L , we obtain using in addition log(1 +Lr/C) ≥ log(1 + 2e) > 9/5,

fr(t∗) ≤ −
r

5L
log
(

1 +
Lr

C

)
. (3.13)

We now turn to the case 0 ≤ r ≤ 2eC
L . Comparing the minimal value fr(t∗) to the

choice t = r
2eC , and using the bound ea − 1 ≤ ea for a ∈ [0, 1], we obtain for all

r ≤ 2eC
L ,

fr(t∗) ≤ fr
( r

2eC

)
=

r

2eL

(
e
rL
2eC − 1

)
− r2

2eC
≤ − r2

4eC
,

which yields, using that log(1 + a) ≤ a for all a ≥ 0,

fr(t∗) ≤ −
r

4eL
log
(

1 +
Lr

C

)
≤ − r

11L
log
(

1 +
Lr

C

)
.
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Combining this with (3.11) and (3.13), we conclude

P [X(A) ≥ E [X(A)] + r] ≤ e− r
11L log(1+Lr

C ),

and the corresponding integrability result follows by integration.

Step 2. Proof of (ii).
Let A satisfy (∂osc-MSG) with weight π, and let the random variable X(A)

satisfy (1.10) for some κ > 0, p0, α ≥ 0. Proposition 1.10(ii) then yields for all
p ≥ p0,

E
[(
X(A)− E [X(A)]

)2p] ≤ Cpp(2+α)pκ,
or alternatively, for all p ≥ (2 + α)p0,

E
[(∣∣X(A)− E [X(A)]

∣∣ 2
2+α

)p]
≤ Cpp!κ.

Summing this estimate over p, we obtain

E
[
ψ̃p0,α

( 1

C
|X(A)− E [X(A)] |

2
2+α

)]
≤ κ,

where we have set ψ̃p0,α(u) :=
∑∞
n=0

un+(2+α)p0

(n+(2+α)p0)!
. Noting that ψ̃p0,α(u) 'p0,α

(1 ∧ u)(2+α)p0eu holds for all u ≥ 0, the conclusion follows. �

4. Application to spatial averages

This section is devoted to the proof of the results stated in Section 1.3, that are,
Propositions 1.5, 1.7, and 1.9.

4.1. Proof of Proposition 1.5: Scaling of spatial averages. Let L > 0. Given ∂̃ = ∂fct

or ∂osc, assumption (1.4) yields

|∂̃A,B`+1(x)XL| . L−d
ˆ
Rd
e−

1
L |y|e−

1
C (|x−y|−`)+dy . L−d

ˆ
Rd
e−

1
L |y|e−

1
C(`+1)

|x−y|dy

. L−d(L ∧ (`+ 1))de−
1

C(L+`+1)
|x|,

so that the multiscale Poincaré inequality yields

Var [XL] .
ˆ ∞
0

ˆ
Rd
L−2d(L ∧ (`+ 1))2de−

1
C(L+`+1)

|x|dx (`+ 1)−dπ(`)d`

.
ˆ ∞
0

L−2d(L ∧ (`+ 1))2d(L+ `)d(`+ 1)−dπ(`)d`

. L−d
ˆ L

0

(`+ 1)dπ(`)d`+

ˆ ∞
L

π(`)d`.

An integration by parts yields π∗(L)−1 ' L−d
´ L
0
π(`)`dd` +

´∞
L
π(`)d`, and the

conclusion follows. �
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4.2. Proof of Proposition 1.7: Linear concentration. We split the proof into three
steps. We start with the proofs of (1.5), (1.6), and (1.7), which directly follow from
Propositions 1.11 and 1.12(ii). The proof of estimates (1.8) and (1.9) is more subtle
and is based on a fine tuning of the Herbst argument using specific features of the
random variable ZL.

Step 1. Proof of (1.5), (1.6), and (1.7).
If A satisfies (∂fct-MSG), we let the Lipschitz norm ||| · |||∂fct,π be defined as in the

statement of Proposition 1.11. The same computation as in the proof of Proposi-
tion 1.5 ensures that the random variable ZL := π∗(L)1/2XL = π∗(L)1/2

ffl
QL

(F −
E [F ]) satisfies

|||ZL |||∂fct,π . 1.

Hence, estimates (1.5) and (1.6) follow from Proposition 1.11. We now turn to the
proof of (1.7). If A satisfies (∂osc-MSG) with weight π(`) . (`+ 1)−β−1, β > 0, we
compute for all p ≥ p0 > β

d , using assumption (1.4),

E
[ˆ ∞

0

(ˆ
Rd

(
∂oscA,B`(x)

XL

)2
dx

)p
(`+ 1)−dp−β−1d`

]
. L−2dp

ˆ ∞
1

(L+ `)dp(L ∧ `)2dp`−dp−β−1d` .
(
1 + (dp0 − β)−1

)
L−β .

Then applying Proposition 1.12(ii) and optimizing the choice of p0 > β
d , the re-

sult (1.7) follows.

Step 2. Proof of (1.8).
Let L ≥ 1, and define ZL := Ld/2XL. As in the proof of Proposition 1.5,

assumption (1.4) yields

∂oscA,B`(x)
ZL . L−

d
2 (L ∧ (`+ 1))de−

1
C(L+`+1)

|x|. (4.1)

We make use of a variant of the Herbst argument as in Bobkov and Ledoux (1997,
Section 4) (see also Ledoux, 1999, Section 2.5). For all t ≥ 0 we apply (∂osc-MSG)
to the random variable exp( 1

2 tZL): using the inequality |ea − eb| ≤ (ea + eb)|a− b|
for all a, b ∈ R, we obtain

Var[e
1
2 tZL ] ≤

ˆ ∞
0

ˆ
Rd

E
[(

∂oscA,B`(x)
e

1
2 tZL

)2]
dx (`+ 1)−dπ(`)d`

. t2 E
[
etZL

]
sup ess

A

ˆ ∞
0

ˆ
Rd
et∂

osc
A,B`(x)

ZL
(
∂oscA,B`(x)

ZL

)2
dx e−

1
C `

β

d`,

and hence, in terms of the Laplace transform HL(t) := E
[
etZL

]
,

HL(t)−HL(t/2)2 ≤ t2HL(t) sup ess
A

ˆ ∞
0

ˆ
Rd
et∂

osc
A,B`(x)

ZL
(
∂oscA,B`(x)

ZL

)2
dx e−

1
C `

β

d`.
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Using the property (4.1) of the random variable ZL, we find

HL(t)−HL(t/2)2

. t2HL(t)

ˆ ∞
1

(L ∧ `√
L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

)ˆ
Rd
e−

1
C(L+`+1)

|x|dx d`

. t2HL(t)

ˆ ∞
1

(L+ `)d
(L ∧ `√

L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

)
d`

. t2HL(t)

(ˆ L

0

exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C `

β

d`

)
. (4.2)

Without loss of generality we may assume that β ≤ d
2 (the statement (1.8) is indeed

not improved for β > d
2 ). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.3)

for some K � 1 to be chosen later (with in particular K ≥ 2C2). As a consequence
of β ≤ d

2 , this choice yields T ≤ K−1. On the one hand, for all 0 ≤ ` ≤ L and all
0 ≤ t ≤ T , the choice of T with K ≥ 2C2 yields

Ct
( `√

L

)d
−`

β

C
= −L

β

C

(( `
L

)β
− C2t

Lβ−
d
2

( `
L

)d)
≤ −L

β

C

(( `
L

)β
−1

2

( `
L

)d)
≤ − `

β

2C
,

and hence ˆ L

0

exp

(
Ct
( `√

L

)d
− `β

C

)
d` .

ˆ ∞
0

e−
`β

2C d` . 1.

On the other hand, for all 0 ≤ t ≤ T , the choice of T with K ≥ 2C2 yields

LdeCtL
d
2

ˆ ∞
L

e−
1
C `

β

d` . exp
(
CtL

d
2 − Lβ

2C

)
≤ exp

(CLβ
K
− Lβ

2C

)
≤ 1.

Injecting these estimates into (4.2), we obtain for all 0 ≤ t ≤ T ,
HL(t)−HL( t2 )2 ≤ Ct2HL(t),

and hence

HL(t) ≤
HL( t2 )2

1− Ct2
.

Applying the same inequality for t/2, iterating, and noting that HL(2−nt)2
n →

etE[ZL] = 1 as n ↑ ∞, we obtain for all 0 ≤ t ≤ T ,

HL(t) ≤
∞∏
n=0

(
1− C(2−nt)2

)−2n
.

For K large enough such that CT 2 ≤ CK−2 ≤ 1
2 , the inequality log(1− x) ≥ −2x

for all 0 ≤ x ≤ 1
2 then yields for all 0 ≤ t ≤ T ,

logHL(t) ≤ −
∞∑
n=0

2n log
(
1− C(2−nt)2

)
≤ 2Ct2

∞∑
n=0

2−n . t2,

and thus HL(T ) ≤ eCT
2

. Using Markov’s inequality and the choice (4.3) of T , we
deduce for all r ≥ 0,

P [ZL > r] ≤ e−Tr+CT
2

= exp
(
− Lβ−

d
2 r

K
+

C

K2
L2β−d

)
.
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With the choice r = δL
d
2 for δ > 0, this turns into

P [XL > δ] ≤ exp
(
− δ

K
Lβ +

C

K2
L2β−d

)
≤ exp

(
− 1

K

(
δ − C

K

)
Lβ
)
.

Choosing K ' 1 ∨ δ−1 large enough, the desired estimate (1.8) follows.

Step 3. Proof of (1.9).
Let L ≥ 1, and define ZL := Ld/2XL. We make use of the classical Herbst

argument as presented e.g. in Ledoux (2001, Section 5.1). For all t ≥ 0 we apply
(∂osc-MLSI) to the random variable exp( 1

2 tZL),

Ent
[
etZL

]
≤

ˆ ∞
0

ˆ
E
[(
∂oscA,B`(x)

e
1
2 tZL

)2]
dx (`+ 1)−dπ(`)d`.

Estimating the RHS as in (4.2), we obtain in terms of HL(t) := E[etZL ],

d

dt

(1

t
logHL(t)

)
.

ˆ L

0

exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C `

β

d`.

Without loss of generality we may assume that β ≤ d (the statement (1.9) is indeed
not improved for β > d). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.4)

for some K � 1 to be chosen later (with in particular K ≥ 2C). Arguing as in
Step 1, we obtain for all 0 ≤ t ≤ T ,

d

dt

(1

t
logHL(t)

)
. 1,

which yields by integration with respect to t on [0, T ],

1

T
logHL(T ) =

1

T
logHL(T )− E [ZL] . T,

that is, HL(T ) ≤ eCT
2

. The desired estimate (1.9) then follows as in Step 1, using
Markov’s inequality and choosing K large enough. �

4.3. Proof of Proposition 1.9: Linear concentration. Without loss of generality we
assume that sup essA |f(A)| ≤ 1, which implies P [|XL| > 1] = 0. It is then sufficient
to establish the result for 0 < δ ≤ 1. We split the proof into two steps. In the
first step we prove the result in the case when the random variable f(A) is exactly
1-local. We then extend the result in Step 2 when f(A) is only approximately
local in the sense (1.3). Since (MCI) implies α-mixing by Proposition 1.4(iii), it is
enough to prove the result under the sole assumption of α-mixing.

Step 1. Exactly 1-local random variable f(A).
In this step we assume in addition that f(A) is σ(A|B1

)-measurable, and we
prove that for all δ, L > 0,

P [XL > δ] ≤ C exp
(
− δ2

C
L

dβ
d+β

)
. (4.5)

Let p ≥ 1 be an integer and let R > 0. Setting

ER,p := {(x1, . . . , x2p) ∈ (Rd)2p : |x1 − xj | > R, ∀j 6= 1},
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and noting that for all x the random variable F (x) is σ(A|B(x))-measurable, α-
mixing leads to

L−2dp
∣∣∣∣ ˆ . . .ˆ

ER,p

e−
1
L

∑2p
i=1 |xi| E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

∣∣∣∣
≤ CpL−2dp

ˆ
. . .

ˆ
ER,p

e−
1
L

∑2p
i=1 |xi| α̃

(
R− 2, 2 + 2

2p∑
i=1

|xi|;A
)
dx1 . . . dx2p

≤ CpL−2dpe− 1
CR

β

ˆ
R2dp

e−
1
L |x|(1 + |x|)Cdx ≤ CpLCe− 1

CR
β

. (4.6)

Using this estimate, we compute

E[X2p
L ]

= L−2dp
ˆ
Rd
. . .

ˆ
Rd
e−

1
L

∑2p
i=1 |xi| E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

≤ CpLCe− 1
CR

β

+ CpL−2dp
ˆ
Rd
. . .

ˆ
Rd
e−

1
L

∑2p
i=1 |xi| 1∀i, ∃j 6=i: |xi−xj |≤R dx1 . . . dx2p.

We consider the partitions P := {P1, . . . , PNP } of the index set [2p] := {1, . . . , 2p}
into nonempty subsets of cardinality ≥ 2 (that is, ∪jPj = [2p], ]Pj ≥ 2 for all j,
and Pj∩Pl = ∅ for all j 6= l), and we use the notation P `2 [2p] for such partitions.
The above then takes the form

E[X2p
L ] ≤ CpLCe− 1

CR
β

+ CpL−2dp
∑

P`2[2p]

LdNPRd(2p−NP ).

Since for all 1 ≤ k ≤ p the number of partitions P `2 [2p] with NP = k is bounded
by the Stirling number of the second kind { 2pk } ≤

1
2

(
2p
k

)
k2p−k ≤ Cpp2pk2(p−k)(2p−

k)−(2p−k), we deduce

E[X2p
L ] ≤ CpLCe− 1

CR
β

+ Cp
(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
,

and hence by Markov’s inequality, for all δ > 0,

P [XL > δ] ≤ δ−2pCpLCe− 1
CR

β

+ δ−2pCp
(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
.

(4.7)

Recall that we may restrict to 0 < δ ≤ 1. Choosing R = Lα, p = δ2C−10 Lαβ , and
α = d

d+β , for some C0 ' 1 large enough, the estimate (4.7) above leads to

P [XL > δ] ≤ Ce− 1
CL

αβ

+ δ−2pCpL−αβp
p∑
k=1

pp+kk2(p−k)

(2p− k)2p−k
.

Noting that the summand is increasing in k, and using the choice of p with C0 large
enough, we deduce

P [XL > δ] ≤ Ce− 1
CL

αβ

+ δ−2pCpL−αβppp ≤ Ce− 1
C δ

2Lαβ , (4.8)

from which the desired result (4.5) follows.

Step 2. Approximately 1-local random variable f(A).
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For all r > 1, we define the (r-local) random variable fr(A) := E [f(A) ‖ A|Br ],
and we set Fr(x) := fr(A(· + x)) and Xr,L := L−d

´
Rd e

− 1
L |y|(Fr(y) − E [Fr])dy.

The approximate locality assumption (1.3) implies a.s. for all r, L > 0,

|Xr,L −XL| ≤ Ce−
r
C . (4.9)

Setting F̃r(x) := F (rx) and Ar(x) := A(rx), we note that for all x ∈ Rd the random
variable F̃r(x) is σ(A|Br(rx))-measurable, that is, σ(Ar|B(x))-measurable. For all
r ≥ 1, the α-mixing assumption on A implies that the contracted random field Ar
satisfies α-mixing with coefficient

α̃r(`,D;Ar) :=
(

(1 + rD)C exp(− 1

C
(r`)β)

)
∧ 1 ≤ C(1 + rD)C exp(− 1

C
(r`)β),

so that the α-mixing coefficient for r ≥ 1 can basically be estimated by the one for
r = 1. We may therefore apply Step 1 in the following form for all δ, L > 0 and all
r ≥ 1,

P [Xr,L > δ] = P

[ 
QL/r

(F̃r − E[F̃r]) > δ

]
≤ C exp

(
− δ2

C

(L
r

) dβ
d+β

)
,

where the constant C ≥ 1 is independent of r. Combining this with (4.9) and
choosing r := C| log( δ

eC )| ≥ 1, we obtain for all 0 < δ ≤ 1 and L > 0,

P [XL > δ] ≤ P
[
Xr,L > δ − Ce− r

C

]
≤ P

[
Xr,L >

δ
2

]
≤ C exp

(
− δ2

C

( L

| log( δ
eC )|

) dβ
d+β

)
,

and the conclusion follows. �
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