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Abstract. The persistent walk is a classical model in kinetic theory, which has
also been studied as a toy model for Markov Chain Monte Carlo questions. Its con-
tinuous limit, the telegraph process, has recently been extended to various velocity
jump processes (Bouncy Particle Sampler, Zig-Zag process, etc.) in order to sample
general target distributions on Rd. This paper studies, from a sampling point of
view, general kinetic walks that are natural discrete-time (and possibly discrete-
space) counterparts of these continuous-space processes. The main contributions
of the paper are the definition and study of a discrete-space Zig-Zag sampler and
the definition and time-discretisation of hybrid jump/diffusion kinetic samplers for
multi-scale potentials on Rd.

1. Introduction

The classical persistent walk on Z is the Markov chain (Xk, Vk)k∈N on Z×{−1, 1}
with transitions

(Xk+1, Vk+1) =

{
(Xk + Vk, Vk) with probability 1− α
(Xk,−Vk) else,

for some α ∈ [0, 1]. It describes the constant-speed motion of a self-propelled par-
ticle, Xk denoting the position of the particle and Vk its velocity. Since the time
between two changes of the velocity follows a geometric distribution with parameter
α, (αXbαtc, Vbαtc)t>0 naturally converges as α vanishes to the so-called telegraph
process, for which the flips of the velocity are governed by a Poisson process (Her-
rmann and Vallois, 2010). From the seminal work of Goldstein (1951), these two
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processes, and various extensions, have been studied in details, in particular from
the point of view of statiscial physics and kinetic theory, or for other modelling mo-
tivations in physics, finance or biology (see for instance Kac, 1974; Zauderer, 1993;
Chen and Renshaw, 1994; Hadeler, 1994; Balakrishnan and Chaturvedi, 1988; Ros-
setto, 2018; Gruber and Schweizer, 2006 and references within).

Meanwhile, the search for efficient Markov Chain Monte Carlo (MCMC) methods
led to the development of so-called rejection-free or lifted chains (see e.g. Turitsyn
et al., 2011; Diaconis et al., 2000; Bernard et al., 2009 and references within). In this
context, the persistent walk has been a toy model to understand the efficiency of
these algorithms, especially when compared to the reversible simple walk (Diaconis
et al., 2000; Diaconis and Miclo, 2013; Miclo and Monmarché, 2013). For instance,
correctly scaled, the persistent walk shows a ballistic behaviour, which means its
expected distance to its initial position after K steps is of order K, while the simple
walk shows a diffusive behaviour, moving to a distance

√
K after K steps. Since

the efficiency of the MCMC schemes is related to the speed at which the space
is explored, this is an argument in favour of non-reversible kinetic processes. The
model being simple, it is even possible to determine the optimal α (in the sense that
it gives the maximal rate of convergence toward equilibrium on the periodic torus
Z/(NZ)), which turns to be of order 1/N (Miclo and Monmarché, 2013). This is
consistent, as N goes to infinity, with the ballistic scaling that yields the telegraph
process (by contrast, if α is constant with N and if time is accelerated by N2, the
persistent walk converges to the Brownian motion).

Of course, both the persistent walk and the telegraph process sample the uniform
measure in dimension one, which is not of practical interest. These last years, the
telegraph process has been extended to several continuous-space processes, such as
the Zig-Zag sampler (Bierkens et al., 2019a; Bierkens and Duncan, 2017; Bierkens
et al., 2019b; Bierkens and Roberts, 2017) or the Bouncy Particle Sampler (Peters
and de With, 2012; Monmarché, 2016; Durmus et al., 2018a; Bouchard-Côté et al.,
2018), which are velocity jump processes designed to target any given distribution
in any dimension. Many variants like randomized bounces (Roberts, 2017; Michel
et al., 2017a) are currently being developped and we refer to the review Vanetti
et al. (2017) for more details, considerations and references on this vivid topic.

The present paper is concerned with similar extensions, but conducted at the
level of the persistent walk rather than of the continuous kinetic process. Or, from
another viewpoint, we are interested in persistent walks, but through the prism of
MCMC sampling rather than kinetic theory. The motivations are the following:
first, the discrete chain yields some insights on their continuous-time limits (for
instance, we will see that the Zig-Zag process can be seen as the continuous limit
of a Gibbs algorithm). Second, used in an MCMC scheme on Zd, a persistent walk
shares, as will be detailed in this work, the following advantages with its continuous
counterparts: thinning, factorization and ballistic behaviour. Finally, although
continuous-time velocity jump processes can sometimes be sampled exactly thanks
to thinning methods, it is not necessarily the case for mixed diffusion/jump kinetic
samplers (see Section 5), in which case the corresponding chain obtained through
an integration scheme (say, Euler scheme) is a discrete-time kinetic walk.

The rest of the paper is organized as follows. We start in Section 2 with the
definition of an analogous on Z of the Zig-Zag process on R (or, equivalently, of
the persistent walk but in a general potential landscape). The simplicity of the
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chain allows an elementary study of its ergodicity, of its metastable behaviour at
small temperature via an Eyring-Kramers formula and of its convergence toward
the continuous Zig-Zag process on R under proper scaling. Section 3 is a general
and informal discussion about kinetic walks on Rd, their simulation, invariant mea-
sures and continuous-time scaling limits. Finally, the last two sections present two
particular applications, which are the main contributions of this work: the discrete
Zig-Zag walk in a general potential in Section 4 and hybrid jump/diffusion kinetic
samplers with a numerical integrator in Section 5. Although related by their mo-
tivation (the understanding of sampling with kinetic walks), the four sections are
sufficiently independent to be read separately one from the other. The definition
of the Zig-Zag walk associated to a general potential and all the results on this
topic in Section 2 and Section 4 are new. The specific numerical scheme introduced
in Section 5 is also new, although straightforwardly obtained from the well-known
general method of Strang splittings.

Notations. If x, y ∈ Rd, we denote x · y their scalar product and |x| =
√
x · x.

The Dirac mass at x is denoted δx and 1A is 1 if A and 0 else. For r ∈ R, (r)+ =
max(r, 0). The set of Ck functions on Rd with compactly supported supported is
denoted Ckc (Rd). The Gaussian distribution on Rd with mean m and variance Σ2

is denoted N (m,Σ2). We denote respectively P(E),M(E) andMb(E) the sets of
probability measures, measurable functions and bounded measurable functions on
a measurable space E, and for µ ∈ P(E) and f ∈ L1(µ) we write µf = µ(f) =∫
fdµ. When (Xε

t )t>0 for ε > 0 and (Yt)t>0 are cádlág processes on Rd, we write
(Xε

t )t>0
law−→
ε→0

(Yt)t>0 for the convergence in law in the Skorohod topology. Recall

a sequence (xn)n∈N of càdlàg functions from R+ to Rd is said to converge to x if,
on all finite time interval, it converges uniformly up to a uniformly small change of
time, i.e. if there exists a sequence (γn)n∈N with γn : R+ → R+ increasing so that
supt∈[0,T ](|xn(γn(t))− x(t)|+ |γn(t)− t|)→ 0 as n→∞ for all T > 0.

2. The Zig-Zag walk on Z

Let U : Z → R be such that Z =
∑
x∈Z exp(−U(x)) < +∞, π(x) =

exp(−U(x))/Z be the associated Gibbs distribution and µ(x, v) = π(x)/2 for
v ∈ {−1, 1} and x ∈ Z. We consider the Markov chain (Xk, Vk)k∈N on Z× {−1, 1}
with transitions

(Xk+1, Vk+1) =

{
(Xk + Vk, Vk) with probability min

(
π(Xk+Vk)
π(Xk) , 1

)
(Xk,−Vk) else,

which we call the Zig-Zag walk on Z. This transition can be seen as the composition
of two Markov transitions. Indeed, consider on Z×{−1, 1} the Markov kernel given
by x, v 7→ δ(x+v,−v). Since (y, w) = (x + v,−v) implies that (x, v) = (y + w,−w),
this kernel is symmetric. If a Metropolis accept/reject step with target measure µ
is added, the transition of the resulting chain is simply

(Yk+1,Wk+1) =

{
(Yk +Wk,−Wk) with probability min

(
π(Yk+Wk)
π(Yk) , 1

)
(Yk,Wk) else.

By construction of the Metropolis-Hastings algorithm, this transition leaves µ
invariant. Now if we compose this transition with the deterministic transition
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(Yk+1,Wk+1) = (Yk,−Wk), which obviously leaves µ invariant, we obtain the ini-
tial chain. We have thus obtained that µ is invariant for the Zig-Zag walk. Note
however that, although both intermediate transition kernels are reversible with re-
spect to µ, their composition is not. Indeed, P((X2, V2) = (X0, V0)) = 0 for all
initial condition.

The chain is clearly irreducible, and it is periodic. Indeed, (−1)XkVk =
(−1)k+X0V0 for all k ∈ N, so that, if Xk is even with Vk = 1 or Xk is odd with
Vk = −1, then Xk+1 is odd with Vk+1 = 1 or Xk is even with Vk+1 = −1. In
particular, the period is even. If U admits a strict local minimum x0 then there is
a path of length 2 with strictly positive probability from (x0, 1) to itself (which is
(x0, 1) → (x0,−1) → (x0, 1)), so that the period is exactly 2, but this may not be
the case in general. For instance, with U(k) = |bk/2c|, the reader can check that
the period is 4.

In the following, we prove an ergodic Law of Large Number and a Central Limit
Theorem (CLT) in Theorem 2.1 (in the unimodal case; other cases are treated in
any dimension in Section 4.4.4), an Eyring-Kramers formula in Theorem 2.2 and
the convergence toward the continuous Zig-Zag process in Theorem 2.3.

2.1. Asymptotic results. Although the chain is already quite simple, let us focus for
now on the case where π is unimodal. In that case, and similarly to the continuous-
time case (Bierkens and Duncan, 2017), ergodicity can be established through ele-
mentary considerations on renewal chains.

Theorem 2.1. Suppose that U is decreasing on K−∞, 0K and increasing on J0,+∞J,
and let f ∈ L1(µ). Then, for all initial conditions, almost surely,

1

n

n−1∑
k=0

f(Xk, Vk) −→
n→+∞

µ(f) .

Moreover, denoting g(x) = f(x, 1) + f(x,−1) and

F (x) =
1

2
g(x) + 1x>1

x−1∑
i=1

g(i) + 1x6−1

−1∑
i=x+1

g(i) ,

suppose that Mf := Eπ(g(X)F (X)) <∞ and that µ(f) = 0. Then

1√
n

n−1∑
k=0

f(Xk, Vk)
law−→

n→+∞
N (0, σ2

f ) ,

with some explicit variance σ2
f 6 3Mf .

Proof : Consider first the case where (X0, V0) = (0, 1) and denote T1 = inf{n ∈
N : Xn+1 = Xn}, T2 = inf{n ∈ N : X2T1+n+2 = X2T1+1+n}. The monotonicities
of U implies that almost surely Xn increases for n ∈ J0, T1K, decreases for n ∈
JT1 + 1, 2T1 + 1 + T2K with X2T1+1 = 0, and finally, denoting S1 = 2(T1 + T2 + 1),
increases for n ∈ J2T1 + 2 + T2, S1K with (XS1

, VS1
) = (0, 1) (cf. Fig. 2.1). Remark

that

P (T1 > k) =

k−1∏
j=0

eU(j)−U(j+1) = eU(0)−U(k) ,

so that T1 < ∞ almost surely (since we assumed that Z < ∞, U necessarily
goes to ∞ at ∞). The same goes for T2, hence for S1. By the strong Markov



Kinetic walks for sampling 495

Figure 2.1. The trajectory between times S0 and S1.

property, (Xn, Vn)n>S1
has the same law as (Xn, Vn)n∈N and is independent from

(Xn, Vn)n∈J0,S1−1K. Denote S0 = 0 and, for all n ∈ N, Sn+1 = inf{k > Sn :

(Xk, Vk) = (0, 1)} and, given a function f ∈ L1(µ),

An =

Sn+1−1∑
k=Sn

f(Xk, Vk) .

The An’s are i.i.d. and

E

(∣∣∣∣∣
2T1+1∑
k=0

f(Xk, Vk)

∣∣∣∣∣
)
6

∑
j∈N

∑
k6j

P (T1 = j) (|f(k, 1)|+ |f(k,−1)|)

=
∑
k∈N

eU(0)−U(k) (|f(k, 1)|+ |f(k,−1)|) < +∞ .

The sum for k ∈ J2T1 + 2, S1 − 1K is treated the same way, so that E|A0| <∞ and

E (A0) =
∑
k∈Z

eU(0)−U(k) (f(k, 1) + f(k,−1)) = λµ(f)

with λ = 2eU(0)Z. The proof then follows from classical renewal arguments, which
we recall for completeness. Considering the case f = 1, the law of large numbers
implies that Sn/n converges almost surely toward λ as n goes to infinity. For n ∈ N
set K(n) = sup{k ∈ N : Sk 6 n}. If f is positive then for all n ∈ N,

1

n

K(n)∑
j=0

Aj 6
1

n

n−1∑
k=0

f(Xk, Vk) 6
1

n

K(n)+1∑
j=0

Aj .

Applied with f = 1, this reads
K(n)

n
×
SK(n)

K(n)
6 1 6

K(n) + 1

n
×

SK(n)+1

K(n) + 1
.

Since K(n) almost surely goes to infinity with n, we get that K(n)/n almost surely
converges to 1/λ. Applied again with a general positive f , now,

K(n)

n
× 1

K(n)

K(n)∑
j=0

Aj 6
1

n

n−1∑
k=0

f(Xk, Vk) 6
K(n) + 1

n
× 1

K(n) + 1

K(n)+1∑
j=0

Aj ,

and letting n go to infinity concludes. If f is not positive, the same conclusion
follows from the decomposition f = (f)+ − (−f)+.
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Now, consider the case of any general initial condition (X0, V0) = (x, v), and let
R = inf{n ∈ N : (Xn, Vn) = (0, 1)}. By similar arguments as above, R < ∞
almost surely so that n−1

∑
k<R f(Xk, Vk) almost surely goes to zero, while by the

Markov property, n−1
∑
R6k6n f(Xk, Vk) converges toward µ(f), which concludes.

The proof of the CLT is similar, and we refer to Bierkens and Duncan (2017,
Lemma 4) to get that, if µ(f) = 0,√

λ

n

K(n)∑
j=0

Aj
law−→
n→∞

N (0, σ2
A) ,

provided that σ2
A := E

(
A2

0

)
<∞. Now, even if (X0, V0) 6= (0, 1), as before,

1√
n

n−1∑
k=0

f(Xk, Vk)−
K(n)∑
k=0

Ak

 P−→
n→∞

0 ,

hence, provided that σ2
A <∞,

1√
n

n−1∑
k=0

f(Xk, Vk)
law−→
n→∞

N (0, σ2
A/λ) .

Decompose A0 = f(0, 1) +A′0 + f(0,−1) +A′′0 with

A′0 =

2T1∑
k=1

f(Xk, Vk) , A′′0 =

S1−1∑
k=2T1+2

f(Xk, Vk) ,

and remark that by the Markov property, A′′0 is independent from A0. Compute

E
(
(A′0)2

)
=

∑
k∈N∗

P(T1 = k)

k∑
i=1

k∑
j=1

g(i)g(j)

=
∑
i∈N∗

∑
j∈N∗

g(i)g(j)P(T1 > i ∨ j)

=
∑
i∈N∗

g(i)eU(0)−U(i)

g(i) + 2

i−1∑
j=1

g(j)


= λ

∑
i∈N∗

g(i)F (i)π(i) .

The case of A′′0 is similar and, using that 1/λ = π(0)/2, we get

1

λ
E
(
A2

0

)
6

3

λ
E
(
(A′0)2 + (A′′0)2 + g2(0)

)
= 3

∑
x∈Z

g(x)F (x)π(x) ,

which concludes. In fact σ2
f = σ2

A/λ can be computed since E(A′0) =

λ
∑
x∈N∗ g(x)π(x), and similarly for A′′0 . �

For N ∈ N∗ and t1 < · · · < tN , considering K(ti) = sup{k ∈ N : Sk 6 bntc}
and decomposing

∑K(tN )−1
n=1 An =

∑N
i=1

∑K(ti+1)−1
n=K(ti)

An, the previous elementary
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proof is easily extended to obtain a functional CLT, namely the convergence 1√
n

bntc∑
k=0

(f(Xk, Vk)− µ(f))


t>0

law−→
n→+∞

(σfBt)t>0

where (Bt)t>0 is a one-dimensional Brownian motion. See also Section 4.4.4.

2.2. Metastability. We now consider the question of escape times from local minima
at low temperature, as in Monmarché (2016) for the Zig-Zag process on R. Recall
that a random variable G on R is said to be stochastically larger than a random

variable F on R if P (G < t) 6 P (F < t) for all t ∈ R. In that case we write F
sto
6 G.

Theorem 2.2. Let U : Z→ R and, for all ε > 0, let (Xε
k, Y

ε
k )k∈N be the persistent

walk on Z associated to U/ε and with initial condition (0, 1). Suppose that U(0) = 0
and that U is decreasing on K−∞, 0K and increasing on J0,+∞J. Let a < α 6 0 6
β < b be such that Jα, βK = {k ∈ Z, U(k) = 0}, and let

τε = inf{n ∈ N, Xε
n /∈Ka, bJ} .

Then

E (τε)

= eE1/ε

(
2(β − α+ 1)

1 + 1U(a)=U(b)
+ O
ε→0

(
e−E2/ε

)
+ 1U(a) 6=U(b) O

ε→0

(
e−E3/ε

))
(2.1)

with E1 = min (U(a), U(b)), E2 = min (U(α− 1), U(β + 1)) and E3 = |U(a) −
U(b)|. Moreover, τε/E(τε) converges in law as ε vanishes to an exponential random
variable with parameter 1, and

P(Xε
τε = a) −→

ε→0

1

2

(
1 + 1U(a)6U(b) − 1U(b)6U(a)

)
.

Finally, for all ε > 0,

2(β − α+ 1) (Gε − 1)
sto
6 τε

sto
6 2(b− a+ 1)Gε

where Gε is a geometric random variable with parameter

e−U(b)/ε + e−U(a)/ε − e−(U(b)+U(a))/ε .

Proof : The proof is similar to the one appearing in Monmarché (2016). To alleviate
notations, we only write Xk, Vk and τ for Xε

k, V
ε
k and τε. Like in the previous proof,

set S0 = 0 and, by induction, Sn+1 = inf{k > Sn, (Xk, Vk) = (0, 1)}. For all
n ∈ N, let S̃n = inf{k > Sn, (Xk, Vk) = (0,−1)}, and let K = inf{n ∈ N, Sn > τ}.
Keep Figure 2.1 in mind. By the strong Markov property, K follows a geometric
distribution with parameter

p := P (τ < S1)

= P
(
τ < S̃0

)
+ P

(
τ > S̃0

)
P
(
τ < S1|τ > S̃0

)
= e−U(b)/ε +

(
1− e−U(b)/ε

)
e−U(a)/ε

= e−E1/ε
(

1 + 1U(a)=U(b) + O
ε→0

(
e−E1/ε

)
+ 1U(a)6=U(b) O

ε→0

(
e−E3/ε

))
,



498 P. Monmarché

and
P (Xτ = b) = P (Xτ = b | τ < S1) =

1

p
e−U(b)/ε ,

which indeed converges as ε vanishes to 0 if U(a) < U(b), 1 if U(a) > U(b) and
1/2 if U(a) = U(b). Decomposing τ = τ − SK−1 +

∑K−1
i=1 (Si − Si−1), remark

that almost surely 2(β − α + 1) 6 Si − Si−1 6 2(b − a + 1) for all i < K and
τ −SK−1 < 2(b−a+ 1), which proves the last claim of the theorem. Besides, again
by the strong Markov property, conditionally to K, (Si − Si−1)i∈J1,K−1K are i.i.d.
random variables independent from K, so that

E(τ) = E (τ − SK−1) + E(K)E (S1 | τ > S1) . (2.2)

Since 0 6 τ − SK−1 6 2(b− a) almost surely,

|E(τ − SK−1)| 6 2(b− a) = eE1/ε O
ε→0

(
e−E2/ε

)
, (2.3)

where we used that E1 > E2. For ε small, the most likely trajectory of the process
between times 0 and S1 is the following: starting from (0, 1), it deterministically
goes to (β, 1), then jumps to (β,−1) with high probability, then deterministically
goes to (α,−1) and jumps to (α, 1) with high probability before going back to (0, 1)
deterministically. More precisely, S1 > 2(β − α+ 1) almost surely, and

P (S1 = 2(β − α+ 1)) =
(

1− e(U(α)−U(α−1))/ε
)(

1− e(U(β)−U(β+1))/ε
)

= 1 + O
ε→0

(
e−E2/ε

)
.

On the other hand, conditionally to τ > S1, almost surely, S1 6 2(b− a), so that

E
(
S11τ>S1>2(β−α+1)

)
6 2(b− a)P (S1 6= 2(β − α+ 1)) = O

ε→0

(
e−E2/ε

)
.

Thus, we get that

E (S1 | τ > S1) =
1

1− p
E (S11τ>S1

) = 2(β − α+ 1) + O
ε→0

(
e−E2/ε

)
,

where we used again that E1 > E2. Using in (2.2) this estimate together with (2.3)
and the fact that E(K) = 1/p concludes the proof of the Eyring-Kramers formula
(2.1).

Finally, K being an exponential random variable whose parameter vanishes with
ε, pK converges in law toward an exponential random variable with parameter 1.
By the Markov inequality, for any δ > 0,

P

(∣∣∣∣∣ 1

K

K−1∑
i=1

(Si − Si−1)− E (S1 | τ > S1)

∣∣∣∣∣ > δ

)
6

1

δ2
E
(
S2

1 | τ > S1

)
E
(

1

K

)
6

4(b− a)2

δ2
E
(

1

K

)
−→
ε→0

0 .

Since E (S1 | τ > S1) and pE(τ) both converges toward 2(β − α+ 1) as ε vanishes,

1

KpE(τ)

K−1∑
i=1

(Si − Si−1)
P−→

ε→0
1 .

From Slutsky’s theorem,
∑K−1
i=1 (Si−Si−1)/E(τ) converges in law to an exponential

random variable with parameter 1 as ε → 0. Finally, |(τ − SK−1)/E(τ)| 6 2(b −
a)/E(τ) almost surely goes to zero, which concludes. �
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The simulated annealing chain obtained by considering a non-constant temper-
ature (εk)k∈N and a potential U with possibly several local minima could also be
studied by similar arguments as in Monmarché (2016, Theorem 3.1) to get a neces-
sary and sufficient condition on the cooling schedule for convergence in probability
toward the global minima of U .

2.3. Continuous scaling limit. The (continuous-time) Zig-Zag process on R associ-
ated to a potential H ∈ C1(R) (also known as the (integrated) telegraph or run-
and-tumble process) is the Markov process on R× {−1, 1} with generator

Lf(y, w) = w∂yf(y, w) + (wH ′(x))+ (f(y,−w)− f(y, w)) .

In other words, it is a piecewise deterministic Markov process that, starting from
an initial condition (y, w), follows the flow (Yt,Wt) = (y + tw,w) up to a random
time T with distribution P(T > t) = exp(−

∫ t
0
(wH ′(y + sw))+ds), at which point

(YT ,WT ) = (y+ Tw,−w), after which it follows again the deterministic flow up to
a new random jump time, etc.

Theorem 2.3. For H ∈ C2(R) that goes to infinity at infinity, for all ε > 0, define
Uε : Z 7→ R by Uε(k) = H(εk) for all k ∈ Z. Let (Xε

k, V
ε
k )k∈N be the persistent walk

on Z associated to Uε and with some initial condition (xε0, v0). Suppose that εxε0
converges to some x∗0 ∈ R as ε vanishes. Then,(

εXε
bt/εc, V

ε
bt/εc

)
t>0

law−→
ε→0

(Yt,Wt)t>0 ,

where (Yt,Wt)t>0 is a Zig-Zag process on R associated to H and with (Y0,W0) =
(x∗0, v0).

Proof : Denote T ε1 = ε inf{n ∈ N : Xε
n+1 = Xε

n}. Its cumulative function is

F εx0,v0(t) := P (T ε1 6 t) = 1−
bt/εc∏
k=1

exp
(
− (Uε(x

ε
0 + kv0)− Uε(xε0 + (k − 1)v0))+

)
.

From
bt/εc∑
k=1

(Uε(x
ε
0 + kv0)− Uε(xε0 + (k − 1)v0))+ −→ε→0

∫ t

0

(v0H
′(x∗0 + sv0))+ ds ,

we get that T ε1 converges in law as ε vanishes to a random variable T 0
1 with cumu-

lative function

F 0
x0,v0(t) = 1− exp

(
−
∫ t

0

(v0H
′(x∗0 + sv0))+ ds

)
.

Remark that∫ t

0

(v0H
′(x∗0 + sv0))+ ds >

∫ t

0

v0H
′(x∗0 +sv0)ds = H(x∗0 +tv0)−H(x∗0) −→

t→∞
+∞ ,

so that T 0
1 is almost surely finite, and similarly for T ε1 for all ε > 0. In particular,(
εXT ε1

, V εT ε1 , T
ε
1

)
= (εx0 + T ε1 ,−v0, T

ε
1 )

law−→
ε→0

(x∗0 + T ∗1 ,−v0, T
∗
1 ) .

Let (Aj)j∈N be an i.i.d. sequence of random variables uniformly distributed over
[0, 1]. For all ε > 0, set (Zε0 , R

ε
0, S

ε
0) = (εxε0, v0, 0) (with, in the case where ε = 0,
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Z0
0 = x∗0). Suppose by induction that, for some n ∈ N, (Zεn, R

ε
n, S

ε
n) has been

defined for all ε > 0 and is independent from (Aj)j>n. Then, for all ε > 0, set

Sεn+1 = Sεn +
(
F εZεn,Rεn

)−1

(An)

Zεn+1 = Zεn + (Sεn+1 − Sεn)Rεn

and Rεn+1 = −Rεn. Remark that, for all t > 0, (x, v) 7→ F εx,v(t) is continuous,
uniformly in ε. As a consequence, for all N ∈ N, by the previous result, almost
surely,

(Zεn, R
ε
n, S

ε
n)n∈J0,NK −→

ε→0
(Z0

n, R
0
n, S

0
n)n∈J0,NK . (2.4)

By construction, for all ε > 0,

(Zεn, R
ε
n, S

ε
n)n∈J0,NK

law
= (εXε

T εn/ε
, V εT εn/ε, T

ε
n)n∈J0,NK

with T ε0 = 0 and, by induction, T εk+1 = ε inf{k > T εk : Xε
n+1 = Xε

n}, and similarly

(Z0
n, R

0
n, S

0
n)n∈J0,NK

law
= (YJn ,WJn , Jn)n∈J0,NK

with J0 = 0 and by induction Jk+1 = inf{t > Jk, Wt = −WJk}. At this point,
we have thus proved that the skeleton chain of the persistent walk (namely the
persistent walk observed at its jump times, and those jump times) converges in law
toward the skeleton chain of the Zig-Zag process (namely the process observed at
its jump times, and those jump times). The convergence of the full chain is then a
consequence from the fact that the latter is a deterministic function of its skeleton
chain, as we detail now.

Note that (S0
n)n∈N has the same distribution as (Jn)n>0. Moreover, for any t > 0

and for all s ∈ [0, t], |Ys − x∗0| 6 t, so that the jump rate of the Zig-Zag process
is bounded for times s ∈ [0, t] by ω(t) = supx∈[x∗0−t,x∗0+t] |H ′(x)|, which is finite.
In particular sup{n ∈ N, Jn < t} the number of jumps of the Zig-Zag process on
[0, t] is stochastically smaller than a Poisson process with rate ω(t), hence is almost
surely finite. As a consequence, almost surely S0

n → +∞ as n→∞, and similarly
for Sεn for all ε > 0.

Now the continuous-time processes are obtained by interpolating the skeleton
chains. For all ε > 0 and n ∈ N, set R̃εt = Rεn for all t ∈ [Sεn, S

ε
n+1[. For all t > 0,

set Z̃0
t = x∗0 +

∫ t
0
R̃0
sds and remark that, by construction, Z̃0

Tn
= Z0

n for all n ∈ N.
Finally, for all ε > 0, all n ∈ N and all k ∈ JTn/ε, Tn+1/εK, set

Z̃εkε = Zεn +
kε− T εn
T εn+1 − T εn

(
Zεn+1 − Zεn

)
and Z̃εt = Z̃εkε for all t ∈ [kε, (k+ 1)ε[. This construction ensures that, for all ε > 0,(
Z̃εt , R̃

ε
t

)
t>0

law
=
(
εXε
bt/εc, V

ε
bt/εc

)
t>0

and
(
Z̃0
t , R̃

0
t

)
t>0

law
= (Yt,Wt)t>0 .

For all ε > 0, consider the increasing continuous change of time γε : R+ → R+

given by: for all n ∈ N, γε(T εn) = T 0
n and γε is linear on [T εn, T

ε
n+1]. In partic-

ular, R̃εγε(t) = R0
t for all t > 0 (they start at the same value and both change

sign at all times (T 0
n)n>1). Moreover, from the convergence of the skeleton chains,

supt∈[0,T 0
n]

(
|γε(t)− t|+ |Z̃εγε(t) − Z

0
t |
)
almost surely goes to 0 as ε vanishes. To-

gether with the fact T 0
n almost surely goes to +∞, this means that for all fixed
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T > 0, supt∈[0,T ]

(
|γε(t)− t|+ |Z̃εγε(t) − Z

0
t |
)
almost surely goes to 0, which con-

cludes.
�

3. Kinetic walks on Rd

In the following, we will be interested in a class of Markov chains (Xn, Vn)n∈N
on Rd × Rd for d ∈ N∗, with transitions given by

V1 ∼ p (X0, V0; ·) , X1 = X0 +
δ

2
(V0 + V1) (3.1)

for some δ > 0 and some kernel p : (x, v) ∈ Rd × Rd 7→ p(x, v; ·) ∈ P(Rd). We
call such a chain the kinetic walk on Rd associated to p with timestep δ. Up to a
rescaling of the velocities, we can always consider that δ = 1.

This definition is close to – but distinct from – the definition of second-order
Markov chains on Rd (sometimes also called correlated random walks like in Gruber
and Schweizer (2006)). Indeed, (Xn, Xn−1)n∈N is a Markov chain if and only if
(Xn, Xn−Xn−1)n∈N is, with a simple way to express the transition of one of these
chains from the transition of the other. Denoting Vn = (Xn − Xn−1)/δ would
yield X1 = X0 + δV0. On the contrary, consider the chain defined in Section 2,
which satisfies (3.1) with δ = 1. For this chain, (Xn, Xn−1)n∈N is not Markovian:
if Xn = Xn−1 is at a strict local minimum of the potential U , then that only
means that the velocity Vn has changed between times n− 1 and n, but it could be
from 1 to −1 or the converse (which we could know by looking farther in the past
trajectory, for instance with the fact that (−1)XkVk = (−1)k+X0V0 for all k ∈ N),
and this affects the law of Xn+1. Our present definition is only motivated by the
fact it gives a simple and unified framework for the cases studied in Sections 2,
4 and 5. Second-order Markov or related chains (like the discrete-time bounce
sampler of Roberts, 2017) may be studied with the same arguments (especially
concerning their continuous-time scaling limits). We use the term kinetic rather
than persistent in order to keep the latter for cases where the velocity is typically
constant for some times, and this is not always the case for the different kinetic
walks we will be interested in.

Note that discrete-space walks can be seen as particular cases of walks on Rd as
follows. Let (Xn, Vn)n∈N be a kinetic walk on Zd × Zd with transitions given by
(3.1) with δ > 0 and p : Zd × Zd → P(Zd) and let η, κ > 0. Consider the chain
(X̃n, Ṽn)n∈N on Rd × Rd with transitions given by

Px0,v0

(
(X̃1, Ṽ1) = (x1, v1)

)
= δηb x0η + δ

2κ (v0+v1)c(x1)p

(⌊
x0

η

⌋
,
⌊v0

κ

⌋
;
v1

κ

)
if v1 ∈ κZd and zero else. In particular, whatever the initial condition, X̃n ∈ ηZd
and Ṽn ∈ κZd for all n > 1. If (X̃0, Ṽ0) = (ηX0, κV0), then (ηXn, κVn)n∈N and
(X̃n, Ṽn)n∈N have the same law. For this reason, in the rest of this section, only
kinetic walks on Rd will be considered. See Section 4 for an example of kinetic walk
on Zd.

This section is more concerned with a general and informal discussion than with
rigorous results, the latter possibly requiring technical details that can be checked
on explicit examples (see Section 4 in particular). In particular the results of this
section (Proposition 3.1 and Theorem 3.2) are not new results.
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3.1. First examples. Example 1. Let U ∈ C1(Rd). Then the Hamiltonian dynam-
ics ∂t(xt, vt) = (vt,−∇U(xt)) can be discretized as

V(n+1)δ = Vnδ − δ∇U
(
Xnδ +

δ

2
Vnδ

)
, X(n+1)δ = Xnδ +

δ

2

(
Vnδ + V(n+1)δ

)
for some time-step δ > 0. This is a slight modification of the classical velocity Verlet
integrator. It is a second-order scheme and, contrary to the basic Euler scheme,
it is symplectic, like the Hamiltonian dynamics. From KAM theory and backward
error analysis, it can be shown to conserve up to a high precision an approximate
Hamiltonian, which ensures long-time stability, see Hairer et al. (2003) and in
particular Hairer et al. (2003, Theorem 5.1) for long-time energy conservation.

Example 2. The Langevin diffusion (or sometimes underdamped Langevin diffu-
sion)

dXt = Vtdt , dVt = −(∇U(Xt)− γVt)dt+
√

2γdBt ,

where γ > 0 and (Bt)t>0 is a standard Brownian motion on Rd, can be approxi-
mated by similar second-order schemes (see Leimkuhler and Matthews, 2013; Bou-
Rabee, 2014, references within and Section 5 for more details on this topic). For
instance, the Ricci-Ciccotti scheme (Ricci and Ciccotti, 2003) reads

V(n+1)δ = e−γδVnδ −
(
1− e−γδ

)
∇U

(
Xnδ +

δ

2
Vnδ

)
+
√

(1− e−γδ)Gn

X(n+1)δ = Xnδ +
δ

2

(
Vnδ + V(n+1)δ

)
,

where (Gn)n∈N is an i.i.d. sequence with law N (0, Id).

3.2. Sampling by thinning. The continous-time thinning and superposition method
for sampling inhomogeneous Poisson processes, hence piecewise-deterministic
Markov processes, is detailed e.g. in Lemaire et al. (2018). See Section 5.2 for
an example of application. This section is concerned with its discrete analogous,
which is essentially a rejection method applied to Bernoulli random variables (see
also Mandelbaum et al., 2007; Michel et al., 2017b on similar topics).

Suppose that the transition p can be decomposed as

p(x, v; ·) = q(x, v)p1(x, v; ·) + (1− q(x, v))p2(x, v; ·)

where, from a numerical point of view, computing q and sampling according to p1

is expensive, and sampling according to p2 is not (for instance, p2(x, v; ·) = δv(·)
for persistent chains). Suppose moreover that q(x, v) 6 q̃(x, v) where q̃ is cheaper
to compute thant q. Then, for (x, y) ∈ Rd × Rd, a random variable V ∼ p(x, v; ·)
can be sampled as follows. Draw two independent random variables U1 and U2

uniformly distributed over [0, 1]. If U1 6 q̃(x, v) and U2 6 q(x, v)/q̃(x, v), draw V
according to p1(x, v : ·) else draw V according to p2(x, v; ·). That way, obviously,
V ∼ p(x, v; ·). The trick is that if U1 > q̃(x, v) then we already know that V has to
be drawn according to p2(x, v; ·) and in that case we don’t even have to compute
q(x, v). The smaller is q̃, the higher is the computational gain.

We can go a bit further in two cases for which the first step K where q has to
be computed, i.e. where U1 < q̃(XK , VK), can be computed more efficiently than
with Bernoulli variables at each step.
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• If q̃(x, v) = q̃ ∈ (0, 1) is constant. In that case, K+1 follows a geometric law
with parameter q̃ and can be sampled through the inverse transformation
method i.e. by setting K = blnU/ ln q̃c with U uniformly distributed over
[0, 1] (which is particularly more efficient than with Bernoulli variables when
q̃ is small).

• If p2(x, v; ·) = δf(x,v)(·) is deterministic, for some f : Rd × Rd → Rd (typ-
ically, for a persistent walk, f(x, v) = v). In that case, K follows the
distribution

P (K > n) =

n∏
k=0

(1− q̃ (ϕk(x, v)))

where ϕ0(x, v) = (x, v), ϕ1(x, v) = (x + δ(v + f(x, v))/2, f(x, v)) and
ϕk+1 = ϕk ◦ ϕ1 for all k ∈ N. In particular cases, depending on f and
q̃, this distribution may again be sampled through the inverse transforma-
tion method.

In both cases, the algorithm is thus the following: draw K as above and an inde-
pendent U2 uniformly distributed over [0, 1]. Sample (Xn, Vn)n∈J0,KK as a kinetic
chain associated to the transition p2. If U2 6 q(XK , VK)/q̃(XK , VK), draw VK+1

according to p1(XK , VK ; ·), else according to p2(XK , VK ; ·), and in both cases set
XK+1 = XK + δ(VK + VK+1)/2. Then, draw a new K ′ in a similar way as K, etc.

In the general case, of course each of the kernels p1 and p2 may also be de-
composed in a similar way as p, so that we end up for some N > 1 with a de-
composition p =

∑N
i=1 pnqn where for each n ∈ J1, NK, pn is a transition kernel

and qn ∈ [0, 1] with some
∑N
i=1 qn = 1. Similarly, if q̃(x, y) 6 q̂(x, y) with q̂(x, v)

cheaper to compute than q̃(x, v), then we can sample a Bernoulli variable with
parameter q(x, v) as the product of three Bernoulli variables with respective pa-
rameters q̂(x, v), q̃(x, v)/q̂(x, v) and q(x, v)/q̃(x, v). In other words, in the general
decomposition we can decompose each weight qn as a product

∏rn
k=1 qn,k for some

rn > 1 and qn,k ∈ [0, 1] for each k ∈ J1, rnK. At the end of the day we get a
representation of the form

p(x, v; ·) =

N∑
n=1

pn(x, v; ·)
rn∏
k=1

qn,k(x, v)

that we can use to sample according to p in such a way that the average cost of
computation is minimized. See Sections 4 and 5 for examples and related questions,
in particular the link with factorization for Metropolis acceptance probabilities in
Section 4.3. See also Monmarché et al. (2020) for an application in molecular
dynamics.

3.3. Invariant measure. For MCMC applications, usual continuous-time kinetic
Markov processes are designed to sample according to a given probability mea-
sure of the form µ(dx,dv) = π(dx)⊗ ν(dv) on Rd ×Rd. The target is the position
marginal π and the velocity marginal ν can be chosen by the user, usual choices
being Gaussian or uniform (over the sphere or a discrete set of velocities) distribu-
tions. By definition, µ is invariant for the kinetic walk on Rd associated to some
kernel p and time-step δ if∫

f

(
x+

δ

2
(v + w), w

)
p(x, v;dw)µ(dx,dv) =

∫
f (x, v)µ(dx, dv)
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for all f ∈ Mb(R2d). Nevertheless, there are cases (such as Examples 1 and 2
of Section 3.1) where this condition is only approximately satisfied, typically µ is
invariant only for the continuous-time process that is approximated by the discrete
walk. In that case, for a fixed δ > 0, the kinetic walk, with timestep δ and associated
to some transition pδ, typically admits some invariant measure µδ, which is also an
invariant measure for the continuous-time Markov chain with generator

Lδf(x, v) =

∫ (
f

(
x+

δ

2
(v + w), w

)
− f(x, v)

)
pδ(x, v;dw) .

In the typical case where Lδ converges, as δ vanishes, to some L for which µ is
invariant, it is possible to obtain explicit error bounds between µδ and µ. We
recall here a general argument based on Stein’s method (Mattingly et al., 2010,
Section 6.2).

Proposition 3.1. Let L and Lδ be two Markov generators on some Polish space
E and let µ, µδ ∈ P(E) be invariant measures of, respectively, L and Lδ. Denote
(Pt)t>0 the semi-group associated to L. Suppose that there exist C, ρ, hδ > 0 and
two norms N1 and N2 on a subspace M̃ of Mb(E) such that the following holds: 1)
M̃ is dense in (Mb(R2d), ‖·‖∞) and is contained by the domains of L and Lδ; 2) for
all f ∈ M̃ and all t > 0, N1(Ptf − µf) 6 Ce−ρtN2(f)/(1 ∨

√
t); 3) for all f ∈ M̃,

‖(L−Lδ)f‖∞ 6 hδN1(f). Then, denoting N2(µ−µδ) = sup{µ(f)−µδ(f), N2(f) 6
1}, it holds:

N2(µ− µδ) 6 C(2/3 + 1/ρ)hδ .

Proof : Let f ∈ M̃ and g =
∫∞

0
Pt(f − µf)dt, which is well defined and satisfies

N1(g) 6 C(2/3 + 1/ρ)N2(f) and solves the Poisson equation Lg = µf − f . Using
that

∫
Lδgµδ = 0 by invariance of µδ, we get that

µ(f)− µδ(f) = µδ(Lg) = µδ ((L− Lδ)g) 6 hδC(2/3 + 1/ρ)N2(f) .

�

Remark that, in Proposition 3.1, C and ρ only depend on the limit process
L. For particular processes, their existence usually follows from regularization and
ergodicity results for L (with N1 and N2, typically, L2(µ), H1(µ) or V -norms
associated to some Lyapunov function), see e.g. Section 4.4.4, Glynn and Meyn
(1996); Mattingly et al. (2010) or, for velocity jump processes, Monmarché (2017,
Section 3). Then, if we are given a family of generators Lδ for all δ > 0 such that
‖(L − Lδ)f‖∞ 6 hδN1(f) with hδ → 0 for δ → 0, we get a quantitative estimate
on the convergence µδ → µ (remark that, though the uniqueness of the invariant
measure is ensured for L from the geometric ergodicity assumption, we haven’t
assumed the uniqueness of the invariant measure for Lδ).

In fact, reiterating this argument, following the Talay-Tubaro method Talay and
Tubaro (1990), an expansion of the bias µδf − µf in term of powers of δ can be
computed and a Romberg extrapolation (or related methods) can be used to kill
the first order terms, see Talay and Tubaro (1990, Section 2.3) and Lelièvre and
Stoltz (2016, Section 3.3.4).

Proposition 3.1 can be shown to apply in Example 2 of Section 3.1, i.e. the
Langevin dynamics, see for instance Leimkuhler et al. (2016). On the contrary, it
does not apply to the Hamiltonian dynamics of Example 1. Indeed, in that case,
the limit process admits many invariant measures (because of energy conservation)
and thus C and ρ cannot exist.
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With Proposition 3.1, we have seen that the convergence of the invariant mea-
sures is related to the convergence of the generators. Now, the latter is classically
related to the convergence of the processes and we address this question in the next
section. See Theorem 3.2 below for some considerations on the convergence of the
generators in the specific case of kinetic walks.

3.4. Scaling limits. In this section, we consider for all ε ∈ (0, 1] a kinetic walk
(Xε

n, V
ε
n )n∈N on Rd × Rd with timestep 1, kernel pε and initial condition (xε0, v

ε
0).

We are interested in the possible convergence of this chain, possibly rescaled as ε
vanishes, toward a continuous-time process. The regime for which (Xε

n)n∈N con-
verges toward an elliptic diffusion has been abundantly studied for second-order
chains, see Gruber (2004, Section 5) and references therein, and for this reason
we will mostly focus on the cases where the full system (Xε

n, V
ε
n )n∈N converges

toward a continuous-time kinetic process (Yt,Wt)t>0, where kinetic means that
Yt = Y0 +

∫ t
0
Wsds.

To alleviate notations, unless otherwise specified, we drop the ε superscript in
all the rest of the section and simply write (Xn, Vn). We start with an informal
discussion on the scaling in the simple case where the dynamics are homogeneous
with respect to the space variable x. Since, in order to expect a continuous-time
limit, Xn should be nearly constant over a large number of steps as ε goes to zero,
this homogeneous case should be expected to describe the short time dynamics of
the general case.

3.4.1. The space homogeneous case. Consider the case where pε(x, v; ·) = hε(v; ·)
for some transition kernel hε : Rd → Rd. In that case, (Vn)n∈N is a Markov chain
by itself. Since

Xn = X0 +

n∑
k=1

Vk +
V0 − Vn

2
, (3.2)

then, provided that, say, the variance of the last term is bounded uniformly in n,
the situation is essentially the same as the case of correlated random walks. In term
of time/space scaling, different cases may be distinguished concerning the limit of
(Xn)n∈N:

• If (Vk)k∈N is in fact an i.i.d. sequence – namely if v 7→ hε(v, ·) is constant –
then, up to a vanishing term, (Xn)n∈N is a simple random walk. If it admits
a continuous-time limit, then the latter is necessarily a Levy process, and
conversely any Levy process (Lt)t>0 may be obtained as a scaling limit
of such a walk, even if we restrict the question to walks on Zd: indeed,
considering Vk = b(L(k+1)ε − Lkε)/εc, then (εXbt/εc)t>0 → (Lt)t>0.

Let us consider two particular cases. First, suppose that there exist
η : (0, 1]→ (0,+∞) such that

η(ε)

ε
E(V1) −→

ε→0
µ ∈ Rd

η2(ε)

ε
Var(V1) −→

ε→0
Σ ∈Msym>0

d×d (R)
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(with possibly µ = 0 or Σ = 0). Then, from Donsker’s Theorem, provided
that η(ε)xε0 converges to some x∗0 ∈ Rd, we get the drifted Brownian motion

(η(ε)Xbt/εc)t>0
law−→
ε→0

(x∗0 + tµ+ Σ
1
2Bt)t>0 ,

where (Bt)t>0 is a standard Brownian motion. Second, suppose that there
exist λ > 0, µ ∈ Rd, ν ∈ P(Rd), η : (0, 1] → (0,+∞) and µ : (0, 1] → Rd
such that

P (V1 = µ(ε)) = 1− λε+ o
ε→0

(ε)

µ(ε) −→
ε→0

µ

Law (η(ε)V1 | V1 6= µ(ε)) −→
ε→0

ν .

Then the cardinality Nε
t of {n ∈ N : εn 6 t, Vk 6= µ(ε)} converges as ε

vanishes to a Poisson process Nt with intensity λ. As a consequence, con-
sidering an i.i.d. sequence (Wk)k∈N with law ν independent from (Nε

t )t>0

for all ε and from (Nt)t>0, provided that η(ε)xε0 converges to some x∗0 ∈ Rd,
we get the drifted compound Poisson process

(η(ε)Xbt/εc)t>0
law−→
ε→0

x∗0 + tµ+

(
Nt∑
n=0

Wk

)
t>0

.

In the more general situation where (Vk)k∈N is not necessarily an i.i.d. sequence,
if there exists a κ : (0, 1]→ (0,+∞) such that

(
κ(ε)Vbt/εc

)
t>0

converges in distribu-
tion toward a continuous-time Markov process (Wt)t>0 then, denoting η(ε) = εκ(ε),
(3.2) reads

η(ε)Xbt/εc = η(ε)xε0 +

∫ t

0

κ(ε)Vbs/εcds+
ε

2

(
κ(ε)Vbt/εc − κ(ε)V0

)
.

Integration being continuous with respect to Skorohod convergence, provided that
η(ε)xε0 → x∗0 as ε vanishes, this yields(

η(ε)Xbt/εc, κ(ε)Vbt/εc
)
t>0
−→
ε→0

(
x∗0 +

∫ t

0

Wsds , Wt

)
t>0

.

Remark that, of course, the scaling factor for the space variable is fixed by the
scaling factors of the time and velocity variables.

• For instance, if (Vk)k∈N is a random walk on Zd, then as seen before it can
converge toward a drifted Brownian motion, in which case the scaling limit
of (Xn, Vn)n∈N is the Langevin diffusion, i.e. the solution of the SDE{

dXt = Vtdt
dVt = µ+ Σ1/2dBt ,

where (Bt)t>0 is a standard Brownian motion on Rd.
• Alternatively, if there exist λ > 0, ν ∈ P(Rd) and κ : (0, 1]→ (0,+∞) such

that

P (Vk+1 = Vk) = 1− λε+ o
ε→0

(ε)

Law (κ(ε)Vk+1 | Vk+1 6= Vk) −→
ε→0

ν ,
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then (κ(ε)Vbt/εc)t>0 converges as ε vanishes toward (YNt)t>0, where (Yk)k∈N
is an i.i.d. sequence with law ν and (Nt)t>0 is a Poisson process with inten-
sity λ, independent from (Yk)k∈N. In that case, (Xt, Vt)t>0 is the velocity
jump process associated to the linear Boltzmann (or BGK) equation (Bouin
et al., 2017).

These different examples highlighted three cases: if there is no inertia, the veloc-
ity tends to mix fast and (Xn)n∈N is Markovian. If there is some inertia in the sense
that the velocity tends to stay aligned from one step to the other but with possible
small fluctuations, the limit is a kinetic diffusion. If the velocity is rigorously con-
stant for large times, the chain converges toward a velocity jump process. Of course
this is a non-exhaustive list: in general, drift, diffusion, Poisson or α-stable jumps
can all be present in the limit, either kinetic or not (see in particular Section 5).
But with these three regimes we cover the cases of the processes classically used in
MCMC sampling.

3.4.2. The case of kinetic limits. We keep the notations of the beginning of Sec-
tion 3.4. In particular, for all ε ∈ (0, 1], (Xε

n, V
ε
n )n∈N is a kinetic walk on Rd × Rd

with transition pε and time-step 1. Let κ : (0, 1] → (0,+∞) and, for all ε ∈ (0, 1],
set η(ε) = εκ(ε). For any fixed x ∈ Rd, let (Ṽ ε,xk )k∈N be the Markov chain on Rd
with transitions

Ṽ ε,xk+1/κ(ε) ∼ pε(x/η(ε), Ṽ ε,xk /κ(ε); ·) ,

and let Nε
t be a Poisson process with intensity 1/ε. Denote L̃ε the operator defined

onMb(R2d) by

L̃εf(x, v) =
1

ε

∫
[f(x, κ(ε)w)− f(x, v)] pε(x/η(ε), v/κ(ε);dw) ,

which is the infinitesimal generator of the Feller process (X̃x
t , Ṽ

ε,x
Nεt

)t>0, where we
simply set X̃x

t = x for all t > 0 (hence the link with the space homogeneous case).
A direct corollary of Kallenberg (1997, Theorem 17.28) is the following:

Theorem 3.2. Suppose that there exists a Feller generator L̃ on R2d with domain
containing C2

c (R2d) and such that ‖L̃εf − L̃f‖∞ → 0 as ε→ 0 for all f ∈ C2
c (R2d).

Define the operator L by

Lf(x, v) = v · ∇xf(x, v) + L̃f(x, v) .

Suppose that L is the infinitesimal generator of a Feller process (Yt,Wt)t>0 and
that C2

c (R2d) is a core of L. Suppose that for all compact set K ⊂ Rd,

sup
x∈K

sup
v∈Rd

∫
|v − κ(ε)w|2pε

(
x

η(ε)
,
v

κ(ε)
; dw

)
−→
ε→0

0 . (3.3)

Finally, suppose that (η(ε)Xε
0 , κ(ε)V ε0 ) converges in law toward (Y0,W0) as ε van-

ishes. Then (
η(ε)Xε

bt/εc, κ(ε)V εbt/εc

)
t>0

law−→
ε→0

(Yt,Wt)t>0 .

See some applications with Proposition 4.2, Section 5.2 or Monmarché et al.
(2020).
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Proof : Denoting (Y εt ,W
ε
t ) = (η(ε)Xε

Nεt
, κ(ε)V εNεt ), the generator Lε of (Y εt ,W

ε
t )t>0

is defined onMb(R2d) by

Lεf(x, v) =
1

ε

∫
[f(x+ ε(v + w)/2, κ(ε)w)− f(x, v)] pε(x/η(ε), v/κ(ε);dw) .

Note that Lεf ∈Mb(R
2d) for all f ∈Mb(R

2d), so that if (Xε
0 , V

ε
0 ) = (x, v),

E (f (Y εt ,W
ε
t )) =

∑
k∈N

P (Nε
t = k)E (f (η(ε)Xε

k, κ(ε)V εk ))

= f(x, v) + tLεf(x, v) + o
t→0

(t) ,

with a negligible term uniform in (x, v) (which will be the case of all the negligible
terms in the rest of the proof). This means that Mb(R2d), hence C2

c (R2d), is
included in the strong domain of Lε for all ε ∈ (0, 1]. From Kallenberg (1997,
Theorem 17.28) and the assumption that C2

c (R2d) is a core for L, it only remains
to check that ‖Lεf − Lf‖∞ vanishes with ε for all f ∈ C2

c (R2d). Now, indeed, for
f ∈ C2

c (R2d),

Lεf(x, v) = L̃εf(x, v)

+
1

ε

∫ [
f
(
x+

ε

2
(v + κ(ε)w), κ(ε)w

)
− f(x, κ(ε)w)

]
pε

(
x

η(ε)
,
v

κ(ε)
;dw
)

= L̃f(x, v) +

∫
v + κ(ε)w

2
· ∇xf (x, κ(ε)w) pε

(
x

η(ε)
,
v

κ(ε)
; dw

)
+ o
t→0

(1) .

Considering a ball B ⊂ Rd of some radius R such that the support of f is included
in B2, we bound∣∣∣∣(v − v + κ(ε)w

2

)
· ∇xf (x, κ(ε)w)

∣∣∣∣ 6 1

2
‖∇xf‖∞|v − κ(ε)w|1B(x)1B(κ(ε)w)

|∇xf (x, κ(ε)w)−∇xf (x, v) | 6 |v − κ(ε)w|‖∇2f‖∞1B(x) (1B(v) + 1B(κ(ε)w))

|v| (1B(v) + 1B(κ(ε)w)) 6 2R+ |v − κ(ε)w| .

As a consequence, for some Cf > 0, for all (x, v) ∈ R2d,

|Lεf(x, v)− Lf(x, v)| 6

1B(x)Cf

∫ (
|v − κ(ε)w|+ |v − κ(ε)w|2

)
pε

(
x

η(ε)
,
v

κ(ε)
; dw

)
+ o
t→0

(1) .

Condition (3.3) concludes. �

4. The discrete Zig-Zag walk

This section is devoted to the definition and study of a discrete-space analogous
of the Zig-Zag process on Rd.

4.1. Definition. Let d ∈ N∗, U : Zd → R be such that Z =
∑
x∈Zd exp(−U(x)) <

+∞, π(x) = exp(−U(x))/Z be the associated Gibbs distribution and µ(x, v) =
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π(x)/2d for v ∈ {−1, 1}d and x ∈ Zd. For i ∈ J1, dK, denote ei the ith vector of the
canonical basis of Rd and let

qi(x, vi) = min

(
π(x+ viei)

π(x)
, 1

)
= e−(U(x+viei)−U(x))+

pi(x, vi;wi) = qi(x, vi)δvi(wi) + (1− qi(x, vi))δ−vi(wi)

p(x, v;w) =

d∏
i=1

pi

x+

i−1∑
j=1

vj + wj
2

ej , vi, wi

 . (4.1)

That way, p : Zd×{−1, 1}d → P({−1, 1}d). We call Zig-Zag walk on Zd the kinetic
walk (Xn, Vn)n∈N associated to this kernel p with timestep δ = 1, i.e. the Markov
chain on Zd×{−1, 1}d whose transitions are given by (3.1). Remark that, for d = 1,
we retrieve the chain studied in Section 2.

A random variable V ∼ p(x, v; ·) in {−1, 1}d can be sampled as follows. Set
Y0 = x, and suppose by induction that Yk−1 ∈ Zd has been defined for some
k ∈ J1, dK. Set Vk = vk with probability qk(Yk−1, vk) and Vk = −vk else, and
in either case set Yk = Yk−1 + (vk + Vk)/2. Then V is distributed according to
p(x, v; ·), and X := Yd = x+ (v + V )/2. In other words, this is a Gibbs algorithm
based on the Zig-Zag walk on Z: one step of the Zig-Zag walk in Zd is the result
of d successive one-dimensional Zig-Zag steps on each coordinate, the others being
fixed.

If we want the coordinates to play a symmetric role in the transition, for σ a
permutation of J1, dK we can define pσ(x, v; ·) to be the law of Wσ−1 when W ∼
p(xσ, vσ; ·), where uσ for u ∈ Zd and σ ∈ Sd denotes (uσ(1), . . . , uσ(d)). This
accounts to use the order given by σ to update the coordinates. Then

psym(x, v; ·) =
1

d!

∑
σ∈Σd

pσ(x, v; ·)

corresponds to a transition where the order is sampled at random at each step of
the Zig-Zag walk. There is no particular practical interest to consider psym rather
than p, and moreover any result on p can straightforwardly be adapted to pσ by
renumbering of the coordinates, and then to psym.

4.2. Equilibrium and scaling limit.

Proposition 4.1. The probability distribution µ is invariant for the Zig-Zag walk
on Zd.

Proof : As proven in Section 2, for all fixed (xj , vj)j∈J2,dK, the transition on Z ×
{−1, 1} defined by

Wn+1 ∼ p1 ([Yn, x2, . . . , xd], [Vn, v2, . . . , vd]; ·) , Yn+1 =
Wn +Wn+1

2

admits the conditional law (y, w) 7→ π(y, x2, . . . , xd)/2 as an invariant measure.
As a consequence, the transition of the Markov chain (X̃n, Ṽn) on Zd × {−1, 1}d
with (X̃n,1, Ṽn,1) = (Yn,Wn) and (X̃n,j , Ṽn,j) = (X̃0,j , Ṽ0,j) for j 6= 1 also fixes µ.
Since the transition of the Zig-Zag walk is the composition of d such transitions, it
fixes µ. �
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Remark that, if the target law is of a tensor form π(x) =
∏d
i=1 πi(xi), then the

coordinates of a Zig-Zag walk are just d independent one-dimensional Zig-Zag walks
(which is similar to the continuous-time process).

Recall that the continuous-time Zig-Zag process on Rd associated to a potential
H is the Markov process on Rd × {−1, 1}d with generator

Lf(x, v) = v · ∇xf(x, v) +

d∑
i=1

(vi∂xiH(x))+ (f (x, v−i)− f(x, v)) ,

where we denote by v−i the vector of {−1, 1}d obtained from v by multiplying
its ith coordinate by −1. The following is the extension of Theorem 2.3 in larger
dimension.

Theorem 4.2. For H ∈ C2(Rd) that goes to infinity at infinity, for all ε > 0, define
Uε : Zd 7→ R by Uε(x) = H(εx) for all x ∈ Zd. Let (Xε

k, V
ε
k )k∈N be the Zig-Zag

walk on Zd associated to Uε and with some initial condition (xε0, v0). Suppose that
εxε0 converges to some x∗0 ∈ Rd as ε vanishes. Then(

εXε
bt/εc, V

ε
bt/εc

)
t>0

law−→
ε→0

(Yt,Wt)t>0 ,

where (Yt,Wt)t>0 is a Zig-Zag process on Rd associated to H and with (Y0,W0) =
(x∗0, v0).

Proof : Let us show that Theorem 3.2, or rather directly Kallenberg (1997, The-
orem 17.28), applies. First, following Durmus et al. (2018a), we can see that the
continuous-time process can be smoothly and compactly approximated (in the sense
of Durmus et al., 2018b, Definition 20) by replacing its continuous jump rates by C∞
jump rates (see the case of the BPS in Durmus et al., 2018b, Proposition 23 for de-
tails). From Durmus et al. (2018b, Theorem 21), this proves that C1

c (Rd×{−1, 1}d)
is a core for the strong generator L of the Zig-Zag process. Denote Lε the generator
of (εXε

Nt
, V εNt)k∈N where (Nt)t>0 is a Poisson process with intensity 1/ε. Then all

bounded measurable functions f are in the domain of Lε and

Lεf(x, v) =
1

ε

∑
w∈{−1,1}d

(
f

(
x+ ε

v + w

2
, w

)
− f(x, v)

)
pε

(x
ε
, v;w

)
,

where pε is given by (4.1) with U = Uε. Next, for all i ∈ J1, dK,

exp
(
− (U(x+ εviei)− U(x))+

)
= 1− ε (vi∂xiU(x))+ + o

ε→0
(ε) ,

where the negligible term is uniform over all compact set of Rd × {−1, 1}d since H
is C2 (and this will be the case for all the negligible terms below). More generally,

exp

−
U

x+ ε

i∑
j=1

vjej

− U
x+ ε

i−1∑
j=1

vjej


+

 = 1−ε (vi∂xiU(x))++ o
ε→0

(ε),

from which

pε

(x
ε
, v;w

)
=

d∏
i=1

(
δvi(wi) + ε (vi∂xiU(x))+ (δ−vi(wi)− δvi(wi)) + o

ε→0
(ε)
)

= δv(w) + ε

d∑
i=1

(vi∂xiU(x))+ (δv−2viei(w)− δv(w)) + o
ε→0

(ε) .
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On the other hand, if f ∈ C2
c (Rd × {−1, 1}d),

f

(
x+ ε

v + w

2
, w

)
= f (x,w) + ε

v + w

2
· ∇xf (x,w) + o

ε→0
(ε) ,

so that
‖Lεf − Lf‖∞ −→

ε→0
0 ,

and Kallenberg (1997, Theorem 17.28) concludes. �

Note that the space/time scaling in Theorem 4.2 is ballistic. It means in partic-
ular that, in n = b1/εc steps, the Zig-Zag walk with potential Uε is at distance of
order n (and not

√
n as in the diffusive case) from its starting point.

4.3. Thinning and factorization. In order to sample the Zig-Zag walk, a priori, at
each time step, U(x) has to be computed for d + 1 values of x. However, thanks
to the thinning method recalled in Section 3.2, this computational cost may drop
if simple bounds are known on the increments of U .

Moreover, the factorization principle used for the continuous-time Zig-Zag pro-
cess in Bierkens et al. (2019a) to do subsampling is still available here. Suppose that
we can decompose U(x + v) − U(x) =

∑M
j=1 fj(x, v) for all (x, v) ∈ Zd × {−1, 1}d

for some M ∈ N∗ and fj : Zd × {−1, 1}d → R. This is for instance the case if
U =

∑M
j=1 Uj , in which case we can take fj(x, v) = Uj(x+ v)− Uj(x), but in gen-

eral the fj ’s are not required to be discrete gradients. Consider the Zig-Zag walk
as defined above except that the probability qi(x, vi) is replaced by

q̃i(x, vi) =

M∏
j=1

e−(fj(x,viei))+ .

Proposition 4.3. This Zig-Zag walk with q̃i still admits µ as an invariant measure.

Proof : As in the proof of Proposition 4.1, we just have to prove the result for d = 1.
Following Section 2, this stems from the same result applied to classical Metropolis-
Hastings algorithms. Indeed, let q be a symmetric Markov kernel on a space E and
let α : E ×E → [0, 1] be the acceptance probability of a Metropolis-Hastings chain
with proposal q, namely a chain with transition kernel p(x, y) = q(x, y)α(x, y) for
y 6= x. Then this chain is reversible with respect to a probability µ if and only if

α(x, y)

α(y, x)
=

µ(x)

µ(y)
∀x, y ∈ E .

In particular, if µ(x) = C
∏M
i=1 gi(x) for some positive gi’s and a normalization

constant C then, setting αi(x, y) = min (1, gi(x)/gi(y)) for all i ∈ J1,MK and
x, y ∈ E ensures that

αi(x, y)

αi(y, x)
=

gi(x)

gi(y)
∀i ∈ J1,MK , x, y ∈ E .

Taking the product over i ∈ J1,MK and noting that min(1, a/b) = exp (−(ln(a/b))+)
for a, b > 0 concludes. �

The bad side of factorization is that it increases the number of rejections (for
the Metropolis-Hastings algorithm, hence of collisions for the Zig-Zag process). On
the other hand, if U(x + v) − U(x) can be decomposed in a part that is cheap
to compute and a part that may be expensive to compute but is small and for
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Figure 4.2. Representation of the two irreducible classes of the
Zig-Zag walk in dimension 2. For instance, if we start in a grey
box with velocity (1, 1), then whenever we will be in a grey box
the velocity will be either (1, 1) or (−1,−1) and whenever we will
be in a white box the velocity will be (1,−1) or (−1, 1). This
corresponds to the array on the left.

which an efficient bound is available for thinning, then it may give a significant
computational gain. This is particularly well-adapted for multi-scale potentials, as
we can see in Section 5 on a similar problem.

4.4. Irreducibility, Ergodicity, CLT.

4.4.1. Irreducibility. Irreducibility is a delicate question for the continuous Zig-Zag
process, see Bierkens et al. (2019b). Here, for the discrete Zig-Zag walk, we will
only tackle the restrictive case where, following the definitions of Bierkens et al.
(2019b), all velocities are asymptotically flippable1 and thus the proof is similar to
the Gaussian case with dominant diagonal of Bierkens et al. (2019b, Corollary 1).
Anyway we are interested in the exponentially fast convergence toward equilibrium
under the assumption of Proposition 4.5 below, which is even stronger. Moreover,
with this restriction, we can focus on the specificities of the discrete realm.

Indeed, let us call σ(x, v) := ((−1)xivi)i∈J1,dK ∈ {−1, 1}d the signature of (x, v) ∈
Zd × {−1, 1}d. If (Xn, Vn)n∈N is a Zig-Zag walk on Zd then, like in the one-
dimensional case, σ(Xn, Vn) = −σ(Xn−1, Vn−1). In particular, denoting As =
{(x, v) ∈ Zd × {−1, 1}d : σ(x, v) = s} then As ∪A−s is fixed by the Zig-Zag walk
(see Figure 4.2). Therefore, in dimension larger than 1, the Zig-Zag walk is not
irreducible on Zd × {−1, 1}d.
Proposition 4.4. Suppose that there exist R > 0 such that U(x+ viei) > U(x) for
all i ∈ J1, dK, x ∈ Zd, v ∈ {−1, 1}d with xivi > R. Then for all s ∈ {−1, 1}d the
Zig-Zag walk on Zd associated to U is irreducible on As ∪ A−s.
Proof : Let s ∈ {−1, 1}d be fixed, and let (x, v) ∈ As ∪A−s. Remark that (x,w) ∈
As ∪ A−s if and only if w ∈ {−v, v}. We say that we can reach (y, w) from (x, v)

1The nice proof of irreducibility of Bierkens et al. (2019b) under weaker conditions on U may
possibly be partially adapted for the discrete Zig-Zag walk. Nevertheless, note that the smoothness
condition on U has no discrete counterpart. In any case, the potential U(x) = ‖x‖∞ would still
be a counter-example for which the conclusion of Proposition 4.4 would not hold.
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Figure 4.3. An admissible path from (x, (1, 1)) to (x− e1, (1,−1)).

if there is a path from (x, v) to (y, w) that has a non-negative probability for the
Zig-Zag walk. Starting from (x, v) ∈ Zd × {−1, 1}d, we can reach all the points
(x + nv, v) with n ∈ N. For n large enough, vi(xi + nvi) > R for all i ∈ J1, dK so
that each coordinate has a non-negative probability to flip its velocity in the next
step. As a consequence, from (x + nv, v) with such a n, (x + nv + (v + w)/2, w)
can be reached for all w ∈ {−1, 1}d. In particular, if w = −v, since (x,−v) can be
reached from (x+ nv,−v), we see by transitivity that (x,−v) can be reached from
(x, v).

Second, let us show that for all j ∈ J1, dK and all a ∈ {−1, 1}, (x+aej ,−v+2vjej)
can be reached from (x, v). Remark that this will conclude the proof: indeed, re-
peating this, then for all x′ ∈ Zd, there will exist w′ ∈ {−1, 1}d such that (x′, w′)
(and then (x′,−w′) by the previous result) can be reached from (x, v). Since
As ∪ A−s is fixed by the Zig-Zag walk, if (x′, z) ∈ As ∪ A−s then necessarily
z ∈ {w′,−w′}, and thus we will have obtained that all points of As ∪ A−s will be
reachable from (x, v).

Hence, fix j ∈ J1, dK, a ∈ {−1, 1} and set (x′, v′) = (x+ aej ,−v + 2vjej). Since
(x,−v) can be reached from (x, v) we can suppose that vj = −a. Let n1 and n2 be
large enough so that, for all i ∈ J1, dK,

vi(xi+n1vi) > R , −v′i(x′i−n2v
′
i) > R , −v′i(xi+ (n1 + 1)vi− vjej −n2v

′
i) > R .

Consider the following path: from (x, v), go to (x + n1v, v), flip the jth velocity,
which gives (x+(n1+1)v−vjej ,−v′), go straight to (x+(n1+1)v−vjej−n2v

′,−v′),
flip all the velocities but the jth, which gives (x+ (n1 + 1)v− 2vjej − n2v

′,−v), go
straight to (x+ v − 2vjej − n2v

′,−v), flip the jth velocity, which gives (x− vjej −
n2v
′, v′) and go straight to (x′, v′) (see Figure 4.3). It is clear that, in view of the

conditions on n1 and n2 the two first flips have a non-negative probability. For the
third one, remark that the jth coordinate of x+ v − 2vjej − n2v

′ is x′j − n2v
′
j and

that v′j = vj . Hence, the condition that −v′i(x′i − n2v
′
i) > R ensures that the third

flip, hence the whole path, has a non-negative probability, which concludes.
�
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4.4.2. A Lyapunov function. For some fixed a, b > 0 and for x ∈ Zd, v ∈ {−1, 1}d
and i ∈ J1, dK, denote

Vi(x, v) = ea|xi|+b1{xivi>0} ,

and V(x, v) =
∑d
i=1 Vi(x, v). Consider (Xn, Vn)n∈N the Zig-Zag walk on Zd associ-

ated to U : Zd → R and denote Q its transition operator, namely

Qf(x, v) =
∑

w∈{±1}d
f

(
x+

v + w

2
, w

)
p(x, v;w) .

Proposition 4.5. Suppose that there exist R, h > 0 such that for all i ∈ J1, dK,
x ∈ Zd and v ∈ {−1, 1}d,

(U(x+ viei)− U(x))+ > h1{vixi>R} . (4.2)

Then, for all choice of a, b > 0 and for all x ∈ Zd and v ∈ {−1, 1}d,

QV(x, v) 6 max
(
e−h+a + (1− e−h)e−b, e−a

)
V(x, v) + dea(R+1)+b . (4.3)

Proof : For all x ∈ Zd, v ∈ {−1, 1}d,

QV1(x, v) = q1(x, v1)ea|x1+v1|+b1{(x1+v1)v1>0} + (1− q1(x, v1)) ea|x1|+b1{x1v1<0} .

If x1v1 > R, q1(x, v1) 6 e−h, so that

QV1(x, v) = q1(x, v1)ea|x1|+a+b + (1− q1(x, v1)) ea|x1|

6 ea|x1| + e−h
(
ea|x1|+a+b − ea|x1|

)
=

(
e−b + e−h+a − e−h−b

)
V1(x, v) .

If x1v1 < −R then (x1 + v1)v1 6 0 and q1(x, v1) = 1, and thus

QV1(x, v) = ea|x1|−a = e−aV1(x, v) .

If |x1v1| 6 R then
QV1(x, v) 6 ea(R+1)+b .

Since Q is the result of d consecutive and identical one-dimensional transitions, we
get the result by summing over i ∈ J1, dK. �

Taking a = h/2 and b arbitrarily large we get that QV 6 γV +C with γ < 1 (in
fact γ arbitrarily close to e−h/2), which means that V is a Lyapunov function for
Q.

Remark that similar computations in the case of the continuous-time Zig-Zag
process on Rd show that if (vi∂xiU(x))+ > h1{xivi>0} for all x ∈ Rd such that
|xi| > R then

Ṽ(x, v) :=

d∑
i=1

ea|xi|+bϕ(vixi) ,

where ϕ(s) is some smooth approximation of sign(s), is a Lyapunov function for the
continuous-time process. Note that this condition on U is not covered by Bierkens
et al. (2019b, Condition 3) since the latter constrains |∇U(x)| to go to infinity at
infinity, excluding Laplace-tail distributions. Hence, our computations extends the
scope of Lemma 2 (hence Theorem 2) of Bierkens et al. (2019b). Note that condition
(4.2) holds when U(x) =

∑d
i=1 |xi| but not when U(x) = |x|. Of course, condition

(4.2) roughly means that the different coordinates are more or less independent at



Kinetic walks for sampling 515

infinity and thus it is not surprising that we recover, in a discrete-space case, the
one-dimensional computations of Fontbona et al. (2016, Proposition 2.8).

In the following, under condition (4.2) we fix a = h/2 and b such that e−b =
e−h/4 − e−h/2, in which case (4.3) implies

QV(x, v) 6 e−h/4V(x, v) +
(

1− e−h/4
)
d

eh(R/2+1)(
1− e−h/4

)2 .
This classically yields uniform in time exponential moment bounds on the Zig-Zag
walk, since for all n ∈ N,

QnV(x, v) 6 e−nh/4V(x, v) +
(

1− e−nh/4
)
d

eh(R/2+1)(
1− e−h/4

)2
and thus, if (X0, V0) = (x, v), we bound

E
(
e
h
2d |Xn|

)
6 E

(
e
h
2d

∑d
i=1 |Xn,i|

)
6

1

d
E (V(Xn, Vn)) =

1

d
QnV(x, v) .

4.4.3. Long-time convergence. For x ∈ Zd and s ∈ {−1, 1}d, let v(x, s) be the
(unique) vector of {−1, 1}d such that σ(x, v(x, s)) = s. ThenAs = {(x, v(x, s)) , x ∈
Zd} and A−s = {(x,−v(x, s)) , x ∈ Zd}. Consider on As the probability measure

µs(x, v) = π(x)δv(x,s)(v) =
µ(x, v)1(x,v)∈As

µ(As)
.

For a givenW : Zd×{−1, 1}d → [1,+∞), we endow PW := {µ ∈ P(Z×{−1, 1}d) :
µ(W) < +∞} with the norm

‖µ− ν‖W := sup
|f |6W

(µ(f)− ν(f)) ,

which makes it complete.

Theorem 4.6. Suppose that U admits a strict local minimum at some x∗ ∈ Zd
and that there exist R, h > 0 such that (4.2) holds for all i ∈ J1, dK, x ∈ Zd and
v ∈ {−1, 1}d. Set W(x, v) =

∑d
i=1 e

h|xi|/2. Then, there exist C > 0 and ρ ∈ (0, 1)
such that for all x ∈ Zd, v ∈ {−1, 1}d and n ∈ N∗,

‖δ(x,v)Q
2n − µσ(x,v)‖W 6 CρnW(x, v) .

Proof : Let (x, v), (x′, v′) ∈ As for some s ∈ {−1, 1}d. Proposition 4.4 gives a
path from (x, v) to (x′, v′) whose transitions are non-negative under Q. Since
Q(As) ⊂ Q(A−s), the length of such a path is necessarily even, from which Q2 is
irreducible on As. The path (x∗, v(x∗, s))→ (x∗,−v(x∗, s))→ (x∗, v(x∗, s)) having
a non-negative probability under Q, Q2 is aperiodic on As. As a consequence,
for all (x, v), (x′, v′) ∈ As, there exist n0 such that Q2n ((x, v), (x′, v′)) > 0 for all
n > n0. From Proposition 4.1, µs is invariant for Q2.

Consider V as defined in Section 4.4.2 with a = h/2 and b large enough, so that

Q2nV(x, v) 6 γ2nV(x, v) +
(
1− γ2n

)
C (4.4)

for some γ ∈ (0, 1), C > 0. The set {V 6 4C} is finite. Fix any point x′ ∈ Zd (say,
x′ = x∗) and let

m := max
V(x,v)64C

min{k ∈ N : Q2r ((x, v), (x′, v(x′, σ(x, v))) > 0 ∀r > k} .
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Then

min{Q2m ((x, v), (x′, s)) : (x, v) ∈ As, V(x, v) 6 4C} > 0 . (4.5)

From Hairer and Mattingly (2011, Theorem 1.2) applied to Q2m, the Foster-
Lyapunov condition (4.4) (applied with n = m) and the Doeblin condition (4.5)
imply the existence of ρ ∈ (0, 1) and C ′ > 0 such that for all x ∈ Zd, v ∈ {−1, 1}d
and k ∈ N∗,

‖δ(x,v)Q
2km − µσ(x,v)‖V 6 C ′ρkV(x, v) .

In fact, even without the Doeblin condition, following the proof of Hairer and
Mattingly (2011, Theorem 1.2), we also get that the Lyapunov condition given by
Proposition 4.5 alone implies the following: there exist C̃ > 0 such that, for all
probability measures ν, ν′ ∈ PV ,

‖νQ− ν′Q‖V 6 C̃‖ν − µs‖V , (4.6)

and in particular

‖νQ2 − µs‖V = ‖νQ2 − µsQ2‖V 6 C̃2‖ν − µs‖V .
Then for all n ∈ N, considering the Euclidian division n = km+ r we get that

‖δ(x,v)Q
2n − µσ(x,v)‖V = ‖δ(x,v)Q

2rQ2km − µσ(x,v)‖V 6 C̃2mC ′ρn/m−1V(x, v) .

The equivalence betwenn V and W, hence between ‖ · ‖V and ‖ · ‖W , concludes. �

4.4.4. Asymptotic theorems.

Theorem 4.7. Suppose that U admits a strict local minimum and that there exist
R, h > 0 such that (4.2) holds for all i ∈ J1, dK, x ∈ Zd and v ∈ {−1, 1}d. Let
f : Zd → R be such that ‖f/W‖∞ <∞, where W is defined in Theorem 4.6 (here
and below we identify f with the function (x, v) ∈ Zd×{−1, 1}d 7→ f(x)). Consider
the Zig-Zag walk on Zd×{−1, 1}d associated to U with some initial condition (x, v).
Then, almost surely,

1

n

n∑
k=0

f(Xk) −→
n→∞

π(f) .

If, moreover, ‖f/
√
W‖∞ <∞, then 1√
n

bntc∑
k=0

f(Xk)− π(f)


t>0

law−→
n→+∞

(σfBt)t>0

for some σf > 0, where (Bt)t>0 is a one-dimensional Brownian motion.

Proof : For the first part of the Theorem, simply decompose

1

n

n∑
k=0

f(Xk) =
1

n

bn/2c∑
k=1

f(X2k) +
1

n

b(n−1)/2c∑
k=0

f(X2k+1)

From Proposition 4.6 and the law of large numbers for W-regular ergodic Markov
chains, these terms almost surely converge respectively to µσ(x,v)(f)/2 and
µ−σ(x,v)(f)/2 (since (X1, V1) ∈ A−σ(x,v) almost surely), which are both equal to
π(f)/2.

For the second part, note that by the Jensen inequality and Proposition 4.5,

Q
√
V 6

√
QV 6

√
γV + C 6

√
γ
√
V +
√
C
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for some γ ∈ (0, 1) and C > 0. Hence,
√
V is still a Lyapunov function for Q and

the results established with V andW in the previous section also hold with
√
V and√

W. Let f : Zd×{−1, 1}d → R with ‖f/
√
V‖∞ <∞. From Theorem 4.6 (applied

with
√
W), for all (x, v) ∈ Zd × {−1, 1}d and all n ∈ N,

|Q2nf(x, v)− µσ(x,v)(f)| 6 Cρn‖f/
√
W‖∞

√
W(x)

and, using (4.6),

|Q2n+1f(x, v)− µ−σ(x,v)(f)| = |Q2nQf(x, v)− µσ(x,v)Q(f)|

6 C̃Cρn‖f/
√
W‖∞

√
W(x) .

Here we used that µsQ = µ−s, which can be obtained from

µsQ = µsQ
2nQ = µsQQ

2n −→
n→∞

µ−s ,

where the limit holds in PW thanks to Proposition 4.6 together with the fact that
the support of µsQ is included in A−s. We have thus obtained that

g(x, v) :=
∑
n∈N

(
Qnf(x, v)− µ(−1)nσ(x,v)(f)

)
is well-defined and satisfies ‖g/

√
W‖∞ 6 C‖f/

√
W‖∞ for some C > 0 independent

from f . Now suppose that in fact f is a function of space alone, i.e. f(x, v) = f(x).
In that case µs(f) = µ(f) for all s ∈ {−1, 1}d and thus

Qg(x, v) =
∑
n∈N

(
Qn+1f(x, v)− µ(f)

)
= g(v, x)− f(x) + µ(f) ,

in other words g is the Poisson solution associated to Q and f . Since
√
W ∈ L2(µ),

so does g, and Maigret (1978, Theorem 3.1) concludes. �

5. Numerical scheme for hybrid kinetic samplers

5.1. The continuous-time processes. In this section we consider a class of kinetic
processes for MCMC that can have a jump, drift and/or diffusion component at
the same time in their dynamics. They are defiend as follows.

Let U ∈ C∞(Td) (where T = R/Z is the 1-periodic torus) and denote by µ the
Gibbs measure on E = Td × Rd associated to the Hamiltonian H(x, v) = U(x) +
|v|2/2, namely the probability law on E with density proportional to exp(−H).
Suppose that ∇U(x) =

∑N
i=0 Fi(x) where N ∈ N and Fi ∈ C∞(Td,Rd) for all

i ∈ J0, NK. Consider the operator L defined for all f ∈ C2(E) by

L = A1 +A2 +

N∑
i=1

A3,i + γA4 + λA5 , (5.1)

where

A1f(x, v) = v · ∇xf(x, v)

A2f(x, v) = −F0(x) · ∇vf(x, v)

A3,if(x, v) = (v · Fi(x))+ (f (x,Ri(x, v))− f(x, v)) ∀i ∈ J1, NK
A4f(x, v) = v · ∇vf(x, v) + ∆vf(x, v)

A5f(x, v) =

∫
Rd

(f(x,w)− f(x, v)) νd(dw)
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and where γ, λ > 0, νd is the standard d-dimensional Gaussian distribution and

Ri(x, v) = v − 2

(
Fi(x) · v
|Fi(x)|2

Fi(x)

)
1Fi(x)6=0

is the orthogonal reflection of v with respect to Fi(x). We call respectively A1 the
transport operator, A2 the drift one, A3,i the ith bounce one, A4 the Ornstein-
Uhlenbeck (or friction/dissipation) one and A5 the refreshment one.

As particular cases, many usual kinetic processes used in MCMC algorithms can
be recovered:

• F0 = ∇xU and λ = γ = 0 corresponds to the Hamiltonian dynamics.
• F0 = ∇xU , γ > 0 and λ = 0 to the Langevin diffusion.
• F0 = ∇xU , γ = 0 and λ > 0 to the Hybrid Monte Carlo (HMC) algorithm.
• F0 = 0, N = 1, F1 = ∇xU , γ = 0 and λ > 0 to the Bouncy Particle

sampler.
• F0 = 0, N = d, Fi = ∇xiUei (recall ei denotes the ith vector of the

canonical basis of Rd), γ = λ = 0 to the Zig-Zag process.
We could also consider other kinds of jump mechanisms, like the randomized

bounces of Roberts (2017); Michel et al. (2017a), or different kinds of relaxation
operators in the velocity operator rather than A4 and A5, for instance refreshment of
velocities coordinate by coordinate, or partial refreshments for which, at exponential
random times with parameter λ, the velocities v jumps to (1 − α)v +

√
αG where

G ∼ νd (varying α ∈ (0, 1] and λ interpolates between A5 and A4, the latter
being the limit α → 0 and λ → +∞ with λα = 1). However, this would just
make the notations heavier and the presentation more confused, without adding
any particularly new idea with respect to the discussion to come, and thus we stick
to (5.1).

For MCMC purposes, the law of the process associated to a generator L of the
form above should converge in large times toward the target measure µ. This is
established in the next two results. However, this is not the main motivation of
this section, which is the study of the numerical sampling of such a process, and
thus we only give sketches of proof and references for these results.

Proposition 5.1. The set of compactly supported smooth functions C∞c (E) is a
core for L and µ is invariant for L.

Proof : The proof that C∞c (E) is a core for L is similar to the case of the Bouncy
Particle Sampler in Durmus et al. (2018b, Theorem 21 and Proposition 23). From
that, the invariance of µ straightforwardly follows from the fact that µ(Lf) = 0 for
all compactly supported C2 functions, which is easily checked through integration
by part (see also Monmarché, 2016, Section 1.4). �

Similarly to Section 4.4.3, we denote W(x, v) = 1 + |v|2, PW = {ν ∈ P(E),
ν(W) <∞}, ‖ν1 − ν2‖W = sup|f |6W |ν1f − ν2f |.

Proposition 5.2. Suppose that either γ > 0 or λ > 0. Then there exist κ,C > 0
such that the semi-group (Pt)t>0 associated to L satisfies, for all t > 0 and ν ∈ PW ,

‖νPt − µ‖W 6 Ce−κt‖ν − µ‖W

Proof : Similarly to Theorem 4.6, this is classically obtained by combining a Doeblin
and a Foster-Lyapunov conditions (Hairer and Mattingly, 2011).
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When γ > 0 or λ > 0, the Doeblin condition is obtained through controllability
arguments (a notable fact is that under quite general conditions on U the Zig-Zag
process is irreducible even if λ = γ = 0, see Bierkens et al., 2019b). Remark that
the bounce operators play no role here since if, uniformly in (x, v) in a compact of
E, δ(x,v)e

t0(A1+A2+γA4+λA5) is bounded below at some time t0 > 0 by c0 times the
uniform measure on some compact set with some c0 > 0, then δ(x,v)e

t0L is bounded
below by c0e−t0

∑N
i=1 ‖Fi‖∞ times this uniform measure, where we have used that the

total bounce rate is bounded above by
∑N
i=1 ‖Fi‖∞ so that there is a probability

at least e−t0
∑N
i=1 ‖Fi‖∞ that no bounce occurs on the time interval [0, t0].

The Lyapunov condition stems from the fact that for all (x, v) ∈ E,

A1W(x, v) = 0

A2W(x, v) 6 2‖F0‖∞|v|
A3,iW(x, v) = 0 ∀i ∈ J1, NK
A4W(x, v) = −2|v|2 + 2d

A5W(x, v) = −|v|2 + d ,

and thus LW 6 −min(2γ, λ)/2W + C for some C > 0.
�

As announced, from now and in the rest of Section 5 we focus on the question
of the the numerical sampling of the process with generator L.

When F0 = 0, and γ = 0, the process is a piecewise deterministic velocity
jump process. Between two random jumps, the process simply follows the flow
(x, v) 7→ (x + tv, v), so that the jump time Ti associated to the vector field Fi
follows the law

P (Ti > t) = exp

(
−
∫ t

0

(v · Fi(x+ sv))+ ds
)
.

Provided that for all x, v ∈ Rd and s > 0, (v · Fi(x+ sv))+ 6 ϕx,v(s) for some
function ϕx,v such that

∫ t
0
ϕx,v(s)ds can be computed, the continuous-time thin-

ning algorithm allows for an exact simulation of the jump times, hence of the
process (Lemaire et al., 2018). The absence of discretization bias on the invari-
ant measure is an argument in favour of these kinetic processes. This is no longer
the case when F0 6= 0, except in very particular cases (e.g. harmonic oscillators)
where the ODE ∂t(x, v) = (v,−F0(x)) can be explicitly solved. In most cases,
this ODE is solved numerically and thus the simulation for the stochastic process
is not exact. In order to conserve the invariant measure and suppress the bias, a
Metropolis step can be added (Bou-Rabee, 2014), but this slows down the motion
of the process, increases the variance and may thus be counter-productive, as ob-
served when comparing Metropolis Adjusted Langevin algorithm and Unadjusted
Langevin Algorithm (Durmus and Moulines, 2017).

So why mix a deterministic drift and jump mechanisms if this prohibits exact
simulation? The motivation is given by the possible numerical gain given by thin-
ning, as presented in Section 3.2. Indeed, as said before, exact simulation requires a
bound on the jump rate, and a poor (i.e. large) bound leads to many jump propos-
als per time unit and a very low efficiency. In particular, jump mechanisms are not
adapted for fastly-varying potentials, like potentials used in molecular dynamics
with a singularity at zero (Lennard-Jones, Coulomb. . . ). On the other hand, jump
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mechanisms are very efficient with Lipschitz potentials. So, a mixed drift/jump part
is interesting as soon as the potential exhibits different scales, like fast-varying but
numerically cheap parts together with Lipschitz but numerically intensive parts.
This is similar to the idea of multi-time-steps algorithms (Tuckerman et al., 1991;
Gibson and Carter, 1993) with somehow random adaptive time-steps, except that
now we are simply going to discretize (with a unique time-step, no subtlety here)
a continuous-time process which is ergodic with respect to the target law and thus
there shouldn’t be any resonance problem as exhibited by multi-time-steps algo-
rithms. Besides, for the applications in molecular dynamics that have motivated
this question (Monmarché et al., 2020), due to stability issues raised by very fast
oscillations in some parts of the system, the time-step is anyway constrained to be
very small, as compared to a high variance that comes from the problem of ex-
ploring a complex, high-dimensional, multi-scale, metastable landscape. So, exact
simulation is not necessarily our objective.

5.2. A Strang splitting scheme. A Strang splitting scheme to compute the evolution
given by a generator L = L1 + L2 is based on the fact that, formally,

et(L1+L2) = etL1/2etL2etL1/2 + o
t→0

(t2) .

Hence, if we can simulate exactly a process with generator L1 and L2, or more
generally if we have second-order approximations of those, we get a second-order
scheme for L1 + L2. Using twice this fact,

et(L1+L2+L3) = etL1/2et(L2+L3)etL1/2 + o
t→0

(t2)

= etL1/2etL2/2etL3etL2/2etL1/2 + o
t→0

(t2) .

In particular, from the considerations developed in Section 3.3 (and Theorem 3.2),
the equilibrium of the corresponding Markov chain is close (in some senses) to the
Gibbs measure µ at order δ2, where δ is the timestep.

For instance, for the Langevin diffusion, which corresponds to L given by (5.1)
with γ > 0, λ = 0, N = 0 and F0 = ∇xU , many splitting schemes can be considered,
see e.g. the discussions in Leimkuhler and Matthews (2013); Bou-Rabee (2014). A
very precise study, both theoretical and empirical, of all the possible schemes for
mixed jump/diffusion processes is beyond the scope of the present paper, and we
will only consider one particular choice. Consider the splitting

L1 = A1 , L2 = A2 + γA4 , L3 =

N∑
i=1

A3,i + λA5 .

Each of the three evolutions corresponding to etLi , i = 1, 2, 3 can be sampled
exactly (remark that, in particular cases, the velocity jump process corresponding
to et(L1+L3) could also be sampled exactly). As a consequence, for a given time-
step δ > 0, we consider the kinetic walk (Xn, Vn)n∈N whose transition is defined as
follows:

(1) Set X̃n = Xn + δVn/2.
(2) If γ > 0, set

Ṽn = e−γδ/2Vn −
(

1− e−γδ/2
)
F0(X̃n) +

√(
1− e−γδ/2

)
G
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with G a standard Gaussian random variable. If γ = 0, set Ṽn = Vn −
δF0(X̃n)/2.

(3) Set V̂n = Wδ where (Yt,Wt)t∈[0,δ] is a Markov chain with generator L3 and
initial condition (Y0,W0) = (X̃n, Ṽn) (so that Yt = X̃n for all t ∈ [0, δ]).

(4) If γ > 0, set

Vn+1 = e−γδ/2V̂n −
(

1− e−γδ/2
)
F0(X̃n) +

√(
1− e−γδ/2

)
G′

with G′ a standard Gaussian random variable. If γ = 0, set Vn+1 = V̂n −
δF0(X̃n)/2.

(5) Set Xn+1 = X̃n + δVn+1/2 = Xn + δ(Vn + Vn+1)/2.
(Of course, implicitly, the variables G, G′ and (Wt)t∈[0,δ] are independent one from
the other and from the past trajectory). Then, denoting Qδ the transition op-
erator of (Xn, Vn) defined by Qδf(x, v) = E (f(X1, V1) | (X0, V0) = (x, v)) for all
measurable bounded function f , one has

Qδ = eδL1/2eδL2/2eδL3eδL2/2eδL1/2 .

To make the link with the discussion of Section 3, for all measurable bounded f ,

Qδf(x, v) =

∫
f

(
x+

v + w

2
, w

)
pδ(x, v; dw) ,

where pδ is defined by the fact that, in the algorithm above, for all n ∈ N the law
of Vn+1 is pδ(Xn, Vn; ·).

Proposition 5.3. Let (Yt,Wt)t>0 be a Markov process associated to L and, for all
δ > 0, let (Xδ

n, V
δ
n )n>0 be a Markov chain with transition operator Qδ and initial

condition (Xδ
0 , V

δ
0 ) = (Y0,W0). Then(

Xδ
bt/δc, V

δ
bt/δc

)
t>0

law−→
δ→0

(Yt,Wt)t>0 .

Proof : We start by a smoothing/truncation step similar to the study in Durmus
et al. (2018b, Theorem 21). For all ε > 0 small enough and all i ∈ J1, NK, we
consider the jump rate on E given by

λi,ε(x, v) =
(v · Fi(x)− ε)2

+

ε+ (v · Fi(x)− ε)+

and the associated regularized bounce operator

A3,i,εf(x, v) = λi,ε(x, v) (f (x,Ri(x, v))− f(x, v)) .

We also consider νd,ε the standard Gaussian law conditioned on {|v| 6 1/ε} and
the corresponding truncated refreshment operator

A5,εf(x, v) =

∫
Rd

(f(x,w)− f(x, v)) νd,ε(dw) .

Then, Lε := A1 +A2 +
∑N
i=1A3,i,ε + γA4 + λA5,ε is such that

sup
‖f‖∞61

‖Lf − Lεf‖∞ 6 Cε

for some C > 0. The two processes (Yt,Wt)t>0 and (Y εt ,W
ε
t )t>0 with respec-

tive generators L and Lε can be defined simultaneously following the synchro-
nous coupling detailed in Durmus et al. (2018b, Section 6), in such a way that
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(Yt,Wt) = (Y εt ,W
ε
t ) up to a random time that is stochastically bounded above by

an exponential variable with parameter Cε. In other words, for all t > 0,

P ((Ys,Ws) = (Y εs ,W
ε
s )∀s ∈ [0, t]) > 1− e−Cεt .

In particular (Y εt ,W
ε
t )t>0

law−→
ε→0

(Yt,Wt)t>0. The same coupling argument holds

for a chain (Xδ,ε
n , Y δ,εn )n∈N with transition operator Qδ,ε defined like Qδ but after

smoothing/truncation. It is thus sufficient to prove Proposition 5.3 in the case
where A5 and (A3,i)∈J1,NK are replaced by the smooth and truncated operators.

Denote B = vect ({A1, A2, A4, A5,ε} ∪ {A3,i,ε : i ∈ J1, NK}). If f ∈ C∞c (E) then
Bf ∈ C∞c (E) for all B ∈ B (this is false without the smoothing/truncation step,
which is the reason why it has been added). Since C∞c (E) is in the strong domain
of all operators of B, we can use for B1, B2 ∈ B the decomposition

etB1etB2f − f − t(B1 +B2)f = etB1
(
etB2f − f − tB2f

)
+ etB1f − f − tB1f

+ t
(
etB1B2f −B2f

)
and the fact ‖etBf‖∞ 6 ‖f‖∞ for all B ∈ B to get that

‖etB1etB2f − f − t(B1 +B2)f‖∞ = o
t→0

(t2)

for all f ∈ C∞c (E). Using this repeatedly, we get that

‖1

δ
(Qδ,εf − f)− Lεf‖∞ −→

δ→0
0

for all f ∈ C∞c (E), and Kallenberg (1997, Theorem 17.28) concludes. �

5.3. Computational complexity. Let us informally discuss the efficiency of the al-
gorithm introduced in the previous section that defines the transition associated
with the operator Qδ. It should be compared with the transition of a numercial
scheme for classical processes, like Langevin or Hamiltonian dynamics. The nu-
merical cost mainly comes from the computation of the forces. For the Langevin
or Hamiltonian dynamics, at each time step, ∇U is computed once. Similarly, for
a transition associated with Qδ, F0 is evaluated once per step, at x = X̃n. What
about (Fi)i∈J1,NK?

First, consider a naive construction of the third step of the algorithm, namely
the construction of Wδ when (Yt,Wt)t>0 is a continuous-time Markov chain with
generator L3 and initial condition (x,w) ∈ Rd × Rd. For all t > 0, Yt = x. Start
by sampling a Poisson process with intensity λ on [0, δ], consider T0 its last jump
in [0, δ] (with T0 = 0 if there is no jump, in particular if λ = 0). If T0 = 0, set
WT0

= w, else draw WT0
according to the standard Gaussian distribution. Suppose

by induction that Tn and WTn have been defined for some n ∈ N. Let (En,i)i∈J1,NK
be i.i.d. exponential random variables and let

∀i ∈ J1, NK , Tn,i =
En,i

(WTn · Fi(x))+

, Tn+1 = min
i∈J1,NK

Tn,i .

Let in ∈ J1, NK be such that Tn,in = Tn+1 (in is almost surely unique), set Wt =
WTn for all t ∈ [Tn, Tn+1) and WTn+1 = R(x,WTn). Remark that the norm of Wt

is conserved at a jump time, so that the jump rate
∑N
i=1(Wt · Fi(x))+ is bounded

and max{n ∈ N : Tn < δ} is almost surely finite, and thus Wδ is defined after a
finite number of jumps.
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This is a correct construction, but it relies on the computation of Fi(x) for all
i ∈ J1, NK. In other words, with this naive construction, there is no numerical
gain: ∇U(x) =

∑N
i=0 Fi(x) is computed at each time step. As a consequence,

the algorithm is only useful if a relevant thinning procedure such as discussed in
Section 4.3 is available, to avoid the systematic computation of (Fi(x))i∈J1,NK at
each step. Such a thinning relies on suitable bounds on the vector fields (Fi)i∈N,
that depends on the form of U and on the way ∇U is splitted. For this reason, in
the rest of this section, we won’t address this question in a general case, but rather
focus on a particular example. This will illustrate the fact that there exist cases
where splitting forces between drift and jump mechanisms can decrease the total
computational cost of the simulation.

5.3.1. A motivating example. To fix ideas, consider a system of M particles in
the torus (aT)3 interacting through truncated a Lennard-Jones potential, in other
words, given some parameters U0, r, a > 0, the total energy of the configuration
x ∈ ((aT)3)M is

U(x) = U0

M∑
i=1

∑
j 6=i

W (|xi − xj |)

whereW (h) = [(r/h)12−(r/h)6]χ(h/a) with χ a C2 positive function with values in
[0, 1] such that χ(s) = 1 for s 6 1/2 and χ(s) = 0 for s > 1 (in particular, a particle
doesn’t interact with its periodic image, or with several copies of the same other
particle). Remark that strictly speaking this problem doesn’t enter the framework
considered above where, for the sake of simplicity, U was supposed smooth, but this
is typically the kind of singular potentials met in molecular dynamics simulations.

For i ∈ J1,MK, denote Ji the 3M × 3 matrix with zeros everywhere except
Ji(3(i − 1) + 1, 1) = Ji(3(i − 1) + 2, 2) = Ji(3(i − 1) + 3, 3) = 1, so that ∇U =∑M
i=1 Ji∇xiU . For some R� a, we decompose ∇U = F0 +

∑M
i=1

∑
j 6=i JiGi,j with

F0(x) = U0

M∑
i=1

Ji
∑
j 6=i

xi − xj
|xi − xj |

W ′(|xi − xj |)χ(|xi − xj |/R)

Gi,j(x) = U0
xi − xj
|xi − xj |

W ′(|xi − xj |) (1− χ(|xi − xj |/R)) .

Then F0 gathers the (singular) short-range forces, and the Gi,j ’s the (bounded)
long-range ones. Set

Fi,j = JiGi,j ∀i, j ∈ J1,MK, i 6= j . (5.2)

In particular the number of jump mechanisms is N = M(M − 1). Remark that the
jump rate associated with the vector field Fi,j can be bounded as (v ·JiGi,j(x))+ 6
|vi|U0 sup{|W ′(s)|, s > R/2} := |vi|CR. As R increases (keeping R � a), CR
decays very fast toward zero (more precisely, as R−5).

Conversely, computing F0(x) involves computing, for each i ∈ J1, NK, a sum over
all the particles j such that {|xi−xj | 6 R}. The numerical cost of this computation
increases with R, but is small with respect to the computation of ∇U(x) as long as
R� a.
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5.3.2. Thinning. For the Lennard-Jones system with the decomposition∇U = F0+∑M
i=1

∑
j 6=i Fi,j introduced above, the third step of the algorithm of Section 5.2 can

be achieved as follows:
• Set W = Ṽn.
• For all i ∈ J1,MK,
• Draw Ki according to a Poisson law with parameter |Wi|CRMδ.
• For all k ∈ J1,KiK,
• Draw j uniformly over J1,MK and Ui,k uniformly over [0, 1].
• If j 6= i and Ui,k 6

(
Wi ·Gi,j(X̃n)

)
+
/|Wi|CR, do

Wi ← Ri,j(x,Wi) := Wi − 2

(
Gi,j(X̃n) ·Wi

|Gi,j(X̃n)|2
Gi,j(X̃n)

)
,

else do nothing.
• end for all k
• end for all i.
• Set V̂n = W .

We call this the thinned algorithm. Remark that |Wi| is unchanged by the reflection
Ri,j , which allows to draw Ki, the number of jump proposals for the ith particle,
at the beginning of the loop (but in practice this is not important). More crucially,
note also that each particle i ∈ J1,MK can be treated in parallel, and there is no
need for time synchronization: indeed, two particles i and j only interact through
Gi,j(X̃n), and the positions X̃n are fixed at this step, so that the velocity jumps of
each particle doesn’t affect the law of the other.

5.3.3. Numerical efficiency. Computing ∇U has a numerical cost of order O(M2),
and it is computed T/δ times if we sample a trajectory of a classical process
(Langevin dynamics, etc.) in a time interval [0, T ] with a usual integrator with
time-step δ. Let us compare this with the cost of computing gradients in the
thinned algorithm for the hybrid process.

First, denote N (R) the average number of particles that are at distance less than
R from a given particle. By using a Verlet list of neighbors, computing F0 has an
average cost of O (MN (R)).

Second, denote DT the number of times that Gi,j has been evaluated for some
i, j ∈ J1,MK in a trajectory of length T with time-step δ. Then

DT =

T/δ∑
n=1

M∑
i=1

Sn,i

where, conditionally to the Ṽn,i’s the Sn,i’s are independent Poisson random vari-
ables with parameter |Ṽn,i|CRMδ. By the law of large numbers for ergodic Markov
chains,

DT '
T→∞

TCRM
2H

where H is the average of |wi| with respect to the equilibrium distribution of the
chain. When δ is small, the velocity distribution at equilibrium is close to a standard
Gaussian one of dimension 3, so that H 6

√
3 +O(δ).
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Computing Gi,j(x) being of order O(1), the total cost is O
(
M2CRT

+MN (R)T/δ
)
. As noted previously, as R increases, CR decays but N (R) in-

creases. In the regime where N (R)� M , the gain in the thinned algorithm, with
respect to an integrator where the full gradient ∇U is computed at each step, is the
ratio of M2CRT and M2T/δ, namely CRδ. In other words, the long-range forces
are only evaluated at an average time-step 1/CR. Depending on the parameters,
this can be a significant speed-up. Indeed, δ is typically constrained to be small in
order to handle the singular behaviour of short-range forces while, for intermediate
values of R, CR can already be small. We refer to Monmarché et al. (2020) for a
practical case where δCR ' 10−6.

5.3.4. Sampling rate: the mean-field regime. The numerical efficiency discussed
above is encouraging, but one should be careful when comparing two Markov pro-
cesses for sampling. Indeed, suppose we are given two kinetic processes
(Xt, Vt)t∈[0,T ] and (X̃t, Ṽt)t∈[0,T ], both µ-ergodic, such that simulating a trajec-
tory of length T for the first one is 10 times faster than for the seconde one. This
is useless if the first process explores the space 100 times slower than the second
one so that, to achieve a similar quality of sampling, much longer trajectories are
required.

Such a situation may be feared for the hybrid drift/jump process introduced
above in the Lennard-Jones model. Indeed, under the effect of many collisions, the
process may show asM →∞ a diffusive behaviour, namely the jumps may average
and give a velocity close to zero. In that case, the exploration of the space (hence
the convergence toward equilibrium) would be very slow. Let us (informally) check
that it is not the case here, at least in the mean-field regime: in the following, we
suppose that U0 = 1/M (in which case the constant CR is of order 1/M).

Consider the Langevin dynamics with generator L = A1+A2+A4 with F0 = ∇U .
Suppose that the initial conditions (xi, vi)i∈J1,MK are i.i.d. with the xi’s distributed
according to some law ν. Conditionally to (x1, v1), by the law of large numbers,
the force felt by the first particle at time 0 satisfies

∇x1U(x) = ∇x1

1

M

M∑
j=2

W (|xi − xj |) −→
M→+∞

∇x1

∫
(aT)3

W (|x1 − z|)ν(dz) .

Classical propagation of chaos results show that, asM → +∞, the particles behaves
approximately as M independent processes on (aT)3 × R3 with generator

Ltf = v · ∇xf −∇x

(∫
(aT)3

W (|x− z|)νt(dz)

)
· ∇vf − v · ∇vf + ∆vf ,

where νt is the law of the process at time t, solution of the non-linear equation
∂t(νtf) = νtLtf for all nice f .

Similarly, for the hybrid jump/diffusion process obtained from the splitting of
the forces introduced in Section 5.3.1, conditionally to (x1, v1), by the law of large
numbers, denoting g the function such that Gi,j(x) = g(xi−xj)/M for i, j ∈ J1,MK,
the jump rate at time 0 for the first particle satisfies

1

M

M∑
j=2

(v1 ·G1,j(x))+ −→
M→∞

∫
(aT)3

(v1 · g(|x1 − z|))+ ν(dz) := λν(x1, v1) ,
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and a similar limit Qν is obtained for the jump kernel at time 0. From the prop-
agation of chaos phenomenon, the system is expected to behave as M → ∞ as M
independent non-linear processes on (aT)3 ×R3 with non-homogeneous generators
given by

Ltf = v · ∇xf −

(∫
(aT)3

g̃(x− z)νt(dz)

)
· ∇vf + λνt (Qνtf − f)− v · ∇vf + ∆vf

with a suitable function g̃, and νt the law of the process (see Monmarché, 2018 and
references within). The non-homogeneous Markov process with generator Lt is not
degenerated in the sense that its velocity is not averaged to zero, which means that
for large M the system of interacting particles is not expected to have a diffusive
behaviour, nor to converge to equilibrium with a rate that vanishes as M → +∞.

Of course the dynamics (Langevin versus hybrid) are different and thus they
may converge toward equilibrium at different speed. Nevertheless, the ratio of the
convergence rate may be expected to be of order independent from M , since the
mean-field limits as M → ∞ are obtained with the same scaling (namely it was
not necessary to accelerate time). In other words, in order to achieve the same
convergence as the Langevin process in a time T (for a cost of order O(M2T/δ)),
we may need to sample the hybrid process up to a time T ′ > T (for a cost of order
O(MN (R)T ′/δ +M2CRT

′)) but with a ratio T ′/T bounded below independently
from M . For R small enough (independent from M) so that N (R) < (T/T ′)M ,
using that CR is O(1/M), we see that the hybrid process appears as the most
efficient for large M .

More generally, if U0 is not of order 1/M , the conclusion may be unclear, but
the informal discussion above shows that there exist cases where the parameters of
the problem are such that a suitable factorization can lower the numerical cost of
the simulation at constant long-time convergence quality. We refer to Monmarché
et al. (2020) for a practical case where the diffusion constant, used as an indicator
of the sampling rate, is of the same order for the two processes.

5.3.5. An alternative splitting of the forces. For the Lennard-Jones model, con-
sider the splitting of the forces ∇U =

∑M
i=0 Fi where F0 is as above and Fi(x) =

Ji∇xiU = Ji
∑
j 6=iGi,j for i ∈ J1,MK. Since (vi ·

∑
j 6=iGi,j)+ 6

∑M
j=1(vi ·Gi,j)+,

this alternative splitting reduces the total jump rate of the process, by compari-
son with the previous splitting. Increasing the jump rate is known to increase the
diffusive behaviour and the asymptotical variance for the Zig-Zag process, at least
in dimension 1 (Bierkens and Duncan, 2017). Since the present case is similar, we
may expect the alternative splitting to yield a process that converges faster toward
equilibrium than the initial one. Nevertheless, in the mean-field case, similarly to
the previous section, this speed-up should be independent from M .

On the other hand, let us estimate the numerical cost (in term of computations
of forces) of the alternative process. We can bound |Fi(x)| 6MCR (with the same
CR as previously), and thus a thinning algorithm yields again an average ofMCRT
jump proposals per particle in a time period [0, T ]. But now, at each jump proposal,
Fi(x) has to be computed, which has a cost O(M), so the total cost is O(M3CRT ).

This little computation indicates that, in the case of forces that come from pair-
wise interactions between particles, rather than considering one jump mechanisms
per particle (as in the usual Zig-Zag process, and in the alternative splitting of
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this section), it may be better to split ∇xiU so that each jump mechanism is only
associated to a single interaction (i, j) (as in the initial splitting introduced in
Section 5.3.1).
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