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Conditional expectations throughBoolean cumulants
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Abstract. Following recently discovered connections between Boolean cumulants
and freeness, we use them to derive explicit formulas for a family of conditional ex-
pectations in free variables. Further, we show how the approach through Boolean
cumulants together with subordination simplifies some Lukacs–type regression char-
acterizations in free probability. Finally, we explain how the free dual Lukacs prop-
erty can be used to get a pocket proof of the free version of the direct Lukacs
property.

1. Introduction

In this paper we study characterizations of probability measures in terms of free
random variables. Problems of a similar type were studied for long time in classical
probability. Among many examples the most prominent one is the Kac-Bernstein
theorem which states that for independent random variables X,Y , the random
vector (U, V ) = (X + Y,X − Y ) has independent components if and only if X and
Y have Gaussian distribution with the same variance. Another imortant example
is the Lukacs theorem which states that for independent random variables X,Y ,
the random vector (U, V ) = (X/(X + Y ), X + Y ) has independent components if
and only if X and Y have Gamma distributions with the same scale parameter (cf.
Lukacs, 1955).
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Throughout recent years (mostly already in XXI century) it has been observed
that many classical characterizations of probability measures have their counter-
parts in the framework of free probability. The analogue of the Kac-Bernstein
theorem was studied by Nica (1996) and states that for free X,Y , the random
variables U = X + Y and V = X − Y are free if and only if X,Y have Wigner
semicircular distribution with the same variance. The free analogue of the Lukacs
theorem was studied in Szpojankowski (2015).

It was also observed that the strong assumption that both vectors (X,Y ) and
(U, V ) consist of independent (respectively free) random variables can be weakened
and it is enough to assume only that some conditional moments of U given V are
scalar multiples of the unit. This phenomenon was observed both in context of com-
mutative, independent random variables (see Laha and Lukacs, 1960; Bobecka and
Wesołowski, 2002; Wesołowski, 1990), as well as for non-commutative, free random
variables (c.f. Bożejko and Bryc, 2006; Szpojankowski and Wesołowski, 2014). On
the other hand calculation of conditional moments of functions of non-commutative
random variables typically is highly non-trivial. In Ejsmont et al. (2017) the sub-
ordination methodology of free convolutions was applied quite naturally to some
characterization problems. Its main advantage is a considerable simplification of the
proofs. In this research our goal originally was to apply the subordination method-
ology to characterizations through free dual Lukacs regressions in order to simplify
rather complex proofs from Szpojankowski (2014). The approach proved to be use-
ful for one of the regression characterizations from Szpojankowski (2014). However,
as powerful as it is, subordination does not cover the second of the dual Lukacs–type
regression of negative order considered in Szpojankowski (2014). The problem lies
in lack of an explicit expression for a rather complicated conditional expectation
appearing in the regression condition. Recently discovered connections between
Boolean cumulants Fevrier et al. (2020+); Lehner and Szpojankowski (2019) and
free probability allow to overcome that difficulty. In particular it was observed in
these references that Boolean cumulants appear quite naturally in calculations of
conditional expectations of some functions of free random variables. We will apply
some of the results from Lehner and Szpojankowski (2019) to derive an explicit ex-
pression for the conditional expectation we are interested here in. One of our main
points is that results from the present paper and Lehner and Szpojankowski (2019)
show that Boolean cumulants are natural tool to calculate explicitly conditional
expectations in free probability.

More precisely, we present a new approach to problems considered in Szpo-
jankowski (2014), i.e. we work in dual scheme to the Lukacs theorem (observe
that in the framework of the classical Lukacs theorem one has X = UV and
Y = V (1 − U)), we assume that some conditional moments of V 1/2(1 − U)V 1/2

given V 1/2UV 1/2 are scalar multiples of the unit, and conclude that U has a free
Binomial distribution and V has a free Poisson distribution. As we mentioned
above, it turns out, that the characterizations considered in Szpojankowski (2014)
are not a straightforward application of the subordination technique from Ejsmont
et al. (2017).

The main technical result of the present paper is an explicit formula for condi-
tional expectation

EV
(

(1− U)−1U1/2zU1/2V U1/2(1− zU1/2V U1/2)−1U1/2(1− U)−1
)
, (1.1)
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where EV denotes the conditional expectation on the algebra generated by V and
random variables U, V are free. Actually, we will be interested in a more general
family of conditional expectations which, we believe, will be of a wider interest, e.g.
in other regression characterization problems in free probability. Next we present
easier proofs of main results of Szpojankowski (2014), for one of them we apply just
the subordination technique alone and for the other the subordination is enhanced
by the Boolean cumulants technique which enables to derive an explicit form of
(1.1).

We also present a surprisingly compact proof of the free Lukacs property for
free Poisson distributed random variables. That is, we show that for free random
variables X and Y both having free Poisson (Marchenko-Pastur) distribution, the
random variables U = X + Y and V = (X + Y )−1/2X(X + Y )−1/2 are free. In
Szpojankowski (2015) we presented a ”hands on”, direct combinatorial proof. There
the strategy was to show that all mixed free cumulants of U and V vanish. In
particular, the explicit formula for joint free cumulants of X,X−1 (of an arbitrary
order) for invertible, free Poisson distributed random variable X was derived there.
Here we show that the direct free Lukacs property actually follows from its dual
version proved in Szpojankowski and Wesołowski (2014).

Except from Introduction this paper has 4 more sections. In Section 2 we set
up the framework and recall necessary notions and results. Section 3 is devoted to
derivation (through Boolean cumulants) of explicit expressions for a family of condi-
tional expectations which contains the conditional expectation (1.1), as a prominent
member. In Section 4 we present how to use subordination and Boolean cumulants
(results of Sect. 3) to simplify proofs of free dual Lukacs regression characteriza-
tions from Szpojankowski (2014). Section 5 contains a pocket proof of the free
version of the direct Lukacs property (based on the dual one).

2. Notation and background

In this section we introduce notions and results from non-commutative prob-
ability. We restrict the background to essential facts which are necessary in the
subsequent sections. Readers, who are not familiar with non-commutative (in par-
ticular, free) probability, to get a wider perspective, may choose to consult one of
the books Mingo and Speicher (2017); Nica and Speicher (2006).

We assume that A is a unital ∗-algebra and ϕ : A 7→ C is a linear functional
which is normalized (that is, ϕ (1A) = 1, where 1A is a unit of A), positive, tracial
and faithful. We will refer to the pair (A, ϕ) as a non-commutative probability
space.

2.1. Freeness, free and Boolean cumulants. The concept of freeness was introduced
by Voiculescu (1986) and among several existing notions of non-commutative inde-
pendence is the most prominent one. Here we recall its definition.

Definition 2.1. Let (A, ϕ) be a non-commutative probability space. We say that
subalgebras (Ai)1≤i≤n of algebra A are free if for any choice of Xk ∈ Aik which is
centered, i.e. ϕ (Xk) = 0, k = 1, . . . , n,

ϕ (X1 · · ·Xn) = 0

whenever neighbouring random variables come from different subalgebras, that is
when ik 6= ik+1 for all k = 1, . . . , n, where in+1 := i1.
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It turns out that freeness has a nice combinatorial description which uses the
lattice of non-crossing partitions.

Definition 2.2.

(1) For a positive integer n denote [n] := {1, . . . , n}. A partition π of [n] is
a collection of non-empty, pair-wise disjont subsets B1, . . . , Bk ⊆ [n] such
that

⋃k
j=1Bj = [n]. The subsets Bj for j = 1, . . . , k are called blocks of π,

the number of blocks in π is called the size of π and is denoted by |π|, i.e.
we have |π| = k.
The family of all partitions of [n] is denoted by P(n).

(2) We say that π ∈ P(n) is a non-crossing partition if for any B1, B2 ∈ π and
1 ≤ i1 < j1 < i2 < j2 ≤ n,

(i1, i2 ∈ B1 and j1, j2 ∈ B2) ⇒ B1 = B2.

The family of all non-crossing partitions of [n] is denoted by NC(n).
(3) We say that π ∈ P(n) is an interval partition if for any B1, B2 ∈ π and

1 ≤ i1 < j1 < i2 ≤ n

(i1, i2 ∈ B1 and j1 ∈ B2) ⇒ B1 = B2.

The family of all interval partitions of [n] is denoted by Int(n).

It is useful to introduce a partial order≤ onNC(n) called the reversed refinement
order.

Definition 2.3. For π, σ ∈ P(n) we say that that π ≤ σ if for any block B ∈ π
there exists a block C ∈ σ such that B ⊆ C. The order ≤ is the reversed refinement
order and it is also a partial order on the sets NC(n) and Int(n).

By 1n we denote the maximal partition of [n] with respect to ≤, i.e. the partition
with one block equal to [n].

It turns out that (NC(n),≤) and (Int(n),≤) have a lattice structure, for details
we refer to Nica and Speicher (2006), Lectures 9 and 10.

Next we recall definitions of cumulant functionals related to non-crossing and
interval partitions, called free and Boolean cumulants, respectively. Free cumulants,
introduced in Speicher (1994), are important tools in free probability, while Boolean
cumulants are related to the so called Boolean independence introduced in Speicher
and Woroudi (1997).

Definition 2.4. For every n ≥ 1 free cumulant functional κn : An → C is defined
recursively through equations

∀m ≥ 1 ∀(X1, . . . , Xm) ∈ Am ϕ(X1 · · ·Xm) =
∑

π∈NC(m)

κπ(X1, . . . , Xm),

where for π = {B1, . . . , Bk} ∈ NC(m)

κπ(X1, . . . , Xm) =

k∏
j=1

κ|Bj | (Xi; i ∈ Bj) .
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Similarly, for every n ≥ 1 Boolean cumulant functional βn : An → C is defined
recursively through equations

∀m ≥ 1 ∀(X1, . . . , Xm) ∈ Am ϕ(X1 · · ·Xm) =
∑

π∈Int(m)

βπ(X1, . . . , Xm),

where for π = {B1, . . . , Bk} ∈ Int(m)

βπ(X1, . . . , Xm) =

k∏
j=1

β|Bj | (Xi; i ∈ Bj) .

It turns out that freeness can be described in terms of free cumulants. More
precisely random variables X1, . . . , Xn are free if and only if for any r ≥ 2 we have
κr (Xi1 , . . . , Xir ) = 0 for any non-constant choice of i1, . . . , ir ∈ {1, . . . , n}.

Remark 2.5. In the sequel we will need the formula for Boolean cumulants with
products as entries (see e.g. Fevrier et al., 2020+) Fix two integers m,n such that
0 < m + 1 < n and numbers 1 ≤ i1 < i2 < . . . < im+1 = n. Denote by σ the
interval partition {{1, . . . , i1}, {i1 + 1, . . . , i2}, . . . , {im + 1, . . . , im+1}}. We have

βm+1(X1 · · ·Xi1 , . . . , Xim+1 · · ·Xim+1
) =

∑
π∈Int(n)
π∨σ=1n

βπ(X1, . . . , Xn), (2.1)

where ∨ is join of partitions.

In the present paper we will also need generating functions related with cumu-
lants and moments:

(1) Moment transform is defined for z ∈ C \ R as

MX(z) =

∫
R

zx

1− zx
dµX(x),

if X is bounded then in a neighbourhood od zero one has

MX(z) = zϕ(X) + z2ϕ(X2) + . . .

(2) η–transform is defined for z ∈ C \ R as

ηX(z) =
MX(z)

1 +MX(z)

and in a neighbourhood of zero for bounded X one has

ηX(z) = β1(X)z + β2(X)z2 + . . .

(3) For a positive X, for z in a neighbourhood of (−1, 0) one can define so
called S–transform

SX(z) = 1+z
z M−1X (z)

which for free X,Y has a remarkable property that SXY = SXSY .
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2.2. Conditional expectation. Assume that (A, ϕ) is a W ∗-probability spaces, that
is A is a finite von Neumann algebra and ϕ a faithful normal tracial state. Then
for any von Neumann subalgebra B ⊂ A there exists a faithful, normal projection
EB : A → B such that ϕ ◦ EB = ϕ. This projection is called the conditional
expectation onto the subalgebra B with respect to ϕ. If X ∈ A is self-adjoint then
EB(X) defines a unique self-adjoint element in B. For X ∈ A by EX we denote the
conditional expectation given the von Neumann subalgebra generated by X and
1A.

An important tool for dealing with conditional expectations is the following
equivalence

EB(Y ) = Z ⇔ Z ∈ B and ϕ(Y X) = ϕ(ZX) ∀X ∈ B. (2.2)

2.3. Free Poisson and free Binomial distributions. In this subsection we recall defi-
nitions and some basic facts two about distributions: free Poisson and free binomial,
which play important role in this paper.

Remark 2.6 (Free Poisson distribution).
(1) The Marchenko–Pastur (or free Poisson) distribution µ = µ(α, λ) is defined

by

µ = max{0, 1− λ} δ0 + µ̃,

where α, λ > 0 and the measure µ̃, supported on the interval (α(1 −√
λ)2, α(1 +

√
λ)2), has the density (with respect to the Lebesgue mea-

sure)

µ̃(dx) =
1

2παx

√
4λα2 − (x− α(1 + λ))2 dx.

(2) For free Poisson distribution µ(α, λ) the S-transform is of the form

Sµ(α,λ)(z) =
1

αλ+ αz

Remark 2.7 (Free binomial distribution).
(1) Free binomial distribution ν = ν(σ, θ) is defined by

ν = (1− σ)I0<σ<1 δ0 + ν̃ + (1− θ)I0<θ<1δ1, (2.3)

where ν̃ is supported on the interval (x−, x+),

x± =

(√
σ

σ + θ

(
1− 1

σ + θ

)
±

√
1

σ + θ

(
1− σ

σ + θ

))2

, (2.4)

and has the density

ν̃(dx) = (σ + θ)

√
(x− x−) (x+ − x)

2πx(1− x)
dx.

where (σ, θ) ∈
{

(σ, θ) : σ+θ
σ+θ−1 > 0, σθ

σ+θ−1 > 0
}
. The n-th free convolution

power of distribution

pδ0 + (1− p)δ1/n
is free-binomial distribution with parameters σ = n(1 − p) and θ = np,
which justifies the name of the distribution (see Saitoh and Yoshida, 2001).
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(2) For free Binomial distribution ν(σ, θ) the S-transform is of the form

Sν(σ,θ)(z) = 1 +
θ

σ + z
.

3. Calculation of conditional expectation

This section is devoted to derive explicit expressions for a family of conditional
expectations of functions of free variables, as announced in the introduction. To
attain this goal we use Boolean cumulants and some of the results from Lehner and
Szpojankowski (2019); Fevrier et al. (2020+). Surprisingly, though the variables
involved are free, calculations based on Boolean cumulants are much simpler than
those based on free cumulants and shown in Szpojankowski (2014).

We start with recalling relevant facts about subordination, for details see Biane
(1998).

Let (A, ϕ) be as in Subsection 2.2. For a variable X ∈ A and z ∈ C\R we define
a function Ψ by ΨX(z) := zX (1− zX)

−1 and the following subordination formulas
for conditional expectations with respect to positive V and U , respectively, hold

EV ΨV 1/2UV 1/2(z) = ΨV (ω1(z)) (3.1)
EU ΨU1/2V U1/2(z) = ΨU (ω2(z)). (3.2)

Here, ω1 and ω2 are the subordination functions. Note that since we assume
that ϕ is tracial and both U and V are positive the moments of UV,U1/2V U1/2

and V 1/2UV 1/2 are the same, so MUV = MU1/2V U1/2 = MV 1/2UV 1/2 . Since by the
very definition we have MX(z) = ϕ(ΨX(z)) identities (3.1) and (3.2) imply

MUV (z) = MV (ω1(z)) = MU (ω2(z)). (3.3)

For future use we will also denote ΨX := ΨX(1). In the sequel, we will also use
the symbol ψ for a formal power series ψ(x) =

∑
k≥1 x

k, where x is from some
(unspecified) algebra over a real vector space.

We will also need the following two formulas involving Boolean cumulants. The
first is taken from Lehner and Szpojankowski (2019) and the second is a simple
consequence of Theorem 1.2 from Fevrier et al. (2020+); it is also closely related
to the characterization of freeness from Jekel and Liu (2019).

Proposition 3.1. Let {X1, . . . , Xn+1} and {Y1, . . . , Yn} be free, n ≥ 1. Then

ϕ(X1Y1 . . . XnYn) (3.4)

=

n−1∑
k=0

∑
0=j0<j1<...<jk+1=n

ϕ(Yj1 . . . Yjk+1
)·

k∏
`=0

β2(j`+1−j`)−1(Xj`+1, Yj`+1 . . . , Yj`+1−1, Xj`+1
)
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and

β2n+1(X1, Y1, . . . , Xn, Yn,Xn+1) (3.5)

=

n+1∑
k=2

∑
1=j1<...<jk=n+1

βk(Xj1 , . . . , Xjk)·

k−1∏
`=1

β2(j`+1−j`)−1(Yjl , Xj`+1, . . . , Xj`+1−1, Yj`+1−1).

We note also a simple consequence of (3.4) together with its reformulation.

Remark 3.2.
(1) In some neighbourhood of zero for subordination functions defined by equa-

tions (3.1) and (3.2) we have (see Lehner and Szpojankowski, 2019)

ω1(z) =

∞∑
k=1

β2k−1(U, V, U, . . . , V, U)zk,

ω2(z) =

∞∑
k=1

β2k−1(V,U, V . . . , U, V )zk.

(2) Equation (3.4) can be reformulated in a, seemingly less transparent, but
quite useful way, where we set i0 := 0 and ik records the distance between
k-th and (k + 1)-st of Y ’s which were picked to the outer block together
with Yn,

ϕ (X1Y1 . . . XnYn) =

n∑
k=1

∑
i1+...+ik=n−k
i1,...,ik≥0

ϕ
(
Yn−i0−i1−...−ik−1−(k−1) . . . Yn−i0−i1−1Yn

)
·

(3.6)
k∏
j=1

β2ij+1

(
Xlj+1, Ylj+1 . . . , Xlj−1

)
,

with i0 = 0 and lj = n− i0 − i1 − . . .− ij − j.

The remaining part of this section is devoted to calculation of conditional ex-
pectation (1.1). Actually, we will calculate a more general conditional expectation

EV f(U)U−1/2ΨU1/2V U1/2(z)U−1/2g(U), (3.7)

where f, g are functions such that f(U) and g(U) bounded. Note that the condi-
tional expectation (3.7) for f = g = ψ reduces to (1.1).

Below, in Prop. 3.3 and Prop. 3.4, we present main technical results of this
paper, i.e. we derive an explicit form of the conditional expectation (3.7). It is
worth to point out that this explicit form is written quite naturally just in terms
of moments and Boolean cumulants and with no reference to free cumulants. This
fact strengthens considerably the methodological recommendation from Lehner and
Szpojankowski (2019): to calculate conditional moments of functions of free random
variables use Boolean cumulants!
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Proposition 3.3. Let (A, ϕ) be as in Subsection 2.2. Assume that U, V ∈ A are
free, 0 ≤ U < 1 and V is bounded. Let f and g be such that f(U) and g(U)
are bounded. Then for z in some neighbourhood of 0 and ω1, ω2 satisfying (3.1)
and (3.2)

EV f(U)U−1/2ΨU1/2V U1/2(z)U−1/2g(U) (3.8)

= ω2(z)ηf,gU (ω2(z)) + zηfU (ω2(z))ηgU (ω2(z))V (1 + ΨV (ω1(z)) ,

where

ηf,gU (z) =

∞∑
`=0

βl+2(f(U), U, . . . , U, g(U))z`, (3.9)

ηfU (z) =

∞∑
`=0

βl+1(f(U), U, . . . , U)z`. (3.10)

Proof : We will calculate the conditional expectation (3.7) using Remark 3.2.
For z sufficiently small we can write

ΨU1/2V U1/2(z) =

∞∑
n=1

znU1/2(V (UV )n−1)U1/2.

It suffices to calculate
∞∑
n=1

znϕ
(
f(U)V (UV )n−1g(U)H

)
,

for any H in the von Neumann algebra generated by {1A, V }. Thus we reduce the
problem to calculation of moments

ϕ
(
f(U)V (UV )n−1g(U)H

)
n ≥ 1.

We use (3.6) to express the above moment in terms of moments of H and V and
Boolean cumulants of f(U), g(U), U and V . The two free families in (3.6) are
{f(U), U, . . . , U, g(U)︸ ︷︷ ︸

n+1

} and {V, . . . , V,H︸ ︷︷ ︸
n+1

}. Denoting i` = j`+1 − j` in (3.6) we get

ϕ
(
f(U)V (UV )n−1g(U)H

)
= ϕ(H)β2n+1 (f(U), V, U, . . . , V, g(U))

+
n∑

k=1

ϕ
(
V kH

) ∑
i1+...+ik+1=n−k

β2i1+1(f(U), V, . . . , V, U) · · ·β2ik+1+1(U, V, . . . , V, g(U)),

where the Boolean cumulants which are hidden under · · · in the formula above are
of the form β2k+1(U, V, . . . , U, V, U).

Thus, taking into account (2.2), the conditional expectation assumes the form

EV f(U)U−1/2ΨU1/2V U1/2(z)U−1/2g(U) =

∞∑
n=1

zn β2n+1 (f(U), V, U, . . . , U, V, g(U))

(3.11)

+

∞∑
n=1

zn
n∑

k=1

V k
∑

i1+...+ik+1=n−k

β2i1+1(f(U), V, . . . , V, U) · · ·β2ik+1+1(U, V, . . . , V, g(U)).
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Let us denote

A1(z) =

∞∑
n=0

β2n+1 (f(U), V, U, . . . , U, V, U) zn,

A2(z) =

∞∑
n=0

β2n+1 (U, V, U, . . . , U, V, g(U)) zn,

B(z) =

∞∑
n=1

β2n+1 (f(U), V, U, . . . , U, V, g(U)) zn,

C1(z) =

∞∑
n=0

β2n+1 (U, V, U, . . . , U, V, U) zn,

C2(z) =

∞∑
n=0

β2n+1 (V,U, V . . . , V, U, V ) zn.

Observe that the change of order of summation in the second summand at the
right hand side of (3.11) gives
∞∑

n=1

zn
n∑

k=1

V k
∑

i1+...+ik+1=n−k

β2i1+1(f(U), V, . . . , V, U) · · ·β2ik+1+1(U, V, . . . , U, V, g(U))

= zV

∞∑
n=1

n∑
k=1

V k−1zk−1· ∑
i1+...+ik+1=n−k

β2i1+1(f(U), V, . . . , V, U)zi1 · · ·β2ik+1+1(U, V, . . . , U, V, g(U))zik+1


= zA1(z)A2(z)V

∞∑
k=1

[zC1(z)V ]k−1 = zA1(z)A2(z)V (1 + ΨV (zC1(z))) .

Remark 3.2 implies that zC1(z) is exactly the subordination function ω1(z).
Thus, returning to (3.11) and the definition of B we finally get

EV f(U)U−1/2ΨU1/2V U1/2(z)U−1/2g(U) = B(z) + zA1(z)A2(z)V (1 + ΨV (ω1(z)).

We will use below (3.5) for free collections {f(U), U, . . . , U︸ ︷︷ ︸
i+1

} and {V, . . . , V︸ ︷︷ ︸
i

} for

any i ≥ 0 (with indices changed in the way we did when using (3.6) earlier in this
proof)

A1(z) =

∞∑
i=0

ziβ2i+1(f(U), V, . . . , V, U)

=

∞∑
i=0

i∑
l=0

βl+1(f(U), U, . . . , U)zl·( ∑
i1+...+il=i−l

β2i1+1(V,U, . . . , U, V )zi1 . . . β2il+1(V,U, . . . , U, V )zil

)

=

∞∑
l=0

βl+1(f(U), U, . . . , U)zlCl2(z)
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where zC2(z) = ω2(z). Consequently, A1(z) = ηfU (ω2(z)) - see (3.10).
Boolean cumulants are invariant under reflection

β2i+1(U, V, . . . , U, V, g(U)) = β2i+1(g(U), V, U, . . . , V, U)

and thus, by the same calculation as for A1, we get A2(z) = ηgU (ω2(z)).
To find B we repeat (with obvious modifications) the first part of the calculation

which has been done above for A1. It gives the representation

B(z) =

∞∑
l=0

βl+2(f(U), U, . . . , U, g(U))zl+1Cl+1
2 (z).

Consequently, B(z) = ω2(z)ηf,gU (ω2(z)) - see (3.9).
�

It turns out that both ηf,gU and ηfU can be conveniently expressed in terms of an
operation ϕUD which we are going to define now.

Let H be a formal power series H(T ) =
∑
k≥0 hkT

k where T is a variable from
some algebra. Let D denote the zero derivative i.e. a linear operator which is
defined on a power series in T ∈ A through its action on monomials: DT k = T k−1

for k ≥ 1 and DT k = 0 for k = 0. Similarly by D we denote the zero derivative
acting on complex power series.

For a power series f : A → A and T ∈ A we define a new operator ϕTD(H, f)
(acting on complex functions)

ϕTD(H, f) :=
∑
k≥0

hkϕ
(
Dkf(T )

)
Dk. (3.12)

Note that ϕTD(H, f) is a formal series of weighted zero derivatives of increasing
orders (with the weight hkϕ

(
Dkf(T )

)
for the derivative of order k, k ≥ 0). The

result of its application to an analytic function in general is a formal series (which
in some cases may converge). Note that for integer r ≥ 0

ϕTD(H, T r) =

r∑
k=0

hkϕ(T r−k)Dk,

and, in particular,

ϕTD(H, 1) = h0 and ϕTD(H, T ) = h0ϕ(T )id + h1D.

Therefore, e.g. for H := ψ we have

ϕTD(ψ, 1) = 0 and ϕTD(ψ, T ) = D. (3.13)

On the other hand, since for ψ(z) = z(1− z)−1, |z| < 1, we have Dkψ = 1 + ψ,
it follows that

ϕTD(H,ψ) = ϕ(1 + ΨT )H(D).

In particular,
ϕTD(ψ,ψ) = ϕ(1 + ΨT )ψ(D). (3.14)

Now we are ready to give explicit formulas for ηf,gU and ηfU defined in (3.9) and
(3.10), respectively.
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Proposition 3.4. Assume that f and g are analytic functions on the unit disc.
Let U be a non-commutative variable such that 0 ≤ U < 1 with the η–transform
ηU . Then

ηf,gU =
[
ϕUD(ψ, f) ◦ ϕUD(ψ, g)

]
ηU , (3.15)

and

ηfU (z) = z ([ϕUD(ψ, f) ◦D]ηU )(z) + (ϕUD(ψ, f) ηU )(0). (3.16)

Proof : First, we consider ηf,gU .
Let f(z) =

∑
k≥0 akz

k and g(z) =
∑
k≥0 bkz

k. Expanding f and g we get

ηf,gU (z) =
∞∑
`=0

z`
∑
i,j≥0

aibjβl+2(U i, U, . . . , U, U j).

Since, βl+2(1, U, . . . , U, U j) = βl+2(U i, U, . . . , U, 1) = 0 the inner double sum starts
with i = j = 1.

Using the definition of Boolean cumulants and the formula for Boolean cumulants
with products as entries (2.1) one can easily obtain the following formula

βr+1

(
G,U, . . . , U, U i

)
= βr+1

(
U i, U, . . . , U,G

)
(3.17)

=

i∑
m=1

βr+m(G,U, . . . , U︸ ︷︷ ︸
r+m−1

)ϕ
(
U i−m

)
.

Applying (3.17) we obtain

ηf,gU (z) =

∞∑
`=0

z`
∑
i,j≥1

aibj

i∑
k=1

j∑
m=1

β`+k+m(U)ϕ(U i−k)ϕ(U j−m).

Changing several times the order of inner summations and the variables we get

ηf,gU (z) =

∞∑
`=0

z`
∑
k,m≥1

βl+k+m(U)ϕ

∑
i≥k

aiU
i−k

 ϕ

∑
j≥m

bjU
j−m


=

∞∑
`=0

z`
∑
k,m≥1

βl+k+m(U)ϕ
(
Dkf(U)

)
ϕ (Dmg(U))

=

∞∑
`=0

z`
∞∑
r=2

β`+r(U)

r−1∑
k=1

ϕ
(
Dkf(U)

)
ϕ
(
Dr−kg(U)

)
=

∞∑
r=2

(
r−1∑
k=1

ϕ
(
Dkf(U)

)
ϕ
(
Dr−kg(U)

)) ∞∑
`=0

β`+r(U)z`

=

∞∑
r=2

(
r−1∑
k=1

ϕ
(
Dkf(U)

)
ϕ
(
Dr−kg(U)

))
DrηU (z).
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Consequently,

ηf,gU =

∞∑
r=2

(
r−1∑
k=1

[
ϕ(Dkf(U))Dk

] [
ϕ(Dr−kg(U))Dr−k]) ηU

=

∑
k≥1

ϕ
(
Dkf(U)

)
Dk

 ◦
∑
k≥1

ϕ(Dkg(U))Dk

 ηU .
Second, we consider ηfU . By definition

ηfU (z) = zηf,idU (z) + β1(f(U)). (3.18)

Note that (3.15) for g = id together with the second identity of (3.13) yields

ηf,idU = [ϕDU (ψ, f) ◦D]ηU . (3.19)

For f(z) =
∑
i≥1 aiz

i we have

β1(f(U)) =
∑
i≥1

aiβ1(U i)

Thus (3.17) yields

β1(f(U)) =
∑
i≥1

ai

i∑
k=1

βk(U)ϕ(U i−k) =
∑
k≥1

βk(U)ϕ(Dkf(U)).

Since βk(U) = (DkηU )(0) we see that

β1(f(U)) =
∑
k≥1

ϕ(Dkf(U))(DkηU )(0) = (ϕUD(ψ, f) ηU )(0). (3.20)

The final result follows now by inserting (3.19) and (3.20) into (3.18). �

Remark 3.5. Note that due to the second formula in (3.13) it follows from (3.15)
that

ηid,idU = D2ηU

and (3.16) yields
ηidU = DηU .

The last identity extends to any function fr defined as fr(T ) = T r, where r ≥ 1 is
an integer, as follows

ηfrU =

r∑
j=1

ϕ(Ur−j)DjηU .

Remark 3.6. One can rewrite the equation (3.15) in a more straightforward form
as

ηf,gU (z) =

∞∑
r=2

r−1∑
k=1

ϕ

∑
i≥k

aiU
i−k

 ϕ

 ∑
j≥r−k

bjU
j−(r−k)

 ∞∑
`=0

β`+r(U)z`.

Similarly (3.16) expands into

ηfU (z) =

∞∑
r=1

ϕ

∑
i≥r

aiU
i−r

 ∞∑
`=0

β`+r(U)z`.
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Finally, we calculate the conditional expectation (1.1) which will be needed in
Section 4 in the proof of the second one of the regression characterizations.

Proposition 3.7. Let (A, ϕ) be as in Subsection 2.2. Assume that U, V ∈ A are
free, 0 ≤ U < 1 and V is bounded. Then for z in some neighbourhood of 0

EV (1− U)−1U1/2ΨU1/2V U1/2(z)U1/2(1− U)−1 = B(z) (3.21)

+ zA2(z)V (1 + ΨV (ω1(z)) ,

where

A(z) =
ηU (ω2(z))− ηU (1)

ω2(z)− 1
ϕ
(
(1− U)−1

)
, (3.22)

B(z) =
ω2(z)(ηU (ω2(z))− ηU (1)− (ω2(z)− 1)η′U (1))

(ω2(z)− 1)2
ϕ2
(
(1− U)−1

)
(3.23)

and ω1, ω2 satisfy (3.3).

Proof : From (3.8) with f = g = ψ we see that the conditional expectation at the
left hand side of (3.21) is of the form

ω2(z)ηψ,ψU (ω2(z)) + z
(
ηψU (ω2(z))

)2
(1 + ΨV (ω1(z)))V,

i.e. we need only to show that
• ηψU (ω2(z)) = A(z), where A is defined in (3.22);

and
• ω2(z)ηψ,ψU (ω2(z)) = B(z), where B is defined in (3.23).

We first compute ηψU . To this end we rely on (3.16). Observe that (3.14) yields

ϕUD(ψ,ψ)(DηU ) = ϕ(1 + ΨU )
∑
k≥1

Dk+1ηU = ϕ(1 + ΨU )(Dψ(D))ηU .

Note that for a power series h(z) =
∑
j≥0 hjz

j we have

ψ(D) (h)(z) :=
∑
k≥1

Dkh(z) =
∑
k≥1

∑
j≥k

hjz
j−k =

∑
j≥1

hj

j∑
k=1

zj−k = h(z)−h(1)
z−1 .

(3.24)

Therefore, using (3.24) we get

Dψ(D) (h)(z) = D
(
h(z)−h(1)

z−1

)
= Dh(z)−h(1)

z−1 .

Thus, since zDηU (z) = ηU (z), we get

zϕUD(ψ, ψ)(DηU )(z) = ϕ(1 + ΨU )ηU (z)−zηU (1)
z−1 .

Note also that due (3.24) and ηU (0) = 0 we obtain

ϕUD(ψ, ψ)(ηU )(0) = ϕ(1 + ΨU )(ψ(D)ηU )(0) = ϕ(1 + ΨU )ηU (1)

Thus, (3.16) implies A(z) := ηψU (ω2(z)) .
Now we calculate ηψ,ψU . Using (3.15) and then first only once referring to (3.24),

we get
ηψ,ψU = ϕ2(1 + ΨU )ψ◦2(D)ηU = ϕ2(1 + ΨU )ψ(D)K,
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where the function K is defined by

K(w) = ηU (w)−ηU (1)
w−1 .

Since K(1) = η′U (1), upon using again (3.24), we get

ηψ,ψU (w) = ϕ2(1 + ΨU )
ηU (w)−ηU (1)

w−1 −η′U (1)

w−1

and the formula for B follows. �

4. Dual Lukacs regressions of negative orders

In this section we present simplified proofs of results from Szpojankowski (2014).
We start with the regression characterization which can be approached just by
subordination technique, see Ejsmont et al. (2017), without necessity to refer to
Boolean cumulants.

Theorem 4.1. Let (A, ϕ) be a W ∗ probability space. Let U, V ∈ A be free and
such that 0 < U < 1 and V > 0. Assume that for some b, c ∈ R

EV 1/2UV 1/2 V 1/2(1− U)V 1/2 = bI , (4.1)

EV 1/2UV 1/2 [V 1/2(1− U)V 1/2]−1 = cI . (4.2)

Then b, c > 0, bc > 1 and, with α = ϕ(ΨU ) > 0,

• V has free Poisson distribution µ
(
bc−1
c , bc+αbc−1

)
,

• U has free binomial distribution ν
(

α
bc−1 ,

bc
bc−1

)
.

Remark 4.2. This result holds, with the same proof, for unbounded random vari-
ables U, V affiliated with respective von Neumann algebras, similarly as in Ejsmont
et al. (2017). The same framework was considered in Biane (1998). Then it is
enough to assume that U, V > 0 are such that (1−U)−1 exists and ϕ(V ), ϕ(V −1),
ϕ(U) and ϕ((1− U)−1) are finite.

Proof : Consider first (4.2) which after multiplication by ΨV 1/2UV 1/2(z) implies

L := ϕ
(

(1− U)−1V −1/2ΨV 1/2UV 1/2(z)V −1/2
)

= cMV 1/2UV 1/2(z). (4.3)

It is easy to see through purely algebraic manipulations that for non-commutative
W > 0 and T > 0

W−1/2ΨW 1/2TW 1/2(z)W−1/2 = zT 1/2 (ΨT 1/2WT 1/2(z) + 1)T 1/2. (4.4)

Therefore applying (4.4) with (W,T ) = (V,U) to (4.3) we get

L = ϕ
(
z(1− U)−1U1/2(ΨU1/2V U1/2(z) + 1)U1/2

)
= ϕ

(
z(1− U)−1U1/2(EU ΨU1/2V U1/2(z) + 1)U1/2

)
= zϕ

(
(1− U)−1U(ΨU (ω2(z)) + 1)

)
.

By simple algebra

U(1− U)−1(ΨU (t) + 1) = 1
t−1 (ΨU (t)−ΨU (1)) (4.5)
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and thus (we write below ω2 = ω2(z))

L = z
MU (ω2)− α
ω2 − 1

.

Consequently, (3.3) and (4.3) yield

z (MU (ω2)− α) = c(ω2 − 1)MU (ω2). (4.6)

Similarly, we multiply both sides of (4.1) by zΨV 1/2UV 1/2(z) and obtain

M := zϕ
(

(1− U)V 1/2ΨV 1/2UV 1/2(z)V 1/2
)

= zbMV 1/2UV 1/2(z). (4.7)

Applying (4.4) with (W,T ) = (U, V ) we see that

M = φ((1− U)U−1/2ΨU1/2V U1/2(z)U−1/2)− zφ((1− U)V ).

Thus traciality and subordination (3.2) yield

M = φ(Ψ−1U ΨU (ω2(z)))− zb
since (4.1) implies φ((1− U)V ) = b. We rewrite (4.5) as

Ψ−1U ΨU (t) = t+ (t− 1)ΨU (t)

and plug it into M . Taking additionally into account (3.3) at the RHS of (4.7) we
finally get

ω2(z) + (ω2 − 1)MU (ω2) = bz(MU (ω2) + 1). (4.8)
Identity MUV (z) = MU (ω2(z)) can be written in terms of inverse functions as

ω2(M
〈−1〉
UV (s)) = M

〈−1〉
U (s) (for the discussion about the existence of an inverse see

Belinschi and Bercovici, 2005). Thus rewriting (4.8) and (4.6) in terms ofM 〈−1〉UV (s)

and M 〈−1〉U (s) we obtain the following system of linear equations{
b(1 + s)M

〈−1〉
UV (s) = (1 + s)M

〈−1〉
U (s)− s,

(s− α)M
〈−1〉
UV (s) = cs

(
M
〈−1〉
U (s)− 1

)
.

(4.9)

We solve this system in terms of M−1U and M−1UV and thus obtain S-transforms

SU (s) = 1 +
bc

α+ (bc− 1)s

SUV (s) =
c

α+ s(bc− 1)
.

By freeness of U and V we know that SUV = SU SV , which allows to compute the
S-transform of V ,

SV (s) =
c

bc+ α+ (bc− 1)s
.

Since the S-transform determines the distribution uniquely, the result follows. �

The next regression characterization cannot be proved just by referring to sub-
ordination as in the proof above. The proof we give below shows how useful can
be enhancement of the subordination methodology with explicit formulas for con-
ditional expectations expressed in terms of Boolean cumulants. We expect that
this kind of approach can be of use also in other regression characterizations for
which a simple subordination technique is not a sufficient tool, e.g. in regression
characterizations related to recent results for the free GIG and free Poisson see
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Szpojankowski (2017) and of the free Kummer and free Poisson given in Piliszek
(2019).

Theorem 4.3. Let 0 < U < 1 and V > 0 be free, V bounded. Assume that for
some c, d ∈ R condition (4.2) holds and

EV 1/2UV 1/2 [V 1/2(1− U)V 1/2]−2 = dI . (4.10)

Then d > c2 and with α = ϕ(ΨU )

• V has free Poisson distribution µ
(
d−c2
c3 , c

2α+d
d−c2

)
,

• U has free binomial distribution ν
(
c2α
d−c2 ,

d
d−c2

)
.

Proof : We first observe that, as in the previous proof, (4.2) implies (4.6).
Then we consider (4.10). We multiply its both sides by ΨV 1/2UV 1/2(z) and apply

state to get

N := ϕ
(
V −1/2(1− U)−1V −1(1− U)−1V −1/2ΨV 1/2UV 1/2

)
= dMV 1/2UV 1/2 (4.11)

Using traciality of ϕ and identity (4.4) with (W,T ) = (V,U) we obtain

N =zϕ
(

(1− U)−1V −1(1− U)−1U1/2 (ΨU1/2V U1/2(z) + 1)U1/2
)

=zϕ
(
V −1(1− U)−1U1/2ΨU1/2V U1/2(z)U1/2(1− U)−1

)
+ zϕ

(
V −1(1− U)−2U

)
=zϕ

(
V −1EV (1− U)−1U1/2ΨU1/2V U1/2(z)U1/2(1− U)−1

)
+ zϕ

(
V −1(1− U)−2U

)
.

By Proposition 3.7 we get

N = zB(z)φ(V −1) + z2A2(z)(1 +MV (ω1(z))) + zϕ
(
V −1(1− U)−2U

)
.

Since ηU = MU

1+MU
it follows that η′U =

M ′U
(1+MU )2 . Also MU (1) = φ

(∑∞
k=1 U

k
)

=

ϕ(ΨU ) andM ′U (1) = φ
(
U
∑∞
k=1 kU

k−1) = φ(U(1−U)−2). Moreover, (4.2) implies

ϕ(V −1)ϕ((1− U)−1) = c and φ(ΨU ) = cϕ(U)φ(V )

and (4.10) yields
ϕ(U(1− U)−2)ϕ(V −1) = dϕ(U)ϕ(V ).

Additionally, we easily see that

ϕ(V −1) =
c

α+ 1
, ηU (1) =

α

1 + α
,

M ′U (1) = φ(U(1− U)−2) = α(1+α)d
c2 , η′U (1) =

αd

(1 + α)c2
.

Moreover, MV (ω1(z)) = MU (ω2(z)). Summing up, (below ω2 = ω2(z))

N = czω2

(ω2−1)2
MU (ω2)−α
MU (ω2)+1 +

(
z

ω2−1

)2
(MU (ω2)−α)2
MU (ω2)+1 −

αdz
c(ω2−1) .

Since MV 1/2UV 1/2(z) = MU (ω2) at the RHS of (4.11) this equation upon multipli-
cation both sides by z can be written as(

z
c(ω2−1)

)2
MU (ω2)−α
MU (ω2+1 c2 (cω2 − z [MU (ω2)− α]) = dz

(
z

c(ω2−1) α+MU (ω2)
)
.
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Using now (4.6) in the form z
c(ω2−1) = MU (ω2)

MU (ω2)+1 we get

c2

MU (ω2)+1 (cω2 − z [MU (ω2)− α]) = dz.

Now, plug in z [MU (ω2)− α] = c(ω2−1)MU (ω2), which is another reformulation
of (4.6), to conclude that

ω2 + (ω2 − 1)MU (ω2) = d
c3 z(MU (ω2) + 1). (4.12)

Note that (4.12) upon substitution b = d/c3 is the same as (4.8). Therefore (4.6)
and (4.12) is the same system of equations as in the previous proof and thus the
result follows. �

5. Direct free Lukacs property for Marchenko-Pastur law

Recall that in classical probability the following two implications are trivially
equivalent:

• ifX and Y are independent gamma variables with the same scale parameter
λ and shape parameters αX and αY , respectively, then U = X/(X + Y )
and V = X + Y are independent, U is beta with parameters αX , αY and
V is gamma with the shape αX + αY and scale λ;

• if U and V are independent random variables, U is beta with parameters
αX , αY and V is gamma with the shape αX+αY and scale λ, thenX = UV
and Y = (1 − U)V are independent gamma variables with the same scale
parameter λ and shape parameters αX and αY , respectively.

However, the situation in free probability changes drastically, see the proofs of the
dual Lukacs property in Szpojankowski and Wesołowski (2014) and of the free direct
Lukacs property in Szpojankowski (2015).

Until this moment we considered regression versions of the free dual Lukacs
property which says that for U and V which are free and, respectively, free binomial
and free Poisson distributions with properly interrelated parameters then X =
V 1/2UV 1/2 and Y = V 1/2(1 − U)V 1/2 are also free and have both free Poisson
distributions. It appears that this free dual Lukacs property can be used as the main
tool to construct a pocket proof of the direct free Lukacs property. Let us note that
the original proof of the direct Lukacs property for free Poisson distribution, as given
in Szpojankowski (2015), relied heavily on combinatorics of free cumulants and non-
crossing partitions. In particular, one of its highlights was explicit expression for
the joint free cumulants of X and X−1 for free Poisson distributed X.

Finally, before we present the free direct Lukacs property and its proof, let us
emphasize another methodological distinction between classical and free probability
which is related to characterizations by independence/freeness. In classical prob-
ability derivation of independence properties (e.g. Lukacs or Matsumoto-Yor or
Hamza-Vallois properties) is completely elementary (it relies on just derivation of
the jacobian of the considered transformation). Only the converse problems, char-
acterizations, typically present serious mathematical challenges. For free counter-
parts, as a rule, both the property and the characterization are challenging questions
- see e.g. for the free version of the Matsumoto-Yor property/characterization and
Piliszek (2019) for the free version of the Hamza-Vallois property/characterization.
In these two cases the transformations ψ mapping independent/free X, Y into U
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and V are involutions, i.e. ψ = ψ−1 and thus the direct and dual properties are
tautologically equivalent.

Theorem 5.1. Let (A, ϕ) be a non-commutative probability space, let X,Y ∈ A
be free both having the free Poisson distribution µ(λ, α), µ(κ, α), where λ+ κ > 1.
Then random variables

U = (X + Y )−1/2X(X + Y )−1/2 and V = X + Y

are free.

Proof : Due to the hypothesis λ+κ > 1, and implicit assumption that ϕ is a faithful
trace, element X + Y is invertible.

Let (B, φ) be a non-commutative probability space, U1, V1 ∈ B free with free
binomial (λ, κ) and free Poisson (λ+κ, α) distributions with respectively. It suffices
to show that

ϕ

∏
j

UmjV nj

 = φ

∏
j

U
mj

1 V
nj

1

 . (5.1)

for any non-negative integers mj , nj .
Define X1 = V

1/2
1 U1V

1/2
1 , Y1 = V1 −X1. From Szpojankowski and Wesołowski

(2014, Th. 3.2) we get that X1 and Y1 are free with free Poisson distributions
µ(λ, α) and µ(κ, λ) respectively. Thus (X,Y ) and (X1, Y1) have the same joint
distribution.

But
∏
j U

mjV nj = g(X,Y ) for some function g. Since λ+κ > 1 the spectrum of
V is bounded away from zero and thus U is in C∗-subalgebra generated by X and
Y . Consequently, it can be approximated by polynomials in free variables X and Y .
Therefore, the distribution of g(X,Y ) is uniquely determined by the distributions
of X and Y , see e.g. Nica and Speicher (2006).

Of course,
∏
j U

mj

1 V
nj

1 = g(X1, Y1) for the same function g.
Since the quantity ϕ(g(X,Y )) for X and Y free depends only on distributions

of X and Y so ϕ(g(X,Y )) = φ(g(X1, Y1)) and the proof is completed. �

Acknowledgement. We would like to thank the anonymous referee for careful read-
ing of the manuscript and several remarks which improved the presentation of our
results.
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