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Abstract. Given a large matrix containing independent data entries, we consider
the problem of detecting a submatrix inside the data matrix that contains larger-
than-usual values. Different from previous literature, we do not have exact infor-
mation about the dimension of the potential elevated submatrix. We propose a
Bonferroni type testing procedure based on permutation tests, and show that our
proposed test loses no first-order asymptotic power compared to tests with full
knowledge of potential elevated submatrix. In order to speed up the calculation
during the test, an approximation net is constructed and we show that Bonferroni
type permutation test on the approximation net loses no power on the first order
asymptotically.

1. Introduction

Matrix type data are common in contemporary data analysis and have wide
applications in biology, social sciences and other fields. In many situations, the row
and column indexes represent individuals or units that could interact with each
other, and the entries / data points evaluate the level of the iteration between
row and column units. For example, in DNA chips analysis, the rows represent
genes and columns represent situations. The entries inside the data matrix can
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be expression levels of some genes under some situations. See Cheng and Church
(2000) for a detailed introduction.

Bi-clustering, or co-clustering, or sometimes referred as simultaneous clustering,
aims to find subsets of row and column indexes, such that entries inside the sub-
matrix indexed by those units, are ’special’. This hidden structure is usually of
interest to researchers and can be used for specific references. See Tanay et al.
(2005); Charrad and Ben Ahmed (2011); Kriegel et al. (2009) for surveys on this
topic.

Before making inferences based on the bi-clustering result, one important ques-
tion is that, does the result contain any information, or is it just a product of pure
noise? This leads to the submatrix detection problem, which is a hypothesis test-
ing procedure distinguishing data from pure noise and data containing some hidden
structures.

1.1. Submatrix detection. We consider the simplest case where there is one potential
’special’ submatrix to discover. Furthermore, assume that entries are ’larger than
usual’ inside the submatrix. The observed data is denoted by X = {Xij} with M
rows and N columns. The hypothesis testing problem is formulated as follows:

H0: Xij are IID for all i ∈ [M] and j ∈ [N]

vs
H1: There exists I ⊂ [M] and J ⊂ [N] such that Xij are stochastically larger

when (i, j) ∈ I ×J .
Here we make a notation that [M] = {1,2, . . . ,M}. To make the alternative hy-
pothesis mathematically concrete, in H1 we mean that for any (i, j) ∈ I × J and
(k, l) ∉ I ×J , and for any c ∈ R, we have P(Xij ≥ c) ≥ P (Xkl ≥ c). And there exists
c = c0 ∈ R that the equality does not hold. This problem is considered in Butucea
and Ingster (2013) with test statistics as

sum(X) = ∑
i∈[M]

∑
j∈[N]

Xij , (1.1)

and
scanm,n(X) = max

I⊂[M],∣I∣=m
max

J ⊂[N],∣J ∣=n
∑
i∈I

∑
j∈J

Xij . (1.2)

One rejects H0 when either of the two values go beyond some corresponding pre-
defined thresholds. Note that in order to make the scan statistic (1.2) work, exact
knowledge of the size of I and J is required, which here is m and n. When (m,n)
are unknown, a Bonferroni testing procedure is used - that is, test all combinations
of (m,n) of interest, and reject H0 when one of the tests indicates to reject.

The method of Butucea and Ingster (2013) relies on parametric assumptions,
therefore Arias-Castro and Liu (2017) considered calibrate the p-value by permu-
tation. Since the permutation test is based on (1.2), full knowledge of (m,n) is
necessary. That is, it can only distinguish between H0 and
H1(m,n): There exists I ⊂ [M] and J ⊂ [N] such that Xij are larger than usual

when (i, j) ∈ I ×J , where ∣I ∣ =m and ∣J ∣ = n.
In this paper we adapt the permutation test framework, and develop a Bonferroni

testing procedure in order to deal with the case when (m,n) are unknown.

Contribution 1.1. We develop a Bonferroni testing procedure based on the per-
mutation test by Arias-Castro and Liu (2017). We show that the testing procedure
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(at the first order) is asymptotically as powerful as the test by Arias-Castro and
Liu (2017) and Butucea and Ingster (2013). This is analyzed and proved under
some standard exponential family parameter assumptions.

As permutation test is computationally hard to calibrate (usually the total num-
ber of permutations are increasing exponentially with the sample size), in practice
a Monte Carlo calibration method is executed. This requires independent sampling
from the group of permutation patterns for a decent number of times. However still,
due to the computational complexity of (1.2), performing permutation tests on all
combinations of (m,n) could be extremely consuming in time and computational
power. We construct a subset of [M] × [N], such that by performing permutation
test on all (m,n) inside this subset, we can still detect the existence of the elevated
submatrix with no sacrifice of the power on the first order.

Contribution 1.2. We propose a power-preserving fast test based on the Bonfer-
roni permutation test, with the Bonferroni procedures working on a proper approx-
imate net of [M] × [N]. We show that this test is as powerful as the Bonferroni
permutation test on all pairs of (m,n) in [M] × [N]. This is also analyzed and
proved under some standard exponential family parameter assumptions.

1.2. More Related work. There are works focusing on the localization theory side of
this problem, studying the existence of consistent estimators of the elevated matrix
under some parametric setup (Kolar et al., 2011; Chen and Xu, 2016; Hajek et al.,
2017a,b). With the realization of the importance of computational efficiency, there
is a stream of work line considering the trade-off between statistical and compu-
tational power (Balakrishnan et al., 2011; Cai et al., 2017; Chen and Xu, 2016;
Ma and Wu, 2015). Several computationally efficient (with polynomial computa-
tional complexity with respect to data size) submatrix localization algorithm are
proposed, including convex optimization (Chen and Xu, 2016; Chi et al., 2017) and
spectral method (Cai et al., 2017).

Another active research line worth mentioning here is on the stochastic block
model (SBM). In the setup of SBM the observation is a graph, with edges inde-
pendently connected. See Holland et al. (1983) for a detailed introduction. The
detection problem is to distinguish between an Erdős-Rényi graph and a graph with
groups of nodes which nodes are more likely to connect within groups compared to
across groups. The localization problem is to cluster the nodes by the closeness of
their connection.

If the adjacency matrix of the graph is considered, the problem shares many
properties with submatrix detection and localization (the adjacency matrix is sym-
metric with independent upper triangle nodes, compared with submatrix localiza-
tion problem). There are works considering the existence of consistency detectors
(Zhang and Zhou, 2016), the existence of consistency clustering methods (Mossel
et al., 2015), semi-definite programming (Chen and Xu, 2016; Abbe et al., 2016),
and spectral methods (Chaudhuri et al., 2012; McSherry, 2001).

1.3. Content. The paper is arranged as follows. Section 2 introduces the parametric
setup, the detection boundaries set up by Butucea and Ingster (2013), as well as
the permutation test by Arias-Castro and Liu (2017). Section 3 describes the
Bonferroni-type testing procedure as well as its theoretical property. Section 4
shows the construction of an approximation net in order to speed up the testing
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process, and the associated theoretical results. The numerical experiments are in
Section 5.

2. The detection boundaries

We establish the minimax framework corresponding to the hypothesis testing
problem raised in Section 1. First we introduce the one-parameter natural expo-
nential family considered throughout this paper, which is also the parametric fam-
ily used in the analysis of Arias-Castro et al. (2018); Butucea and Ingster (2013);
Arias-Castro and Liu (2017). To define such a distribution family, first consider a
distribution ν with mean zero and variance 1, and assume that its moment gener-
ating function φ(θ) <∞ for some θ > 0. Let θ∗ = sup{θ ∶ φ(θ) <∞} , and the family
is parameterized by θ ∈ [0, θ∗) with density function

fθ(x) = exp{xθ − logφ(θ)}. (2.1)

The density function is with respect to ν. Note that when θ = 0, f0(x) = 1 which
corresponds to ν. By varying the choice of ν, this parametric model includes several
common parametric models such as normal family (ν = N (0,1)), Poisson family
(ν = Pois(1) − 1) and Rademacher family (ν = 2Rade(0.5) − 1).

An important property of fθ is the stochastic monotonicity with respect to θ.
This enables us to model the previous hypothesis testing problem with ν acting as
noise distribution and fθ as the distribution of those unusually large entries. In
details, we consider

H0: Xij are IID following ν for all i ∈ [M] and j ∈ [N]

vs
H1: There exists I ⊂ [M] and J ⊂ [N] such that Xij ∼ fθij , θij > θ‡ > 0 when

(i, j) ∈ I ×J .
Here the parameter θ‡ is the lower bound for all the θij inside the raised submatrix,
and is acting as the role of signal-noise ratio. In this context, if the potential sub-
matrix’s size (m,n) is known, the corresponding H1(m,n) is described as follows.
H1(m,n): There exists I ⊂ [M] and J ⊂ [N] such that Xij ∼ fθij , θij > θ‡ > 0

when (i, j) ∈ I ×J , where ∣I ∣ =m and ∣J ∣ = n.
In ordert to perform the hypothesis testing task between H0 and H1(m,n) un-

der this parameterization framework, Butucea and Ingster (2013) developed the
following.

Theorem 2.1 (Butucea and Ingster, 2013). Consider an exponential model as
described in (2.1), with ν having finite fourth moment. Assume that

M,N,m,n→∞, m = o(M), n = o(N),
log(M ∨N)

m ∧ n
→ 0. (2.2)

For any α > 0 fixed, the sum test based on (1.1) is asymptotically powerful if

θ‡mn
√
MN

→∞, (2.3)

and the scan test based on (1.2), is asymptotically powerful if

lim inf
θ‡

√
mn

√
2(m log(M/m) + n log(N/n))

> 1. (2.4)
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Conversely, if m = O(n) and logM = O(logN), and

θ‡mn
√
MN

→ 0, lim inf
θ‡

√
mn

√
2(m log(M/m) + n log(N/n))

< 1, (2.5)

any test with level α has limiting power at most α.

The test rejects H0 when the sum test statistic (1.1) or scan test statistic (1.2)
is larger than some pre-defined threshold. While these tests heavily depend on
parameterization, distribution-free methods such as permutation test are proposed
to tackle this problem. A permutation test based on the scan statistic (1.2) is
analyzed by Arias-Castro and Liu (2017). Here a permutation pattern on set [M]×

[N] is denoted by π, and define

● Π1 as the collection of permutations that entries are permuted within their
row;

● Π2 as the collection of all permutations.

To illustrate the difference of Π1 and Π2, let Xπ = {Xπ(i,j)}, consider

X =
⎛
⎜
⎝

1 2 3 4
5 6 7 8
9 10 11 12

⎞
⎟
⎠

and we will have

Xπ1 =
⎛
⎜
⎝

1 4 2 3
6 8 7 5
10 12 9 11

⎞
⎟
⎠
,Xπ2 =

⎛
⎜
⎝

10 8 2 9
6 3 11 1
12 4 5 7

⎞
⎟
⎠

for some π1 ∈ Π1, π2 ∈ Π2. We calculate the scan statistic on the permuted data
Xπ, and compare to the one from the original data X. The permutation p-value is
defined as

Pm,n(X) =
∣{π ∈ Π ∶ scanm,n(Xπ) ≥ scanm,n(X)}∣

∣Π∣
. (2.6)

Here Π = Π1 or Π2. The permutation test rejects the null hypothesis whenPm,n(X)

is smaller than the pre-determined level. This test has the following property.

Theorem 2.2 (Arias-Castro and Liu, 2017, Theorem 2). Consider an exponential
model as described in (2.1), assume (2.2) and

log3
(M ∨N)/(m ∧ n)→ 0 (2.7)

and that either (i) ν has support bounded from above, or (ii) maxi,j θij ≤ θ̄ for some
θ̄ < θ∗ fixed. Additionally if Πi = Π1, we require that φ(θ) < ∞ for some θ < 0.
Then the permutation scan test based on (2.6), at any fixed level α > 0, has limiting
power 1 when (2.4) holds.

This theorem shows that permutation test has the same first-order asymptotic
power compared to the parametric test described in Theorem 2.1, under some extra
mild conditions.
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3. Bonferroni permutation test

We now consider the case where the size of the submatrix to be detected is not
specified. Recall the definition of H1 and H1(m,n) in Section 2. By realizing the
fact that H1 is true if and only if there exists some (m,n) such that H1(m,n) is
true, we can perform test on H1(m,n) for all pairs of (m,n), and use Bonferroni
correction in order to control the type I error.

We adapt the distribution-free permutation test of Arias-Castro and Liu (2017)
here. For each pair of (m,n), calculate Pm,n(X), and calculate the final Bonferroni
corrected p-value as

P(X) = min(MN min
m,n

Pm,n(X),1). (3.1)

One rejects H0 when P(X) is less than some pre-determined level α. Due to the
property of Bonferroni type of tests, this test has level α if each test concerning
H0 and H1(m,n) has level α/MN , which is a proved fact in Arias-Castro and Liu
(2017), regardless of the dependencies between tests.

Being a conservative method in multiple testing, Bonferroni method usually loses
statistical power in exchange for controlling the family wise error rate. However
in some cases (for example, Arias-Castro and Verzelen, 2014; Butucea and Ingster,
2013), the Bonferroni procedure achieves the same first order asymptotic power
as the scan test without knowledge of the submatrix size. We illustrate the same
phenomenon in this case.

Theorem 3.1. Consider an exponential model as described in (2.1). Assume that
there exists a pair of (m,n) such that H1(m,n) is true, and all the assumptions in
Theorem 2.2 are satisfied, which are:

M,N,m,n→∞, m = o(M), n = o(N),

log(M ∨N)

m ∧ n
→ 0, log3

(M ∨N)/(m ∧ n)→ 0
(3.2)

and that either (i) ν has support bounded from above, or (ii) maxi,j θij ≤ θ̄ for some
θ̄ < θ∗ fixed. Additionally if Πi = Π1, we require that φ(θ) <∞ for some θ < 0. Then

P(X)→ 0 (3.3)

in probability.

The interpretation of this theorem is as follows. Assume we are under H1(m,n).
With full knowledge of (m,n), if the permutation test by (2.6) can successfully
detect the submatrix with high probability, the test by (3.1) will reject H0 with
high probability, without any knowledge of (m,n).

Note that if (2.5) and its associated assumptions hold true, any test trying to
distinguish H0 and H1 with level α will have limiting power at most α, due to the
fact that any test distinguishing H0 versus H1 can be used to distinguish H0 and
H1(m,n), thus having limiting power at most α thanks to Theorem 2.1.

4. A power-preserving fast test

We build our testing framework on the permutation test, which is by nature a
computationally intensive method. Calculation of scan statistic (1.2) is NP-hard,
and the total number of permutations ∣Π∣ will skyrocket when the number of data
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increases. In practice the scan statistic is calculated by LAS algorithm proposed
by Shabalin et al. (2009), as did in previous literature (Butucea and Ingster, 2013;
Arias-Castro and Liu, 2017), and the permutation test is done by Monte-Carlo
sampling. In detail, a large number B is fixed, and permutations {π1, . . . , πB} is
the IID sample from uniform distribution on ∣Πi∣. Then Pm,n is approximated by

P̂m,n(X) =
∣{i ∶ scanm,n(Xπi) ≥ scanm,n(X)}∣ + 1

B + 1
. (4.1)

As illustrated in Butucea and Ingster (2013); Arias-Castro and Liu (2017), the
calculation of the scan statistic (1.2) is already difficult, even if the size (m,n)
is known. Now with the submatrix size unknown, we have added the difficulty
since the scan statistic under all possible combinations of (m,n), will be calculated
during the Bonferroni process. In principle, the Bonferroni method requires going
over all submatrix sizes, but we only scan a carefully chosen subset to lighten up
the computational burden. Inspired by Arias-Castro et al. (2005, 2018), in which
the authors scan for anomalous data interval within all possible intervals using a
dyadic representation, we illustrate the construction of such subset on [M] × [N],
and show that the first-order statistical power is preserved.

4.1. An approximation net. The subset of [M] × [N] we are going to construct in
order to approximate the elements in [M] × [N] is called an approximate net. We
first construct one-dimensional approximate net on [M].

We start by the following definition.

Definition 4.1. A binary expansion of an integer c is a sequence {ai(c)} with
ai(c) ∈ {0,1} and i ≤ ⌊log2 c⌋, such that

c =
⌊log2 c⌋

∑
i=0

ai(c)2
i. (4.2)

After representing an integer in the binary numeral system, one may approximate
this integer by keeping the first k digits of its binary expansion.

Definition 4.2. A k-binary approximation of an integer c is the interger c′ such
that

ai(c
′
) = ai(c)1{i ≥ ⌊log2 c⌋ − k + 1}. (4.3)

To find the k-binary approximation of c, represent c in its binary expansion, keep
the first k digits, and shrink the rest to zero. Finally calculate c′ by the formula
in Definition 4.1. It captures the main part of the integer and the difference could
be controlled by k. The method is closed related to the binary tree representation
of integers, where an integer is represented to the root at distance k from the first
non-zero node. The following lemma gives an upper bound of the difference rate.

Lemma 4.3. If c′ is a k-binary approximation of c, then
c − c′

c
≤ 21−k. (4.4)

Note that the difference rate is only associated with k, but not with the value
of c. Therefore if we apply k-binary approximation to a collection of integers, the
difference rate will be controlled uniformly among all the integers in the collection
by the choice of k.
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Table 4.1. Approximation net for 1024

Binary Decimal Binary Decimal Binary Decimal
10000000000 1024 00010000000 128 00000010000 16
01110000000 896 00001110000 112 00000001110 14
01100000000 768 00001100000 96 00000001100 12
01010000000 640 00001010000 80 00000001010 10
01000000000 512 00001000000 64 00000001000 8
00111000000 448 00000111000 56 00000000111 7
00110000000 384 00000110000 48 00000000110 6
00101000000 320 00000101000 40 00000000101 5
00100000000 256 00000100000 32 00000000100 4
00011100000 224 00000011100 28 00000000011 3
00011000000 192 00000011000 24 00000000010 2
00010100000 160 00000010100 20 00000000001 1

Now we construct the approximation net of [M] based on k-binary approxima-
tion.

Definition 4.4. An approximation net Sk(M), based on k-binary approximation,
of set [M], is defined as

Sk(M) = {c′ ∶ c′ is a k-binary approximation of some c ∈ [M]} (4.5)

To better illustrate the approximation net, Table 4.1 shows the approximation
net of 1024 with k = 3.

The cardinality of Sk(M) can be much less than M if k is chosen properly. For
example, set k = log2 log2M + 1 and it can be shown that ∣Sk(M)∣ = O((log2M)2).
Note that in this case k →∞ when M →∞, and by Lemma 4.3 we know that for
every c ∈ [M], there exists some c′ ∈ Sk(M) such that c′ = (1 + o(1))c, and o(1) is
uniform among [M].

4.2. Test power under approximation nets. Based on the one-dimensional approx-
imation net defined in Definition 4.4, we can similarly extend the idea to sets of
two-dimensional integer pairs. We perform the Bonferroni-type testing procedure
on SkM (M) × SkN (N), instead of [M] × [N]. In detail, we use the following Bon-
ferroni corrected p-value:

PkM ,kN (X) = min(∣SkM (M)∣∣SkN (N)∣ min
(s,t)∈SkM

(M)×SkN
(N)

Ps,t(X),1). (4.6)

The idea is to use the property of approximation net to eliminate a significant
portion of calculation by reducing the scanning region of the Bonferroni process,
while keeping the accuracy through choosing a proper pair of (kM , kN). Assume
we are under H1(m,n). When setting kM , kN → ∞, there is a pair of (m′, n′) ∈

SkM (M) × SkN (N) that is close enough to (m,n), and Pm′,n′(X) will converge to
zero fast enough such that brings the Bonferroni corrected p-value to zero as well.

The following theorem describes the asymptotic power of the Bonferroni test on
the approximate net.
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Theorem 4.5. Assume all the assumptions in Theorem 3.1 hold (specifically, (3.2)
and (i) and (ii) following it). Further set kM , kN →∞. Then

PkM ,kN (X)→ 0 (4.7)

in probability.

5. Numerical experiments

We use simulations to verify our theoretical findings.1 The main purpose of
the simulation is to illustrate the proposed test’s behavior under the alternative
hypothesis. We adapt the simulation setup in Arias-Castro and Liu (2017) due to
the similarity of the research problem and simulation purpose.

The data X is generated with IID samples from ν for all entries except [m]×[n],
where the entries are IID from fθ for some θ > 0. Then the data goes through the
proposed test progress and the p-value is recorded. The above process is repeated
100 times for fixed θ in order to see the stochastic behavior of the p-values.

To see how the theory works, we define θcrit as follows.

θcrit =

√
2(m log(M/m) + n log(N/n))

mn
. (5.1)

And we slowly increase θ from 0.625× θcrit to 1.5× θcrit, with step size 0.125× θcrit.
This is aim to examine the behavior of the test around θ = θcrit, which is claimed
to be the convergence threshold from our theory.

The permutation test is calibrated by Monte-Carlo which is described in (4.1),
with B = 500. As mentioned in Section 4, the calculation of scanm,n(X) is NP-hard
in theory. LAS algorithm from Shabalin et al. (2009) is an approximating algorithm
to calculate the scan statistic, however due to its hill-climbing optimization process,
it suffers from being stuck inside local minimums. We re-initiate the LAS algorithm
several times with random initialization, and return the result with the largest
output, in order to prevent being stuck at local minimums. Both permutation
methods are examined in the analysis. The data size is set as (M,N) = (200,100)
and we examine 2 anomaly sizes, namely (m,n) = (10,15) and (30,10). For the
approximate net, we set (kM , kN) = (⌊log2(log2(M))⌋, ⌊log2(log2(N))⌋)

We choose two representative distributions as ν, which is standard normal and
centralized Pois(1). The corresponding fθ isN (θ,1) and Pois(eθ)−1. From Figure
5.1 and 5.2 we see that when θ ≤ θcrit, the p-values are generally close to 1 due to
the conservative property of the Bonferroni methods. However, the p-value shrinks
to simulation lower bound at

∣Sk(M)∣ × ∣Sk(N)∣/(B + 1) = 14 × 12/(500 + 1) ≈ 0.34 (5.2)

quickly once θ passes θcrit, in both permutation patterns and distribution setups.
This is because of the fact that all the permutation p-values are larger than or
equal to 1/(B + 1), which makes the Bonferroni corrections no less than ∣Sk(M)∣ ×

∣Sk(N)∣/(B+1). Although reaching the lower bound indicates that no permutation
during the test generates the test statistic larger than the one from the original
data, it is not very persuasive in the sense to show that the p-values are converging

1The code used in this section is available in https://github.com/nozoeli/
bonferroniSubmatrix.

https://github.com/nozoeli/bonferroniSubmatrix
https://github.com/nozoeli/bonferroniSubmatrix
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to 0. In order to verify this, we need a larger number of Monte Carlo simulations,
namely a larger B, such that ∣Sk(M)∣ × ∣Sk(N)∣/(B + 1) is close to 0.

We perform an additional experiment by setting B = 5000, and focus on the
pair of (m′, n′) ∈ SkM (M) × SkN (N), such that m′ = min{p ∈ SkM (M)∣p > m} and
n′ = min{q ∈ SkN (N)∣q > n}. The provides us an upper bound of the Bonferroni
permutation p-value, since by (4.6),

PkM ,kN (X) ≤ min(∣SkM (M)∣∣SkN (N)∣Pm′,n′(X),1). (5.3)

We illustrate the relationship between this upper bound of the Bonferroni permu-
tation p-value and the signal level. Figure 5.3 and Figure 5.4 shows that the upper
bound converges to 0 once the signal level θ goes beyond θcrit, and this confirms
our theoretical findings.

6. Technical proofs

In this section we present the proofs to the theorems in the previous sections.
Unless separately declared, the ineqalities holds with high probability (or with
probability 1 − o(1) as data matrix size M,N →∞).

The following lemma is at the center of our argument.

Lemma 6.1 (Arias-Castro et al., 2018, Lemma 2, Bernstein’s inequality for sam-
pling without replacement). Let (Z1, . . . , Zm) be obtained by sampling without re-
placement from a given a set of real numbers {z1, . . . , zJ} ⊂ R. Define zmax =

maxj zj, z̄ = 1
J ∑j zj, and σ

2
z =

1
J ∑j(zj − z̄)

2. Then the sample mean Z̄ = 1
m ∑iZi

satisfies

P (Z̄ ≥ z̄ + t) ≤ exp

⎡
⎢
⎢
⎢
⎢
⎣

−
mt2

2σ2
z +

2
3
(zmax − z̄)t

⎤
⎥
⎥
⎥
⎥
⎦

, ∀t ≥ 0.

The lemma is a result from Serfling (1974). We also refer the reader to Bardenet
and Maillard (2015); Boucheron et al. (2013) for further details of the lemma.

6.1. Proof of Theorem 3.1. We first show that the test has level α. To show this, we
fix a pair of (m,n) and show that P(Pm,n(X) ≤ α) ≤ α. By the standard argument
on the level of Bonferroni test, we will finish the proof on the level. Assuming
the null is true, scanm,n(π(X)) has the same distribution with scanm,n(X) under
either permutation methods. Therefore we define

Tk = scanm,n(πk(X)), k ∈ [(MN)!],

and assume Tk0 = scanm,n(X), then rank(Tk0) is uniformly distributed on [(MN)!]
(if the ties are broken randomly). We have

P(Pm,n(X) ≤ α) ≤ P(rank(Ti0) ≤ ⌊α(MN !)⌋) ≤
⌊α(MN !)⌋

MN !
≤ α.

Therefore all we need to show is that the p-value tends to zero under the alter-
native.
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Figure 5.1. p-values of proposed test in the normal model
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Figure 5.2. p-values of proposed test in the Poisson model
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Figure 5.3. Upper bounds of p-values of proposed test in the
normal model
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Figure 5.4. Upper bounds of p-values of proposed test in the
Poisson model
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6.1.1. Bidimensional permutation. We start with considering bidimensional permu-
tation. Starting from here we let S∗ be the true anomaly submatrix, and (m,n) as
its row and column size. For a submatrix index set S, let YS(X) = ∑(i,j)∈SXij . Now
fix some S ∈ Smn and uniformly sample a permutation π. Here Smn is the collection
of row/column indexes of all submatrices of size m × n. Also, if we conditional a
realization of X, say x, by Lemma 6.1, we have

P(
YS(π(x))

mn
− x̄ > t) ≤ exp

⎛

⎝
−

t2mn

2σ2
x +

2
3
(xmax − x̄)t

⎞

⎠
,

where xmax is the largest value in the data matrix x, and σ2
x is the sample variance of

the data if x is treated as a one dimensional data vector. Notice that the probability
is on the permutation process. Apply a union bound, and set t = scan(x)/mn − x̄,
then we have

P(x) ≤MNPm,n(x)

≤MN ∣Smn∣ exp
⎛

⎝
−

mn(scanm,n(x)/mn − x̄)2

2σ2
x +

2
3
(xmax − x̄)(scanm,n(x)/mn − x̄)

⎞

⎠
.

(6.1)

Note that this inequality holds for all the realizations of X, thus we allow X to
change and focusing on the quantity

MN ∣Smn∣ exp
⎛

⎝
−

mn(scanm,n(X)/mn − X̄)2

2σ2
X + 2

3
(Xmax − X̄)(scanm,n(X)/mn − X̄)

⎞

⎠
. (6.2)

We show that this quantity is oP (1).
We start with bounding X̄ by rewriting X̄ as

X̄ =
∑i,jXij

MN
=
mn

MN
⋅
∑(i,j)∈S∗Xij

mn
+
MN −mn

MN
⋅
∑(i,j)∉S∗Xij

MN −mn
. (6.3)

With θ in the anomalous submatrix bounded from above, or the support of fθ being
bounded, the first term is oP (1) since mn = o(MN). By Law of Large Numbers,
the second term is oP (1) given that distribution f0 has mean zero. So

X̄ = oP (1). (6.4)

Following the proof of Theorem 1 in Arias-Castro et al. (2018), we can bound
Xmax with

P(Xmax − X̄ <
3

c
log(MN))→ 1. (6.5)

with c ∈ (0, θ∗−θ̄). Define the event A = {Xmax−X̄ < 3
c

log(MN)}. All the following
arguments are conditional on A. But since A happens with probability tending to
1, all the conditional high probability events will happen unconditionally with high
probability as well.

We do similar operations to bound σ2
X as follows.

σ2
X =

1

MN
∑
i,j

(Xij − X̄)
2
≤

1

MN
∑
i,j

X2
ij (6.6)

=
mn

MN
⋅
∑Xij∈S∗X

2
ij

mn
+
MN −mn

MN
⋅
∑Xij∉S∗X

2
ij

MN −mn
. (6.7)
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The first term is oP (1) if distribution fθ has finite second moment, which can
be derived from the assumption. The second term is 1 + oP (1) by Law of Large
Numbers and Slutsky’s Lemma. Therefore

σ2
X = 1 + oP (1) (6.8)

Finally we bound scanm,n(X)/mn− X̄ as a whole. By the definition of the scan
statistic,

scanm,n(X)

mn
− X̄ ≥

YS∗(X)

mn
− X̄ = X̄S∗ − X̄, (6.9)

here X̄S∗ = ∑(i,j)∈S∗Xij/mn represents the average in the submatrix indexed by
S∗. Rewrite Xij = E(Xij)+Zij for Xij ∈ S

∗, where Zij has mean zero and bounded
second moment. By Law of Large numbers, as well as (7) of Arias-Castro and Liu
(2017) (which is, EXij ≥ θ‡ for Xij ∈ S

∗),

X̄S∗ =
1

mn
∑

Xij∈S∗
EXij +OP (

1
√
mn

) ≥ θ‡ +OP (
1

√
mn

). (6.10)

Note that X̄ = OP (1/
√
MN) and mn = o(MN),
scanm,n(X)

mn
− X̄ ≥ θ‡ +OP (

1
√
mn

) (6.11)

By (2.4) we know that
√
mnθ‡ →∞, or θ‡ ≫ 1/

√
mn, so we can rewrite the equation

above as
scanm,n(X)

mn
− X̄ ≥ θ‡(1 + oP (1)). (6.12)

Plug in (6.5), (6.8) and (6.12) into (6.2), we have

P(X) ≤MN ∣Smn∣ exp( −
(1 + oP (1))θ2‡mn

2(1 + oP (1)) + 2
c
(logMN)θ‡(1 + oP (1))

). (6.13)

Assume in (2.4),

lim inf
θ2‡mn

2(m log M
m
+ n log N

n
)
≥ 1 + ε (6.14)

with some constant ε > 0. Then eventually with high probability we can bound the
exponential part of (6.13) as

−
(1 + oP (1))θ2‡mn

2(1 + oP (1)) + 2
c
(logMN)θ‡(1 + oP (1))

≤ −
(1 − ε/2)θ2‡mn

2(1 + ε/8)
.

Here we used the fact that the second term in the denominator in the exponent
component is oP (1) from (2.7). Combined with (6.14), we have the upper bound
of log(P(X)) as

log(P(X)) ≤ log(MN ∣Smn∣) −
(1 − ε/2)θ2‡mn

2(1 + ε/8)

≤ log(MN ∣Smn∣) − (1 +
ε

4 + ε/2
)(m log

M

m
+ n log

N

n
).

By the fact that MN ∣Smn(X)∣ = (1 + o(1))(N
n
)(
M
m
) and log((N

n
)) =

(1 + o(1))n log(N/n), we have eventually

log(MN ∣Smn∣) ≤ ((1 +
ε

8 + ε
))(m log

M

m
+ n log

N

n
). (6.15)
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So the log Bonferroni-corrected empirical p-value is bounded from above by

log(P(X)) ≤ −(
ε

8 + ε
)(m log

M

m
+ n log

N

n
) (6.16)

which finishes the proof.

6.1.2. Unidimensional permutation. We refer to the proof of Theorem 2 in Arias-
Castro and Liu (2017). Under the unidimensional permutation, from (17) and its
following arguments of Arias-Castro and Liu (2017), for the permutation p-value
with (m,n) known, we have

logPm,n(X) ≤ −(1 + oP (1))δ log(∣Smn∣). (6.17)

Here δ is a positive constant that is less than the following quantity

2[ lim inf
θ‡

√
mn

2(m log(M/m) + n log(N/n))
− 1] (6.18)

Note that log(MN) = o(1) log(∣Smn∣) by (2.7), therefore directly,

logP(X) ≤ log(MN) + logPm,n(X)

≤ −(1 + oP (1))δ log ∣Smn∣ + log(MN) = −(1 + oP (1))δ log(∣Smn∣).(6.19)

6.2. Proof of Lemma 4.3. From Definition 4.2,

c′ − c =
⌊log2 c⌋−k

∑
i=0

ai(c)2
i
≤

⌊log2 c⌋−k

∑
i=0

2i ≤ 2⌊log2 c⌋−k+1. (6.20)

Observing that c = 2log2 c, we have
c − c′

c
≤ 2i ≤ 2⌊log2 c⌋−k+1−log2 c ≤ 21−k. (6.21)

6.3. Proof of Theorem 4.5. We illustrate the bidimensional case here, since the
unidimensional case is following the same proof strategy and basically a rework of
the existing proof in Section 6.1.

From Lemma 4.3, we may find (m′, n′) ∈ SkM ×SkN such that m′ ≤m,n′ ≤ n and
m′ = (1 + o(1))m,n′ = (1 + o(1))n. Now we consider performing permutation test
on (m′, n′) and bound Pm′,n′ by the same way in Section 6.1.

We rewrite (6.2) as follows,

∣SkM ∣∣SkN ∣∣Sm′n′ ∣ exp
⎛

⎝
−

m′n′(scanm′,n′(X)/m′n′ − X̄)2

2σ2
X + 2

3
(Xmax − X̄)(scanm′,n′(X)/m′n′ − X̄)

⎞

⎠
. (6.22)

Note that ∣SkM ∣∣SkN ∣ ≤MN . Combined with m′ = (1 + o(1))m,n′ = (1 + o(1))n, all
we need to verify is a new version of (6.12), which in details, we just need to show
that

scanm′,n′(X)

m′n′
− X̄ ≥ θ‡(1 + oP (1)). (6.23)

This is done by realizing that scanm′,n′(X) ≥ YS′(X), where S′ ⊂ S∗ and have m′

rows and n′ columns. Since m′, n′ →∞, the same argument yields

scanm′,n′(X)

m′n′
≥ θ‡ +OP (

1
√
m′n′

) ≥ θ‡ +OP (
1

√
mn

). (6.24)
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Everything else follows the previous argument, and (6.23) will be verified, which
concludes the proof.
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