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Abstract. In this paper, we first show that for a countable family of random
elements taking values in a partially ordered Polish space with a closed partial or-
der (POP space), association (both positive and negative) of all finite dimensional
marginals implies that of the infinite sequence. Our proof proceeds via Strassen’s
theorem for stochastic domination and thus avoids the assumption of normally or-
dered on the product space as needed for positive association in Lindqvist (1988).
We use these results to show on POP spaces that finite dimensional negative associ-
ation implies negative association of the random measure and negative association
is preserved under weak convergence of random measures. The former provides a
simpler proof in the most general setting of Polish spaces complementing the recent
proofs in Poinas et al. (2019) and Lyons (2014) which restrict to point processes in
Rd and locally compact Polish spaces respectively. We also provide some examples
of associated random measures which shall illustrate our results as well.
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1. Introduction

Positive association of random vectors in Rd appears in Esary et al. (1967),
and negative association several years later, see Joag-Dev and Proschan (1983) or
Alam and Saxena (1981). Since then the theory of positive association has been
well developed and has found many applications in various contexts, for example
to establish limit theorems, to obtain concentration bounds or to derive stochas-
tic comparison results. Association of real random fields on Zd and Rd were used
to obtain central limit theorems for random fields, see e.g. Bulinski and Shashkin
(2007), Bulinski and Spodarev (2013) or Poinas et al. (2019) and references therein.
We shall give examples of associated (positive and negative) random fields later in
Section 5 and in the Appendix. Positive association of probability measures on par-
tially ordered Polish spaces was studied in Lindqvist (1988), where infinite products
of such spaces and some space of functions with values in partially ordered Polish
spaces were characterized by the corresponding finite dimensional distributions un-
der the additional assumption that the product space is normally ordered. Inspired
by one of the proofs in Georgii and Yoo (2005), we use Strassen’s theorem on sto-
chastic domination to prove the characterization by finite dimensional distributions
for both positive and negative association for countable families of random elements
of general partially ordered Polish spaces (see Theorem 3.3), which generalizes The-
orem 5.1 in Lindqvist (1988). Using this idea, we characterize negative association
by bounded, continuous, non-decreasing functions (Lemma 3.5) and also show that
association for countable families of random elements in partially ordered Polish
spaces is preserved under weak convergence (Theorem 3.6).

A special case of partially ordered Polish spaces is that of the space of all lo-
cally finite measures and in particular the space of locally finite counting measures.
These two spaces are of importance in the theory of random measures and point
processes. Positive association of random measures and point processes on locally
compact Polish spaces were characterized by the corresponding finite dimensional
distributions by Kwieciński and Szekli (1996, Theorem 3.2). Using our Theorem 3.3,
we will prove an analogous characterization (by finite dimensional distributions) of
negative association for random measures on Polish spaces (Theorem 4.4). Similar
results on negative association for point processes on Rd and on locally compact
Polish spaces has been recently given by Poinas et al. (2019, Theorem 2.3) and
Lyons (2014, paragraph 3.7) respectively. Though the latter result is in the context
of determinantal point processes, the proof applies to general negatively associ-
ated point processes. We will compare these theorems in more detail in Section 4.
We will extend these results into the context of random measures and will also
relax a rather restrictive assumption of local compactness on the ground space.
We use this along with Theorem 3.6 to show that weak convergence of random
measures also preserves negative association (Theorem 4.6). Apart from giving a
very general characterization of negatively associated random elements, our result
opens new possibilities, for example to obtain central limit theorems for associated
random measures in a quite general context. Our results allow to extend several
association properties of countable random fields known only for finite dimensional
distributions into the setting of infinite sequences as well as generate new examples
of negatively associated random measures (see Section 5).

We end the introduction with a brief discussion of the theory of negative de-
pendence. Though negative association was introduced in Joag-Dev and Proschan
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(1983) and Alam and Saxena (1981) in the context of reliability models, it garnered
significant additional interest following the article of Pemantle (2000) in which he
confined himself to binary-valued random variables. The list of examples that
motivated him to develop techniques for proving that measures have negative de-
pendence properties such as negative association or strong Rayleigh property in-
clude uniform random spanning trees, simple exclusion processes, random cluster
models and the occupation status of competing urns. Among various definitions
expressing negative dependence, negative association seems to be one of the eas-
ier conditions to verify and has also found applications. Negative association has
one distinct advantage over the other types of negative dependence, namely, non-
decreasing functions of disjoint sets of negatively associated random variables are
also negatively associated. This closure property does not hold for the other types
of negative dependence. There exists nothing like a general theory of negative as-
sociation on partially ordered Polish spaces, no reasonable analogy to the theory
of positive association is visible. New examples of negatively associated point pro-
cesses and random measures are given in Last and Szekli (2019) along with some
stochastic comparisons of dependence. Positive association properties proved for
many interacting particle systems stay in contrast with the lack of negative associ-
ation results for most interacting particle systems. A property related to negative
association, known to hold for symmetric exclusion processes is the strong Rayleigh
property (stronger than negative association) which is preserved in the evolution
of the symmetric exclusion process (see Borcea et al., 2009, Theorem 5.2). The
article is organized as follows. We introduce partially ordered Polish spaces and
Strassen’s theorem in Section 2 and then present our results about countable family
of associated random elements in Section 3. We then state and prove our results on
associated random measures in Section 4 and conclude with various (old and new)
examples of associated random elements in Section 5. At the end of this paper,
in an appendix, we present some additional examples which are directly related to
some applied stochastic models in order to gain a broader view over this field. All
formulations in the listed examples are in a strong sense PA and NA as given in
Definitions 3.1 and 4.2. In many cases the exisiting results are known only for finite
dimensional vectors but we extend this to the infinite-dimensional vectors using our
results.

2. Preliminaries

Let X be a Polish space endowed with a partial ordering �. A real-valued
function f on X is said to be non-decreasing if x � y implies f(x) ≤ f(y). We let
X denote the Borel σ-field on X. For probability measures P and P ′ on (X,X ), P
is stochastically dominated by P ′ if∫

fdP ≤
∫
fdP ′

for all non-decreasing bounded measurable f . In this case we write P �st P ′. We
assume that the partial ordering � is closed, i.e., the set H = {(x, x′);x � x′} is
closed in the product topology on X2. For the reader’s convenience we state the
classical (Strassen) theorem on stochastic domination:

Theorem 2.1. P and P ′ satisfy P �st P ′ iff there exists a probability measure P̃
on (X2,X 2) with marginals P and P ′ such that P̃ (H) = 1.
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This result is often referred to as “Strassen’s Theorem", which is formally mis-
leading: in Strassen (1965) it is only briefly mentioned as one possible application
of Theorem 11 in that paper, and the condition P �st P ′ does not appear explicitly.
An explicit formulation can be found in Kamae et al. (1977, Theorem 1). For a
nice proof of Theorem 2.1 and some additional observations, see Lindvall (1999). It
is known (see Kamae et al., 1977, Theorem 2) that the relation �st on the space of
probability measures on (X,X ) with the topology of weak convergence is a closed
partial ordering.

3. Association of discrete random fields

Let I be countable index set (e.g. I = {1, . . . , n}, I = Zd, I = Z+). Let
X = (Xi)i∈I be a random field, that is a family of random elements with values in
a partially ordered Polish (POP) space (X,X ). For J ⊂ I, we write XJ := (Xi)i∈J .

Definition 3.1. For a family X = (Xi)i∈I of random elements of (X,X )

(i) we say that X is negatively associated (NA) if

E[f(XJ)g(XJc)] ≤ E[f(XJ)]E[g(XJc)] (3.1)

for all J ⊂ I and for all (coordinatewise) non-decreasing bounded measur-
able f : XJ → R and g : XJc → R, where XJ denotes the space of all X
valued functions defined on J ;

(ii) we say that X is positively associated (PA) if

E[f(XJ)g(XJ)] ≥ E[f(XJ)]E[g(XJ)] (3.2)

for all J ⊂ I and for all (coordinatewise) non-decreasing bounded measur-
able f : XJ → R and g : XJ → R, where XJ denotes the space of all X
valued functions defined on J .

Remark 3.2. Association for uncountable index sets I can be defined as follows.
For a family X = (Xi)i∈I of random elements of (X,X ) we say that X is positively
associated (PA) if

E[f(XJ)g(XJ)] ≥ E[f(XJ)]E[g(XJ)] (3.3)

for all countable J ⊂ I and for all (coordinatewise) non-decreasing bounded mea-
surable f : XJ → R and g : XJ → R. Similarly, one can define NA using disjoint
countable index sets J, J ′ ⊂ I.

By the well-known formula

Cov[X,Y ] =

∫
Cov[1{X > s},1{Y > t}] d(s, t), (3.4)

valid for all integrable real random variables X and Y with E[|XY |] < ∞, it is
enough to assume in (3.1) that f and g are non-negative. The above identity can
be found in the proof of Lehmann (1966, Lemma 2) which the author attributes to
Höffding (1940).

We say that a family X = (Xi)i∈I of random elements of (X,X ) is associated if
it is PA or NA . In our proofs we will concentrate on the NA case, only pointing
out how to deal with the NA case.
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We now state and prove one of our main theorems showing that NA property of
finite dimensional marginals implies that of the infinite sequence. Our proof was
inspired by the proof of Georgii and Yoo (2005, Corollary 3.4).

Theorem 3.3. Consider a discrete family X = (Xn)n∈I of random elements of
POP space (X,X ). Assume that for each finite J ⊂ I the finite subfamily XJ is
associated. Then the family X is associated in the same positive or negative way
as finite subfamilies.

Proof: We prove the NA case. In order to check (3.1), let us first assume that
J ⊂ I is finite and because of (3.4), let f : XJ → [0,∞) be non-decreasing and such
that E[f(XJ)] <∞. It is no restriction of generality to assume that E[f(XJ)] > 0.
(Otherwise we have that P(f(XJ) = 0) = 1 and (3.1) becomes trivial.) Since
we assumed that I is discrete, we can enumerate elements of I and assume that
J = {1, . . . ,m} for some m ∈ Z+. For n ∈ Z+, we define a random element
X

(n)
J = (X

(n)
k )k≥1 of XZ+ by X(n)

k := Xm+k for k ∈ {1, . . . , n} and Xn
k := z for k /∈

{1, . . . , n}, for a fixed element z ∈ X. We define a random element X∞J = (X∞k )k≥1

of XZ+ by X∞k := Xm+k for k ≥ 1. By our assumption, we have that for all n ∈ Z+

E[f(XJ)g(X
(n)
J )] ≤ E[f(XJ)]E[g(X

(n)
J )]

for all measurable non-decreasing f, g : XZ+ → R such that E[|g(X
(n)
J )|] <∞. But

this means that

µn,J �st νn,J , n ∈ Z+, (3.5)

where µn,J := E[f(XJ)]−1E[f(XJ)1{X(n)
J ∈ ·}], νn,J := P(X

(n)
J ∈ ·) and �st

denotes strong stochastic ordering of probability measures on XZ+ (w.r.t. coordi-
natewise � ordering). Moreover, the set

H := {(x, y) ∈ XZ+ × XZ+ : x � y}

is closed w.r.t. the product topology on XZ+ × XZ+ . By Strassen’s theorem there
exists for each n ∈ Z+ a probability measure γn,J on XZ+ × XZ+ with marginals
µn,J and νn,J , respectively, such that γn,J(H) = 1.

By Kallenberg (2002, Theorem 4.29) we have that µn,J
d→ µJ as n→∞, where

µJ := E[f(XJ)]−1E[f(XJ)1{X∞J ∈ ·}].

Similarly, νn,J
d→ νJ := P(X∞J ∈ ·).

Now we use a similar argument as in Kamae et al. (1977, Proposition 3). By
Kallenberg (2002, Theorem 16.3) we have that the sequences (µn,J) and (νn,J)
are tight. Since γn,J has marginals µn,J and νn,J we have for any measurable
A,B ⊂ XZ+ that

γn,J((A×B)c) = γn,J(Ac ×B) + γn,J(A×Bc) + γn,J(Ac ×Bc)
≤ 2µn,J(Ac) + νn,J(Bc).

Therefore the sequence (γn,J) is also tight. Let γJ be a subsequential limit. Since
H is closed, the Portmanteau theorem shows that γJ(H) = 1. By definition of
weak convergence, γJ has marginals µJ and νJ , respectively. But this implies that∫
g dµJ ≤

∫
g dνJ for all measurable non-decreasing bounded g : XZ+ → [0,∞), so

that (3.1) follows.
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Finally we take an arbitrary J ⊂ Z+. By the first step of the proof we have

E[f(XJ)g(XJ′)] ≤ E[f(XJ)]E[g(XJ′)]

for all finite sets J ′ ⊂ Z+\J , for all non-decreasing measurable bounded f : XJ → R
and g : XJ′ → R. Repeating the above arguments yields (3.1) in full generality.

The proof for the PA case can be done in a similar way. �

Our proof technique gives the following corollary.

Corollary 3.4. Suppose X = (Xn)n∈I and Y = (Yn)n∈J are two discrete families
of random elements of POP space (X,X ). Assume that for all finite I ′, J ′ and
non-decreasing bounded measurable f, g, it holds that

E[f(XI′)g(YJ′)] ≤ (≥)E[f(XI′)]E[g(YJ′)].

Then, for all non-decreasing bounded measurable f, g and countable I, J , we have
that

E[f(XI)g(YJ)] ≤ (≥)E[f(XI)]E[g(YJ)].

A second very useful consequence of our proof technique is the following lemma
allowing us to restrict (3.1) to only bounded continuous non-decreasing functions.

Lemma 3.5. Consider a finite family X = (X1, . . . , Xm) such that it satisfies (3.1)
( (3.2)) for all non-negative, bounded, continuous, non-decreasing functions f, g on
XJ ,XK respectively where J ⊂ {1, . . . ,m} and K = {1, . . . ,m} \ J . Then X is
NA (PA ).

Proof : We shall again prove in the case of NA alone. Let J,K be as assumed
in the lemma. From (3.4), it suffices to show (3.1) for all non-negative bounded,
measurable non-decreasing functions. Let g be a non-negative, bounded, contin-
uous, non-decreasing function such that E[g(XK)] > 0. Thus, we have for all
non-negative, bounded, continuous, non-decreasing functions f that

E[f(XJ)g(XK)] ≤ E[f(XJ)]E[g(XK)],

and this inequality can be re-written in the form of a stochastic order relation as

E[g(XK ]−1E[f(XJ)g(XK)] ≤ E[f(XJ)].

Defining probability measures νJ := P(XJ ∈ ·), µgJ := E[g(XK)]−1E[g(XK)1{XJ ∈
·}], we have that the above inequality implies µgJ �st νJ by Müller and Stoyan
(2002, Theorem 2.6.4). From the definition of �st (i.e., stochastic domination), we
have that

E[f(XJ)g(XK)] ≤ E[f(XJ)]E[g(XK)],

for all non-negative, bounded, measurable functions f . Now repeating the above ar-
gument by fixing a non-negative bounded measurable function f such that
E[f(XJ)] > 0, we can derive that (3.1) holds for all non-negative, bounded, mea-
surable non-decreasing functions f, g as required to complete the proof. �

A powerful consequence of the above lemma is that the property of association
is preserved under weak convergence. We shall use this theorem in our next section
on random measures but only in the case of X = R.
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Theorem 3.6. For k ≥ 1, consider a discrete family Xk = (Xk
i )i∈I of random

elements of POP space (X,X ). Assume that Xk is associated for every k ≥ 1 in
the same way (i.e., always PA or always NA ) and Xk d→ X as k → ∞. Then, X
is associated in the same positive or negative way as the elements in the sequence.

Proof : From our assumptions, we have that for each k ≥ 1, m ≥ 1, (Xk
1 , . . . , X

k
m)

is associated, and (Xk
1 , . . . , X

k
m)

d→ (X1, . . . , Xm). Thus, we have that (X1, . . . , Xm)
satisfies (3.1) (or (3.2)) for for all non-negative, bounded, continuous, non-
decreasing functions f, g defined on disjoint index sets of {1, . . . ,m}. Now, from
Lemma 3.5 we have that (X1, . . . , Xm) is a finite NA (or PA ) family and because
of our Theorem 3.3, this suffices to conclude that X is a NA (or PA ) family. �

We now compare our above results and proof techniques to those in the literature.
Under the assumption that the product POP space is normally ordered, Lemma 3.5
and Theorem 3.6 are shown for PA in Lindqvist (1988, Theorem 3.1(v)). Lemma 3.5
for PA is shown for X = R in Esary et al. (1967, Lemma 3.1 and Theorem 3.3).
The proof techniques of Esary et al. (1967) and Lindqvist (1988) involve approx-
imating binary, non-decreasing, measurable functions by non-negative, bounded,
continuous, non-decreasing functions and these require additional assumptions on
the space X relating the metric and order. These ideas can also be implemented
in the case of NA with suitable modifications. However, our proof avoids these by
using Strassen’s theorem and similar criteria holding for stochastic domination.

An alternative assumption to normally ordered spaces is the following condition
formulated in Rüschendorf (1981) (recalled as (R1) in Lindqvist, 1988): x 7→ d(x,A)
is non-increasing for an increasing set A. Under this assumption, the proof ideas
as in Esary et al. (1967, Lemma 3.1 and Theorem 3.3) or Lindqvist (1988, Theo-
rem 3.1(v)) or Rüschendorf (1981, Theorem 1(d)) can be adapted suitably for both
PA and NA . Also, we would like to mention that this condition and the property
of being normally ordered need not be related (see Noebels, 1981, pg. 38).

4. Association of random measures

Let S be a Polish space, S be the σ-field of Borel subsets of S, and Sb be the ring
of bounded Bore1 sets in S. By a random measure M on S we mean a mapping of
some probability space (Ω,F , P ) into the space M(S) of Radon measures on (S,S),
equipped with the smallest σ-field making the mappings µ 7→ µ(B) measurable for
all B ∈ S. When M is a.s. confined to the space N(S) ⊂ M(S) of integer valued
measures, we say that M is a point process. Vague convergence µn → µ in M(S)
means that ∫

S
fdµn →

∫
S
fdµ

for each continuous f : S→ R+ with bounded support. A natural partial ordering
on M(S) and N(S) is given by: µ < ν if µ(B) ≤ ν(B), for all B ∈ Sb. It is known
Rolski and Szekli (1991, Lemma 1) that the vague topology and the partial order
< are related, namely < is closed, i.e. the set {(µ, ν) : µ < ν} ⊂M(S)2 is closed in
the product topology on S2.

We denote the strong stochastic ordering of random elements of M(S) by <st.
A random measure M is then said to be positively associated (PA)

E[f(M)g(M)] ≥ E[f(M)]E[g(M)] (4.1)
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for any pair of real valued, bounded measurable functions f, g on M(S), non-
decreasing w.r.t. the order <.

Let I ⊂ Sb be a countable, topological, dissecting, semi-ring generating the σ-
field S, as defined in Kallenberg (2017, Lemma 1.9). Denote by I1, I2, . . . some
enumeration of the elements of I. Define the mapping γ : M(S)→ R∞+ by

γ(µ) := (µ(I1), µ(I2), . . .) (4.2)

and let G := γ(S). Since I is a semi-ring generating S, by Billingsley (1995,
Theorem 11.3) the mapping γ is 1-1 and it is also increasing. Let ρ be a complete
metric in S generating the vague topology. Define a metric ργ in G by

ργ(x, y) = ρ(γ−1(x), γ−1(y)),

for all x, y ∈ G. We recall some basic properties of G; see Rolski and Szekli (1991,
Lemma 2) and Kallenberg (2002, Theorem A1.3).

Lemma 4.1.
(i) We have that G ∈ B(R∞+ ) and that the inverse map γ−1 : G → M(S) is

measurable.
(ii) G is metrizable as a Polish space by the metric ργ .
(iii) The Borel σ-field B(G) generated by ργ is of the form B(G) = G ∩ B(R∞+ ).

For a Borel set A ⊂ S, let F(A) denote the σ-field on N(S) generated by the
functions µ 7→ µ(B) for Borel B ⊆ A. We say that a function on N(S) is measurable
with respect to A if it is measurable with respect to F(A). For each measure µ
on S, we denote by µA := µ(· ∩ A) the restriction of µ to A. Then a measurable
function f : M(S)→ R is A-measurable iff f(µ) = f(µA) for each µ ∈M(S).

The following definition is an extension to random measures of definitions used
by Lyons (2014) and Poinas et al. (2019) for point processes.

Definition 4.2. We say that a random measure M is negatively associated (NA)
if

E[f(M)g(M)] ≤ E[f(M)]E[g(M)], (4.3)

for every pair f, g of bounded non-decreasing functions that are measurable with
respect to disjoint measurable subsets of S.

Remark 4.3. The above definition of NA property for random measures is not
equivalent to the one given in Remark 3.2 when random measures are viewed as
random fields indexed by the uncountable set {B : B ∈ S}. But for PA property,
these two definitions - (4.1) and that in Remark 3.2 - are equivalent.

We shall again refer to a random measure as associated if it is either negatively
associated or positively associated. As a consequence of Lemma 4.1, Kwieciński
and Szekli (1996, Theorem 3.2) proved for locally compact spaces that the ran-
dom measureM is positively associated iff random vectors (M(B1), . . .M(Bn)) are
positively associated for all n ≥ 1, and bounded sets B1, . . . , Bn ∈ Sb. We next
show an analogous result for the NA-property. We shall relax the assumption on
local compactness. To get the positive association result it was enough to use the
fact that non-decreasing transformations of positively associated random elements
into another partially ordered space are again positively associated elements of this
space. For negative association this property does not hold. In Poinas et al. (2019,
Theorem 2.3) the proof of an analog of Theorem 4.4 is given for point processes
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on S = Rd. They use a variant of the monotone class theorem. This proof is not
directly applicable for more general spaces S. A proof of the NA part of Theo-
rem 4.4 for point processes on locally compact partially ordered Polish spaces can
be (implicitly) found in Lyons (2014, paragraph 3.7), where negative association of
some determinantal point processes on locally compact Polish spaces is proved. The
arguments there are rather lengthy and are based on Lusin’s separation theorem
and the Choquet capacitability theorem. We shall give a short proof of this result
in a more general setting of random measures, using Lemma 4.1 and Theorem 3.3.

Theorem 4.4. Let M be a random measure on a Polish space S. Then M is
associated if and only if random vectors (M(B1), . . .M(Bn)) are associated in the
same positive or negative way for all n ≥ 1, and disjoint sets B1, . . . , Bn ∈ I.

Before proving the theorem, we need a lemma that will allow us to assume that
the bounded disjoint sets can be taken to be measurable in the above theorem
instead of just elements of I.

Lemma 4.5. Let M be a random measure on a Polish space S.
Then (M(B1), . . . ,M(Bn)) is associated for all n ≥ 1, and disjoint sets

B1, . . . , Bn ∈ I iff (M(B1), . . . ,M(Bn)) is associated in the same positive or nega-
tive way for all n ≥ 1 and disjoint sets B1, . . . , Bn ∈ Sb.

Proof: We shall again prove only for NA property and the same proof applies
more easily to PA. The ‘if’ part is trivial as I ⊂ Sb and we shall now prove the
other part. Fix m and disjoint B2, . . . , Bm ∈ I and consider the class M of all
bounded measurable sets B such that (M(B\(B2∪ . . .∪Bm)),M(B2), . . . ,M(Bm))
is NA. If B ∈ I, then B \ (B2 ∪ . . . ∪ Bm) can be written as a finite disjoint
union of I-sets and hence (M(B \ (B2 ∪ . . . ∪ Bm)),M(B2), . . . ,M(Bm)) is NA.
So, I ⊂ M. Denoting by R(I), the ring generated by taking finite unions of sets
in I, we have that R(I) ⊂ M. Further, by Theorem 3.6, we have that M is
closed under bounded monotone limits and so M is a local monotone class. By
the (local) monotone class theorem (Kallenberg, 2017, Lemma 1.2), M contains
the local monotone ring generated by the ring R(I) which is equal to Sb. Hence
(M(C),M(B2), . . . ,M(Bm)) is NA for all C ∈ Sb such that C is disjoint from
B2, . . . , Bm. Repeating this argument, we can derive the asserted property for all
disjoint B1, . . . , Bm ∈ Sb. �

Proof of Theorem 4.4: Again, we shall prove only for NA and the proof for the
PA case follows similarly. The ‘only if’ part is trivial and so we shall prove the
’if’ part. Fix a pair f, g of bounded non-decreasing functions that are measurable
with respect to disjoint measurable subsets of S, say A, B. Using (4.2), define on
G two measurable functions f̃ := f ◦ γ−1, and g̃ := g ◦ γ−1. It is not hard to
prove (by a monotone class argument for instance) that γ−1 is non-decreasing, so
that f̃ and g̃ are non-decreasing. Define XA := (M(In ∩ A))n≥1 = γ(MA) and
XB := (M(In ∩B))n≥1. Suppose we can show that

E[f̃(XA)g̃(XB)] ≤ E[f̃(XA)]E[g̃(XB)]. (4.4)

Then we would obtain that

E[f(M)g(M)] = E[f(MA)g(MB)] = E[f̃(XA)g̃(XB)]

≤ E[f̃(XA)E[g̃(XB)] = E[f(M)]E[g(M)],
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as desired.
It remains to prove (4.4) for arbitrary bounded non-decreasing measurable func-

tions f̃ and g̃. To this end, we take m ∈ Z+ and show that

E[h1(M(Ik ∩A)mk=1)h2(M(Ik ∩B)mk=1)]

≤ E[h1(M(Ik ∩A)mk=1)]E[h2(M(Ik ∩B)mk=1)], (4.5)

for all bounded non-decreasing measurable functions h1 : Rm+ → R and h2 : Rm+ →
R. There exist l ∈ Z+ and disjoint sets I ′i ∈ I, i ∈ {1, . . . , l}, such that Ij = ∪i∈JjI ′i
for j ∈ {1, . . . ,m}, where Jj ⊂ {1, . . . , l} for all j. Defining

h′1((xi)
l
i=1) := h1

(∑
i∈J1

xi, . . . ,
∑
i∈Jm

xi

)
,

we observe that h′1 is coordinatewise non-decreasing as h1 is coordinatewise non-
decreasing. Similarly, we can define h′2. By disjointness of I ′1, . . . , I ′l and A∩B = ∅,
we have by assumption and Lemma 4.5 that the random vector

(M(I ′1 ∩A), . . . ,M(I ′l ∩A),M(I ′1 ∩B), . . . ,M(I ′l ∩B))

is negatively associated. Therefore

E[h′1((M(I ′i ∩A)li=1)h′2((M(I ′i ∩B)li=1)]

≤E[h′1((M(I ′i ∩A)li=1)]E[h′2((M(I ′i ∩B)li=1)].

By definition of h′1, h′2, the above inequality is equivalent to the inequality (4.5).
Now using Corollary 3.4, we obtain (4.4) as required to complete the proof. �

We use d→ to denote weak convergence of random measures as well.

Theorem 4.6. Suppose Mn, n ≥ 1 are associated random measures on a Polish
space S and Mn

d→ M . Then M is also associated as a random measure in the
same positive or negative way as the elements of the sequence.

Proof : As before, we prove only the NA case and the PA case follows analogously.
Define SM := {B ∈ Sb : E[M(∂B)] = 0} where ∂B is the boundary of a set B.
Since Mn

d→ M , we have that (Mn(B1), . . . ,Mn(Bk))
d→ (M(B1), . . . ,M(Bk)) for

all B1, . . . , Bk ∈ SM (see Kallenberg, 2017, Theorem 4.11). Thus by Theorem 3.6,
we have that (M(B1), . . . ,M(Bk)) is NA for all pairwise disjoint B1, . . . , Bk ∈ SM .
Since SM is a dissecting ring and there exists I ⊂ SM , a countable, topological,
dissecting, semi-ring generating the σ-field S (Kallenberg, 2017, Lemma 1.9), by
Theorem 4.4, we have that M is a NA random measure. �

5. Examples

In this section, we recall some known and give some new examples of associated
random measures and fields. As mentioned in the introduction, showing many of
these examples are associated in the strong sense as in Definitions 3.1, 4.2 and (4.1)
shall require our Theorems 3.3, 3.6, 4.4 and 4.6. In an appendix, we recall some
classical results related directly to applied probability models. We are not aware of
many examples of NA random fields.
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5.1. Associated random fields.

Example 5.1. (Gaussian random measures and fields.) Suppose that M is a Gauss-
ian random measure on S such that Cov[M(A),M(B)] ≤ 0 for A and B dis-
joint. Then from Joag-Dev and Proschan (1983, Section 3.4) and our Theorem 3.3,
we have that M is NA. A simple special case is when S is a discrete set and
M :=

∑
s∈SXsδs where X := (Xs)s∈S is a Gaussian random field such that

Cov[Xs, Xt] ≤ 0 for all s 6= t, which implies that X is NA. Similarly, by Pitt
(1982) and our Theorem 3.3, the condition Cov(Xs, Xt) ≥ 0, s, t ∈ S, is necessary
and sufficient for the random measure M to be PA.

Example 5.2. (Dirichlet sequences) Let αn ≥ 0, n ∈ Z+, be such that α :=
∑∞
n=1 αn

is positive and finite. Let X1, X2, . . . be independent Gamma distributed random
variables with shape parameters α1, α2, . . . and scale parameter 1. Then X :=∑∞
n=1Xn has a Gamma distribution with shape parameter α and (X−1Xn)n≥1 is

NA. To see the latter we first assume that there exists m ∈ Z+ such that αn = 0
for n > m. Then X−1(X1, . . . , Xm) has a Dirichlet distribution with parame-
ter (α1, . . . , αm). Moreover, since the latter random vector is independent of X,
we obtain from Joag-Dev and Proschan (1983, Theorem 2.8) that it is NA. Since
(X−1Xn)n≥1 can be almost surely approximated by the sequences

(X1 + · · ·+Xm)−1(X1, . . . , Xm, 0, 0, . . .), m ≥ 1,

Theorem 3.6 shows that (X−1Xn)n≥1 is NA.

Example 5.3. (Markov stochastically monotone, up-down processes, Liggett, 2005,
Szekli, 1995, Section 3.8, Theorem A) Let X = (X(t), t ≥ 0) be a time homo-
geneous Markov Feller process with values in a partially ordered Polish space X
with generator A. If X is stochastically monotone and up-down (i.e. Afg ≥
fAg + gAf , for non-decreasing f, g) and X(0) is positively associated then X is
PA, i.e. (X(t1), . . . , X(tn)) is PA as a random element of Xn, for all t1 < . . . < tn,
n ∈ Z+, and the invariant (stationary) distribution of X is PA (if it exists). Using
our results the PA property can be extended to infinite sequences. In this class
of Markov processes many particle systems (attractive) and generalized birth and
death processes are included.

Example 5.4. (Random integrals) Let I be a countable index set and let S be a
partially ordered Polish space. Suppose that fy : S → R+, y ∈ I, is a family of
measurable functions and that M is a random measure on S. Define a random field
X = (Xy)y∈I by

Xy :=

∫
fy(x)M(dx), y ∈ I.

If M is PA, then so is X. For simple functions fy, this is straightforward from
the definition of PA and then for arbitrary functions one can use the standard
approximation along with our weak convergence result (Theorem 3.6).

5.2. Associated random measures.

Example 5.5. (Poisson process) Let Π be a Poisson process on a Polish space S with
a locally finite intensity measure λ. By complete independence, Π is NA. It was
stated in Roy (1990) (referring to the author’s PhD-thesis) that Π is PA. We refer
to Last and Penrose (2018, Theorem 20.4) for a general version of this result. In
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the percolation literature this is better known as the Harris–FKG inequality (see
Harris, 1960 and Fortuin et al., 1971). If λ is diffuse, then Last and Penrose (2018,
Theorem 6.14) shows that a Poisson process is the only simple point process with
intensity measure λ which is both PA and NA.

Example 5.6. (Mixed Poisson process) Let λ be a locally finite measure on a Polish
space S. Let X ≥ 0 be a random variable and suppose that Φ is a point process
on S such that a.s. P(Φ ∈ · | X) = ΠXλ, where, for a given locally finite measure
ν on S, Πν denotes the distribution of a Poisson process with intensity measure ν.
Then Φ is known as a mixed Poisson process. We show that Φ is PA; see Georgii
and Küneth (1997, Example 2.1). Let f, g : S → R be measurable bounded and
non-decreasing. By conditioning and Example 5.5

Ef(Φ)g(Φ) ≥ E[E[f(Φ) | X]E[g(Φ) | X]] = E[f̃(X)g̃(X)],

where f̃(x) :=
∫
f(µ) Πxλ(dµ), x ≥ 0, and the function g̃ is defined similarly. A

simple thinning argument (see e.g. Last and Penrose, 2018, Corollary 5.9) shows
that f̃ and g̃ are non-decreasing. Since a single random variable in a totally ordered
space is PA (Lindqvist, 1988, Theorem 3.4), we obtain that

E[f̃(X)g̃(X)] ≥ E[f̃(X)]E[g̃(X)] = E[f(Φ)]E[g(Φ)],

as asserted.

Example 5.7. (Cox processes) Let Λ be a random measure on a Polish space S and
let Φ be a point process on S such that a.s. P(Φ ∈ · | Λ) = ΠΛ. Then Φ is known
as a Cox process. We show that if Λ is associated, then so is Φ. Assume first
that Λ is PA. Let f, g : S → R be measurable bounded and non-decreasing. Since
Poisson processes are PA we have similarly as in Example 5.6 that E[f(Φ)g(Φ)] ≥
E[f̃(Λ)g̃(Λ)], where f̃(ν) :=

∫
f(µ) Πν(dµ), ν ∈M(S), and g̃ is defined similarly. By

the thinning properties of Poisson processes the (measurable) functions f̃ and g̃ are
non-decreasing. Hence E[f̃(Λ)g̃(Λ)] ≥ E[f(Φ)]E[g(Φ)] and Φ is PA. Assume now
that Λ is NA and that f and g are measurable with respect to disjoint measurable
subsets of S. Using in the above calculation the complete independence of a Poisson
process instead of PA, and the fact that for each measurable set A the restriction
ΦA is Cox with directing measure ΛA, we obtain that Φ is NA. The PA case of this
example generalizes Example 5.6 and, in fact, Theorem 5.5 in Burton and Waymire
(1985). The NA case might be new, at least in this generality. Note that our strong
(functional) definition of association has been crucial for the above arguments.

Example 5.8. (Permanental point processes) Assume that S is a locally compact
separable metric space and let X = (Xs)s∈S be a Gaussian random field. It was
shown in Eisenbaum (2014) that the finite-dimensional distributions of (X2

s )s∈S are
PA iff they are infinitely divisible. Assume this is the case and that moreover, X
has continuous sample paths. Let µ be a locally finite measure on S and define
Λ :=

∫
1{s ∈ ·}X2

s µ(ds). It can be shown as in Example 5.12 below that the
random measure Λ is PA. By Example 5.7, a Cox process Φ directed by Λ is PA.
Such a Φ is a special case of a (1/2)-permanental process; see e.g. Last and Penrose
(2018, Chapter 14). More generally, we may consider k i.i.d. infinitely divisible
Gaussian random fields X1, . . . ,Xk as above and define Λ :=

∫
1{s ∈ ·}Ys µ(ds),

where Ys := (X1
s )2+· · ·+(Xk

s )2. By a basic property of association the field (Ys)s∈S
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is again PA, so that a Cox process Φ with directing measure Λ is PA as well. Such
a Φ is k/2-permanental; see again Last and Penrose (2018, Chapter 14).

Example 5.9. (Determinantal point processes, Lyons, 2014, Theorem 3.7) Let λ be
a Radon measure on a locally compact Polish space X. Let K be a locally trace-class
positive contraction on L2(X, λ). The determinantal point process defined by K is
NA as a random measure. Well known examples of determinantal point processes
are descents in random sequences (Borodin et al., 2010), non-intersecting random
walks (Johansson, 2004), edges in random spanning trees (Burton and Pemantle,
1993) and the finite and infinite Ginibre ensemble (Ginibre, 1965, see also Section 6).

Example 5.10. (Mixed sampled point processes, Last and Szekli, 2019, Theorem 3.3)
Suppose that N :=

∑τ
i=1 δXi

, where Xi are i.i.d. on a Polish space X and τ ∈
Z+∪{0} is independent of (Xi)i≥1. This is called as a mixed sampled point process;
see also Last and Penrose (2018). If τ has an ultra log-concave distribution, then
N is NA as a random point process. This example can be immediately extended to
the case of random measures M :=

∑τ
i=1WiδXi

, for an independent iid sequence
(Wi) of positive random variables. Such random measures belong to the class of
random measures described in the next example.

Example 5.11. (Independently-weighted point processes) Suppose that N =
{Xi}i≥1 is a NA point process on S and (Wi)i≥1 is an independent but possibly
position dependent marking of N with non-negative marks (see Last and Penrose,
2018, Section 5.2 for more details). In other words, given N , let (Wi) be inde-
pendent random variables chosen as per distribution K(Xi, .), where K(x, dw) is
the probability kernel generating the independent marking. Define the random
measure M :=

∑
iWiδXi

. Clearly we have a.s. that P(M ∈ · | N) = K∗(N, ·)
for a suitably defined probability kernel K∗. Suppose that f, g : M(S) → R are
bounded measurable and non-decreasing. Assume also that there exists a mea-
surable A ⊂ S such that f is measurable w.r.t. A and g is measurable w.r.t.
Ac. Since MA and MAc are conditionally independent given N , we have a.s. that
E[f(M)g(M)] = E[[E[f(M) | N ]E[g(M) | N ]]. We can define K∗ in such a way
that

∫
f(ν)K∗(µ, dν) and

∫
g(ν)K∗(µ, dν) are increasing in µ. ThereforeM is NA.

Example 5.12. (Integral of random fields) Suppose X is a Polish space with a locally
finite measure µ andX := (X(x))x∈X is a Y-valued continuous random field where Y
is a POP space. Assume that (X(x))x∈I is NA for any finite I ⊂ X. Let f : Y→ R+

be an increasing and continuous function. Then we have that the random measure
M(A) :=

∫
A
f(X(x))µ(dx), A ∈ S, is a NA random measure. This can be proved

as follows. Easily we have that (f(X(x)))x∈I is NA for any finite I ⊂ X. Now, we
approximateM(A) for any A ∈ Sb as follows. Let {xn}n≥1 be a countable dense set
of X and Bkn := Bxn

(2−k) \ (∪n−1
m=1Bxm

(2−k)). Choose ykn ∈ Bkn for all n, k. Define

Mk(A) :=

∫
A

∞∑
n=1

1{x ∈ Bkn}1{ykn ∈ A}f(X(ykn))µ(dx).

Observe that Mk(A) is an increasing function of {f(X(ykn))}ykn∈A and by The-
orem 3.3, {f(X(ykn))}ykn∈A is a NA random field. Thus for disjoint bounded sets
A1, . . . , Am, since Mk(Ai)’s are increasing functions of disjoint collection of
f(X(ykn)), we have that (Mk(A1), . . . ,Mk(Am)) is NA. By continuity of f,X and
boundedness of Ai’s, we can use the dominated convergence theorem to show that
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for all 1 ≤ i ≤ m, Mk(Ai) → M(Ai) a.s. as k → ∞. Now, by using Theorem 3.6,
we have that (M(A1), . . . ,M(Am)) is NA for disjoint bounded sets A1, . . . , Am and
hence M is NA by Theorem 4.4.

Example 5.13. (Dirichlet process) Let λ be a measure on S such that 0 < λ(S) <∞.
A random measure M on S is called a Dirichlet process (Ferguson, 1973; Last and
Penrose, 2018) with parameter measure λ if (M(B1), . . . ,M(Bn)) has a Dirichlet
distribution with parameter (λ(B1), . . . , λ(Bn)), whenever B1, . . . , Bn, n ≥ 1, form
a measurable partition of S. By Example 5.2, a Dirichlet process is NA. Note that
the NA property of Dirichlet sequences is in accordance with Theorem 4.4.

Example 5.14. (Infinitely divisible random measures, Burton and Waymire, 1986,
Evans, 1990) Suppose that M is a random measure on a Polish space S which
is infinitely divisible. This means that for any n ∈ Z+, there exist independent
identically distributed random measures M1, . . . ,Mn on S such that M has the
same distribution as M1 + · · ·+Mn. It was shown in Burton and Waymire (1986)
and Evans (1990) that M is PA. We give here a short proof of this result which
does, moreover, not require S to be locally compact. By a classical point process
result (see e.g. Kallenberg, 2017, Theorem 3.20) there exists a Poisson process Φ
on M(S) and a measure λ ∈M(S) such that M = λ+

∫
µΦ(dµ) holds a.s. Taking

measurable bounded and non-decreasing functions f, g : M(S)→ R, we obtain that

E[f(M)g(M)] = E[f̃(Φ)g̃(Φ)],

where the function f̃ (and similarly g̃) is defined as follows. Given a locally finite
counting measure ϕ onM(S) we set f̃(ϕ) := f

(
λ+
∫
µϕ(dµ)

)
whenever the measure∫

µϕ(dµ) is locally finite. Otherwise we set f̃(ϕ) := c, where c is an upper bound
of f . Since f̃ and g̃ are non-decreasing we can apply the PA property of Φ (see
Example 5.5) to conclude that E[f̃(Φ)g̃(Φ)] ≥ E[f̃(Φ)]E[g̃(Φ)] = E[f(M)]E[g(M)],
as asserted.

Example 5.15. (Poisson cluster random measure) Suppose that N =
∑τ
i=1 δξi is a

Poisson process on a Polish space S. Let (Mi, i ≥ 1) be an i.i.d. sequence of random
measures on S, independent of N . Assume that∫∫

min(µ(B + x), 1)P(M1 ∈ dµ)E[Φ](dx) <∞

for all bounded Borel sets B ⊂ S. By Kallenberg (2017, Theorem 3.20) the random
measure M defined by M(B) =

∑τ
i=1Mi(B + ξi), B ∈ S, is infinitely divisible.

Example 5.14 shows that M is PA.

Example 5.16. (Self-exciting point processes on the real axis, Kwieciński and Szekli,
1996, Theorem 4.2) Let N be a point process on R+ admitting stochastic intensity
with respect to its internal filtration. If N is a positively self-exciting w.r.t. ≺, then
N is positively associated w.r.t. ≺, whenever ≺ denotes one of the three orderings of
point processes introduced there. In particular renewal processes with inter-point
distribution which has decreasing failure rate (DFR) are PA as random measures.

Example 5.17. (Area interaction process) Let S be a compact subset of Rd equipped
with the Euclidean distance. Let β > 0 and let Πβ be the distribution of a Poisson
process with intensity measure βλd restricted to S, where λd denotes Lebesgue
measure on Rd. Fix a number r > 0 and define U(µ) := ∪x∈µB(x, r), µ ∈ N(S),
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where B(x, r) is the Euclidean ball with radius r centred at x. Suppose that Φ
is a point process on S whose distribution is absolutely continuous w.r.t. Πβ , with
density proportional to p(µ) = e−αλd(U(µ)), µ ∈ N(S), where α > 0 is another
parameter. Example 2.3 in Georgii and Küneth (1997) shows the finite dimensional
distributions of Φ are positively associated thus using our Theorem 4.4 we conclude
that Φ is PA. In fact, the latter example covers a more general class of finite Gibbs
processes (of Widom–Rowlinson type) which are PA.

Example 5.18. (Exclusion processes) The symmetric exclusion process on a count-
able set S is the Markov process (Xt, t ≥ 0) on the state space E = {0, 1}S with
the formal generator

Lf(η) =
∑

x,y:η(x)=1,η(y)=0

p(x, y)[f(ηx,y)− f(η)], η ∈ E,

where ηx,y is the configuration obtained from η by interchanging the coordinates
η(x) and η(y). Here p(x, y) = p(y, x) are the transition probabilities for a symmet-
ric, irreducible, Markov chain on S. For background on this process, see Chapter
VIII of Liggett (2005). Let

H = {α : S → [0, 1],
∑
y

p(x, y)α(y) = α(x) ∀x},

and for α ∈ H, let να be the product measure with marginals να(η : η(x) = 1) =
α(x). Then the limiting distribution as t → ∞ of the process (Xt) exists if the
initial distribution of X0 is να; call it µα. It is known from Borcea et al. (2009)
that for µα the finite dimensional distributions are negatively associated and using
our Theorem 3.3 we have that µα is NA.

6. Appendix

In order to make the list of examples more complete we recall some classical
results related directly to applied probability models.
a) (Non-Gaussian infinitely divisible random vectors, Samorodnitsky, 1995) Let X

be an infinitely divisible random vector with Lévy measure ν which is concen-
trated on the positive (R+)d and the negative (R−)d quadrants of Rd then X is
PA . This condition is not necessary in general but it is for some sub-classes of
infdiv vectors.

b) (Max infinitely divisible random vectors, Resnick, 1988) A random vector X is
max-infinitely divisible if for every n ∈ Z+ there exist i.i.d. random vectors
Xn1,Xn2, . . . ,Xnn such that X is equal in distribution to
max(Xn1,Xn2, . . . ,Xnn). Every max-infinitely-divisible random vectorX is PA.

c) (Karlin and Rinott, 1980). If the distribution of a vector X has density f such
that f(x ∨ y)f(x ∧ y) ≥ f(x)f(y), for all x,y ∈ Rn it is called multivariate
totally positive of order 2 (MTP2). An MTP2, random vector X induces an
PA set of random variables (FKG inequalities). The following special cases are
classical MTP2 densities: (i) the negative multinomial discrete density; (ii) X
is normally distributed with mean zero and the covariance matrix Σ is MTP2

if and only −Σ−1 exhibits nonnegative off-diagonal elements (that is Σ−1 is so
called M-matrix or Leontief matrix); (iii) the density of the eigenvalues of certain
Wishart random matrices; (iv) the density of multivariate logistic distribution;
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(v) the density of the multivariate gamma distribution; (vi) the density of the
multivariate Cauchy distribution.

d) (Virtual waiting time process, Kwieciński and Szekli, 1996, Proposition 5.1)
Suppose that a marked point processN feeding a single-server queue is positively
associated as random measure. Then the processes of the virtual waiting time
and of the number of customers in the system are PA as random fields.

e) (M-infinitely divisible random sets, Karłowska-Pik and Schreiber, 2008, Theo-
rem 2.1) If M-infinitely-divisible convex compact random set X has no Gaussian
summand and its Lévy measure concentrates on the family of sets containing
the origin, then X is PA as a random element of the space of closed subsets of
Rd equipped with the Fell topology. Similarly, every union-infinitely-divisible
random closed set is PA .

f) (Sojourn times on quasi overtake-free paths in queueing networks, Daduna and
Szekli, 2004, Theorem 4.2 and 6.4). The vector of a test customer’s successive
sojourn times on a quasi overtake-free path in a closed Gordon-Newell queueing
network is negatively associated. In particular, the vector of a test customer’s
successive sojourn times in a cycle is NA.

g) (Queueing networks, Szekli, 1995, Section 3.8, Theorem E) Let (X(t), t ≥ 0) de-
note the joint queue length process of an irreducible Gordon-Newell network with
Markovian routing and queue-length dependent non-decreasing service rates,
which acts in equilibrium. Then for each t ≥ 0, X(t) is NA.

h) (Eigenvalues of random matrices, Ginibre, 1965) Let M be a random matrix
obtained by drawing every entry independently from the complex normal distri-
bution. This is the complex Ginibre ensemble. The eigenvalues ofM , which form
a finite subset of the complex plane define a NA point process (which is determi-
nantal). If a Hermitian matrix is generated in the corresponding way, drawing
each diagonal entry from the normal distribution and each pair of off-diagonal
entries from the complex normal distribution, then we obtain the Gaussian uni-
tary ensemble, and the eigenvalues are now a NA (determinantal) point process
on the real line.

i) (Van den Berg and Kesten (BK) inequality) Let E = {0, 1}n, and [n] :=
{1, ..., n}. For η ∈ E and I ⊂ [n], let ηI denote the tuple (ηi, i ∈ I). By
[η]I := {α ∈ E : αI = ηI} we denote the set of all elements of E that agree with
η on I. A�B defines the event that A and B occur disjointly, that is

A�B = {η ∈ E : ∃ disjoint K,L ⊂ [n], [η]K ⊂ A, [η]L ⊂ B}.
An event A ⊆ E is said to be increasing if η′ ∈ A whenever η ∈ A and η′ ≥ η
coordinatewise. A probability measure P on E is BK if for all increasing A,B,
P (A�B) ≤ P (A)P (B). It is known that if P is BK then it is NA but NA does
not imply BK, see van den Berg and Jonasson (2012).

j) (Distributions on vertices of polytopes in Rn, Peres et al., 2017) For a Gaussian
random walk in a polytope that starts at a point inside and continues until it
gets absorbed at a vertex the probability distribution induced on the vertices
by this random walk is NA for matroid polytopes. Such distributions are highly
sought after in randomized algorithms as they imply concentration properties.

k) (Random-cluster model, Grimmett, 2006) The random cluster measure φp,q is
PA for all p ∈ [0, 1], q ∈ [1,∞) with free or wired boundary conditions. For any
other boundary condition, the limit random cluster measures and extreme (tail
trivial) DLR random cluster measures are PA for all p ∈ [0, 1], q ∈ [1,∞) (see
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Grimmett, 2006, Theorems 4.17 and 4.37). It is one of the important conjectures
in statistical physics that φp,q satisfies some form of negative dependence for p ∈
[0, 1], q ∈ (0, 1). From our Theorem 3.6, this conjecture boils down to showing a
suitable negative dependence property for the finite-volume case. However, this
is shown in certain special cases of the q ↓ 0 limit (see Grimmett, 2006, Section
3.9).

l) (Conditional distributions, Hu and Hu, 1999) Let X = (X1, X2, . . . , Xn) be a
random vector of n iid rv with a continuous distribution. Then [X|X(k1) =
s1, X(k2) = s2, . . . , X(kr) = sr] is NA for 1 ≤ k1 < k2 < . . . < kr ≤ n and
s1 < s2 < . . . < sr, where X(1) ≤ . . . ≤ X(n) are the order statistics of X.
If X is a random vector of n iid rv with PF2 densities or mass functions then
[X|

∑n
i=1Xi ∈ (a, b)] is NA, where a < b. Some special cases of conditional

distributions are given in the next example.
m) (Joag-Dev and Proschan, 1983) Random vectors X with the permutation, multi-

nomial, multivariate hypergeometric or Dirichlet distributions are NA. For
Dirichlet, see also Example 5.13.
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