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Abstract. Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Zd,
every edge is open with a probability p > pc(d), where pc(d) denotes the critical
point. We condition on the event that 0 belongs to the infinite cluster C∞ and we
consider connected subgraphs of C∞ having at most nd vertices and containing 0.
Among these subgraphs, we are interested in the ones that minimize the open
edge boundary size to volume ratio. These minimizers properly rescaled converge
towards a translate of a deterministic shape and their open edge boundary size to
volume ratio properly rescaled converges towards a deterministic constant.

1. Introduction

Isoperimetric problems are among the oldest problems in mathematics. They
consist in finding sets that maximize the volume given a constraint on the perimeter
or equivalently that minimize the perimeter to volume ratio given a constraint on
the volume. These problems can be formulated in the anisotropic case. Given
a norm ν on Rd and S a continuous subset of Rd, we define the tension exerted
at a point x in the boundary ∂S of S to be ν(nS(x))nS(x), where nS(x) is the
exterior unit normal vector of S at x. The quantity ν(nS(x)) corresponds to the
intensity of the tension that is exerted at x. We define the surface energy of S as the
integral of the intensity of the surface tension ν(nS(x)) over the boundary ∂S. An
anisotropic isoperimetric problem consists in finding sets that minimize the surface
energy to volume ratio given a constraint on the volume. To solve this problem, in
Wulff (1901), Wulff introduced through the Wulff construction a shape achieving
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the infimum. This shape is called the Wulff crystal, it corresponds to the unit ball
for a norm built upon ν. Later, Taylor proved in Taylor (1975) that this shape
properly rescaled is the unique minimizer, up to translations and modifications on
a null set, of the associated isoperimetric problem.

The study of isoperimetric problems in the discrete setting is more recent. In the
continuous setting, we study the perimeter to volume ratio, in the context of graphs,
the analogous problem is the study of the size of edge boundary to volume ratio.
This can be encoded by the Cheeger constant. For a finite graph G = (V (G), E(G)),
we define the edge boundary ∂GA of a subset A of V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by ∂A the edge boundary of A in (Zd,Ed) and by |B| the cardinal of the
finite set B. The isoperimetric constant, also called Cheeger constant, is defined as

ϕG = min

{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

The continuous version of this constant was introduced by Cheeger in his thesis
Cheeger (1970) in order to obtain a lower bound for the smallest eigenvalue of the
Laplacian. The discrete version of the Cheeger constant was introduced by Alon
and Milman (1985) and Gabber and Galil (1981). The isoperimetric constant of a
graph gives information on its geometry.

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Zd, every edge
is open with a probability p > pc(d), where pc(d) denotes the critical parameter for
this percolation. We know that there exists almost surely a unique infinite open
cluster C∞ (Grimmett, 1999). In this paper, we want to study the geometry of
C∞ through its Cheeger constant. However, if we minimize the isoperimetric ratio
over all possible subgraphs of C∞ without any constraint on the size, one can show
that ϕC∞ = 0 almost surely. For that reason, we shall minimize the isoperimetric
ratio over all possible subgraphs of C∞ given a constraint on the size. There are
several ways to do it. We can for instance study the Cheeger constant of the graph
Cn = C∞ ∩ [−n, n]d or of the largest connected component C̃n of Cn for n ≥ 1. As
we have ϕC∞ = 0 almost surely, the isoperimetric constants ϕCn and ϕC̃n go to 0

when n goes to infinity. Benjamini and Mossel (2003), Mathieu and Remy (2004),
Fabien Rau (2006), Berger, Biskup, Hoffman and Kozma (Berger et al., 2008), Pete
(2008) proved that ϕC̃n is of order n−1. Roughly speaking, by analogy with the full
lattice, we expect that subgraphs of C̃n that minimize the isoperimetic ratio have
an edge boundary size of order nd−1 and a size of order nd, this is coherent with the
fact that ϕC̃n is of order n−1. This led Benjamini to conjecture that for p > pc(d),
the limit of nϕC̃n when n goes to infinity exists and is a positive deterministic
constant.

This conjecture was solved in dimension 2 by Biskup, Louidor, Procaccia and
Rosenthal in Biskup et al. (2015) and by Gold in dimension 3 in Gold (2018).
They worked on a modified Cheeger constant. Instead of considering the open edge
boundary of subgraphs within Cn, they considered the open edge boundary within
the whole infinite cluster C∞, this is more natural because Cn has been artificially
created by restricting C∞ to the box [−n, n]d. They also added a stronger constraint
on the size of subgraphs of Cn to ensure that minimizers do not touch the boundary
of the box [−n, n]d. Moreover, the subgraphs achieving the minimum, properly
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rescaled, converge towards a deterministic shape that is the Wulff crystal. Namely,
it is the shape solving the continuous anisotropic isoperimetric problem associated
with a norm βp corresponding to the surface tension in the percolation setting.
The quantity nϕCn converges towards the solution of a continuous isoperimetric
problem.

Dealing with the isoperimetric ratio within Cn needs to be done with caution.
Indeed, we do not want minimizers to be close to the boundary of Cn because
this boundary does not exist in C∞. There is another way to define the Cheeger
constant of C∞, that is more natural in the sense that we do not restrict minimizers
to remain in the box [−n, n]d. This is called the anchored isoperimetric profile ϕn
and it is defined by:

ϕn = min

{
|∂C∞H|
|H|

: 0 ∈ H ⊂ C∞, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ C∞}. We say that H is a valid subgraph if
0 ∈ H ⊂ C∞, H is connected and |H| ≤ nd. We also define

∂oH =
{
e ∈ ∂H, e is open

}
.

Note that if H ⊂ C∞, then ∂C∞H = ∂oH. For each n, let Gn be the set of the valid
subgraphs that achieve the infimum in ϕn. In this context, a minimizer Gn ∈ Gn
can go potentially very far from 0. The minimizer Gn properly rescaled does not
belong anymore to a compact set. This lack of compactness is the main issue to
overcome to prove that the limit exists. It was done in dimension 2 in Biskup et al.
(2015), with a specific norm that cannot be extended to higher dimensions. We
need to introduce some definitions to be able to define properly a limit shape in
dimension d ≥ 2. In order to build a continuous limit shape, we shall define a
continuous analogue of the open edge boundary. In fact, we will see that the open
edge boundary may be interpreted in term of a surface tension I, in the following
sense. Given a norm τ on Rd and a subset E of Rd having a regular boundary, we
define Iτ (E) as

Iτ (E) =

∫
∂E

τ(nE(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d−1. The quantity Iτ (E)
represents the surface tension of E for the norm τ . At the point x, the tension has
intensity τ(nE(x)) in the direction of the normal unit exterior vector nE(x). We
denote by Ld the d-dimensional Lebesgue measure. We can associate with the norm
τ the following isoperimetric problem:

minimize
Iτ (E)

Ld(E)
subject to Ld(E) ≤ 1 .

We use the Wulff construction to build a minimizer for this anisotropic isoperimetric
problem. We define the set Ŵτ as

Ŵτ =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ τ(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd. The
set Ŵτ/Ld(Ŵτ ) is a minimizer for the isoperimetric problem associated with τ . We
will build in section 3 an appropriate norm βp for our problem that will be directly
related to the open edge boundary ratio. We will denote by Ip the surface tension
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associated with βp. We define the Wulff crystal Wp as the dilate of Ŵβp
such that

Ld(Wp) = 1/θp, where θp = P(0 ∈ C∞).
In this paper, we adapt the proof of Gold to any dimension d ≥ 2 to give a

self-contained proof of the existence of the limit for the anchored isoperimetric
profile. Note that this proof also holds in dimension 2, it gives an alternative proof
of Biskup et al. (2015) with a simpler norm. The interest of this result is to prove
the existence of the isoperimetric constant for a more natural definition. Although
proving the existence of the anchored isoperimetric profile involves more technical
difficulties, the anchored isoperimetric profile itself is a simpler object to study.
Cerf and Dembin studied the anchored isoperimetric profile ϕn at pc in Cerf and
Dembin (2020). Studying the behavior of ϕCn at pc would have required much more
work. The aim of this paper is the proof of the two following Theorems. The first
theorem asserts the existence of the limit of nϕn.

Theorem 1.1. Let d ≥ 2, p > pc(d) and let βp be the norm that will be properly
defined in section 3. Let Wp be the Wulff crystal for this norm, i.e., the dilate of
Ŵβp

such that Ld(Wp) = 1/θp. Then, conditionally on {0 ∈ C∞},

lim
n→∞

nϕn =
Ip(Wp)

θpLd(Wp)
= Ip(Wp) a.s..

The second theorem shows that the graphs Gn realizing the minimum converge
in probability towards a translate of Wp.

Theorem 1.2. Let d ≥ 2 and p > pc(d). Let ε > 0. There exists positive constants
C1 and C2 depending on d, p and ε such that, for all n ≥ 1,

P
(

max
Gn∈Gn

inf
x∈Rd

1

nd
∣∣Gn∆(n(x+Wp) ∩ C∞)

∣∣ ≥ ε ∣∣∣ 0 ∈ C∞) ≤ C1 e−C2n
1−3/2d

,

where ∆ denotes the symmetric difference.

Remark 1.3. We emphasize the fact that when we restrict theorems 1.1 and 1.2 to
dimension two, we obtain a weaker version of already existing results. Namely, in
Biskup et al. (2015), the authors used methods specific to dimension two in order to
derive a uniform convergence in the shape theorem. Whereas here, we only obtain
L1-convergence.

To prove Theorem 1.1, we first prove a large deviations result from above for
nϕn stated in the following Theorem.

Theorem 1.4. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive
constants C1 and C2 depending on p, d, ε such that, for all n ≥ 1,

P
(
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .

The proof of Theorem 1.4 is inspired by the proof of Theorem 5.4 in Gold (2018).
We shall build a valid subgraph that has an isoperimetric ratio close to ϕn. In order
to do so, we approximate the Wulff shape Wp from the inside by a convex polytope
P . We shall build a cutset Γn that cuts nP from infinity whose number of open
edges is close to nd−1Ip(P ) with high probability. For each face F of P and v its
associated exterior unit normal vector, we consider the cylinder cyl(F + εv, ε) of
basis F + εv and of height ε > 0. We build E by merging the cutsets from the top
to the bottom of minimal capacity of the cylinders cyl(F + εv, ε). The union of
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these cutsets is not yet a cutset itself because of the potential holes between these
cutsets. We fix this issue by adding extra edges to fill the holes. We control next
the number of extra edges we have added. We also need to control the capacity
of the cutsets in a cylinder of polyhedral basis. We next build a valid subgraph
Hn ⊂ Zd from Γn by taking all the vertices of C∞ ∩ nP that are connected to 0
without using edges in Γn. We expect that |Hn| is of order θp(d)ndLd(P ). We can
bound |∂C∞Hn| from above thanks to the number of open edges in Γn and so we
control the isoperimetric ratio of Hn. Finally, we control the upper large deviations
for this number of open edges thanks to the upper large deviations for the flow in a
cylinder of polyhedral basis. The next step is to obtain the large deviations result
from below.

Theorem 1.5. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive
constants C1 and C2 depending on p, d, ε such that, for all n ≥ 1,

P
(
nϕn ≤ (1− ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n
1−3/2d) .

Remark 1.6. The deviation order in Theorem 1.5 is not optimal due to technical
details of the proof. In this work we do not make any attempt to get the proper
order of deviation. Our aim is mainly to obtain Theorems 1.1 and 1.2. The study
of the large deviations order would be an interesting problem in itself.

Theorem 1.1 follows from Theorem 1.4 and Theorem 1.5 by a straightforward ap-
plication of the Borel-Cantelli Lemma. Proving the large deviations result from
below is the most difficult part of this work. To be able to compare discrete objects
with continuous ones, we shall encode each optimizer Gn ∈ Gn as a measure µn
defined as

µn =
1

nd

∑
x∈V (Gn)

δx/n .

We first need to build from a minimizer Gn an appropriate continuous object Pn.
To do so, we use the same method as in Gold (2018). The main issue is that the
boundary of Gn may be very tangled, we will have to build a smoother boundary
of size of order nd−1. This will enable us to build a continuous object Pn of finite
perimeter such that, with high probability, its associated measure is close to µn in
some sense to be specified later.

Let F be a subset of Rd. We define its associated measure νF :

∀E ∈ B(Rd), νF (E) = θpLd(F ∩ E) .

We now define the setW of the measures associated with the translates of the Wulff
shape as

W =
{
νx+Wp : x ∈ Rd

}
.

Note that µn belongs toM(Rd), the set of finite measures on Rd. We cannot use
a metric as in Gold (2018) where µn was a measure on [−1, 1]d. In fact, we will
not use a metric here. We first show that all the minimizers Gn ∈ Gn are with high
probability in a local neighborhood of W for a weak topology. This is the key step
before proving Theorem 1.5.

Theorem 1.7. Let d ≥ 2 and p > pc(d). Let u :]0,+∞[→]0,+∞[ be a non-
decreasing function such that limt→0 u(t) = 0. For all ζ > 0, there exist positive
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constants C1 and C2 depending on d, p, u and ζ such that for all n ≥ 1, for any
finite set Fn of uniformly continuous functions that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

we have

P

(
∃Gn ∈ Gn, ∀ν ∈ W, sup

f∈Fn

|µn(f)− ν(f)| > ζ
∣∣∣0 ∈ C∞) ≤ C1 e−C2n

1−3/2d

.

The main difficulty of this paper lies in the proof of this theorem. In our context,
an issue that was not present in Gold (2018) arises. Whereas the support of the
measure µn was included in a fixed compact set in Gold (2018), this is not the case
here because we do not constrain Gn ∈ Gn to remain in the box [−n, n]d. To fix
this issue, we will use the method developed in Cerf (2006). We will first localize
the set Gn in a finite number of balls of radius of order n up to a set of small
fractional volume. We will study Gn only inside these balls, i.e., the intersection of
Gn with these balls. The intersection of Gn with the boundary of these balls will
create an additional surface tension. However, this surface tension is not related to
the open boundary edges of Gn but to the fact that we have cut Gn along these
boundaries. Therefore, we should not take this surface tension into account for
the isoperimetric constant. In fact, we will cut Gn in such a way to ensure that
we do not create too much surface tension, i.e., we will cut in regions where Gn
is not concentrated. To conclude, we will link the probability that the measure
µn corresponding to Gn ∈ Gn is far from a weak neighborhood of W with the
probability that the surface tension of Gn is locally abnormally small.

Finally, to prove Theorem 1.2, we exhibit a set Fn of uniformly continuous
functions such that we can bound from above the symmetric difference |Gn∆(n(x+
Wp)∩C∞)| by supf∈Fn

|µn(f)− ν(f)| for some ν ∈ W and then apply the result of
Theorem 1.7.

The rest of the paper is organized as follows. In section 2, we give some definitions
and useful results. We do the construction of the norm βp in section 3. In section 4,
we prove the upper large deviations in Theorem 1.4. We build a continuous object
Pn from a minimizer Gn ∈ Gn and prove that its associated measure is close in
some sense to the measure µn of Gn in section 5. Finally, in section 6, we prove
Theorem 1.7 that is a preliminary work before proving the lower large deviations
Theorem 1.5 and the convergence of Gn properly rescaled towards a limit shape in
Theorem 1.2.

2. Some definitions and useful results

2.1. Geometric notations. For x = (x1, . . . , xd), we define

‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max

1≤i≤d
|xi| .

We say that x, y ∈ Zd are ∗-connected if ‖x−y‖∞ = 1. We say that γ = (x0, . . . , xn)
is an ∗-path of Zd if for any 0 ≤ i ≤ n− 1, the points xi and xi+1 belong to Zd and
are ∗-connected. We say that Γ is ∗-connected or a lattice animal if any x, y ∈ Γ
are connected by an ∗-path in Γ. We denote by Animalsx the set of lattice animals
containing the point x ∈ Zd.
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Lemma 2.1 (Kesten, 1986, p82 or Grimmett, 1999, p85). Let x ∈ Zd. For all
positive integer l,

|{Γ ∈ Animalsx, |Γ| = l}| ≤ (7d)l .

Let S ⊂ Rd and r > 0, we define d2(x, S) = infy∈S ‖x−y‖2 and V(S, r) the open
r-neighborhood of S by

V(S, r) =
{
x ∈ Rd : d2(x, S) < r

}
.

Let x ∈ Rd, r > 0 and a unit vector v. We denote by B(x, r) the closed ball of
radius r centered at x, by disc(x, r, v) the closed disc centered at x of radius r
normal to v, and by B+(x, r, v) (respectively B−(x, r, v)) the upper (resp. lower)
half part of B(x, r) along the direction of v, i.e.,

B+(x, r, v) =
{
y ∈ B(x, r) : (y − x) · v ≥ 0

}
,

and
B−(x, r, v) =

{
y ∈ B(x, r) : (y − x) · v ≤ 0

}
.

We denote by αd the Ld measure of a unit ball in Rd. We denote by Hd−1 the
Hausdorff measure in dimension d− 1. In particular, the Hd−1 measure of a d− 1
dimensional unit disc in Rd is equal to αd−1. Let A be a non-degenerate hyper-
rectangle, i.e., a rectangle of dimension d− 1 in Rd. Let −→v be one of the two unit
vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder of basis A and
height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h). Note that these defini-
tions of cylinder may be extended in the case where A is of linear dimension d− 1,
i.e., A is included in an hyperplane of Rd, which is the affine span of A.

2.2. Sets of finite perimeter and surface energy. The perimeter of a Borel set S of
Rd in an open set O is defined as

P(S,O) = sup

{∫
S

div f(x)dLd(x) : f ∈ C∞c (O,B(0, 1))

}
,

where C∞c (O,B(0, 1)) is the set of the functions of class C∞ from Rd to B(0, 1)
having a compact support included in O, and div is the usual divergence operator.
The perimeter P(S) of S is defined as P(S,Rd). The topological boundary of S
is denoted by ∂S. The reduced boundary ∂∗S of S is a subset of ∂S such that,
at each point x of ∂∗S, it is possible to define a normal vector nS(x) to S in a
measure-theoretic sense, and moreover P(S) = Hd−1(∂∗S). Let ν be a norm on
Rd. We define its associated Wulff crystal Wν as

Wν =
{
x ∈ Rd : ∀y, y · x ≤ ν(y)

}
.

With the help of the Wulff crystal, we define the surface energy of a general set.

Definition 2.2. Let ν be a norm on Rd. The surface energy Iν(S,O) of a Borel
set S of Rd in an open set O is defined as

Iν(S,O) = sup

{∫
S

div f(x)dLd(x) : f ∈ C1
c (O,Wν)

}
.



212 B. Dembin

We will note simply Iν(S) = Iν(S,Rd).

Proposition 2.3 (Proposition 14.3 in Cerf, 2006). The surface energy Iν(S,O) of
a Borel set S of Rd of finite perimeter in an open set O is equal to

Iν(S,O) =

∫
∂∗S∩O

ν(nS(x))dHd−1(x) .

We recall the following fundamental result.

Proposition 2.4 (Isoperimetric inequality). There exist two positive constants biso,
ciso which depend only on the dimension d, such that for any Cacciopoli set E, any
ball B(x, r) ⊂ Rd,

min
(
Ld(E ∩B(x, r)),Ld((Rd \ E) ∩B(x, r))

)
≤ bisoP(E, B̊(x, r))d/d−1,

min
(
Ld(E),Ld(Rd \ E)

)
≤ cisoP(E)d/d−1 .

We refer to Giusti (1984), for more details on Cacciopoli sets, isoperimetric inequal-
ity and other definitions in geometric measure theory.

2.3. Approximation by convex polytopes. We recall here an important result, which
allows us to approximate adequately a set of finite perimeter by a convex polytope.

Definition 2.5 (Convex polytope). Let P ⊂ Rd. We say that P is a convex
polytope if there exist v1, . . . , vm unit vectors and ϕ1, . . . , ϕm real numbers such
that

P =
⋂

1≤i≤m

{
x ∈ Rd : x · vi ≤ ϕi

}
.

We denote by Fi the face of P associated with vi, i.e.,

Fi = P ∩
{
x ∈ Rd : x · vi = ϕi

}
.

Any convex subset can be approximated from the outside and from the inside by a
convex polytope with almost the same surface energy.

Lemma 2.6. Let ν be a norm on Rd. Let A be a bounded convex set. For each
ε > 0, there exist convex polytopes P and Q such that P ⊂ A ⊂ Q and Iν(Q)− ε ≤
Iν(A) ≤ Iν(P ) + ε.

Proof : Let A be a bounded convex set. Let ε > 0. Let (xk)k≥1 be a dense family
in ∂A. For n ≥ 1, we define Pn as the convex hull of x1, . . . , xn, i.e., the smallest
convex that contains the points x1, . . . , xn. As A is convex, we have Pn ⊂ A and
Pn converges towards A when n goes to infinity for the L1 topology. The functional
Iν is lower semi-continuous, thus

Iν(A) ≤ lim inf
n→∞

Iν(Pn) ,

so there exists n large enough such that

Iν(A) ≤ Iν(Pn) + ε

and we take P = Pn. The existence of Q was shown in Lemma 5.1. in Cerf and
Pisztora (2000) for the Wulff shape. The proof may be easily adapted to a general
convex bounded set A.

�
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3. Construction of the norm

Minimizing the open edge boundary is the analogue of minimizing a surface
tension in the continuous setting. We shall build a norm βp that represents the
tension that is exerted on the surface, i.e., any point x in a surface S having nS(x)
as a normal unit exterior vector has a tension βp(nS(x))nS(x) that exerts at the
point x. To build this norm, let us consider Gn ∈ Gn. We zoom on the boundary of
Gn, we look at what happens in a small but macroscopic cube centered at a point
x in the boundary ∂Gn (see Figure 3.1). The cube is located in such a way that
its bottom intersects Gn and its top intersects Zd \ Gn, and it is rotated so that
its normal vector coincides with the normal exterior vector at the point x. As this
cube is small, the portion of Gn in that cube does not affect much |Gn|, the total
volume of Gn. Thus, if one would like to minimize the open edges to volume ratio,
one needs to minimize the number of open edges of ∂Gn in that cube. This problem
is equivalent to finding a set of edges that separates the top from the bottom of the
cube with a minimal number of open edges.

Gn

x

n(x)

Figure 3.1. A small box on the boundary ∂Gn of a minimizer
Gn ∈ Gn

Let us give now a more precise definition of the norm βp. We consider a bond
percolation on Zd of parameter p > pc(d) with d ≥ 2. We introduce many notations
used for instance in Rossignol and Théret (2010) concerning flows through cylinders.
Let A be a non-degenerate hyperrectangle, i.e., a rectangle of dimension d − 1 in
Rd. Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote by
cyl(A, h) the cylinder of basis A and height 2h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The set cyl(A, h) \ A has two connected components, denoted by C1(A, h) and
C2(A, h). For i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h)
defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.
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We say that a set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if any path
γ from C ′1(A, h) to C ′2(A, h) in cyl(A, h) contains at least one edge of E. We call
such a set a cutset. For any set of edges E, we denote by |E|o the number of open
edges in E. We shall call it the capacity of E. We define

τp(A, h) = min
{
|E|o : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)

}
.

Note that this is a random quantity as |E|o is random, and that the cutsets in this
definition are pinned near the boundary of A. Finding cutsets of minimal capacity
is equivalent to the study of maximal flows, see Bollobás (1979). To each edge e, we
can associate the random variable t(e) = 1e is open. In the study of maximal flows,
we interpret each t(e) as the capacity of the edge e, i.e., the maximal amount of
water that can flow through e per unit of time. We are interested in the maximal
amount of water that can flow through the cylinder given the constraint on the
capacity. We refer to Rossignol and Théret (2018) for a rigorous definition of
maximal flows. In the following, we will use the term flow to speak about the
quantity τp. The following proposition is a corollary of Proposition 3.5 in Rossignol
and Théret (2010), it enables us to give a rigorous definition of the norm βp.

Proposition 3.1 (Definition of the norm βp). Let d ≥ 2, p > pc(d), A be a non-
degenerate hyperrectangle and −→v one of the two unit vectors normal to A. Let h
an height function such that limn→∞ h(n) =∞. The limit

βp(
−→v ) = lim

n→∞

E[τp(nA, h(n))]

Hd−1(nA)

exists and is finite. Moreover, this limit is independent of A and h and βp is a
norm.

The norm βp is called the flow constant. Roughly speaking, βp(−→v ) corresponds to
the expected maximal amount of water that can flow in the direction −→v on average.
Actually, we can obtain a stronger convergence. A straightforward application of
Theorem 3.8 in Rossignol and Théret (2010) gives the existence of the following
almost sure limit:

lim
n→∞

τp(nA, h(n))

Hd−1(nA)
= βp(

−→v ) .

We define
βmin = inf−→v ∈Sd−1

βp(
−→v ) , βmax = sup

−→v ∈Sd−1

βp(
−→v ) .

As βp is a norm on Rd, we have βmin > 0 and βmax <∞. We will need the following
upper large deviations result which is a straightforward application of Theorem 4
in Theret (2014).

Theorem 3.2. Let d ≥ 2 and p > pc(d). For every unit vector −→v , for every non-
degenerate hyperrectangle A normal to −→v , for every h > 0 and for every λ > βp(

−→v ),
there exist C1 and C2 depending only on λ and G, such that, for all n ≥ 0,

P
(
τp(nA, hn) ≥ λHd−1(A)nd−1

)
≤ C1 exp(−C2hn

d) .

To ease the reading and lighten the notations, the value of the constants may
change from appearance to appearance.
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4. Upper large deviations

4.1. The case of a cylinder. The aim of this section is to prove Theorem 1.4. A
convex polytope of dimension d − 1 is a convex polytope F which is contained in
an hyperplane of Rd and such that Hd−1(F ) > 0. We have the following Lemma.

Lemma 4.1. Let p > pc(d). Let F be a convex polytope of dimension d−1. Let v be
a unit vector normal to F . There exist positive real numbers C1 and C2 depending
on F , p and d such that for all n ≥ 1, for all λ > βp(v)Hd−1(F ), for all h > 0

P(τp(nF, nh) ≥ λnd−1) ≤ C1 exp(−C2hn
d) .

Proof : Let p > pc(d). Let F be a convex polytope of dimension d − 1 and v
a unit vector normal to F . We shall cover F by a finite family of hypersquares
and control the probability that the flow is abnormally big in cyl(nF, nh) by the
probability that the flow is abnormally big in one of the cylinders of square basis.
Let λ > βp(v)Hd−1(F ). Let κ > 0 be a real number that we will choose later. We
denote by S(κ) an hypersquare of dimension d− 1 of side length κ and normal to
v. We want to cover the following region of F by hypersquares isometric to S(κ):

D(κ, F ) =
{
x ∈ F : d(x, ∂F ) > 2

√
dκ
}
.

There exists a finite family (Si)i∈I of closed hypersquares isometric to S(κ) included
in F having pairwise disjoint interiors, such that D(κ, F ) ⊂ ∪i∈ISi (see Figure 4.2).
Moreover, there exists a constant cd depending only on the dimension d such that

Hd−1
(
F \D(κ, F )

)
≤ cdHd−2(∂F )κ . (4.1)

We have then

|I| ≤ Hd−1(F )

Hd−1(S(κ))
. (4.2)

Let h > 0. We would like to build a cutset between C ′1(nF, nh) and C ′2(nF, nh) out

SiF

D(κ, F )

An hypersquare of
side length κ

Figure 4.2. Covering P with hypersquares



216 B. Dembin

of minimal cutsets for the flows τp(nSi, nh), i ∈ I. Note that a cutset that achieves
the infimum defining τp(nSi, nh) is pinned near the boundary ∂nSi. However,
if we pick up two hypersquares Si and Sj that share a common side, due to the
discretization, their corresponding minimal cutsets for the flow τp do not necessarily
have the same trace on the common face of the associated cylinders cyl(nSi, nh)
and cyl(nSj , nh). We shall fix this problem by adding extra edges around the
boundaries of the hypersquares ∂Si in order to glue properly the cutsets. We will
need also to add extra edges around n(F \ D(κ, F )) in order to build a cutset
between C ′1(nF, nh) and C ′2(nF, nh). For i ∈ I, let Ei be a minimal cutset for
τp(nSi, nh), i.e., Ei ⊂ Ed cuts C ′1(nSi, nh) from C ′2(nSi, nh) in cyl(nSi, nh) and
|Ei|o = τp(nSi, nh). We fix ζ = 4d. Let E0 be the set of edges of Ed included in
E0, where we define

E0 =
{
x ∈ Rd : d

(
x, nF \

⋃
i∈I

nSi

)
≤ ζ

}
∪
⋃
i∈I

{
x ∈ Rd : d(x, ∂nSi) ≤ ζ

}
.

The set of edges E0∪
⋃
i∈I Ei separates C

′
1(nF, nh) from C ′2(nF, nh) in the cylinder

cyl(nF, nh), therefore,

τp(nF, nh) ≤ |E0|o +
∑
i∈I
|Ei|o ≤ card(E0) +

∑
i∈I

τp(nSi, nh) . (4.3)

There exists a constant c′d depending only on d such that, using inequalities (4.1)
and (4.2),

card(E0) ≤ c′d
(
κnd−1Hd−2(∂F ) + |I|Hd−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) +

Hd−1(F )

Hd−1(S(κ))
Hd−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) +

Hd−1(F )

κ
nd−2

)
.

Thus, for n large enough,

card(E0) ≤ 2c′d κHd−2(∂F )nd−1 . (4.4)

There exists s > 0 such that λ > (1 + s)βp(v)Hd−1(F ). We choose κ small enough
such that

2c′dκHd−2(∂F ) <
s

2
βminHd−1(F ) . (4.5)

Inequalities (4.4) and (4.5) yield that

card(E0) ≤ s

2
βp(v)nd−1Hd−1(F ) . (4.6)

Thanks to inequality (4.6), we obtain

P(τp(nF, nh) ≥ λnd−1)

≤ P

(
card(E0) +

∑
i∈I

τp(nSi, nh) ≥ (1 + s)βp(v)Hd−1(F )nd−1

)
≤
∑
i∈I

P(τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)n
d−1) . (4.7)
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Thanks to Theorem 3.2, there exist positive real numbers C1, C2 such that, for all
i ∈ I,

P(τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)n
d−1) ≤ C1 exp(−C2hn

d) . (4.8)

By combining inequalities (4.7) and (4.8), we obtain

P(τp(nF, nh) ≥ λnd−1) ≤ |I|C1 exp(−C2hn
d) ,

and the result follows. �

We can now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4: Let ε > 0 and ε′ > 0. By Lemma 2.6, there exists a convex
polytope P such that P ⊂Wp, Ip(P ) ≤ (1+ε′)Ip(Wp) and Ld(P ) ≥ (1−ε′)Ld(Wp).
Up to multiplying P by a constant α < 1 close to 1, we can assume without loss of
generality that Ld(P ) < Ld(Wp). We have, for small enough ε′ (depending on ε),

P
(
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞)
≤ P

(
nϕn ≥ (1 + ε/2)

(
1 + ε′

1− ε′

)
Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞)
≤ P

(
nϕn ≥ (1 + ε/2)

Ip(P )

θp(d)Ld(P )

∣∣∣ 0 ∈ C∞) . (4.9)

Let us denote by F1, . . . , Fm the faces of P and let v1, . . . , vm be the associated
exterior unit vectors. Let δ > 0. For i ∈ {1, . . . ,m}, we define

Ci = cyl(Fi + δvi, δ) .

All the Ci are of disjoint interiors because P is convex. Indeed, assume there exists
z ∈ C̊i ∩ C̊j for some i 6= j. Then there exist unique x ∈ Fi, y ∈ Fj and h, h′ < 2δ
such that z = x+hvi = y+h′vj . The points x and y correspond to the orthogonal
projection of z on P . As P is convex, the orthogonal projection on P is unique
and so x = y = z. This contradicts the fact that z belongs to the interior of Ci.
We now aim to build a cutset that cuts nP from infinity out of cutsets of minimal
capacities for τp(n(Fi + δvi), nδ), i ∈ {1, . . . ,m}. The union of these cutsets is
not enough to form a cutset from nP to infinity because there are holes between
these cutsets. We shall add edges around the boundaries ∂(n(Fi + δvi)) to close
these holes (see Figure 4.3). As the distance between two adjacent boundaries
∂(n(Fi + δvi)) decreases with δ, by taking δ small enough, the size of the bridges
and so their capacities are not too big. We recall that the capacity of a set, namely
the number of open edges in the set, may be bounded from above by its size. Next,
we control the maximal flow through the cylinders or equivalently the capacity of
minimal cutsets in the cylinders with the help of Lemma 4.1.

For i ∈ {1, . . . ,m}, let E′i be a minimal cutset for τp(n(Fi + δvi), nδ), i.e., E′i
cuts C ′1(n(Fi + δvi), δ) from C ′2(n(Fi + δvi), δ) and |E′i|o = τp(n(Fi + δvi), δn). We
shall add edges to control the space between E′i and the boundary ∂(n(Fi + δvi)).
Let ζ = 4d. Let i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side. We
define

M(i, j) = (V(nFi ∩ nFj , nδ + ζ) \ V(nFi ∩ nFj , nδ − ζ)) ∩ (nP )c .
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Let Mi,j denote the set of the edges in Edn included in M(i, j) (see Figure 4.3).
There exists a constant c′d depending only on the dimension d such that for all
i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side,

card(Mi,j) ≤ cdδd−1nd−1 . (4.10)

We set
M =

⋃
i,j

Mi,j ,

where the union is over i, j ∈ {1, . . . ,m} such that i 6= j and Fi, Fj share a common
side. The set Γn = M ∪

⋃m
i=1E

′
i cuts nP from infinity. We define Hn to be the set

of the vertices connected to 0 by open paths which do not use an edge of Γn, i.e.,

Hn =
{
x ∈ Zd, x is connected to 0 with open edges in Ed \ Γn

}
.

nWp

nP
2δn

M(i, j)

a face
nFi

a face nFj

a minimal cutset for
τp(n(Fj + δvj), δn)

Figure 4.3. Construction of a cutset Γn from nP to infinity

By definition, the set Hn is connected. As we condition on the event {0 ∈ C∞}, the
set Hn is a subgraph of C∞. As P is a polytope,

Ip(P ) =

m∑
i=1

βp(vi)Hd−1(Fi) .

Moreover, we have
|∂C∞Hn| = |∂oHn| ≤ |Γn|o ,

where the last inequality comes from the fact that, by construction of Hn, if e ∈
∂Hn \ Γn, then e is necessarily closed. Using (4.10), we have

|Γn|o ≤ card(M) +

m∑
i=1

|E′i|o

≤ cdm2δd−1nd−1 +

m∑
i=1

τp
(
n(Fi + δvi), δn

)
. (4.11)
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We choose δ small enough so that

m2cdδ
d−1 < δIp(P )/2 and Ld(V(∂P, 3δ)) ≤ δLd(P ) . (4.12)

Let us now estimate the probability that |Γn|o is abnormally big. Using inequalities
(4.11) and (4.12), we get

P(|Γn|o ≥ (1 + δ)Ip(P )nd−1 | 0 ∈ C∞)

≤ 1

θp
P
(

card(M) +

m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ)

m∑
i=1

βp(vi)Hd−1(Fi)n
d−1
)

≤ 1

θp
P

(
m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ/2)

m∑
i=1

βp(vi)Hd−1(Fi)n
d−1

)

≤ 1

θp

m∑
i=1

P(τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)n
d−1) . (4.13)

By Lemma 4.1, there exist positive constants C1, C2 depending on d, p, P and δ
such that, for all 1 ≤ i ≤ m,

P(τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)n
d−1] ≤ C1 exp(−C2δn

d) . (4.14)

Finally, combining inequalities (4.13) and (4.14), we obtain

P(|Γn|o ≥ (1 + δ)Ip(P )nd−1) ≤ mC1

θp
exp(−C2δn

d) . (4.15)

We shall now estimate the number of vertices in Hn in order to check that Hn

is a valid subgraph. For that purpose, we use a renormalization argument. Let
k > 0. We partition Rd into disjoint cubes of side length 1/k. We define B′j as the
union of Bj and all its 3d − 1 ∗-neighbors (the cubes B having at least one vertex
at L1 distance less than 1 from Bj). We consider B1, . . . , Bl1 the cubes such that
B′1, . . . , B

′
l1

are contained in P \ V(∂P, 2δ) and Bl1+1, . . . , Bl2 the cubes such that
B′l1+1, . . . , B

′
l2

intersect V(∂P, 2δ). We can choose k large enough such that

Ld
(

l2⋃
i=l1+1

Bi

)
≤ Ld(V(∂P, 3δ)) ≤ δLd(P ) . (4.16)

We say that a cube Bj is good if the following event E(j)
n occurs:

• There exists a unique open cluster of diameter larger than n/k in nB′j .

• We have
|C∞ ∩ nBj |
Ld(nBj)

∈ (θp − δ, θp + δ) .

There exist positive constants C1 and C2 depending on d, p, k and δ such that

P(E(j)c
n ) ≤ C1 exp(−C2n) . (4.17)

For a proof of the control of the probability of the first property see Theorem 7.68 in
Grimmett (1999) or Pisztora (1996), for the second property see Pisztora (1996). If
the cube Bj is good, we denote by Cj its unique open cluster of diameter larger than
n/k in nB′j , for 1 ≤ j ≤ l1. On the event

⋂
1≤j≤l1 E

(j)
n ∩

{
0 ∈ C∞

}
, the set

⋃l1
j=1 Cj

is connected without using edges of Γn and contains 0, therefore, it is a subgraph of
Hn. Furthermore, we claim that, on this event, we have C∞∩ (

⋃
1≤j≤l1 nBj) ⊂ Hn.

Indeed, let us assume that there exists x ∈ C∞ ∩ (
⋃

1≤j≤l1 nBj) that does not
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belong to Hn. Both 0 and x belong to C∞, therefore, x is connected to 0 by a path
γ = (x0, e1, . . . , el, xl) with x0 = 0 and xl = x that uses edges in Γn. We define

r = sup
{
i ≥ 1, ei ∈ Γn

}
.

0

x

γ

nP

Γn

xr

nBj

nB′j

Figure 4.4. Vertices in Hn

By construction, as el /∈ Γn, we have r < l. Let us denote γ′ = (xr, er+1, . . . , xl).
The path γ′ is not connected to Hn without using edges in Γn (see Figure 4.4). Let
j such that x ∈ nBj , by construction xr is outside nB′j . Moreover, on the event
E(j)
n , the cube nB′j contains a unique cluster of diameter larger than n/k. As the

path γ′ starts outside nB′j and ends inside nBj , its intersection with nB′j has a
diameter larger than n/k. Besides, the path γ′ is not connected to Hn in nB′j by
an open path, so the cube nB′j contains two open clusters of diameter larger than
n/k. This is a contradiction with the first property of a good cube. Therefore, on
the event

⋂
1≤j≤l1 E

(j)
n ∩

{
0 ∈ C∞

}
,

|Hn| ≥ |C∞ ∩ (∪1≤j≤l1nBj)|

≥ (θp − δ)
l1∑
i=1

Ld(nBi) . (4.18)

Thanks to inequalities (4.16) and (4.18), we obtain

|Hn| ≥ (θp − δ)(1− δ)Ld(nP ) . (4.19)

To ensure that Hn is a valid subgraph, it remains to check that |Hn| ≤ nd, yet we
have

|Hn| ≤ (θp + δ)

l1∑
i=1

Ld(nBi) +

l2∑
i=l1+1

Ld(nBi)

≤ (θp + δ)ndLd(P ) + ndδLd(P )

≤ (θp + 2δ)ndLd(P ) .

As Ld(P ) < Ld(Wp), we can choose δ small enough such that

|Hn| ≤ θpLd(Wp)n
d ≤ nd .
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Finally, on the event⋂
1≤j≤l1

E(j)
n ∩

{
|Γn|o ≤ (1 + δ)Ip(P )nd−1

}
∩
{

0 ∈ C∞
}
,

combining (4.11) and (4.19), we obtain, for small enough δ,

nϕn ≤
|Γn|o
|Hn|

≤ (1 + δ)
Ip(P )

(θp − 2δ)(1− δ)Ld(P )
≤ (1 + ε/2)

Ip(P )

θpLd(P )
.

Combining the result of Lemma 4.1 and inequalities (4.9), (4.15) and (4.17), we
obtain

P
(
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞)
≤ l1C1

θp
exp(−C2n) +

mC1

θp
exp(−C2δn

d) .

This yields the result. �

5. Construction of a continuous object

The aim of this section is to build a continuous object Pn from a minimizer
Gn ∈ Gn.

5.1. Some useful results on the minimizers. The following lemma ensures that the
size of the minimizers Gn ∈ Gn are of order nd.

Lemma 5.1. Let d ≥ 2 and p > pc(d). There exist positive constants D1, D2 and
η1 depending only on d and p such that, for all n ≥ 1,

P
(
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ ) ≤ D1 exp(−D2n

(d−1)/2d)) .

To prove Lemma 5.1, we adapt the proof of Lemma A.8 in Gold (2018). We
need the following proposition that ensures that the open edge boundary of a large
subgraph is not too small.

Proposition 5.2 (Berger-Biskup-Hoffman-Kozma, Proposition 5.2. in Berger et al.,
2008). Let d ≥ 2 and p > pc(d). There exist positive constants c1, c2 and c3
depending only on d and p such that, for all t ≥ 0,

P
(

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c3|G|(d−1)/d

)
≤ c1 exp(−c2t) .

Proof of Lemma 5.1: Thanks to Theorem 1.4, there exist positive constants c′1, c′2
and c′3 depending only on p and d such that for all n ≥ 1,

P
(
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ ) ≤ c′1 exp(−c′2n) .

Let Gn ∈ Gn. If |Gn| ≤
√
n, as Gn ⊂ C∞ the set ∂oGn is non empty on the event

{0 ∈ C∞} and so ϕn ≥ n−1/2. This is impossible for large n. We now assume |Gn| >√
n. Using Proposition 5.2 with t = n(d−1)/2d, conditioning on {0 ∈ C∞}, we obtain

that |∂oGn| ≥ c3|Gn|(d−1)/d with probability at least 1 − c1 exp(−c2n(d−1)/2d)/θp.
Moreover, on the event

{
ϕn ≤ c′3n−1

}
∩
{

0 ∈ C∞
}
, we obtain

c3|Gn|−1/d ≤ |∂
oGn|
|Gn|

= ϕn ≤ c′3n−1.
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So we set η1 = (c3/c
′
3)d. Finally,

P
(
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ )

≤ P
(
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ )+
c1
θp

exp(−c2n(d−1)/2d)

≤ c′1 exp(−c′2n) +
c1
θp

exp(−c2n(d−1)/2d) .

This yields the result. �

5.2. Construction of a continuous set. To study the upper large deviations, we
needed to go from a continuous object to a discrete object. In this section, we do
the opposite. From now on, we will always condition on the event {0 ∈ C∞}. We
start with Gn ∈ Gn and we build a continuous object Pn. Our goal is to build
a continuous object of finite perimeter which is close to n−(d−1)|∂oGn|. Although
it seems natural to take the continuous object Pn = n−1(Gn + [−1/2, 1/2]d), this
turns out to be a bad choice because the boundary ∂Gn may be very tangled and
its size may be of higher order than nd−1. We will build from Gn a graph Fn with
a smoother boundary Γn ⊂ Ed in order to build the continuous object Pn. At
this point, there is some work left. If we consider the subgraph Fn that contains
all the vertices in C∞ enclosed in Γn, the symmetric difference Fn∆Gn may be
big due to the presence of holes in Gn, more precisely portions of C∞ enclosed in
Γn but not contained in Gn (see Figure 5.5). Indeed, if these holes are too large,
the symmetric difference Fn∆Gn will be large too. However, we cannot keep all
the holes in Gn to build Fn because when we will pass to a continuous object Pn,
these holes will considerably increase the perimeter of Pn so that Pn may have a
too large perimeter. The solution is to fill only the small holes to obtain Fn so
that the perimeter of Pn remains of the correct order and the symmetric difference
Fn∆Gn remains small. In order to do so, we shall perform Zhang’s construction in
Zhang (2018) to obtain a smooth boundary Γn for Gn but also to surgically remove
these large holes from Gn by cutting along a smooth boundary. This work was
done in Gold (2018). We will only partially sketch Zhang’s construction and we
refer to Zhang (2018) for a rigorous proof and more details about the construction.
Although we did the same construction as Gold (2018), we do not use the same
argument to conclude. Gold used a procedure called webbing to link all the different
contours together in order to obtain a single connected object, this simplifies the
combinatorial estimates. Here, we do not perform the webbing procedure, instead
we use adequate combinatorial estimates. Avoiding the webbing procedure enables
us to extend the result to dimension 2.

Let us define a renormalization process. For a large integer k, that will be chosen
later, we set Bk = [−k, k[d∩Zd and define the following family of k-cubes, for i ∈ Zd,

Bk(i) = τi(2k+1)(Bk) ,

where τb denotes the shift in Zd with vector b ∈ Zd. The lattice Zd is the disjoint
union of this family: Zd = ti∈ZdBk(i). We introduce larger boxes B′k, for i ∈ Zd,
we define

B′k(i) = τi(2k+1)(B3k).

Underscore will be used to denote sets of cubes. For any set of k-cubes A, the set A′

denotes the set of the corresponding 3k-cubes. Let Gn ∈ Gn. We first use Zhang’s
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construction to build a smooth cutset Γn that separatesGn from infinity. We denote
by A the set of k-cubes that intersect ∂eGn, the exterior edge boundary of Gn. We
then modify the current configuration ω into a configuration ω′ by closing all the
open edges in ∂Gn. This procedure is only formal as we will eventually reopen
these edges. Zhang’s construction enables us to extract a set of cubes Γ ⊂ A such
that Γ is ∗-connected and in the configuration ω′, the union of the 3k-cubes of Γ′

contains a closed cutset Γn that isolates Gn from infinity and a rare event occurs
in every cube of Γ. These rare events are due to the existence of a closed cutset
that creates a large interface of closed edges, this is a very unlikely event when
p > pc(d). Of course, when we will eventually switch back to the configuration ω,
these rare events will not occur anymore in some cubes.

Several connected components of C∞ \ Gn in Zd \ Γn are enclosed in Γn (see
Figure 5.5). We say that a connected component C of C∞ is surrounded by Γn if
any path from C to infinity has to use an edge of Γn. We will say that C is large if
|C| ≥ n1−1/2(d−1). We enumerate the large connected components L1, . . . , Lm and
the small connected component S1, . . . , SN . We denote by m(Gn) the number of
large connected components of C∞ \Gn enclosed in Γn.

Remark 5.3. We insist here on the fact that these large components are not holes
of the infinite cluster but holes of Gn (see Figure 5.5). Intuitively, we do not expect
that a minimizer contains such holes because the graph obtained by filling all these
holes have a smaller isoperimetric ratio. Indeed, by filling these holes, we reduce
the open edge boundary and increase the volume. However, by filling these holes,
the volume may exceed nd and the graph we obtain by filling these holes may not
be admissible. That is the reason why we cannot easily discard the presence of
these large holes inside Gn. To obtain the proper order of large deviations, one
would have to fix this issue.

We then build Fn ⊂ C∞ by filling the small connected components S1, . . . , SN
of Gn, i.e.,

Fn = Gn ∪
N⋃
i=1

Si . (5.1)

At this point, the boundary ∂Fn \∂eFn of Fn may be still tangled around the large
components. In the configuration ω′, for each 1 ≤ j ≤ m, there exists a closed
cutset that separates Lj from infinity. We can apply Zhang’s construction to each
component Lj in order to build a smooth closed cutset Γ̂

(j)
n and its corresponding

set of k-cubes Γ̂
(j)

n . Thanks to Zhang’s construction, the set of cubes Γ̂
(j)

n is ∗-
connected and in the configuration ω′, a rare event occurs in each of its cubes. We
denote the boundary of Fn by Γ̃n and its associated set of k-cubes Γ̃n as

Γ̃n = Γn ∪
m⋃
i=1

Γ̂(i)
n , Γ̃n = Γn ∪

m⋃
i=1

Γ̂
(i)

n .

The set of k-cubes Γ̃n is not ∗-connected. It only contains cubes where a rare event
occurs in the configuration ω′. Although for some cubes these events do not occur
anymore in the configuration ω, we can bound from below the number of cubes that
remain unchanged by |Γ̃n| − |∂oGn|. In these cubes, rare events still occur when
we switch back to the original configuration ω. Using a Peierls argument, we can
deduce that, with high probability, |Γ̃n| and |∂oGn| are of same order when k is
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Gn

Γn

a small
component

Si

a large component
Lj

Γ̂jn

Figure 5.5. Construction of Γ̃n for a Gn ∈ Gn

taken large enough. To perform the combinatorial estimates we will need the two
following propositions.

Proposition 5.4 (Lemmas 6 and 7 in Zhang, 2018). Let d ≥ 2 and let p > pc(d).
There exist positive constants C1 and C2 depending only on p and d such that for
each k-cube Bk,

P(a rare event occurs in Bk) ≤ C1 e−C2k .

Moreover, this rare event depends only on the configuration of the 3k-cube B′k.

Remark 5.5. We do not define here what these rare events are, we refer to Zhang
(2018) for a precise definition of these rare events. For our purpose we only need
to know that the decay is exponential in k. We say that a cube is abnormal if a
rare event occurs in this cube.

Proposition 5.6. Let d ≥ 2 and p > pc(d). There exist positive constants c1, c2
and c3 such that

P
(
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d
∣∣ 0 ∈ C∞) ≤ c1 exp(−c2n1−3/2d) .

Proof : Thanks to Theorem 1.4, there exist positive constants C ′1, C ′2 and C ′3 de-
pending only on p and d such that for all n ≥ 1,

P
(
ϕn ≥ C ′3n−1

∣∣ 0 ∈ C∞ ) ≤ C ′1 exp(−C ′2n) .

Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3n−1|Gn| ≤ C ′3nd−1 .

Thanks to Proposition 5.2, there exist positive constants c′1, c′2 and c′3 depending
only on p and d such that, for all t ≥ 0, we have

P
(

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ c′1 exp(−c′2t) . (5.2)
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In the following, we set t = n(1−1/2(d−1))(d−1)/d = n1−3/2d. First notice that by
construction, each Lj is contained in [−nd, nd] ∩ Zd. We have

P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−1/2(d−1))d/(d−1)

∣∣ 0 ∈ C∞ )
≤ P

(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3|Li|d/(d−1)

∣∣ 0 ∈ C∞)
≤ 1

θp
P
(

There exists an open connected graph G contained in
[−nd, nd] ∩ Zd such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ 1

θp

∑
x∈[−nd,nd]∩Zd

P
(

There exists an open connected graph G containing
x such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
.

Using the translation invariance together with inequality (5.2), we obtain

P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞ )
≤ (2nd)d

θp
P
(

There exists an open connected graph G containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ (2nd)d

θp
c′1 exp(−c′2n1−3/2d) .

By construction, for all i ∈ {1, . . . ,m(Gn)}, we have ∂oLi ⊂ ∂oGn and for all
j ∈ {1, . . . ,m(Gn)} such that i 6= j, we have ∂oLi ∩ ∂oLj = ∅. Thus, with high
probability,

m(Gn) ≤ |∂oGn|
c′3n

(1−ε)d/(d−1)
≤ C ′3n

d−1

c′3n
1−3/2d

≤ C ′3
c′3
nd−2+3/2d .

Finally, by setting c3 = C ′3/c
′
3, we obtain

P
(
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d
∣∣ 0 ∈ C∞ )

≤ P
(
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ )+ P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)},
|∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞)
≤ C ′1 exp(−C ′2n) +

(2nd)d

θp
c′1 exp(−c′2n1−3/2d) .

This yields the result. �

Using the control on the number of large components m(Gn) of C∞ enclosed in
Γn and a Peierls argument, we obtain the following control of |Γ̃n|:

Proposition 5.7. Let d ≥ 2 and p > pc(d). There exist positive constants β0, C1,
C2 depending only on d and p such that, for all n ≥ 1, for all β ≥ β0,

P
(

max
Gn∈Gn

|Γ̃n| ≥ βnd−1
∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n

1−3/2d) .

Proof : Let k be a large integer that we will choose later. We consider a renormal-
ization process of parameter k. Let Gn ∈ Gn. First notice that as Γ̃n ⊂

⋃
B∈Γ̃n

B′,
we have

|Γ̃n| ≤ (6k)d|Γ̃n| .
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Thus, it is enough to control the quantity |Γ̃n| to prove Proposition 5.7. We can
rewrite Γ̃n as

Γ̃n =

m′⋃
i=1

Ai with m
′ ≤ m(Gn)

where the Ai are pairwise disjoint ∗-connected sets of cubes. Thanks to Theo-
rem 1.4, there exist positive constants C ′1, C ′2 and C ′3 depending only on p and d
such that for all n ≥ 1,

P
(
ϕn ≥ C ′3n−1

∣∣ 0 ∈ C∞ ) ≤ C ′1 exp(−C ′2n) . (5.3)

Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3nd−1 .

We choose β large enough such that

C ′3 ≤
β

2 · 4d
,

so that

|∂oGn| ≤ C ′3nd−1 ≤ β

2 · 4d
nd−1 .

We now want to sum over the possible realizations of Γ̃n. Using Proposition 5.6
together with inequality (5.3), we get

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣∣ 0 ∈ C∞)
≤ P

(
∃Gn ∈ Gn,

∑m′

i=1 |Ai| ≥ βnd−1, m′ ≤ c′3nd−2+3/2d,

|∂oGn| ≤ β
2·4dn

d−1

∣∣∣ 0 ∈ C∞)
+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n)

≤
∑

j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1

|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

P
(
∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞)

+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n) . (5.4)

Let us assume Γ̃n =
⋃m′
i=1Ai. We can extract from Γ̃n a set of k-cubes Γ̃′n

such that |Γ̃′n| ≥ |Γ̃n|/4d and for any i 6= j such that Bk(i), Bk(j) ∈ Γ̃′n we
have B′k(i) ∩ B′k(j) = ∅. As the rare event depends only on the configuration
in the 3k-cube B′k(j), the two following events

{
a rare event occurs in Bk(i)

}
and{

a rare event occurs in Bk(j)
}
are independent. Using Proposition 5.4, we obtain

P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞

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≤ P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |Γ̃′n| ≥ j/4d, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞


≤ P

(
∃Gn ∈ Gn,

Γ̃n =
⋃m′
i=1Ai, |∂oGn| ≤

β
2·4dn

d−1,

|{B ⊂ Γ̃′n, B abnormal}| ≥ j/4d − |∂oGn|

∣∣∣ 0 ∈ C∞)

≤ P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |{B ⊂ Γ̃′n, B abnormal}| ≥ j/(2.4d)

 · 1

θp

≤ 4d

θp

∑
l≥j/(2.4d)

(
C1 e−C2k

)l
≤ 2 · 4d

θp

(
C1 e−C2k

)j/(2.4d)

where k will be chosen large enough such that C1 e−C2k ≤ 1/2. So together with
inequality (5.4) and using Lemma 2.1, we obtain

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣ 0 ∈ C∞)
≤

∑
j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1

|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

2 · 4d

θp

(
C1 e−C2k

)j/(2.4d)
+ c1 e−c2n

1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

(
C1 e−C2k

) j

2.4d

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

(2n)d
2m′7dj1 · · · 7djm′

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

7dj
(
C1 e−C2k

)j/(2.4d)
c′3n

d−2+3/2d∑
m′=1

(2nd)dm
′
·

×
∣∣∣∣{ (j1, . . . , jm′) :

j1 + · · ·+ jm′ = j,
j1 > 0, . . . , jm′ > 0

}∣∣∣∣+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp
(2nd)d(c′3n

d−2+3/2d+2)
∑

j≥βnd−1

(2 · 7d)j
(
C1 e−C2k

)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

We now choose k large enough such that

C1 e−C2k ≤ 1

2
and

(
(2 · 7d)2·4d

C1 e−C2k
)1/(2.4d)

≤ e−1

Finally, we get

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣ 0 ∈ C∞)
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≤ 2(2nd)d(c′3n
d−2+3/2d+2)4d

θp

∑
j≥βnd−1

(
(2 · 7d)2·4d

C1 e−C2k
)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤
4d+1 exp

(
2d2c′3n

d−2+3/2d log n− βnd−1
)

θp
+ c1 e−c2n

1−3/2d

+C ′1 e−C
′
2n .

This yields the result for β ≥ β0 where β0 is such that for all n ≥ 0, we have
β0 > (4d2c′3 log n)/n1−3/2d. �

We can now build the relevant continuous object Pn. Given a finite set of edges
S, we define

hull(S) =
{
x ∈ Zd : any path from x to infinity has to use an edge of S

}
and

Hn = hull(Γn) \

(
m⋃
i=1

hull(Γ̂(i)
n )

)
.

We define Pn and its associated measure νn as

Pn =
1

n

(
Hn +

[
−1

2
,

1

2

]d)
,

∀E ∈ B
(
Rd
)
, νn(E) = θpLd(Pn ∩ E) .

We obtain a control on the size of the perimeter of Pn by a straightforward appli-
cation of Proposition 5.7:

Corollary 5.8. Let d ≥ 2 and p > pc(d). There exist positive constants β0, C1,
C2 depending only on d and p such that for all n ≥ 1, for all β > β0,

P
(

max
Gn∈Gn

P(nPn) ≥ βnd−1
∣∣ 0 ∈ C∞) ≤ C1 e−c2n

1−3/2d

.

The following Lemma will be useful to compare the measure νn with the measure
associated to Fn.

Lemma 5.9. Let Gn ∈ Gn and Fn as defined in (5.1). We have Fn = Hn ∩ C∞.

Proof : Let Gn ∈ Gn. Let x ∈ Hn ∩ C∞, then x belongs to C∞ ∩ hull Γn but is not
in any of the large connected components L1, . . . , Lm. Therefore, x belongs to Gn
or to one of the small components S1, . . . , SN and so x ∈ Fn.

Conversely, let x ∈ Fn. It is clear that x ∈ hull(Γn). Let us assume x ∈ Gn
and that there exists i such that x ∈ hull(Γ̂

(i)
n ). As Gn is connected there exists

an open path γ in Gn that joins x with Gn \ Γ̂
(i)
n . As the edges of Γ̂

(i)
n \ ∂oLi are

closed, γ must use an edge of ∂oLi and so go through a vertex of Li. That is a
contradiction as the path γ uses only vertices in Gn. Let us now assume that x ∈ Sj
and x ∈ hull(Γ̂

(i)
n ) for some i and j. As x ∈ C∞, x is connected to infinity by an

open path γ′. However, by the same arguments, to exit hull(Γ̂
(i)
n ), the path γ′ has

to go through a vertex of Li. Thus, there exist an open path in C∞ \Gn that joins
x to Li. That is a contradiction as x /∈ Li.

Finally, Fn ⊂ Hn ∩ C∞. �
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5.3. Closeness of measures. We shall show that for any ball of constant radius
centered at a point x ∈ Zd, the measures νn and µn restricted to this ball are close
to each other in some weak sense.

Proposition 5.10. Let p > pc(d) and r > 0. Let u :]0,+∞[→]0,+∞[ be a non-
decreasing function such that limt→0 u(t) = 0. For all δ > 0, there exist C1 and
C2 depending on d, p, u and δ such that for all n ≥ 1, for any finite set Fn of
uniformly continuous functions that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

we have

P

(
max
Gn∈Gn

sup
f∈F
|µn(f1B(x,r))− νn(f1B(x,r))| > δ

∣∣∣ 0 ∈ C∞) ≤ C1 e−C2n
1−3/2d

.

Remark 5.11. We state here the result in a general form. In the following, we
will apply this Proposition for the particular case of sets of functions that are
translates of the same function. The function u is an upper bound on the modulus
of continuity of the functions in Fn. If we think of Fn as a set that grows with n,
this condition may be interpreted as a sufficient condition to obtain compactness
for the set Fn in the limit.

To prove this result, we will need the following proposition that is a corollary of
the results in Pisztora (1996):

Proposition 5.12. Let d ≥ 2 and p > pc(d). Let r > 0, and let Q ⊂ Rd be a cube
of side length 2r. Let δ > 0. There exist positive constants c1 and c2 depending on
d, p and δ such that

P
(
|C∞ ∩Q|
Ld(Q)

/∈ (θp − δ, θp + δ)

)
≤ c1 exp(−c2rd−1) .

Proof of Proposition 5.10 : Let δ > 0 and ε > 0 that we will choose later. Let
u :]0,+∞[→]0,+∞[ be a non-decreasing function such that limt→0 u(t) = 0. Let
n ≥ 1. Let Fn be a finite set of uniformly continuous function that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

We define
µ̃n =

1

nd

∑
x∈V (Fn)

δx/n .

Thanks to Theorem 1.4, there exists a constant η3 depending only on the dimension
such that

P
(
nϕn ≥ η3

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .

Let Gn ∈ Gn, with probability at least 1− C1 exp(−C2n), we have
n|∂oGn|
|Gn|

≤ η3,

and so |∂oGn| ≤ η3n
d−1. As each small component Sj is such that ∂oSj∩∂oGn 6= ∅,

the number N of small components is at most η3n
d−1 and by definition of Fn,

|Fn \Gn| ≤
N∑
j=1

|Sj | ≤ η3n
d−1/2(d−1) .
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Finally, with probability at least 1− C1 exp(−C2n), for all f ∈ Fn,

|µn(f)− µ̃n(f)| ≤ 1

nd
‖f‖∞|Fn \Gn| ≤ η3n

−1/2(d−1) ,

and

P

(
max
Gn∈Gn

sup
f∈Fn

|µn(f1B(x,r))− νn(f1B(x,r))| > η3n
−1/2(d−1)

)
≤ C1 e−C2n (5.5)

where P represents the probability measure conditioned on the event {0 ∈ C∞}.
Let x ∈ Rd and let r > 0. Let f ∈ Fn. We now would like to estimate the quantity

|µ̃n(f1B(x,r))− νn(f1B(x,r))| .

We adapt the proof of 16.2 in Cerf (2006). We use again a renormalization argument
but at a different scale L = K lnn. We consider the lattice rescaled by this factor
L. We say that a cluster C is crossing in a box B if for any two opposite faces
of B, the cluster C contains an open path in B that joins these two faces. Let
ε > 0. For y ∈ Zd, we define Bn(y) = (2Ly/n) + [−L/n,L/n]d and B′n(y) =

(2Ly/n) + [−3L/n, 3L/n]d. Let X(y) be the indicator function of the event En(y).
This event occurs if
• Inside nB′n(y), there is a unique crossing cluster C ′ that crosses the 3d sub-boxes
of nB′n(y). Moreover, C ′ is the only cluster in nB′n(y) of diameter larger than L.
• Inside nBn(y), there is a crossing cluster C∗ such that

|C∗| ≥ (θp − ε)Ld(nBn(y)) .

• We have
∣∣{x ∈ nBn(y) : x←→ ∂nBn(y}

∣∣ ≤ (θp + ε)Ld(nBn(y)).
On the event En(y), any cluster C ⊂ nBn(y) that is connected by an open path

to ∂(nB′n(y)) is the unique crossing cluster, i.e., C = C ′ = C∗ and so it also satisfies

|C|
Ld(nBn(y))

∈ [θp − ε, θp + ε] .

The family (X(y))y∈Zd is a site percolation process on the macroscopic lattice. The
states of the sites are not independent from each other but there is only a short
range dependency. Indeed, for any y and z such that |y − z|∞ ≥ 3, we have that
X(y) and X(z) are independent. We define the connected component C(y) of y as

C(y) =
{
z ∈ Zd : z is connected to y by a macroscopic open path

}
.

Let
D = {y ∈ Zd : Bn(y) ⊂ B(x, r)} .

We have

|D|Ld ≤ ndLd(B(x, r)). (5.6)

There exists an integer n0 = n0(u(ε)) such that, for n ≥ n0(u(ε)), we have L/n ≤
u(ε) so that

Ld
B(x, r) \

⋃
y∈D

Bn(y)

 ≤ εLd(B(x, r)),

∀w, z ∈ Rd, ‖w − z‖2 ≤
L

n
⇒ |f(x)− f(y)| ≤ ε .



Existence of the anchored isoperimetric profile 231

The last statement comes from the fact that f belongs to Fn. By decomposing
|µ̃n(f1B(x,r))− νn(f1B(x,r))| on cubes of size L/n, we obtain:

|µ̃n(f1B(x,r))− νn(f1B(x,r))|

≤ 2Ld
B(x, r) \

⋃
y∈D

Bn(y)

+
∑
y∈D

∣∣∣∣∣
∫
Bn(y)

fdµ̃n −
∫
Bn(y)

fdνn

∣∣∣∣∣
≤ 4εLd(B(x, r)) +

∑
y∈D

∣∣µ̃n(Bn(y))− νn(Bn(y))
∣∣ . (5.7)

Let y ∈ D. We need to distinguish several cases:
• If Bn(y) ∩ Pn = ∅, then νn(Bn(y)) = µ̃n(Bn(y)) = 0. From now on we will only
consider cubes such that Bn(y) ∩ Pn 6= ∅.
• If Bn(y) 6⊂ Pn, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ 1

nd
|Bn(y)|

and as Bn(y) ∩ Pn 6= ∅, the cube intersects the boundary of Pn. Thus,

Bn(y) ⊂
{
z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

}
.

Moreover,

Ld
({

z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

})
≤
∣∣∣{x ∈ Hn, ∃y ∈ Zd \Hn, ‖x− y‖1 = 1

}
∩B(nx, nr + d)

∣∣∣ (2L+ 2

n

)d
≤ P(nPn, B(nx, nr + d))

(
3L

n

)d
≤ P(Pn, B(x, r + d))

(3L)d

n
.

• If Bn(y) ⊂ Pn and |C(y)| =∞, then the crossing cluster C∗ of Bn(y) is a portion
of C∞ and

νn(Bn(y)) = θp
Ld(nBn(y))

nd
and µ̃n(Bn(y)) =

|(nBn(y)) ∩ C∗|
nd

.

Thus, we have

µ̃n(Bn(y)) ∈
[
(θp − ε)Ld(Bn(y)), (θp + ε)Ld(Bn(y))

]
and

|µ̃n(Bn(y))− νn(Bn(y))| ≤ εLd(Bn(y)) .

• If Bn(y) ⊂ Pn and |C(y)| <∞, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ Ld(Bn(y))1|C(y)|<∞

By summing the previous inequalities over y ∈ D, thanks to inequality (5.6) and
(5.7), we obtain

|µ̃n(f1B(x,r))− νn(f1B(x,r))|
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≤ Ld(B(x, r))
(

5ε+
1

|D|
∑
y∈D

1|C(y)|<∞

)
+ P(Pn, B(x, r + d))

(3L)d

n
.

Let c(r) = 6Ld(B(0, r)) + 3d, we get

P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε

)

≤ 1

θp
P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

+ P
(

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

)
.

(5.8)

Besides, using Corollary 5.8, for n large enough, we obtain

P
(

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

)
≤ P

(
max
Gn∈Gn

P(Pn) ≥ β
)
≤ c1 e−c2n

1−3/2d

.

(5.9)

Let Λ be the cube centered at x of side length 2r. We define

Λ =
{
y ∈ Zd : Bn(y) ⊂ Λ

}
.

As B(x, r) ⊂ Λ, we have D ⊂ Λ and

1

|D|
∑
y∈D

1|C(y)|<∞ ≤
(2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ . (5.10)

Let q ∈ [0, 1] be such that θq > 1 − ε/(2(2d)d). As the family (X(y))y∈Zd is
identically distributed, has a short range dependency and is such that P(X(0) = 1)
goes to 1 when n goes to infinity (see for instance Chapter 9 in Cerf, 2006), then
we can apply Liggett, Schonmann and Stacey’s result (Liggett et al., 1997): for n
large enough, the family (X(y), y ∈ Zd) stochastically dominates (X̃(y), y ∈ Zd)
a family of independent Bernoulli variable of parameter q. We denote by C̃∞ the
unique infinite cluster of the Bernoulli field (X̃(y))y∈Zd . Using inequality (5.10)
and the stochastic domination, we get

P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ P

 (2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ ≥ ε


≤ P

 1

|Λ|
∑
y∈Λ

1y/∈C̃∞
≥ ε

(2d)d


≤ P


∣∣∣Λ ∩ C̃∞∣∣∣
|Λ|

/∈
(
θq −

ε

2(2d)d
, θq +

ε

2(2d)d

) .

Using Proposition 5.12, we obtain

P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ c′1 exp

(
−c′2

(rn
L

)d−1
)
. (5.11)
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We set ε = δ/(2c(r)). Finally, thanks to inequalities (5.5), (5.8), (5.9) and (5.11),
we have for n ≥ n0(u(ε))

P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > δ

)

≤ P

(
max
Gn∈Gn

sup
f∈Fn

|µn(f)− µ̃n(f)| > δ/2

)

+ P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε

)

≤ C1 exp(−C2n) +
c′1
θp

exp

(
−c′2

(rn
L

)d−1
)

+ c1 e−c2n
1−3/2d

.

The result follows. �

6. Lower large deviations and shape Theorem

6.1. Closeness to the set of Wulff shapes. The aim of this section is to prove The-
orem 1.7.

Proof of Theorem 1.7: Let ε > 0. Let ξ > 0 that we will choose later depending on
ε. We define λ such that

1− λ =
1

1 + ξ
.

We denote by Wξ:

Wξ =

{
νW+x :

x ∈ Rd, W is a dilate of Wp such that
Ld((1− λ)Wp) ≤ Ld(W ) ≤ Ld((1 + 2ξ)Wp)

}
.

Let u :]0,+∞[→]0,+∞[ be a non-decreasing function such that limt→0 u(t) = 0.
Let n ≥ 1. Let Fn be a finite set of uniformly continuous function that satisfies for
all f ∈ Fn,

‖f‖∞ ≤ 1 and ∀x, y ∈ Rd, |f(x)− f(y)| ≤ u(‖x− y‖2) .

We define the weak neighborhood V(Wξ,Fn, ε) of Wξ given Fn and ε as

V(Wξ,Fn, ε) =
{
ν ∈M(Rd) : ∃µ ∈ Wξ, sup

f∈Fn

|ν(f)− µ(f)| ≤ ε
}
.

Our goal is to show that µn is in the set V(Wξ,Fn, ε) with high probability.
Step (i): Let Gn ∈ Gn. Thanks to Proposition 5.10, the measures µn and νn
associated with Pn and Gn are locally close to each other. In the following, it will
be more convenient to work with the continuous object Pn instead of Gn. We can
localize almost all the volume of Pn in a random region that is a union of balls of
constant radius. We follow the method in Chapter 17 in Cerf (2006). We can cover
Pn in Rd, up to a small fractional volume, by a finite number of random disjoint
balls of constant size. Thanks to the isoperimetric inequalities, we can then control
the volume of Pn outside of these balls. Let δ > 0 be a real number that we will
choose later. We denote by X:

X =
{
x ∈ Zd : Ld(B(x, 1) ∩ Pn) ≥ δ

}
.
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On the event
{
|Γ̃n| ≤ βnd−1

}
, the set X is included in B(0, βnd−2) and is therefore

finite. As each point in Rd belongs to at most 2d balls among the B(x, 1), x ∈ Zd,
then using Proposition 2.4

δ|X| ≤
∑
x∈X
Ld(B(x, 1) ∩ Pn) ≤ 2dLd(Pn) ≤ 2dcisoP(Pn)

d
d−1 ≤ 2dcisoβ

d
d−1

and finally |X| ≤ M where M = 2dcisoβ
d

d−1 /δ. We now would like to control
the volume of Pn outside the balls B(x, 1) in X, i.e., to bound the measure of
Pn\

⋃
x∈X B(x, 1). For x ∈ Zd\X, by the isoperimetric inequality in Proposition 2.4,

we obtain as in section 17 in Cerf (2006)

Ld
(
Pn \

⋃
x∈X

B(x, 1)

)
≤

∑
x∈Zd\X

Ld(Pn ∩B(x, 1))

≤ δ1/db
d

d−1

iso

∑
x∈Zd\X

P(Pn, B̊(x, 1))

= δ1/db
d

d−1

iso

∑
x∈Zd\X

Hd−1(∂∗Pn ∩ B̊(x, 1))

≤ 2dδ1/db
d

d−1

iso H
d−1(∂∗(Pn)) = 2dδ1/db

d
d−1

iso P(Pn)

≤ 2dδ1/db
d

d−1

iso β. (6.1)

We note η = 2dδ1/db
d

d−1

iso β. Therefore, if P(Pn) ≤ β, then X ⊂ B(0, βnd−2),
|X| ≤M and Ld(Pn \ ∪x∈XB(x, 1)) ≤ η. We next would like to perform a kind of

0

A ball B(y, r) with
(y, r) ∈ E(X)

Pn

Figure 6.6. Covering almost all the volume of Pn by balls of
constant radius

surgery between the balls. To do so, we first shall build from the balls (B(x, 1))x∈X
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a family of balls that covers ∪x∈XB(x, 1) and such that the balls are far apart (see
Figure 6.6). This is the purpose of Lemma 17.1. in Cerf (2006). We obtain a subset

E(X) = {(y1, r1), . . . , (ym, rm)} ⊂ X ×
{

1, . . . , 3|X|
}

such that |E(X)| ≤ |X| and
• ∀(a, r) ∈ E(X), B(a, r) ∩X 6= ∅
• ∪x∈XB(x, 1) ⊂ ∪(a,r)∈E(X)B(a, r)
• ∀(a, r), (b, s) ∈ E(X), (a, r) 6= (b, s)⇒ B(a, r + 1) ∩B(b, s+ 1) = ∅

We set

ϕWp =
Ip(Wp)

θpLd(Wp)
.

Let δ′ > 0 be a real number that we will choose later. By applying Corollary 5.8
and Theorem 1.4, we obtain by conditioning on E(X),

P
(
∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε)

∣∣∣ 0 ∈ C∞)
≤ P( max

Gn∈Gn
P(nPn) ≥ βnd−1) + P(nϕn > (1 + δ′)ϕWp

)

+ P(∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp
])

≤ b1 exp(−b2n1−3/2d) + b′1 exp(−b′2n)

+
∑

1≤m≤M

∑
y1,...,ym

∑
r1,...,rm

P

 ∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε),
E(X) = {(y1, r1), . . . , (ym, rm)}
P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp

 , (6.2)

where the second summation is over y1, . . . , ym in Zd ∩ B(0, βnd−2) and the third
summation is over r1, . . . , rm in {1, . . . , 3M}. The number of ways to choose m and
r1, . . . , rm is bounded from above by a constant depending only on M , while the
number of ways of choosing the centers y1, . . . , ym is polynomial in n. We next
control the probability inside the sums. We will only focus on what happens inside
the balls.
Step (ii): Let {(y1, r1), . . . , (ym, rm)} be a value for the random set E(X) which
occurs with positive probability. We define Ω = Ω(E(X)) as

Ω =

m⋃
i=1

B̊(yi, ri + 1) ,

and the restriction Pn of Pn to the balls determined by E(X):

Pn = Pn ∩

(
m⋃
i=1

B̊(yi, ri + 1)

)
.

Thus, using inequality (6.1), we have

Ld(Pn \ Pn) ≤ η . (6.3)

We show now that νPn
(f) is close to µn(f) with high probability on the event{
E(X) = {(y1, r1), . . . , (ym, rm)}

}
.

It is easy to check that Fn∪{1} associated with the function u satisfies the conditions
required in Proposition 5.10. So that applying Proposition 5.10 for every r ∈
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{1, . . . , 3M}, there exist positive constants c1, c2 depending on M , u, and δ such
that for all x ∈ Zd

max
r∈{1,...,3M}

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(x,r))− µn(f1B(x,r))| >
η

M

)
≤ c1 e−c2n

1−3/2d

.

Thus, using inequality (6.3), we obtain

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn
(f)− µn(f)| > 2η, E(X) = {(y1, r1), . . . , (ym, rm)}

)

≤
m∑
i=1

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn
(f1B(yi,ri))− µn(f1B(yi,ri))| > η/M

)

≤M max
r∈{1,...,3M}

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(y1,r))− µn(f1B(y1,r))| > η/M

)
≤Mc1 e−c2n

1−3/2d

. (6.4)

In particular, on the event {E(X) = {(y1, r1), . . . , (ym, rm)}}, with probability at
least 1−Mc1 exp(−c2n1−3/2d), we have∣∣∣∣θpLd(Pn)− |Gn|

nd

∣∣∣∣ ≤ 2η . (6.5)

Moreover, by Lemma 5.1, there exist positive constants η1, D1 and D2 such that

P
(

min
Gn∈Gn

|Gn| ≤ η1n
d

)
≤ D1 exp(−D2n

(d−1)/2d)) .

We recall that η is a function of δ. We will choose δ small enough such that

η ≤ min

(
η1

4
,
ξd

2
,
ε

8
,
η1

3θp

)
. (6.6)

Other conditions will be imposed later on δ.
On the event

{
minGn∈Gn |Gn| > η1n

d
}
, using inequalities (6.5) and (6.6), we

obtain

Ld(Pn) ≥ 1

θp

(
|Gn|
nd
− 2η

)
≥ 1

θp
(η1 − 2η) ≥ η1

2θp
(6.7)

and as Ld(Wp) = 1/θp, using inequality (6.5), we have

Ld(Pn) ≤ 1

θp

(
|Gn|
nd

+ 2η

)
≤ 1

θp
(1 + ξd) = Ld(Wp)(1 + ξd) ≤ Ld((1 + ξ)Wp) .

(6.8)

For ν ∈ Wξ, we have

sup
f∈Fn

|νPn
(f)− ν(f)| ≥ sup

f∈Fn

|µn(f)− ν(f)| − sup
f∈Fn

|µn(f)− νPn
(f)| ,

so that, together with inequalities (6.4) and (6.6), with high probability,

µn /∈ V(Wξ,Fn, ε) =⇒ νPn
/∈ V(Wξ,Fn, 3ε/4) .
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Thus, combining with inequalities (6.7) and (6.8), we have

P
(

∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β ,
E(X) = {(y1, r1), . . . , (ym, rm)}, nϕn ≤ (1 + δ′)ϕWp

)
≤ P

(
∃Gn ∈ Gn, νPn

/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

)
+Mc1 e−c2n

1−3/2d

+D1 exp(−D2n
(d−1)/2d) . (6.9)

We do not cover Pn directly but we cover separately each Pn ∩ B(yk, rk + 1) for
k ∈ {1, . . . ,m}. For any r ∈ { 1, . . . , 3M }, we define the space

C(r)
β =

{
F ⊂ B̊(0, r + 1), P(F, B̊(0, r + 1)) ≤ β

}
endowed with the topology L1 associated to the distance d(F, F ′) = Ld(F∆F ′),
where ∆ is the symmetric difference between sets. For this topology, the space
C(r)
β is compact. Suppose that we associate to each F ∈ C(r)

β a positive number
εF ≤ min(η,Ld(ξWp))/M . The collection of open sets{

H Borel subset of B̊(0, r + 1) : Ld(H∆F ) < εF

}
, F ∈ C(r)

β ,

is then an open covering of C(r)
β . By compactness, we can extract a finite covering

(F
(r)
i , ε

F
(r)
i

)1≤i≤N(r) of C(r)
β . By union bound, we obtain

P

(
∃Gn ∈ Gn, νPn

/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

)

≤
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P(Fi1,...,im) (6.10)

where

Fi1,...,im =



∃Gn ∈ Gn : ∀ 1 ≤ k ≤ m,
Ld((F (rk)

ik
+ yk)∆(Pn ∩B(yk, rk + 1))) ≤ ε

F
(rk)

ik

,

νPn
/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp

,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp),

E(X) = {(y1, r1), . . . , (ym, rm)}


.

So we need to study the quantity P(F) for a generic m-uplet (F1, . . . , Fm) ∈ C(r1)
β ×

· · ·×C(rm)
β and their associated εF1

, . . . , εFm
. By definition of the Cheeger constant

ϕn, we obtain

P(F) = P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Fi + yi)∆(Pn ∩B(yi, ri + 1))) ≤ εFi

,
νPn

/∈ V(Wξ,Fn, 3ε/4),
|∂oGn| ≤ (1 + δ′)n−1|Gn|ϕWp

,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp),

E(X) = {(y1, r1), . . . , (ym, rm)}

 .
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To lighten the notations, we set

F =

m⋃
i=1

(Fi + yi) .

We have

Ld(F∆Pn) =

m∑
i=1

Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi))

≤
m∑
i=1

εFi ≤ min(η,Ld(ξWp)) . (6.11)

Whereas the surface tension of F in the interior of these balls corresponds to the
surface tension of our minimizer Gn, the surface tension of F along the boundary
of the balls B(yj , rj + 1) does not correspond to the surface tension of Gn because
we have artificially created it. Roughly speaking, F is the continuous object cor-
responding to the graph Gn intersected with the nB(yj , rj + 1). This new graph
has extra surface tension compared to Gn due to the fact that we have built it by
cutting Gn along the boundary of these balls. However, our hope is to cut along
the boundary of these balls in such a way that the surface tension we create is
negligible. We do not work on Gn but on the continuous object F , but we have to
keep in mind that these two objects are close. The idea is to cut F in the regions
B(yi, ri + 1) \ B(yi, ri), i ∈ {1, . . . ,m}. These regions contain a negligible volume
of Gn and so of F , we want to cut F in these regions along a surface of negligible
perimeter and so of negligible surface tension. By Lemma 14.4 in Cerf (2006), for
i ∈ {1, . . . ,m}, for H1 almost all t in ]0, 1[,

I(F ∩B(yi, ri + t)) ≤ I(F ∩ B̊(yi, ri + t)) + βmaxHd−1(F ∩ ∂B(yi, ri + t)) .
(6.12)

Let T be a subset of ]0, 1[ where all the above inequalities hold simultaneously. We
recall that for any i ∈ {1, . . . ,m}, εFi

≤ η/M . We have H1(T ) = 1 and when we
integrate in polar coordinates, using inequality (6.11),∫

T

m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t))dt =
m∑
i=1

Ld(F ∩B(yi, ri + 1) \B(yi, ri))

≤
m∑
i=1

Ld((Fi + yi) \B(yi, ri))

≤ Ld
(
Pn \

m⋃
i=1

B(yi, ri)
)

+ Ld(Pn∆F )

≤ 2η .

Thus, there exists t ∈ T such that
m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t)) ≤ 3η . (6.13)

We next set

F = F ∩

(
m⋃
i=1

B(yi, ri + t)

)
.
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Using inequality (6.13), we get

P(F ) ≤ P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+

m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t))

≤ P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+ 3η , (6.14)

and using Proposition 2.3,

Ip(F ) ≤ Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+ 3βmaxη . (6.15)

On the event F , using inequality (6.11), we obtain

Ld(F ) ≤ Ld(F ) + Ld
(
F \

m⋃
i=1

B(yi, ri)

)

≤ Ld(F ) + Ld(F∆Pn) + Ld
(
Pn \

m⋃
i=1

B(yi, ri)

)
≤ Ld(F ) + 2η . (6.16)

Finally, using inequalities (6.14) and (6.16), we obtain

Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≥ βmin P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≥ βmin(P(F )− 3η) . (6.17)

and using again inequality (6.11),

Ld(F ) ≥ Ld(Pn)− Ld(Pn∆F ) ≥ η1

2θp
− η . (6.18)

Using the isoperimetric inequalities of Proposition 2.4 and inequalities (6.16) and
(6.18), we get

P(F ) ≥
(
Ld(F )

ciso

)1−1/d

≥
(
Ld(F )− 2η

ciso

)1−1/d

≥
(
η1 − 6ηθp

2θpciso

)1−1/d

. (6.19)

Next, we choose δ small enough to obtain a η that satisfies the following inequalities:

3βmaxη ≤
λβmin

2

((
η1 − 6ηθp

2θpciso

)1−1/d

− 3η

)
, (6.20)

and also
η1 ≥ 6ηθp .

With this choice of δ, we obtain with high probability, using inequalities (6.15),
(6.17) and (6.19),

Ip(F ) ≤ (1 + λ/2)Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≤ (1 + λ/2)Ip(F,Ω) . (6.21)

Let Gn ∈ Gn, on the event F , we have∣∣∣∣θpLd(Pn)− |Gn|
nd

∣∣∣∣ ≤ 2η .
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So that, together with inequality (6.16),

|Gn| ≤ nd(θpLd(F ) + θpLd(Pn∆F ) + 2η)

≤ nd(θpLd(F ) + εF + 4η)

≤ ndθpLd(F )

(
1 +

5η

θpLd(F )

)
.

Let us now choose δ small enough so that
5η

η1/2− 3ηθp
≤ δ′ . (6.22)

Using inequalities (6.16) and (6.18), we obtain

|Gn| ≤ ndθpLd(F )

(
1 +

5η

η1/2− 3ηθp

)
≤ ndθpLd(F )(1 + δ′).

Finally, let r be such that Ld(F ) = Ld(rWp), we get

(1 + δ′)n−1|Gn|ϕWp ≤ (1 + δ′)2nd−1ϕWp

ϕF
Ip(F )

≤ (1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) .

We now choose δ′ small enough such that

(1 + δ′)2(1− λ) ≤ 1− λ

2
. (6.23)

Using inequality (6.11), we obtain

Ld(F ) ≤ Ld(Pn) + Ld(Pn∆F ) ≤ Ld((1 + ξ)Wp) + Ld(ξWp) ≤ Ld((1 + 2ξ)Wp)

and so r ≤ 1 + 2ξ. We distinguish now two cases:
• If r ≤ 1− λ, using inequality (6.23)

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F )

where we used the fact that the Wulff crystal is a minimizer for Ip, i.e., that
Ip(rWp) ≤ Ip(F ).
• Let us assume that r ∈ (1 − λ, 1 + 2ξ]. We recall that on the event F , for all
ν ∈ Wξ,

sup
f∈Fn

|νPn
(f)− ν(f)| ≥ 3ε/4 .

Thus, for all x ∈ Rd, for f ∈ Fn we have

|νPn
(f)− νrWp+x(f)| ≤

∣∣∣∣∣
∫
Pn\(rWp+x)

f(x)dLd(x)−
∫

(rWp+x)\Pn

f(x)dLd(x)

∣∣∣∣∣
≤
∫
Pn\(rWp+x)

|f(x)|dLd(x) +

∫
(rWp+x)\Pn

|f(x)|dLd(x)

≤
∫
Pn\(rWp+x)

1dLd(x) +

∫
(rWp+x)\Pn

1dLd(x)

≤ Ld
(
Pn∆(rWp + x)

)
,
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and so,

Ld
(
Pn∆(rWp + x)

)
≥ sup
f∈Fn

|νPn
(f)− νrWp+x(f)| ≥ 3ε/4

and as η satisfies inequality (6.6), we obtain

Ld
(
F∆(rWp + x)

)
≥ Ld

(
Pn∆(rWp + x)

)
− Ld

(
F∆Pn

)
≥ 3ε/4− η ≥ ε/2.

Moreover, as rWp is a minimizer for the isoperimetric problem, there exists a con-
stant c(ε) > 0, that is a non-decreasing function of ε depending also on p and r,
that goes to 0 when ε goes to 0, such that

inf
{
I(E) : ∀x ∈ Rd, Ld(E∆(x+ rWp)) ≥ ε/2, Ld(E) = Ld(rWp)

}
≥ Ip(rWp)(1 + c(ε)) .

Finally,
Ip(rWp)

Ip(F )
≤ 1

1 + c(ε)

and so,

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1 + δ′)2

1 + c(ε)
(1 + 2ξ)nd−1Ip(F ) .

We choose ξ small enough depending on ε such that
1 + 2ξ

1 + c(ε)
≤ 1− λ =

1

1 + ξ
.

This is equivalent to choose ξ such that

3ξ + 2ξ2 ≤ c(ε) . (6.24)

We obtain using inequality (6.23)

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F ) .

Finally, combining the two cases, with ε and δ′ properly chosen and inequality
(6.21), we obtain

P(F) ≤ P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi

,

|∂oGn| ≤
(

1− λ2

4

)
nd−1Ip(F,Ω),

E(X) = {(y1, r1), . . . , (ym, rm)}

 . (6.25)

Step (iii): The remaining of the proof follows the same ideas as in Cerf and Théret
(2011). We link the probability defined in the right hand side of (6.25) with the
probability that the flow is abnormally small in some local region of ∂F ∩ Ω . We
now want to cover ∂F by balls of small radius such that ∂F is "almost flat" in each
ball, this is the purpose of the following Lemma:

Lemma 6.1 (Lemma 1 in Cerf and Théret, 2011). Let R > 0. Let F be a subset
of B̊(0, R) of finite perimeter. For every positive constants δ′ and η′, there exists
a finite family of closed disjoint balls (B(xi, ρi))i∈I∪K and vectors (vi)i∈I∪K , such
that, letting Bi = B(xi, ρi) and B−i = B−(xi, ρi, vi), we have for all i ∈ I

xi ∈ ∂∗F ∩ B̊(0, R), ρi ∈]0, 1[, Bi ⊂ B̊(0, R), Ld((F ∩Bi)∆B−i ) ≤ δ′αdρdi ,
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and ∣∣∣∣∣Ip(F, B̊(0, R))−
∑
i∈I

αd−1ρ
d−1
i (ν(nF (xi))

∣∣∣∣∣ ≤ η′.
We recall that αd is the volume of the d-dimensional unit Euclidean ball.

We apply Lemma 6.1 to each Fk ⊂ B̊(0, rk + 1), with δ2 > 0 that will be chosen
later and η′ = λ4Ip(F,Ω)/16M . We obtain for each k, a family(

B
(k)
i

(
x

(k)
i , ρ

(k)
i , v

(k)
i

))
i∈I(k)

that does not depend on y1, . . . , ym, so that∣∣∣∣∣Ip(Fk, B̊(0, rk + 1))−
∑
i∈I

αd−1(ρ
(k)
i )d−1(ν(nFk

(x
(k)
i ))

∣∣∣∣∣ ≤ η′. (6.26)

We now choose

εFk
≤ min

(
min
i∈I(k)

αd(ρ
(k)
i )dδ2,

η

M
,
Ld(ξWp)

M

)
, (6.27)

for a fixed δ2 that we will choose later. Besides, as the balls B(yk, rk + 1) are
disjoint, for k ∈ {1, . . . ,m}, we have

Ip(F,Ω) =

m∑
k=1

Ip(F ∩B(yk, rk + 1),Ω) =

m∑
k=1

Ip(Fk, B̊(0, rk + 1)) .

Using inequality (6.26), we obtain∣∣∣∣∣∣Ip(F,Ω)−
m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

∣∣∣∣∣∣ ≤ mη′ ≤ λ4Ip(F,Ω)/16 .

So, we get

Ip(F,Ω) ≤ 1

1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))


and (

1− λ2

4

)
Ip(F,Ω) ≤ 1− λ2/4

1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

 .

Whence setting w = λ2/(4 + λ2) < 1,(
1− λ2

4

)
Ip(F,Ω) ≤ (1− w)

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

 . (6.28)

Since the balls (B
(k)
i + yk)1≤k≤m, i∈I(k) are pairwise disjoint, we have

|∂oGn| ≥
m∑
k=1

∑
i∈I(k)

|(∂oGn) ∩ (n(B
(k)
i + yk))| . (6.29)
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Using inequalities (6.28) and (6.29), we get

P

∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi
, 1 ≤ i ≤ m,

|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ P

 ∃Gn ∈ Gn, L
d((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,∑m

k=1

∑
i∈I(k) |(∂oGn) ∩ (n(B

(k)
i + yk))|

≤ (1− w)nd−1
(∑m

k=1

∑
i∈I(k) αd−1(ρ

(k)
i )d−1ν(nFk

(x
(k)
i ))

)
 .

(6.30)

Let k ∈ {1, . . . ,m}. We aim to control card((Gn ∩n(B
(k)
i + yk))∆(n(B

(k)
i + yk)− ∩

Zd)). To do so, it is more convenient to work with the graph Fn. In the following,
we drop the superscript (k) for clarity. With high probability, we have

card((Gn ∩ n(B
(k)
i + yk))∆(n(B

(k)
i + yk)− ∩ Zd))

≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + card(Fn \Gn)

≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + η3n
d−1/2(d−1) .

As Bi + yk ⊂ B(yk, rk + 1), we have

Ld((nPn ∩ n(Bi + yk))∆(n(Bi + yk)−)) ≤ Ld((nFk ∩ nBi)∆(nB−i ))

+ ndLd(Pn∆(Fk + yk))

≤ ndαdρdi δ2 + εFk
≤ 2ndαdρ

d
i δ2 .

By the same arguments as in section 5.2 in Cerf and Théret (2011),

card((Fn ∩ n(Bi + yk))∆n(Bi + yk)−))

≤ Ld(((nPn ∩ n(Bi + yk))∆n(Bi + yk)−) ∩ Zd + [−1/2, 1/2]d)

≤ 2ndαdρ
d
i δ2 + nd−14d(Hd−1(∂Bi) +Hd−1(∂B−i )) .

Finally, for n large enough,

card((Gn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) ≤ 4ndαdρ
d
i δ2 .

Thus, using inequality (6.30), for large enough n,

P
(
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

)

≤
m∑
k=1

∑
i∈I(k)

P


∃Gn ∈ Gn,∣∣(Gn ∩ n(Bi + yk))∆(n(B−i + yk) ∩ Zd)

∣∣ ≤ 4δ2αdρ
d
i n

d,
|(∂oGn) ∩ n(Bi + yk)|

≤ (1− w)nd−1
(
αd−1ρ

d−1
i ν(nFk

(x
(k)
i ))

)


≤ 1

θp

m∑
k=1

∑
i∈I(k)

P(G(x
(k)
i + yk, ρ

(k)
i , nFk

(x
(k)
i ), w, δ2)) (6.31)

where G(x, r, v, w, δ2) is the event that there exists a set U ⊂ B ∩ Zd such that:

card(U∆(nB−(x, r, v) ∩ Zd)) ≤ 4δ2αdr
dnd

and
|(∂oGn) ∩ nB| ≤ (1− w)αd−1r

d−1(ν(v)nd−1 .
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This event depends only on the edges inside B(x, r, v) and is invariant under
integer translation. So that,

P
(
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi

, 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

)
≤ 1

θp

m∑
k=1

∑
i∈I(k)

P(G(x
(k)
i , ρ

(k)
i , nFk

(x
(k)
i ), w, δ2)) . (6.32)

This event is a rare event. Indeed, if this event occurs, we can show that the capacity
of the minimal cutset that separates the upper half part of B(x, r, v) (upper half
part according to the direction v) from the lower half part is abnormally small.
To do so, we build from the set U an almost flat cutset in the ball. The fact
that card(U∆B−(x, r, v)) is small implies that ∂eU is almost flat and is close to
disc(x, r, v). However, this does not prevent the existence of long thin strands that
might escape the ball and prevent U from being a cutset in the ball. The idea
is to cut these strands by adding edges at a fixed height. We have to choose the
appropriate height to ensure that the extra edges we needed to add to cut these
strands are not too many, so that we can control their capacity. The new set of
edges we create by adding to U these edges will be in a sense a cutset. The last
thing to do is then to cover the disc(x, r, v) by hyperrectangles in order to use
the estimate that the flow is abnormally small in a cylinder. This work was done
in section 6 in Cerf and Théret (2011). It is possible to choose δ2 depending on
F1, . . . , Fm, G and w such that for all k ∈ {1, . . . ,m}, there exist positive constants
CFk

1,i and CFk
2,i depending on G, d, Fk, i and w so that for all i ∈ I(k),

P(G(xi, ρi, nFk
(xi), w, δ2)) ≤ CFk

1,i exp(−CFk
2,in

d−1) .

Note that this upper bound is uniform on y1, . . . , ym but still depends on r1, . . . , rm.
Together with inequalities (6.25) and (6.32), we obtain

P(F) ≤ P

 ∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ 1

θp

m∑
k=1

∑
i∈I(k)

CFk
1,i exp(−CFk

2,in
d−1) .

So there exist positive constants CF1
1 , . . . , CFm

1 and CF1
2 , . . . , CFm

2 such that

P(F) ≤
m∑
k=1

CFk
1 exp(−CFk

2 nd−1) . (6.33)

Combining inequalities (6.2), (6.9), (6.10) and (6.33), we obtain for small enough
δ2,

P (∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε) | 0 ∈ C∞ )

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n +

M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P[Fi1,...,im ]

+M3M
2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n
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+

M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

+M3M
2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n

+

M∑
m=1

∑
y1,...,ym

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

}
+M3M

2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n

+ Cdn
M(d−2)

M∑
m=1

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

}
+M3M

2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
(6.34)

where Cd is a constant depending only on the dimension and the maximum is over
r1, . . . , rm ∈ {1, . . . , 3M}. We recall thatM , N and the number of ways of choosing
r1, . . . , rm are finite and independent of n.

Remark 6.2. To obtain inequality (6.34), it is crucial to use a covering of Cβ that
is uniform in y1, . . . , ym.

Let us assume µn /∈ V(W,Fn, 2ε). Let ν ∈ Wξ, we can write ν = νx+rWp
with

x ∈ Rd and r ∈ [1− λ, 1 + 2ξ]. We have for all f ∈ Fn

|νx+Wp(f)− νx+rWp(f)| ≤ max
(
Ld(Wp \ (1− λ)Wp), Ld((1 + 2ξ)Wp \Wp)

)
≤ c(p, d, ξ) (6.35)

where c(p, d, ξ) is a constant that goes to 0 when ξ goes to 0. So that

sup
f∈Fn

|νx+Wp(f)− νx+rWp(f)| ≤ c(p, d, ξ) .

As µn /∈ V(W,Fn, 2ε), we have

sup
f∈Fn

|µn(f)− νx+Wp(f)| > 2ε .

So that up to choosing a smaller ξ, we have

c(p, d, ξ) ≤ ε (6.36)

and so

P(∃Gn ∈ Gn, ∀ν ∈ W, sup
f∈Fn

|µn(f)− νx+Wp(f)| > 2ε)

≤ P(∃Gn ∈ Gn, ∀ν ∈ Wξ, sup
f∈Fn

|µn(f)− νx+Wp
(f)| > ε) .

Finally, using (6.34), there exist positive constants C1 and C2 depending on ε, u, p
and d such that for all n ≥ 1,

P
(
∃Gn ∈ Gn, µn /∈ V(W,Fn, 2ε)

∣∣ 0 ∈ C∞) ≤ C1 e−c2n
1−3/2d
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and the result follows.
To conclude, let us sum up the order in which the constants are chosen. We first

choose ε > 0. Next, we choose ξ small enough such that it satisfies both inequalities
(6.24) and (6.36), and δ′ such that it satisfies inequality (6.23). Next, we choose δ
such that η(δ) satisfies inequalities (6.6), (6.20) and (6.22). We choose δ2 depending
on w (and so on ε) and G. The parameter δ2 has to satisfy some inequalities that
we do not detail here, we refer to section 7 in Cerf and Théret (2011). Finally,
to each r in {1, . . . , 3M}, to each F ∈ C(r)

β , we choose εF in such a way it satifies
inequality (6.27). �

6.2. Proof of Theorem 1.5. In this section we prove Theorem 1.5. Thanks to The-
orem 1.7, we know that with high probability µn is close to the set W and so it is
close to the measure of a translate of the Wulff shape. In fact, as µn has its support
included in B(0, nd−1), the measure µn is close to Wn, the set of measures defined
as:

Wn =
{
νx+Wp

, x ∈ B(0, nd−1)
}
.

The continuous setWn can be approximated by a finite set W̃ containing a polyno-
mial number of measures such that µn is close to W̃ and so is close to at least one
measure in W̃. Let ε > 0 and let w > 0 be a real number depending on ε that we
will choose later. We first use Lemma 6.1, to cover Wp by a finite number of balls
of small radius such that Wp is almost flat in each ball. Let δ2 that will be chosen
later and let (B(xk, ρk, vk))k∈J be a family associated to Wp, δ2, ε that satisfies the
conditions stated in Lemma 6.1. We will use this covering for all the translates of
the Wulff shape. We set εW = mink∈J αdρ

d
kδ2. We now cover Wn by a polynomial

in n number of balls of radius less than εW . Let ξ > 0 small enough such that

∀x, y ∈ Rd, ‖x− y‖2 ≤ ξ =⇒ Ld ((x+Wp)∆(y +Wp)) ≤
εW
4
.

By construction, µn has its support included inB(0, nd−1). We can coverB(0, nd−1)
by a polynomial in n number of balls of radius ξ. More precisely, there exist
z1, . . . , zM ′ ∈ B(0, nd−1), such that M ′ is polynomial in n and

B(0, nd−1) ⊂
M ′⋃
i=1

B(zi, ξ) .

We set
W̃ =

{
νzi+Wp , i = 1, . . . ,M ′

}
.

Let δ > 0 we will choose later. We define W δ
p and W−δp as

W δ
p = {x ∈ Rd : d2(x,Wp) ≤ δ} and W−δp = {x ∈Wp : d2(x, ∂Wp) ≥ δ} .

Let us define g as

g(x) =

{
min(d2(x,Wp)/δ, 1) if x ∈ Rd \Wp

−min(d2(x, ∂Wp)/δ, 1) if x ∈Wp
.

The function g is uniformly continuous and satisfies ‖g‖∞ ≤ 1. For each i ∈
{1, . . . ,M ′}, we define gi by gi(x) = g(x − zi) for x ∈ Rd, and F = {gi, 1 ≤ i ≤
M ′} ∪ {1}. The set F is a set made of translates of g and the constant function
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equal to 1. If the measure µn is in the local weak neighborhood V(W,F, εW4 ), then
there exists νx+Wp

in V(Wn,F,
εW
4 ) such that

sup
f∈F
|νx+Wp

(f)− µn(f)| ≤ εW
4
.

Moreover there exists an i ∈ {1, . . . ,M ′} such that x ∈ B(zi, ξ) and so

sup
f∈F
|νx+Wp(f)− νzi+Wp(f)| ≤ Ld ((x+Wp)∆(zi +Wp)) ≤

εW
4

and also
µn ∈ V

(
W̃,F, εW /2

)
.

Let us choose r > 0 large enough so that the ball B(0, r − 2d) contains Wp. For
x ∈ Rd, we define bxc to be the closest point to x in Zd for the Euclidean distance.
For any i ∈ {1, . . . ,M ′}, we have

W + zi ⊂ B(bzic, r) .

Let us define the function u such that for all ι > 0,

u(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
.

As the function g is uniformly continuous, the function u is positive. Moreover, as
F is made of translated of g and the constant function equal to 1, it is clear that this
set satisfies the condition stated in Proposition 5.10 associated with the function
u. Using Proposition 5.10 with the function u, there exist positive constants C1,
C2 depending only on r, u, p and εW such that for all i ∈ {1, . . . ,M ′}

P

(
max
Gn∈Gn

sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))| > εW /4

)
≤ C1 e−c2n

1−3/2d

.

(6.37)

The point of choosing such a set F is that we can deduce from the fact that the
quantity supf∈F |µn(f)−νW+zi(f)| is small that the associated symmetric difference
Ld((Pn ∩B(bzic, r))∆(zi +Wp)) is small. Indeed, we have

Ld((Pn ∩B(bzic, r))∆(zi +Wp))

=

∫
(Pn∩B(bzic,r))\(zi+Wp)

1dLd(x) +

∫
(zi+Wp)\Pn

1dLd(x)

≤
∫

(Pn∩B(bzic,r))\(zi+Wp)

gi(x)dLd(x)−
∫

(zi+Wp)\Pn

gi(x)dLd(x)

+ Ld(W δ
p \W−δp )

= |νn(gi1B(bzic,r)))− νW+zi(gi1B(bzic,r)))|+ L
d(W δ

p \W−δp )

≤ sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))|

+ sup
f∈F
|µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))|+ L

d(W δ
p \W−δp ) . (6.38)

So we choose δ small enough so that

Ld(W δ
p \W−δp ) ≤ εW

4
. (6.39)
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Moreover, we have

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1, µn ∈ V
(
W̃,F, εW /2)

)
≤

M ′∑
i=1

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1,
supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞) . (6.40)

Using inequalities (6.37), (6.38) and (6.39), we obtain

P
(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞)
≤ P

(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

supf∈F |µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))| ≤ εW /2

)
≤ P

(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

)
+ C1 e−c2n

1−3/2d

.

(6.41)

Finally, we proceed as in inequality (6.32) in the proof of Theorem 1.7:

P
(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

∣∣∣ 0 ∈ C∞)
≤ 1

θp

∑
k∈J

P
(
G(zi + xk, ρk, nWp

(xk), w, δ2)
)
. (6.42)

It is possible to choose δ2 depending on W , G and w (see again section 6 in Cerf
and Théret, 2011) such that there exist positive constants C1,k and C2,k depending
on G, d, W , k and w so that for all k ∈ J ,

P[G(xk, ρk, nWp
(xk), w, δ2)] ≤ C1,k exp(−C2,kn

d−1) .

So combining inequalities (6.40), (6.41) and (6.42), we obtain

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1, µn ∈ V
(
W̃,F, εW /2)

)
≤M ′

(
C1 e−c2n

1−3/2d

+
1

θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (6.43)

Moreover, we have

P
(
∃Gn ∈ Gn,

|Gn|
nd
≥ (1 + w)θpLd(Wp), µn ∈ V

(
W̃,F, εW /2)

)

≤
M ′∑
i=1

P
(
∃Gn ∈ Gn, |Gn|

nd ≥ (1 + w)θpLd(Wp),
|µn(1)− νW+zi(1)| ≤ εW /2

∣∣∣ 0 ∈ C∞)

≤
M ′∑
i=1

P

(
∃Gn ∈ Gn, |Gn|

nd ≥ (1 + w)θpLd(Wp),∣∣∣ |Gn|
nd − θpLd(Wp)

∣∣∣ ≤ εW /2
∣∣∣ 0 ∈ C∞) (6.44)

where we recall that θpLd(Wp) = 1, so up to choosing a smaller εW , we assume
that εW ≤ 2w so that the probability in the sum is equal to 0. Finally, combining
inequalities (6.43) and (6.44), we obtain

P
(
nϕn ≥

1− w
1 + w

Ip(Wp)

θpLd(Wp)

∣∣∣ 0 ∈ C∞) ≤ P
(
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

))
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+M ′
(
C1 exp(−C2n) +

1

θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (6.45)

Thanks to Theorem 1.7, there exist positive constants C ′1, C ′2, depending on p, u,
εW and d such that

P
(
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

) ∣∣∣ 0 ∈ C∞) ≤ C ′1 exp(−C ′2n1−3/2d) .

By choosing w small enough, we obtain

P
(
nϕn ≥ (1− ε) Ip(Wp)

θpLd(Wp)

∣∣∣ 0 ∈ C∞)
≤ C ′1 exp(−C ′2n1−3/2d) +M ′

(
C1 exp(−C2n) +

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
.

As M ′ is polynomial in n, the result follows.

6.3. Proof of Theorem 1.2. Let ε > 0. As in the proof of Theorem 1.5, there
exists an integer M ′ that is polynomial in n and z1, . . . , zM ′ points of B(0, nd−1)
such that for any finite set F of continuous functions of infinite norm at most 1, if
µn ∈ V(W,F, ε) then µn ∈ V(W̃,F, 2ε) where W̃ =

{
νzi+Wp

, i = 1, . . . ,M ′
}
. Let

δ > 0 we will choose later. Let us define f and g as

f(x) = min(d2(x,Rd \W δ
p )/δ, 1), for x ∈ Rd

and
g(x) = min(d2(x,Wp)/δ, 1), for x ∈ Rd .

The functions f and g are uniformly continuous and satisfy ‖f‖∞ ≤ 1 and ‖g‖∞ ≤
1. For each i ∈ {1, . . . ,M ′}, we define fi by fi(x) = f(x − zi) and gi by gi(x) =
f(x− zi) for x ∈ Rd. We define

F = {fi, 1 ≤ i ≤M ′} ∪ {gi, 1 ≤ i ≤M ′} .

Let Gn ∈ Gn. Let i ∈ {1, . . . ,M ′}. We have

|Gn∆((n(Wp + zi)) ∩ C∞)| = |Gn \ n(Wp + zi)|+ |(n(Wp + zi) ∩ C∞) \Gn| .
(6.46)

Using a renormalization argument as in the proof of Theorem 1.4, there exist posi-
tive constants C1 and C2 depending on p, ε and d such that for all i ∈ {1, . . . ,M ′},

P
(∣∣∣∣ |(n(W + zi)) ∩ C∞|

nd
− θpLd(Wp)

∣∣∣∣ ≥ ε ∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .

As Gn ∩ (n(Wp + zi)) ⊂ (n(Wp + zi)) ∩ C∞, we have with probability at least
1− C1 exp(−C2n),

|((n(Wp + zi)) ∩ C∞) \Gn|
= |(n(Wp + zi)) ∩ C∞| − |Gn ∩ (n(Wp + zi))|

≤ θpLd(Wp)n
d + ndε− ndµn(fi) + |n((W δ

p + zi) \ (Wp + zi)) ∩ Zd| .

We can find a constant c(δ) depending only on δ, p and d, such that c(δ) goes to 0
when δ goes to 0 and for all z ∈ Rd

|n((W δ
p + z) \ (Wp + z)) ∩ Zd| ≤ c(δ)nd ,
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so that,

|((n(Wp + zi)) ∩ C∞) \Gn| ≤ nd|νWp+zi(fi)− µn(fi)|+ (ε+ c(δ))nd

≤ nd sup
h∈F
|νWp+zi(h)− µn(h)|+ (ε+ c(δ))nd . (6.47)

Moreover, noticing that νWp+zi(gi) = 0, we obtain

|Gn \ n(W + zi)| ≤ ndµn(gi) + |n((W δ
p + zi) \ (Wp + zi)) ∩ Zd|

≤ nd|µn(gi)− νWp+zi(gi)|+ ndc(δ)

≤ nd sup
h∈F
|νWp+zi(h)− µn(h)|+ ndc(δ) . (6.48)

Combining inequalities (6.46), (6.47) and (6.48), with high probability, we have

inf
z∈Rd

1

nd
|Gn∆((n(Wp + z)) ∩ C∞)|

≤ min
1≤i≤M ′

1

nd
|Gn∆((n(Wp + zi)) ∩ C∞)|

≤ min
ν∈W̃

{
sup
h∈F
|ν(h)− µn(h)|+ sup

h∈F
|ν(h)− µn(h)|

}
+ ε+ 2c(δ)

≤ 2 min
ν∈W̃

sup
h∈F
|ν(h)− µn(h)|+ ε+ 2c(δ) .

Let us define for any ι > 0,

ug(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
,

uf (ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |f(x)− f(y)| ≤ ι

}
, 1
)

and u = min(uf , ug). This function is positive because the function f and g are
uniformly continuous. It is easy to check that F satisfies the condition required in
Theorem 1.7 associated with the function u. Thus, there exist positive constants
c1 and c2 depending on p, u, ε and d such that

P
(
∃Gn ∈ Gn, inf

ν∈W
sup
h∈F
|ν(h)− µn(h)| ≥ ε

∣∣∣ 0 ∈ C∞) ≤ c1 e−c2n
1−3/2d

and so

P
(
∃Gn ∈ Gn, min

ν∈W̃
sup
h∈F
|ν(h)− µn(h)| ≥ 2ε

∣∣∣ 0 ∈ C∞) ≤ c1 e−c2n
1−3/2d

.

We now choose δ small enough such that c(δ) ≤ ε so that

P
(
∃Gn ∈ Gn, inf

z∈Rd

1

nd
|Gn∆((n(Wp + z)) ∩ C∞)| ≥ 7ε

∣∣∣ 0 ∈ C∞)
≤ c1 e−c2n

1−3/2d

+M ′C1 exp(−C2n) .

As M ′ is polynomial in n, this yields the result.
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