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Abstract. We introduce a continuous-time Markov chain describing dynamic al-
lelic partitions which extends the branching process construction of the Pitman
sampling formula in Pitman (2006) and the classical birth-and-death process with
immigration of Karlin and McGregor (1967), in turn related to the celebrated Ewens
sampling formula. A biological basis for the scheme is provided in terms of a popu-
lation of individuals grouped into families, that evolves according to a sequence of
births, deaths and immigrations. We investigate the asymptotic behaviour of the
chain and show that, as opposed to the birth-and-death process with immigration,
this construction maintains in the temporal limit the mutual dependence among the
multiplicities. When the death rate exceeds the birth rate the system is shown to
have a reversible distribution, identified as a mixture of Pitman sampling formulae,
with negative binomial mixing distribution on the population size. The population
therefore converges to a stationary random configuration, characterised by a finite
number of families and individuals.
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1. Allelic partitions and sampling formulae

A partition of n ∈ N is an unordered collection P = {n1, . . . , nk} of k ≤ n
positive integers whose sum equals n. A common equivalent way to describe P is
by means of the so-called allelic partition, which groups the partition sets by size.
We denote by m = (m1, . . . ,mn) ∈ Zn+ the associated vector of multiplicities, where
mi counts the number of repetitions of i in P, and let

An =

{
m ∈ Zn+,

n∑
i=1

imi = n

}
be the finite set of all allelic partitions of n. It will be useful to embed An into Z∞+
by considering infinite vectors m = (m1, . . . ,mn, 0, 0, . . . ), defining also

s(m) :=
∑
i≥1

imi, k(m) :=
∑
i≥1

mi,

which are respectively the number of items and groups (or positive multiplicities)
in m, and

A :=
⋃
n≥1

An = {m ∈ Z∞+ , s(m) <∞},

the countable set of all allelic partitions. A random allelic partition M = (Mi)i≥1
can then be defined as a random variable taking values in A.

The literature on the distributional properties of random allelic partition is rich
and well established. Ewens (1972) derived the distribution of the random allelic
partition induced by a sample of n genes drawn from a selectively neutral population
at equilibrium (see also Karlin and McGregor, 1972). This is described by the
celebrated Ewens sampling formula (ESF), which assigns probability

ESFθn(m) =
n!

θ(n)

∏
i≥1

(
θ

i

)mi 1

mi!
1{s(m)=n}, (1.1)

to the configuration m ∈ A with mi alleles appearing exactly i times for each i ≥ 1.
Here θ > 0 and θ(n) = θ(θ+1) . . . (θ+n−1) is the ascending factorial. The impact of
the ESF has been significant in a number of fields beyond population genetics. For
example, Antoniak (1974) derived it independently from a sample from a Dirichlet
process, a cornerstone nonparametric prior distribution in Bayesian nonparametric
statistics; Hoppe (1984) recovered the formula as the marginal distribution of a
Markov chain generated by a Pólya-like urn model comprising an infinite number
of colors, analogous to that introduced in Blackwell and MacQueen (1973) and
described equivalently in Aldous (1985) with the famous metaphor of the Chinese
restaurant process. See Johnson et al. (1997) and Crane (2016) for reviews and
Feng (2010) for connections with population genetics.

Pitman (1995) introduced a two-parameter generalization of (1.1), often referred
to as the Pitman sampling formula (PSF), whereby for parameters 0 ≤ α < 1 and
θ > −α, the probability assigned to a random allelic partition m ∈ A is

PSFα,θn (m) =
n!

θ(n)

k(m)∏
i=1

(θ + iα)
∏
j≥1

[
(1− α)j−1

j!

]mj 1

mj !
1{s(m)=n}. (1.2)

For α = 0, equation (1.2) immediately recovers (1.1), so that PSF0,θ
n ≡ ESFθn. For

0 < α < 1, the distribution arises for example in the study of stable processes with
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index α, the case α = 1/2 being related to the zeros of Brownian motion (see also
Pitman, 1997), and in the study of the partition structures induced by a sample
from a two-parameter Poisson–Dirichlet distribution (Perman et al., 1992; Perman,
1993; Pitman and Yor, 1997). The corresponding generalization of Hoppe’s urn is
defined in Pitman (1995, 1996b) as a Markov chain of allelic partitions with initial
state e0 and transition probabilities

p(m′|m) ∝


θ + αk(m), m′ = m+ e1,

(i− α)mi, m′ = m− ei + ei+1, i ≥ 1,

0, else,
(1.3)

where ei = (δij)j≥1, i ≥ 0, and the normalising constant is given by θ+ s(m). The
first transition in (1.3) can be understood as the addition to the gene sample of a new
gene of a previously unobserved allele, while the transition from m to m−ei+ei+1

corresponds to adding a gene whose allele had been previously observed i times.
For α = 0, (1.3) coincides with Hoppe’s urn, while for any 0 ≤ α < 1 the marginal
distribution of the state of the chain after n transitions is given by (1.2).

Among other relevant contributions to the related theory, the asymptotic behav-
ior of the number Kα,θ

n of different alleles was derived respectively by Korwar and
Hollander (1973) in the case α = 0, for which

lim
n→∞

K0,θ
n

log n
= θ a.s., (1.4)

and by Pitman (1997) for 0 < α < 1, where we have that

lim
n→∞

Kα,θ
n

log n
= Sα,θ a.s., (1.5)

Sα,θ being an absolutely continuous random variable on (0,∞) whose law is re-
lated to the Mittag–Leffler distribution. Concerning the PSF, we further refer the
reader to Kerov (2005); Pitman (1996a) for various characterizations thereof, James
et al. (2008) for connections with Bayesian nonparametric statistics and again Feng
(2010) for connections with population genetics. Note that similar asymptotic re-
sults to the above are available for Gibbs-type models (Gnedin and Pitman, 2005;
De Blasi et al., 2015), which include the one- and two-parameter models recalled
above, as well as a model in Gnedin (2010) which produces a finite but random
number of families in the limit.

In this paper we are interested in the connection between Ewens–Pitman sam-
pling formulae and the theory of stochastic processes for population growth. In
particular, we construct a birth-and-death process with immigration whose dy-
namics modifies the one arising as after (1.3) by allowing the removal of items from
the system; and we show, in a particular regime, that the process is reversible with
respect to a certain mixture of Pitman sampling formulae. The rest of the paper is
organised as follows. In Section 2 we present our contribution and its connections
with past related work. Section 3 describes in detail the birth-and-death population
model with immigration, and how it can be constructed via branching processes.
Finally, Section 4 analyses the reversible regime, identifying explicitly the reversible
distribution and its connections with Pitman sampling formulae.
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2. Main contribution and related work

The seminal work of Karlin and McGregor (1967) describes a population wherein
new families are initiated at a sequence of random times generated by a stochastic
process I = {I(t), t ≥ 0}, which can be thought of as immigration events, and then
evolve, independently of one another, according to the law of a common continuous-
time Markov chain on Z+, whose infinitesimal rates are denoted qij . As pointed out
by Tavaré (1989), if new families are interpreted as novel mutant alleles of a given
gene, then the scheme may be regarded as a version of the infinitely-many-neutral-
alleles model and can provide, under specific choices of its probabilistic components,
a generating mechanism for the sampling formulae (1.1) and (1.2). In particular,
let I be a pure-birth processes started at 0 with birth rates

lim
h→0

1

h
P(I(t+ h)− I(t) = 1|I(t) = k) = θ + αk, k ≥ 0,

and assume that the process describing the evolution of each family is started at 0
and has rates

qi,i+1 = i− α, i ≥ 1. (2.1)

If now Mi(t) is the number of families of size i at time t, and M(t) = (Mi(t))i≥1
is the induced allelic partition, then M = {M(t), t ≥ 0} defines a continuous-
time Markov chain on A whose embedded jump chain has transition probabilities
(1.3) and marginal distributions described by the PSF; see Feng and Hoppe (1998)
and Pitman (2006). When α = 0, this construction reduces to the birth process
with immigration considered in Tavaré (1987), which provides the corresponding
embedding of Hoppe’s urn leading to the ESF (cf. Section 2.7.2 in Feng, 2010).

In the above schemes, each transition entails the addition of one individual to
the population, and both the population size and the number of families diverge
almost surely as time increases. This is a convenient mathematical simplification
but may be undesirable or result in a lack of flexibility in different contexts, and
is arguably unrealistic when modelling the evolution of populations. Therefore, it
can be of interest to account for the death of individuals and to study the related
implications on the family structure.

Motivated by the above considerations, we consider here a modified version of
the population model underlying the PSF, by assuming that the individuals are en-
dowed with independent random exponential lifetimes of parameter µ > 0, with
µ = 0 recovering the original construction, thereby introducing uniform death
events in the scheme. See Definition 3.1 below for the details. By leaving un-
changed the other rules governing the evolution of the family structure, we thus
obtain more flexible dynamics whereby families are started, fluctuate in size and
possibly become extinct with the passage of time, resulting in a population with
varying size and number of families. Note that, because of exchangeability, the
PSF is consistent with respect to uniform deletion, hence a death event induces a
random partition still following the PSF. For consistency with respect to deletion
of an entire family, a property known in the literature as regeneration, see Gnedin
and Pitman (2004).

For α = 0, our construction recovers the detailed version of the birth-and-death
process with immigration (BDI) in Karlin and McGregor (1967), object of thorough
study in Kendall (1975) and Tavaré (1989). In this case, the new families are started
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at the times of a Poisson point process of intensity θ, and each family subsequently
evolves according to an independent linear birth-and-death process. Theorem 2.1
in Karlin and McGregor (1967) derives the marginal distribution of the induced
allelic partition M(t), which is that of a sequence of independent Poisson random
variables given by

M(t) ∼
∏
i≥1

Po(θbit/i), bt =

{
[e(1−µ)t − 1]/[e(1−µ)t − µ], µ 6= 1

t/(1 + t), µ = 1.
(2.2)

Anticipated by earlier results in Watterson (1974) and Kendall (1975), Tavaré
(1989) reformulated the above distribution as a mixture of Ewens sampling for-
mulae in (1.1) with a negative binomial mixing distribution on n. Specifically,
letting S(t) being the number of alive individuals at time t, the population size
process S = {S(t), t ≥ 0} defines by construction a BDI process, with negative
binomial marginal distribution

S(t) ∼ N-Bin(θ, bt), P(S(t) = n) =
θ(n)

n!
(1− bt)θbnt , n = 0, 1, . . . (2.3)

Then, by combining (2.2) and (2.3), the ESF is recovered as the conditional distri-
bution of the actual allelic partition given the population size, i.e.,

P(M(t) = m|S(t) = n) = ESFθn(m), m ∈ A, n ≥ 1. (2.4)

Within the study of the BDI process, a great attention has been dedicated to
investigating the long-run behavior of the model. By taking the limit as t→∞ in
(2.2), we have the convergence in law

M(t)
d→ (X1, X2, . . . ), t→∞, (2.5)

where, for 0 < µ ≤ 1, Xi
ind∼ Po(θ/i), while for µ > 1, Xi

ind∼ Po(θµ−i/i). In
the first case the death rate does not exceed the birth rate, and the asymptotic
regime corresponds to the weak limit as n → ∞ of the Ewens partition structure
(1.1) derived in Arratia et al. (1992), characterized by an infinite sample size and
a logarithmic growth of the underlying number of groups. Instead, for µ > 1, the
death events occur at a faster rate than births, causing each family to eventually
become extinct almost surely (see Kendall, 1975) and preventing the indefinite
growth observed previously. In fact, in the second regime the population size process
S is easily seen in Lemma 4.1 below to have N-Bin(θ, µ−1) reversible distribution. In
turn, Kendall (1975) showed the reversibility of the induced allelic partition process,
and shed light on the representation of the reversible distribution as an analogous
mixture as that arising from (2.4), characterized by a N-Bin(θ, µ−1) mixing on the
population size.

In this paper, we encode the description of the evolving family structure directly
in terms of the induced allelic partition process, and then focus on investigating
the long-run behavior of the model. Because of the more involved rules governing
the formation of new families, the sharp distributional result derived in Karlin and
McGregor (1967) is not accessible in our construction. Nonetheless, by observing
that the overall dynamics of the total population size is left unchanged, we show
that for µ > 1 the model is reversible, and identify the reversible distribution as a
mixture of Pitman sampling formulae with respect to the same negative binomial
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mixing on the population size appearing for α = 0. For 0 < α < 1, the mixture can
be written in closed form as

π(m) = C(θ/α)(k(m))

∏
i≥1

Po(mi;αiµ
−i), αi =

α(1− α)(i−1)
i!

, m ∈ A, (2.6)

where

C = e1−(1−1/µ)
α

(1− 1/µ)θ. (2.7)

Thus, in the reversible regime, the system will converge to a stationary random
configuration that features almost surely finitely many families and individuals.
However, as opposed to the previous model, the mutual dependence among the
multiplicities is seen in (2.6) to be preserved in the limit.

3. A birth-and-death process with immigration

3.1. Definition.

Definition 3.1. For 0 ≤ α < 1, θ > −α and µ > 0, let M = {M(t), t ≥
0}, M(t) = (Mi(t))i≥1, be a continuous-time Markov chain with state space A,
initial state M(0) = e0 and temporally homogeneous transition rates

q(m′|m) =



θ + αk(m), m′ = m+ e1,

(i− α)mi, m′ = m− ei + ei+1, i ≥ 1,

µimi, m′ = m− ei + ei−1, i ≥ 1,

−θ − (1 + µ)s(m), m′ = m,

0, else.

(3.1)

We notice that the first two lines in (3.1) coincide with the transitions in the
sequential construction by Pitman (1995) displayed in (1.3). These describe the
initiation of a new family of size one and the addition of one individual to a pre-
existing family of size i respectively. The third transition instead represents, for
i ≥ 2, the death of a member of a family of size i, while for i = 1 it corresponds
to the extinction of a family comprising a single individual. The choice of the
initial state M(0) = (0, 0, . . . ) is rather common across the literature, and can be
interpreted as the population being initially empty, as in a territory about to be
colonised.

The infinitesimal generator corresponding to the transition rates in (3.1) is easily
seen to be stable, as q(m|m) is finite for all m ∈ A, and conservative, since each
row has zero sum (cf. Norris, 1998). Furthermore, by adapting the argument in
Section 4 in Kendall (1975), we can deduce from the properties of the associated
population size process that M is also regular, i.e. it performs almost surely only
a finite number of jumps in every finite time interval. In particular, for any t ≥ 0,
let

S(t) := s(M(t)) =
∑
i≥1

iMi(t) (3.2)

be the random number of items underlying the allelic partition M(t). Then we
have from Definition 3.1 that S = {S(t), t ≥ 0} defines a continuous-time Markov
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chain on Z+, with initial state S(0) = 0 and transition rates

r(n′|n) =


θ + n, n′ = n+ 1,

µn, n′ = n− 1,

−θ − (1 + µ)n, n′ = n,

0, otherwise.

(3.3)

Indeed, by properly aggregating the rates in (3.1), we see that conditionally given
the population size S(t) = n (that is to say M(t) = m for any m ∈ A with
s(m) = n) one of the following events occur. A new individual is introduced in the
population (either initiating a new family or joining a pre-existing one) increasing
its size by one unit, and this happens with overall rate

θ + αk(m) +
∑
i≥1

(i− α)mi = θ + n.

Alternatively, the death of one of the n individuals occurs, decreasing the population
size by one unit, which happens at the total rate∑

i≥1

µimi = µn.

Thus, irrespective of the parameter α, S defines a classical BDI process, with unit
birth rate, death rate µ and immigration rate θ. The law of S is seen in (3.3) to
be insensitive to the choice of α, so that we conclude that the more refined rules
governing the formation of new families do not impact the dynamics of the total
population size, but rather influence the detailed probabilistic fluctuations in the
family configuration.

Finally, we notice that M and S share the same random jump time, as each
transition of the allelic partition process involves either the introduction or the
death of an individual. Therefore, as the generator of the birth-and-death process
with immigration is known to be regular (see, e.g., Section 2 in Kendall, 1975),
we can directly conclude about the regularity of M, which accordingly identifies
(jointly with the initial state) a well-defined chain on A.

3.2. Branching process construction. A biological basis for the three-parameter pro-
cess in Definition 3.1 can be provided in terms of a population of individuals grouped
into families evolving according to a sequence of births, deaths and immigrations,
by introducing uniform death events in the models studied by Feng and Hoppe
(1998) and Pitman (2006).

First assume that θ > 0, and consider a population whose members have in-
dependent exponential lifetimes with parameter µ, and autonomously reproduce
according to independent unit-rate Poisson processes (taken without loss of gener-
ality, upon appropriate time rescaling). At a birth, any offspring produced by the
oldest member of each family will either join its parent’s family, with probability
1−α, or start a new family, with probability α. All other family members give birth
to individuals that will remain within their parent’s family. Finally, an independent
Poisson process of rate θ is assumed to bring immigrants into the population that,
at the time of entry, will initiate a new family each.

For −α < θ ≤ 0, the above rules can be modified by assuming that no immi-
grant can enter the population, but rather that the overall oldest member in the
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population produces at rate 1 − α offspring that will join its family, and at rate
α+ θ individuals that will initiate new families.

Thus, by exploiting basic properties of independent Poisson processes (e.g., a
Poissonization argument as in Athreya and Karlin, 1968), it follows that, if we
encode the family structure into the corresponding sequence of multiplicities, the
dynamics of the above population generates a continuous-time Markov chain of
allelic partitions, whose transition rates recover precisely those of the process M
in (3.1). In particular, each family evolves according to an independent birth-and-
death process with initial state 1 and transition rates

qi,i+1 = i− α, qi,i−1 = µi, i ≥ 1

directly generalizing (2.1). On the other hand, the introduction of deaths changes
substantially the probabilistic laws that govern the input process I = {I(t), t ≥ 0}
(counting the number of new families formed up to time t). In particular, as opposed
to Karlin and McGregor (1967), here I does not define a Markov process, since the
probability of introducing a new family at each transition depends on the actual
number of families k(M(t)) which, due to families possibly becoming extinct, is in
general different from I(t). This in turn represents a serious obstruction in deriving
distributional results for quantities of interest related to the model, in particular
for the total number of families. Still, as resulting from (3.3), the dynamics of the
total population size is tractable, and this fact will be exploited in the next section
to study a reversibility regime for the process.

4. The reversible regime

As seen above, the population size process S defines a classical BDI process.
Hence, from the transition rates in (3.3) we immediately deduce that S is irre-
ducible, as each pair of states are mutually accessible. Moreover, the process is
known to be transient for 0 < µ < 1, null recurrent for µ = 1 and positive recurrent
for µ > 1 (cf. Section 2 in Kendall, 1975). In the latter case, S is ergodic, implying
the convergence in law

lim
t→∞

P(S(t) = n|S(0) = 0) = λ(n), ∀n ∈ Z+

for a unique stationary distribution λ = (λ(n))n≥0 on Z+ satisfying∑
n∈Z+

λ(n)r(n′|n) = 0, ∀n′ ∈ Z+.

The above sequence of equations can be solved recursively to obtain

λ(n) =
θ(n)

n!
µ−n(1− 1/µ)θ, n ≥ 0, (4.1)

so that λ results to be a negative binomial distribution N-bin(θ, µ−1) with param-
eters θ and µ−1. The following lemma shows that, under the condition µ > 1, the
population size process in fact enjoys the stronger property of being reversible with
respect to λ.

Lemma 4.1. Let S be the population size process associated to M in Definition 3.1
through (3.2). Then, if µ > 1, S is reversible with respect to its stationary distri-
bution λ in (4.1).
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Proof : As S is regular and irreducible, the reversibility of the process is equivalent
to the detailed balance condition

λ(n)r(n′|n) = λ(n′)r(n|n′), n 6= n′. (4.2)

In view of (3.3), we only need to show (4.2) for the cases n ≥ 0, n′ = n + 1, and
n ≥ 1, n′ = n− 1, as the transition rates corresponding to all other transitions are
equal to 0. For n ≥ 0, n′ = n+ 1, the left hand side of (4.2) becomes

λ(n)r(n+ 1|n) =
θ(n)

n!
µ−n(1− 1/µ)θ(θ + n)

=
θ(n+1)

(n+ 1)!
µ−(n+1)(1− 1/µ)θµ(n+ 1)

= λ(n+ 1)r(n|n+ 1);

and similarly, for n ≥ 1, n′ = n− 1 we have

λ(n)r(n− 1|n) =
θ(n)

n!
µ−n(1− 1/µ)θµn

=
θ(n−1)

(n− 1)!
µ−(n−1)(1− 1/µ)θ(θ + n)

= λ(n− 1)r(n|n− 1).

�

We now move on to study the properties of M. We first notice that M is
irreducible, as we see from (3.1) that the state space A constitutes a single commu-
nication class, i.e., for any m,m′ ∈ A we can find a finite path m(1), . . . ,m(l) ∈ A
for which

q(m(1)|m)q(m(2)|m(1)) . . . q(m′|m(l)) > 0.

Thus, we can argue as in Section 5 in Kendall (1975) to draw some preliminary
conclusions concerning the influence of the death rate on the dynamics of the model,
based upon the properties of the sample size process S. In particular, in view of
the one-to-one correspondence

S(t) =
∑
i≥1

iMi(t) = 0 ⇐⇒ M(t) = e0 = (0, 0, . . . ), t ≥ 0,

we deduce that the initial condition e0 and, by irreducibility, the entire state space
A itself, are characterized by the same recurrence and transience properties of the
state 0 for S. Accordingly, we conclude that M is transient for 0 < µ < 1, null
recurrent for µ = 1 and ergodic for µ > 1.

We shall henceforth focus on the latter case, wherein the underlying population
almost surely undergoes a sequence of extinctions, separated by intervals of times
of finite expected length during which its size and family configuration fluctuate
according to the description in Section 3. Such dynamics were shown in Lemma 4.1
to generate a reversible population size process. The following theorem, which
states our main result, shows that the same property holds for M.

Theorem 4.2. Let M be as in Definition 3.1, with 0 < α < 1 and µ > 1. Then,
M is reversible with respect to the distribution π with weights given by (2.6).
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Proof : That π is a well-defined probability distribution on A, as well as the explicit
expression of the constant C in (2.7), will follow from the mixture representation
below. We then proceed to show the detailed balance condition

π(m′)q(m|m′) = π(m)q(m′|m), m 6= m′. (4.3)

which, since M is regular and irreducible, is equivalent to the reversibility.
In view of the expression for the transition rates (3.1) of M, we only need to

show (4.3) for the cases in which, for given m ∈ A, we have m′ = m + e1, m′ =
m − ei + ei+1 for i ≥ 1, or finally m′ = m + ei − ei+1 for some i ≥ 0. The rate
associated to the other transitions are indeed null.

For m ∈ A and m′ = m+e1, denoting k = k(m), s = s(m), so that k(m+e1) =
k + 1 and s(m+ e1) = s+ 1, the left hand side of (4.3) becomes

π(m+ e1) q(m|m+ e1)

=C

(
θ

α

)
(k+1)

Po(m1 + 1;α1µ
−1)

∏
i≥2

Po(mi;αiµ
−i)µ(m1 + 1)

=C

(
θ

α

)
(k)

(
θ

α
+ k

)
Po(m1;α1µ

−1)
α1µ

−1

m1 + 1

∏
i≥2

Po(mi;αiµ
−i)µ(m1 + 1)

=C

(
θ

α

)
(k)

∏
i≥1

Po(mi;αiµ
−i)(θ + αk)

=π(m)q(m+ e1|m).

Here we have used the identity

Po(m1 + 1;α1µ
−1) = e−α1µ

−1 (α1µ
−1)m1+1

(m1 + 1)!
= Po(m1;α1µ

−1)
α1µ

−1

m1 + 1

and the fact that

αi =
α(1− α)(i−1)

i!
, i ≥ 1

with the convention (1− α)(0) = 1, yielding α1 = α.
Instead, for m′ = m − ei + ei+1, denoting as before k = k(m) and s = s(m),

we have k(m − ei + ei+1) = k and s(m − ei + ei+1) = s + 1. Thus, proceeding
similarly

π(m− ei + ei+1)q(m|m− ei + ei+1)

= C

(
θ

α

)
(k)

∏
i≥1

Po(mi;αiµ
−i)

αi+1µ
−(i+1)

mi+1 + 1

mi

αiµ−i
µ(i+ 1)(mi+1 + 1)

= π(m)
αi+1

αi
(i+ 1)mi = π(m)(i− α)mi

= π(m)q(m− ei + ei+1|m),

where we have used
αi+1

αi
=
i− α
i+ 1

.

Finally, consider the case m′ = m+ei−ei+1. Using the same notation as above,
we have k(m+ei−ei+1) = k and s(m+ei−ei+1) = s− 1. A similar computation
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yields
π(m+ ei − ei+1)q(m|m+ ei − ei+1)

= C

(
θ

α

)
(k)

∏
i≥1

Po(mi;αiµ
−i)

mi+1

αi+1µ−(i+1)

αiµ
−i

mi + 1
(i− α)(mi + 1)

= π(m)
αi
αi+1

(i− α)µmi+1

= π(m)µmi+1(i+ 1)

= π(m)q(m+ ei − ei+1|m).

concluding the proof. �

The reversible distribution π in Theorem 4.2 can be represented as a mixture
of Pitman sampling formulae in (1.2) with respect to the reversible N-Bin(θ, µ−1)
distribution of the population size process S. Specifically, we have

π(m) =
∑
n≥0

PSFα,θn (m)N-Bin(n; θ, µ−1), m ∈ A. (4.4)

Indeed, for α > 0, the PSF (1.2) can be rewritten as

PSFα,θn (m) =
n!(θ/α)(k(m))

θ(n)

∏
i≥1

αmii
mi!

1{s(m)=n}, m ∈ A

where αi is as in (2.6). Then, for m ∈ A, it follows that∑
n≥0

PSFα,θn (m)N-Bin(n; θ, µ−1)

=
∑
n≥0

n!(θ/α)(k(m))

θ(n)

∏
i≥1

αmii
mi!

1{s(m)=n}
θ(n)

n!
µ−n(1− 1/µ)θ

=(θ/α)(k(m))

∏
i≥1

αmii
mi!

µ−s(m)(1− 1/µ)θ

=(1− 1/µ)θ(θ/α)(k(m))

∏
i≥1

αmii
mi!

µ−
∑
i≥1 imi

=(1− 1/µ)θ(θ/α)(k(m))

∏
i≥1

(αiµ
−i)mi

mi!
e−αiµ

−i
eαiµ

−i

=(1− 1/µ)θe
∑
i≥1 αiµ

−i
(θ/α)(k(m))

∏
i≥1

Po(mi;αiµ
−i).

The series appearing as the argument of the exponential can be simplified by notic-
ing that

1− (1− 1/µ)α = 1−
∑
i≥0

(
α

i

)
(−µ−i)

= 1− 1−
∑
i≥1

(−1)nα(α− 1) . . . (α− i+ 1)

i!
µ−i

= −
∑
i≥1

−−α(1− α) . . . (1− α+ i− 2)

i!
µ−i
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=
∑
i≥1

α(1− α)(i−1)
i!

µ−i =
∑
i≥1

αiµ
−i.

Replaced into the last line of the previous display, this recovers the expression for
the reversible distribution π with the constant C as in (2.7), implying (4.4).

Theorem 4.2 yields interesting insights in the long-run behavior of the three-
parameter process: in particular, in view of the ergodicity, M(t) will converge in
distribution to a stationary random allelic partition whose distribution admits the
mixture representation (4.4), and is characterized by a random, but almost surely
finite, number of items and groups. Thus, the reversible regime of M reveals clear
analogies with the results in Kendall (1975) for the BDI process, essentially due
to the equivalence of the induced population size processes. However, as opposed
to the case α = 0, M in the limit to maintains the mutual dependence among the
multiplicities, when α > 0.

Concerning the range 0 < µ ≤ 1, we deduce at once from the absence of positive
recurrence that the process is necessarily non-stationary, and in fact, because of the
slower death rate, the associated population size process S is seen in (2.3) to diverge
as t → ∞. On the other hand, for θ > 0, we can deduce from the description of
the population model in Section 3, that the number of families K(t) alive at time
t stochastically dominates the number of families in the corresponding model with
α = 0, as it can be rewritten as

K(t) = K1(t) +K2(t)

where K1(t) counts the family founded by immigrants, and K2(t) is the number of
those started by the newborns leaving their family. Now K1(t) is evidently equal in
distribution to the number of families comprised in a population governed by the
BDI process, which, in turn, exhibits the logarithmic growth (1.4). Accordingly, we
conclude that M will evolve towards infinite structures characterized by an infinite
number of individuals and families. Whether a precise description of the limiting
behavior similar to (2.5) can be achieved within this formulation, remains for the
moment an open question.
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