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Abstract. We study a particle system with the following diffusion-branching-
selection mechanism. Particles perform independent one dimensional Brownian mo-
tions and on top of that, at a constant rate, a pair of particles is chosen uniformly at
random and both particles adopt the position of the rightmost one among them. We
show that the cumulative distribution function of the empirical measure converges
to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and
use this fact to prove that the system selects the minimal macroscopic speed as the
number of particles goes to infinity.

1. Introduction

The F-KPP equation

1
dyu = 563u+u2—u, reR, t>0,
(1.1)
u(O,x) = Uo(-’IJ), T € R,

was first introduced as a central model of front propagation for reaction-diffusion
phenomena. Both Fisher and Kolmogorov, Petrovskii and Piskunov (Fisher, 1937;
Kolmogorov et al., 1937) independently proved the existence of an infinite number
of traveling wave solutions.
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In 1975, McKean established a first link with a microscopic model (a particle
system), showing an exact connection with Branching Brownian motion (BBM)
McKean (1975). This sprouted a large effort of research focusing on defining corre-
sponding microscopic models for front propagation both in the physics and mathe-
matics literature. The seminal papers Brunet and Derrida (1997, 2001) set the basic
questions on the influence of microscopic effects on the front propagation properties.
Three types of models were then considered: adding noise to the deterministic equa-
tion (Brunet et al., 2006; Mueller et al., 2008, 2011), introducing a cut-off (Benguria
and Depassier, 2007; Dumortier et al., 2007) or defining truly microscopic models
via interacting particles systems conserving the total number of particles (Brunet
et al., 2007; Durrett and Remenik, 2011; Maillard, 2016; De Masi et al., 2019). This
allows the study of the effects produced by the finite size population on the front
propagation. We focus here on the third direction of research.

Brunet and Derrida (2001) highlighted that in contrast to the macroscopic equa-
tions, which admit infinitely many traveling waves (characterized by their veloci-
ties), microscopic models should select a unique velocity. Defining finite population
particle systems, of size N, with branching and selection (in discrete time), they
showed using heuristic arguments and simulations that the asymptotic speed of
a particle system has a deviation of order (log N)~2 from the macroscopic speed.
This sheds light on the effects of the finite size population, as the corresponding
speed converges much slower than expected. This was rigorously proved in Bérard
and Gouéré (2010) for N-Branching Random Walks (N-BRW), a system in which
particles branch, perform random walks and undergo a selection mechanism.

Several similar particle systems involving diffusive movements and sequential
steps of branching and selection have been considered in this context. In Durrett
and Remenik (2011) the authors consider a model closely related to N—BRW and
prove that the distribution function of the empirical measure converges, for fixed
times, to a free boundary integro-differential equation in the F-KPP class, as well
as proving a speed selection phenomenon. The same conclusions were conjectured
to hold in Groisman and Jonckheere (2019) for the N—Branching Brownian motion
(N-BBM), introduced and studied in Maillard (2016). These conclusions have been
recently settled in Berestycki et al. (2019); De Masi et al. (2019). More on this
macroscopic equation can be found in Berestycki et al. (2018).

In the present article, we define and study a finite-population particle system in
continuous time, closely following the dynamics proposed by Brunet and Derrida
in Brunet and Derrida (2001). In our setting N particles diffuse independently
according to one dimensional Brownian motion, branch and get selected, with the
important feature that particles are paired at each branching event. At these times,
the particle in the pair with largest position branches into two and the one (in the
pair) with smallest position is eliminated from the system. This corresponds to the
branching-selection mechanism.

We first prove that the cumulative distribution function of the empirical measure
of this system converges to a solution of the F-KPP equation as the number of
particles goes to infinity. As a consequence, we are able to prove that the system
selects the minimal speed of the macroscopic model as N goes to infinity. In order
to do that, we first show the existence of a stationary regime for the system seen
from its leftmost particle and the existence of an asymptotic speed for fixed N,
using classical arguments. Combining this with the hydrodynamic limit previously
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obtained, we get a lower bound for the speed. The upper bound can be obtained
by constructing our process as a pruning of N independent BBMs.

Some particular features of our setting, in contrast with previously mentioned
works are (i) the proofs do not depend on explicit computations but rather on a
careful analysis of the system (for instance, the limiting speed is obtained through
comparison with F-KPP solutions and not through Legendre transforms), (ii) we
provide explicit bounds for the decorrelation between particles and hence we can
quantify the propagation of chaos, (iii) we believe that the analysis is robust enough
to be extended to more general diffusions and branching-selection mechanisms (see
Groisman and Soprano-Loto, 2020) and (iv) the behavior of the system as N goes
to infinity is given exactly by the solution of the F-KPP and not by approximations.

The rest of the paper is organized as follows. In Section 2, we introduce the model
and state the main results. The proof of propagation of chaos and convergence
towards the F-KPP is given in Section 3. Finally in Section 4, we prove the existence
and properties of the velocities for fixed N and then proceed to prove the selection
principle: as N goes to infinity, the velocities converge to the minimal velocity of
the F-KPP equation.

2. Model and main results

We first describe the dynamics in an informal way. The system starts with N
particles located in the real line, each of which independently performs a standard
Brownian motion and carries a Poisson clock with rate one. At Poissonian times,
each particle chooses another particle uniformly among the other ones. Between
these two particles, the one which has smaller position jumps on top of the other
one. Throughout the article we will refer indistinctly to this interaction as a jump
of the smaller particle of the pair to the position of the larger one or as a branching
of the larger particle with killing of the smaller one. More precisely (&):>0 is a
Markov process in RV with generator given by

18 1
LFE) =5 D 0 FE) + 5y 20 2, (F05(©) = £(€), (21
23 2(N -1) i=1j#i
for f € C2(RY), the set of twice differentiable functions with compact support.
Here

s (E)H) = {gg{s(jw)} ke fi),

Namely, given two labels i, 7, 6;; replaces the position of the particle with smaller
position with the position of the larger one.

We denote by & = (&(1),...,&(N)) the process at time ¢t and define the empir-
ical measure associated to & by

(2.2)

1 N
N . _
My = N;é&(”’ t> 0.

The cumulative distribution function of ul¥ is given by,
Fn(z,t) == p ((—o0,z]), xeR,t>0.

For simplicity, we omit the dependence of ;Y and Fy(z,t) on & if not necessary.
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Notation. In what follows, we denote by P the space of probability measures
on R endowed with the weak topology. For a polish metric space S, D([0,T1],S)
is the space of cadlag functions from [0,7] to S endowed with the Skorokhod
topology. We assume that all our processes are defined in a probability space
(Q,F,P) and denote with F, the expectation with respect to P and with V the
variance with respect to P. When needed, we use P, (respectively PEO) whenever
the initial condition is distributed at random according to the probability measure
p (vespectively d¢ ), with the same convention for expectation and variance. The
o-algebra generated by the process up to time ¢ is denoted by F;. For simplicity,
we write uy(z,t) := B¢ [Fn(z,t)] and |- | = || - [ for the infinity norm of a real
valued function.

2.1. Hydrodynamic limit. The following theorem provides a link between the afore-
mentioned model and the solutions of the F-KPP equation, through the hydrody-
namic limit.

Theorem 2.1. Let ug be a distribution function in R such that imy_o | Fn(-,0)—
ugl| = 0, a.s. and u the solution to (1.1). Then, for any t > 0 we have

lim |Fn(-,¢t) —u(-,t)] =0 a.s. (2.3)
N—w

We can also state a path-wise version of this result.

Corollary 2.2. In the setting of Theorem 2.1, let u; be the deterministic measure
in R given by p((—o0,z]) = u(z,t). Then,

m (4 )i=0 = (1) e=0,
N—

weakly in D([0, +00),P), in probability.

2.2. Speed selection. For £ € R, let ¢[i] denote the i-th order statistic of £, i.e.
€)= min £(),  j1 —argmin £(j),

1<jsN 1<5<

fli+1] = min £(j)  jit1 = argmin £(j).
J# Ik k<t GE G, k<i
We use the label of the particles to break ties. The position of the i-th particle as
seen from the minimum is given by 1,(7) = &[i + 1] — &[1] and the process as seen

from the minimum is defined by
ne = (1), ,me(N —1)). (2.4)
Theorem 2.3. Let N > 1. Then,

(1) The process (1n;)¢=o0 has a unique stationary distribution v~ , which is abso-
lutely continuous with respect to the N -dimensional Lebesgue measure.
(2) For any initial distribution pd’

Jim [Py (e € ) = v ()lrv = 0.

(3) There exists vy = 0 such that

1 N
lim &l = lim &IV =wy, almost surely and in L. (2.5)
t—oo t—00 t
(4) vny1 = vN and
lim vy = V2. (2.6)

N—w
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Remark. Equation (2.6) can be thought as a selection principle in the sense that
though the macroscopic equation admits infinitely many traveling waves with dif-
ferent velocities, for each IV and for any initial distribution the microscopic system
has a unique velocity which converges to the minimal velocity of the macroscopic
equation, when N goes to infinity. This kind of result was first proved in Bramson
et al. (1986).

Comment. Two open problems arise naturally from Theorem 2.3. The first one
is whether a ‘strong selection principle’ holds, i.e whether under vV the cumulative
distribution function of the empirical measure converges to the minimal traveling
wave rather than just the velocities. We conjecture that this is in fact the case but
we could not prove it. The main difficulty is that the domain of attraction of the
minimal traveling wave is very thin. The solution of the F-KPP with initial data
with heavier tails than the minimal traveling wave do not converge to the minimal
traveling wave. Even if they have exponential decay at infinity (McKean, 1975). A
similar statement has been proved in Asselah et al. (2016) in the context of quasi-
stationary distributions and Fleming-Viot processes (a counterpart of these models,
as observed in Groisman and Jonckheere, 2019). In that case, the minimal quasi-
stationary distribution attracts every initial data with a finite mean and this is key
to get the result. The second problem is related to the order of convergence of vy
to v/2. As conjectured by Brunet and Derrida in their models, we also expect here
a slow rate of convergence of order (log N)~2. Naive simulations show such a slow
rate (slower than any power of N), but our simulations are not precise enough to
predict the exact order of convergence. Also, more involved computations to prove
the lower bound for liminf vy combined with the algebraic order of convergence
conjectured for the convergence to the minimal traveling wave in the F-KPP might
allow to get a (power of a) logarithmic order of convergence. This would just give
lower bound estimates though, which is not very informative.

3. Hydrodynamic limit

We begin now with the proof of Theorem 2.1. The main idea is to show that
uy verifies, in the limit as N goes to infinity, the F-KPP equation and that the
variances Ve [Fy(x,t)] converge to zero, which boils down to proving asymptotic
decorrelation of the particles (propagation of chaos). The following graphical con-
struction will turn to be instrumental for this purpose.

3.1. Graphical construction. We construct the process as a deterministic function
of N independent Brownian motions and an homogeneous Poisson process (for the
jumps).

To each particle i, we associate a marked Poisson process w’ and an inde-
pendent standard Brownian motion (B});>o. The process w’ is defined on R x
({1,..., N}\{i}) with intensity measure dtdf3;, where §; is the uniform distribution
on {1,..., N}\{i}. The processes (w’, (B{)¢=0)1<i<n are independent. Consider the
superposition w = | Jw*x{i} and sort the marks in order of appearance. We denote
this sequence with (7x, jk, ik )ken Where the first coordinate 7 is the time mark, the
second one is the partner mark chosen according to 8; and the third one is the label
mark (the label mark is 4 if it occurs at w'). We define ¢, inductively as follows.

e At time 0, the configuration is &,.
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e Assume {_ is defined. For t € (74, Tx41] we define

&(l) = & (k1) ift =71, I =dpyr and §,_(igr1) < &- (Jrs1)
¢ &, (1) + Bl = BL  otherwise.

It is straightforward to check that (&,):>0, as constructed above is Markov, with
generator given by (2.1).

For each particle i and a time ¢ > 0, we construct backwards a set of (labels
of) particles that we call ancestors. The important feature of this set is that the
position of the particle is measurable with respect to the o-algebra generated by
the Brownian motions and Poisson processes attached to the ancestors up to time
t. For any two particles, conditioned on the event that their clans of ancestors do
not intersect, the particles are independent. More details below.

3.2. The clan of ancestors. Given a set of labels A < {1,...,N} we denote by
w40, s] the superposition of all the points of w’ with j € A restricted to the
interval [0,s]. We add (0,0,0) to this set for convenience. That is, w?[0,s] =
Ujea w9 ([0, s]) LJ{(0,0,0)}. For each 1 < i < N, we define inductively a sequence
of times and sets as follows.

o Let s; be the largest time mark in w!?[0,¢] and j; its partner mark. If
s1 = 0 stop and define ¢! = {i}. Otherwise define A} = {i,j1}.

e Suppose si, A% are defined. Then, let s;41 be the largest time in wAk [0, s)
and j41 its partner mark. If s 1 = O stop and define 9; = A}.. Otherwise
define A} | = A} U {jp+1}

As N is finite, this procedure finishes after a finite number of steps n} almost surely.

The next two lemmas give a bound on the probability of intersection of two clans
of ancestors and, as a consequence, a bound for the two-particles correlation. Their
proofs are essentially contained in Asselah et al. (2011, Lemma 2.1 and Section 3).
We include a sketch of them for the reader’s convenience.

Lemma 3.1. Fori# j andt >0,

et —1
N-1"

Py (i ] # @) <

Sketch of the proof. Observe that the process 1{1% ) w{ # @} jumps from 0 to 1

at rate % We thus get,

. . . - i J @ J
P n vl + @) = B[L{ui n ol # @I < EleEv],
The growth rate of ¢ at time ¢ is precisely ||, which implies that E(|¢f]) = e!

e
and the lemma follows. O

In the event {i N z/;{ = @} the only possible dependence between & and 5{ is
due to the initial condition. As a consequence, for deterministic initial conditions,
we obtain the following bound.
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Lemma 3.2. Fort >0 and x,y € R, we have
N
sup D Bell{&(i) < o} 1{&() < y}] — Be[1{&(0) < o}]Be[1{&() < v)]
ERN |52
< 2Ne?.
Proof: Let us observe that
Pe(&(i) < z,6(j) <y) =
Pe(&(i) < w,60() < yi i 0 # 2) + Pe(&e(i) < 2,&()) < yshy 0 o] = 2) =

Pe(&u(i) <@, &) <y i o] #@) + D Pe(&uli) <o, &) <y;vp =a, ] =b) =
anb=g

Pe(&u(i) <, & () Sy i n ] #2) +) ) Pe(&uli) <,9) =) Pe(&(5) <y, v =D),
anb=g

(3.1)
while

Pe(&(i) < 2)Pe(&(5) < y) = Pel&li) <=, &(j) <y) =

Pe(&(i) < 2,&(5) < yivp 0] # 9) + Pe(§i) < @,6(j) <y n ] = @) =

Pe(&u(i) <z, &() <ysvindl #@) + Y Pe(&uli) <a,&(j) <y; i =a, §] =b) =
anb=g

Pe(&u(i) <o, &) <ys i o] #@) + ) Pe(&uli) <, =a) Pe(&(§) <y, ] =),
anb=g
(3.2)

with & an independent copy of &. Substracting (3.1) and (3.2) we get that for
i # J,
[Pe(&(0) < @, &(J) < y) = Pe(&(i) < 2)Pe(&() < vl
< P(Yjn o] # 8) + P4} 0 0] # 2) < 2%,
where in the last inequality we make use of Lemma 3.1. Thus, by summing over

i and j € {1,..., N}, and noting that there are N diagonal terms which bring a
factor NV when ¢ = j, we get the desired bound. 0

The following lemma allows us to control perturbations of the F-KPP equation.

Lemma 3.3. Let u be a solution of (1.1) with initial datum uy and w a smooth
bounded function in R x [0,T] such that

6tw=%6§,w+w2—w+g, 0 < w(x,0) =wy(z) < 1.
Then .

futt) = w01 < (o = wol + [ e*late o) ds) e,
for |lg| small enough (depending on T). ’

Proof: By the maximum principle for parabolic equations in unbounded domains
(Quittner and Souplet, 2007, Proposition 52.4) we get |w| < 2 for ||g| small enough.
This can be obtained through the ODE

y=y>—y+|gl, y0)=1
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Since y is a bound from above for |w| we just need to bound y. Observe that
y?P—y <2(y—1)for 0 <y <2 ie fort<t*:=inf{s>0:y(s) <2} We will
prove that t* > T for | g|| small enough. Solving the linear equation i = 2(g—1)+|¢|

we get that for ¢ < %, y(t) < 17|‘QH/2+@6%. This implies that t* — w as |g| — 0
and the bound follows. Call z = w — u and

t
e.0) = (luo —wl + [ e loC.o)]ds) e,
0
Hence, this function verifies
1
0% =507 + 22+ eg(,1)]

1
> 507 + (w+u—1Zz+g(1)],
with Z(z,0) = |up — wo|, while for z we have

1
0tg:§0gg+w2—u2—g+g

1
:§8§§+(w+u—1)g+g.

Hence e = z — Z verifies
1 o
Ore < 561,6 + (w+u—1)e.

With e(z,0) = wo(z) — up(r) — Juo — wo| < 0. Since u and w are bounded,
using the maximum principle again we obtain e(z,t) < 0 for all (z,t) e R x [0,T].
Proceeding in the same way with —Z — z we get that for all (z,t) € R x [0,77],
—Z(x,t) < w(z,t) — u(z,t) < Z(z,t), which conludes the proof. O

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1: Throughout this proof, we denote E¢ ,Ve and P briefly
by E,V and P, respectively. We also use G(z,t;2) = Sfoo(27rt)*1/26*(y’z)2/2t dy
for the probability that a Brownian motion started at z is less than x at time ¢.
Let us recall that

UN(QL‘, t) = EEO [FN({,C, t)]

The proof is divided into two steps.

Step 1. Derivation of the equation for uy(x,1).

Let us first observe that
1N
un(2,1) = & ; P(&(i) < z). (3.3)

We will focus on each term of the previous sum separately. Fix ¢ and let 7 be the

last time-mark before time t of w?. If there is no such a mark, we set 7 = 0. Notice

that particle ¢ performs a Brownian motion in (7,t) and that 7 ~ ¢ —min(Z, ¢) with

Z an exponential random variable with mean 1. Thus, by conditioning on 7 we get
t

P& (i) <z) = e 'G(x,t:&0(i)) + J e~ CIE[G(x,t — s5;64(0))|T = s]ds.

0
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Observe that for any z, G(-,-; z) verifies the heat equation. We now differentiate
the r.h.s. of the previous equality with respect to ¢ to obtain,

t

— e 'G(x,t; & (1)) + e—_t@ig(x,t;&)(i)) + j —e

0

(-9 p [g(m,t — 3;55(2')))7 = S] ds

+Jte(t *) [ 2G(x,t — s; gs())]r=s] ds + E[G(z,0;&(i))|T =t].

0

Combining the first term with the third one and the second term with fourth one,
we obtain that for every 1 < i < N, the function ¢;(x,t) := P(&(i) < z) verifies,

5% — i+ P(&(0) < ol = 1), (34)

We proceed to examine the last term in (3.4). Let J;; be the event that the partner
mark is j. Conditioning on J;; we get

P(& (i) < alr =t) = Y P (max(&-(0),&- () < zlr = t, Ji) P(Jyylm = 1)

01qi =

J#i
- B El{&(i) < #J1{60) < x}]
1 N
- v—F lZ & (i) < 2}H& () < o} - 1& () < x}l :
! (3.5)
N
Since F}(z,t) = 5 Z 1{& (i) < 2}1{&(j) < 2}, combining (3.3),(3.4) and (3.5)
we get e
druy = 302un — 25 E[Fn (1 — Fy)]
=12uy —un(l—un) + L5V(Fn(z,t) — w5 (un(l —un)).  (3.6)

Next we prove that solutions of (3.6) converge to solutions of (1.1) when N tends
to infinity.

Step 2. Control of the variance and stability of the F-KPP.
We first observe that,

|Fn(z,t) — u(z,t)]

M

Z +un(z,t) — u(z,t)

< Zi

M=z 0

N 2, Zif + lun (@) — (1), (3.7)

1

S
I

with Z; := 1{&(¢) < 2} — ¢i(z,t). The Strong Law of Large numbers for weakly
N

correlated variables (Lyons, 1988, Theorem 1) gives us lim % 2 Z; = 0 as.,
N—>© b
provided that the following two conditions are fulfilled:

(i) E[|Z:]*] <1, and |Z;| <1 as. for all i e N,
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N 2
%ZZZ- ]<oo.
i=1

Condition (i) follows immediately. To check (ii), observe that by Lemma 3.2, we
get that

@ ¥ 45|

N=1

2
] =sup Ve, (Fn(z,t)) < 22T, (3.8)
0

N
L3
i=1

iz
For the second term in (3.7) we apply Lemma 3.3 with w = uy and g =

LoV (Fy(z,t) — 25 (un(l — uy)). Since g — 0 as N — o, for N large

enough we have

sup Ee, [

Y]

wmw%wmm<(Mmmwwwn+ﬁfnm@wﬁét
< (IFw (- 0) = uo ()] + w5 (1 +2627) ) €7,

for all ¢ < T. In the last inequality we use that 0 < uy < 1 and (3.8). Since the
first term goes to zero a.s., we conclude that

lim |un(-,t) —u(-,t)| =0, a.s.
N—>

Hence, for every z € R and ¢ > 0, Fy(z,t) — u(x,t), a.s. Let k > 0 fixed. Since
u(+,t) is continuous and increasing, there is a finite family (¢;)1<i<k—1 < R such
that u(c;,t) = i/k. Since Fy (-, t) is increasing:

|Fy(z,t) —u(x,t)] < 1/k + max |Fnv(ciyt) —ulc, t)].
A

Using the a.s. convergence for points (¢;)1<i<k—1, We get uniform convergence of
Fn(-,t) towards u(-,t).
(I

Proof of Corollary 2.2. The main ingredient to obtain Corollary 2.2 is to show
that for every T' > 0, the sequence (1 )o<t<r is tight in D([0,T],P). Afterwards,
Theorem 2.1 implies that there is a unique limit point and hence the desired result.

Tightness. To prove tightness of (u¥)o<i<7 it is enough to show that for any
¢ € C}(R) (the space of functions with continuous derivative supported on a com-
pact set) the sequence of real-valued processes ((ul,©))o<t<r, With (u, ) =
Si—z o(z)ud (dx), is tight in D([0,T],R), see Roelly-Coppoletta (1986, Theorem
2.1).

According to Aldous criterion (Kallenberg, 2002, Theorem 16.11 and Lemma
16.12) the following two conditions are enough to get tightness for the previous
sequence:

(i) For every ¢t € [0,T] n Q and every € > 0, there is an L > 0 such that

sup P([{uy’, o) > L) < e.
N>0

(ii) Let TN be the collection of stopping times with respect to the natural
filtration associated to (i, ) that are almost surely bounded by T'. For
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every € > 0

lim limsup sup P(|(ufl 4,70 = (il 9)] > ) = 0.
r— N— mE‘E¥
s<r

The first condition follows immediately by taking L > |¢|. For the second one,
let A; := {wi[k, k + s] # &} and observe that for every 1 <i < N,

Ellp(€l,,) — (€] < 2l P(A) + E[lp(€L + Bl — BL) — o(€5)|1{Af}]
<2lpl(1 — %) + E[lp(&: + By) — 0(£%)]]
< 2[p|(1 —e™*) + &' E[|Bsl]

as s — 0 by dominated convergence. Here B, is an independent Brownian motion.
By means of Markov inequality
N . .
Elle(€hss) — (€I

-1 _ 2r(lel + €D

(|</‘L(H+S)/\T’ (p> <ILLI'€ 7§0>| > 6) Ne c

This concludes the proof of (ii).

Uniqueness of limit points. Let (,Uévk)()gth be any convergent subsequence and
(ut)ogt<r its limit. Its time marginals p; are characterized by their distribution
functions F),,. Due to Theorem 2.1 we have that F),, = u(-,t). This, together with
Billingsley (1999, Theorem 13.1) provide us the desired conclusion.

4. Speed selection

In this section, we prove Theorem 2.3. The proofs for fixed N are similar to
the ones in Durrett and Remenik (2011); Bérard and Gouéré (2010). We include
them for the reader’s convenience but we point to those references for the details.
However, the proof of convergence of the velocities vy " v/2 as N — oo requires a
completely different strategy and is based on the hydrodynamic limit, Theorem 2.1.

Parts (1) and (2) of Theorem 2.3 are obtained by proving positive Harris re-
currence for the process (1:)i=0 and part (3) by means of the subadditive ergodic
theorem. The monotonicity of the velocities (4), is proved by coupling two pro-
cess with different number of particles but comparable initial conditions. With some
abuse of notation we will denote (7 )x>0 @ process constructed in this section which
coincides in law with (1;):>¢ observed at jump times, although the construction is
different.

In what follows we omit the dependence of some of the variables on N. Consider
a Poisson process (T};)r>1 with rate § and an iid. family (Vi)rs1 with Vi =
(VE,V2) ~ U{On}, where On = {(i,j): 1 < i < j < N}. Let (BYN)ss be
an N—dimensional standard Brownian motion. For ¢ € RY we denote o(¢) =
(€D, .. € [N]).

We construct a discrete time auxiliary Markov process (i as follows. Given (p,
define

o1 =0 (0v, (0(C + Br,,, — B1,))) (4.1)
with 6;; defined in (2.2) and assuming Tp = 0. In words, between jump times,
particles evolve according to an N —dimensional Brownian motion. At jump times,
two ranks V = (V'1,V2) are chosen uniformly in Oy and the particle with rank V!
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jumps to the position of the particle with rank V2. Afterwards, particles are sorted
in increasing order. We omit the trajectories between jumps, so that ( is the state
of the system at the k—th jump of (&).

The law of (k) x>0 is given by the order statistics of a process with generator (2.1)
at jump times as can be seen by direct computation. This process is a deterministic
function of the initial condition (, the displacements Dy := BIT\; - Bﬁ _, and the
jump marks (V)r>1. We emphasize this by writing

(Ck)k=0 = Y((Vi)k=1, (Dk)k=1, Co)- (4.2)
Asin (2.4), let (nx)k=0 be the process (Cx)r=0 as seen from the leftmost particle
and Qp = {(21,...,2n-1) ERV7L:0< 2y < ... < zy_1} its state space. Any set

R < Qy is embedded in RV by defining R® = {0} x R. We now turn to prove each
of the statements stated in Theorem 2.3.

4.1. Positive Harris recurrence. To prove Positive Harris recurrence it is sufficient
(see for instance Asmussen, 2003) to show that there exist a set R € Q2 such that
(i) E,(tr) < oo, for all n € Qu, where 7 = inf{k >0 : n; € R}.
(ii) There exists a probability measure ¢ on R, A > 0 and r € N so that
P, (nr- € R) = A\q(R) for all ny € R and all R < R.

Take
R={neQy : ni+1)—n()e(0O,N) for i=1,...,N—1}.

We claim that any initial condition 7 € Q2 can be driven by the dynamics into the
set R in exactly N — 1 steps with a positive probability uniformly bounded below
away from zero. In fact that is the case if (a) each particle does not displace more
than 1/2 between jumps (due to Brownian movement) and (b) the particles chosen
by (Vi)k=1 to perform the jumps are always the first and the last one (hence the
first particle jumps to the position of the last one). In this event we have that
nN-1 € R.

The probability of this event can be bounded below uniformly on the initial
condition by

N-1 2aN Nt
Pynn-1€ R) = (a"P(Vi = (1,N)))" = (N(N—l)) ) (4.3)
with a > 0 being the probability that a Brownian motion started at the origin does
not leave (—1/2,1/2) before a time given by an independent exponential random
variable with parameter N — 1. This implies (i).

To prove (ii) observe that the displacement of the particles between jumps has
the law of the order statistics for NV independent Brownian motions, whose density
is uniformly bounded below for any initial condition 7y € R by a positive constant
cy. Taking q as the normalized Lebesgue measure restricted to R, »r = 1 and
A = cye N (the factor e=¥ stands for the probability of not having jumps in [0, 1])
we get that (ii) holds, which completes the proof of (ii).

It is easy to check, by means of (4.3) and the strong Markov property, that
sup, E,(Tr) < o and hence (n)r>o is positive Harris recurrent, which implies
that a unique invariant measure exists and is finite. The fact that "V is absolutely
continuous follows from the fact that the distribution of the process is absolutely
continuous for every positive time, for every initial distribution.
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4.2. Convergence to equilibrium. To prove (2) it suffices to show the result for the
subsequences (nm+;j)m=0, wWith 0 < j < N. Furthermore, due to the Markov
property, we only need to consider the case j = 0. The inequality obtained in
(4.3) (which is independent of 1) implies that sup, P,(7g > t) < 1 for some ¢ > 0.
The result follows by applying Theorem 4.1(¢7) in Athreya and Ney (1978) to the
subsequence (Nnm)m>0-

4.3. Euxistence of a velocity. We prove that both limits in (2.5) exist almost surely
and in L' and that they are nonrandom as in Bérard and Gouéré (2010). The
argument makes use of the subadditive ergodic theorem Durrett (1991). First
observe that due to the monotonicity property (with respect to the initial state) of
the coupling introduced in (4.1) and translation invariance, it is sufficient to prove
the result when all the particles start at the origin.

We construct several copies of our process simultaneously. The index n refers to
the n—th copy and the index k refers to time. Given the sequences (Dy)r>1 for the
displacements and (Vj)g>1 for the jumps we construct each copy of the process in
the following manner:

Cn,O = 503 (Cn,k)k?l = T((W)r?na (D’I”)T‘Zna Cn,O)v n = 0.

Here T refers to the construction introduced in (4.2). Let us stress the fact that
the n—th copy of the process does not make use of the first n elements of the
sequences (V;)r>1, (Dr)rz1. Thus, for d € N, (Cgm,a)m>1 is an i.i.d. sequence and
the distribution of (¢, x)k>1 does not depend on n.

A key observation is that if we run the process up to time k, next we put all
the particles at the position of (x[N], and finally we run it for another [ steps, we
obtain a configuration that dominates the one obtained by running the process k+1
steps. In other words,

CO,?L-‘rkJ[N] < {Cn,k + CO,n[N]}[N]'

Now, define v, r = (p r—n for 0 < n < k. Taking into account the aforementioned
considerations it is simple to verify that the sequence (v, k[N])nk>1 fulfills all
the conditions of the subadditive ergodic theorem. Thus, limy_ o v0,5[N]/k exists
almost surely and in L', and it is nonrandom. Finally, observe that (vo,k) k=0 and
(Ck)k>0 coincide in law and hence the result holds also for limy_,o (x[N]/k and
lim—, o &[N]/t. The last limit holds since (Cx[N])k=0 and (&7, [IN])k=o0 have the
same distribution and the maximum displacements of (£;[N]):=o between jump
times are tight (and hence converge to zero when divided by ¢). The existence of
the limit lim;_,4 &[1]/t can be obtained in a similar way.

Finally observe that (1) and (2) of Theorem 2.3, imply that n;(N — 1) converges
in distribution, as ¢ — o0 to an almost surely finite random variable X. Therefore,
(N — 1)/t = (&[N] — &][1])/t converges in distribution to 0 and thus, also in
probability. This finishes the proof of (3).

4.4. Velocity. To prove the monotonicity stated in (4) we use a construction similar
to the one in (4.1) to couple two systems, one with N particles, denoted by (¢2¥) k=0,
and another with N + 1 particles denoted by ( ,iv +1) k>0- This coupling is similar to
the one used in Bérard and Gouéré (2010); Maillard (2016); Durrett and Remenik

(2011) to prove the same monotonicity result. The main difference is that in those
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models the rate at which each pair of particles produce a branching-selection event
is independent of N, while in our case it is 1/(IN — 1).

For the ease of the reading, we first describe the coupling informally. Let us
suppose that the initial conditions are ordered in the following sense

0 iA1= ¢, i=1,.. N, (4.4)

We start by matching the order statistics of both systems. Each ¢V [i],i =1,..., N
is paired with ¢(V*1[i + 1]. The particle at (¥ +1[1] is not coupled. We re-match
the particles of the two processes just before and immediately after every time a
jump takes place. We do not re-match between jumps, but during these periods
the Brownian displacements are coupled among both systems according to the
match. More precisely, after each jump we use the same Brownian motion to
drive the particles at positions ¢(VF1[i + 1] and ¢™[i], for every 1 < i < N. This
guarantees that the pairs matched by the coupling keep their relative order. In
particular, each i—th order statistic of the N—system has at least N — i particles
of the (N + 1)—system to the right.

Given that the rate at which each pair of order statistics produce a jump in a
system with IV particles is ﬁ (and hence depends on N), we couple the jumps
as follows. Each time there is a jump from position (V[i] to position ¢V[j] with
i < j, we enforce the same jump from ¢(N*+1[i + 1] to ¢N*+1[j + 1] with probability
N1 while, with probability 4, the jump occurs from ¢(N*1[1] to ¢NF1[j + 1].
Note that in order to obtain the correct rates for the (N + 1)—system, extra jumps
from ¢VT1[1] to the other particles should be included. Observe that while this
procedure gives the correct rates, neither of these jumps alter the ordering (4.4).

We now provide a precise construction. Let (T})r>1 be a Poisson process with
rate AV + A*, with AN := £ and AT = 1. Let (Vi)ps1, with V. ~ U{On} as
in (4.1). We decompose BN*! = (B!, BY) where (BY),>¢ is a N-dimensional
Brownian motion. Finally, let (Wy)r>1 and (Ck)r>1 be two Bernoulli processes
with success probability % and % respectively, and (V,:) k>1 1.i.d. random
variables probabilty mass function

2N—j+l 9

pvl+(j): N N—1 ° N.

geeey

Given ¢}, ¢’ (and using the previously defined notations o and ), we construct
both processes as follows:

CN _ O’(GVI‘,(J(CéV-FB%Hl—B%C))), if Wy, =1,
MUY+ BY - BY, if W, = 0,

Tr+1

o(Ov,+an (@ + BRI = BRTY)), Wy =1, Cp =1,

Tr+1
Gt =S o(0av@an (@G + BY T = BE ), i W, =1, Cp =0,
o (0 (oG + BTJY;} — BxY), if W, =0, V;F =4, j =2

It is easy to check that with this construction
N+ 1] = ¢V, YE=1, Yi=1,...,N,

which implies the claimed monotonicity vy11 = vy .

To prove (2.6) we provide a lower bound for the speed of the empirical mean and
an upper bound for the speed of the rightmost particle. The result will follow from
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the fact that both bounds coincide as N — o0. For the lower bound, we make use
of the monotonicity of the spacings of &,, which is established in the next lemma.

Lemma 4.1. Let (&)>0, (&)i=0 be two processes with generator (2.1) and initial
conditions &, & respectively such that

€oli + 1] — &li] <ut &oli +1] —&oli], i=1,....N—1.
Then,
Gli+ 1)=&l <t &[i +1] = &[i], i=1,...,.N—1, ¥Yt=0.
Here <,; denotes stochastic domination.

Proof: Let us first observe that the result holds for the spacings of N independent
Brownian motions (see Ramasubramanian, 2000, Theorem 4.1), which is the law of
the particles between jump times. Next, note that if the jumps for both processes
are coupled as in (4.1) the domination of spacings is preserved after each jump.
Proceeding inductively we obtain the stochastic domination for all times. O

Lower bound. Let u° be the solution of the F-KPP equation with initial condition
given by the Heavyside function and w, () the minimal velocity traveling wave
for (1.1). Let m(t) be the median of u%(-,¢). The following facts hold (Bramson,
1983).

(i) [u®(- + m(t),t) —w sz5]| — 0 as t — .

(i) V2 = [ w5 (@)(1 — w5(a)) da
Our strategy consists in comparing the velocity of the empirical mean of the sys-
tem in equilibrium as seen from the leftmost particle and the system with initial
condition given by the Heavyside function. Afterwards, Theorem 2.1 will provide
us the link to use (i)-(ii). This idea appears in Bramson et al. (1986).
We denote by 7V the distribution obtained by placing particle labeled 1 at the

N
origin and the remaining ones according to v". Let m{ = 4 Z &:(i) be the
i=1
empirical mean and observe that
+a0 0
Eyn[m] = Eyn[l— Fn(z,t)] dz — f Eyn[Fy(z,t)] dz,
0 —

and hence differentiating under the integral sign we get

+00
OtEpn [miN] = _J OtEpn [Fn(z,t)] dv
—0o0
+o0
= J Eyn[Fn(z,t)(1 — Fy(z,1))] da. (4.5)
—o0
In the last equality we make use of (3.6). Let us notice that
N-1
Fy(z,t) = H{z = &N} + ) #1{&[K] <z < &k + 1]}
k=1

which gives us

o N-1 _
f Fy(z,t)(1 - Fy(z,t)de = Y MV R

Eelk + 1] — &k]),
- ¥ Sl -6k



604 P. Groisman, M. Jonckheere and J. Martinez

and hence it is monotone in the spacings of the system.
We bound (4.5) from below as follows

+00

Jﬂo Eyn[Fn(z,t)(1 — Fy(z,t))] de = J Eo[Fn(z,t)(1 — Fn(x,t))] dz

—0 —o0

m(t)+b
> f Eo[Fy (2, 6)(1 = Fy(2,0))] da,
m(t)—b (4 6)

for all 0 < b < o0, where Fj stands for the expectation with respect to the process
distribution with initial configuration given by placing all the particles at the origin.
Now, (4.6) can be written as

m(t)+b m(t)+b
J Eo[Fn(x,t)(1 — Fn(z,t))] doe — J (1 —u®)(z,t) do (4.7)
m(t)—b m(t)—b
m(t)+b
+J u?(1 — %) (z,t) dr. (4.8)
m(t)—b

Due to (i)-(ii) we can fix b and ¢ big enough to make (4.8) as close to v/2 as desired.
For those values of b and ¢, the term (4.7) converges to zero as N — oo. Here we
use that, due to Theorem 2.1, | Fy (1 — Fn)(-, 1) —u®(1 —u°)(-,t)| converges to zero
in probability (under Py) as N — oo; and hence it does it in L. So,

+00

lim inff Eon[Fy(z,t)(1 — Fx(z,1))] do = V2. (4.9)
N—-w —o

We claim that d; E;n [m¥] = vy. Indeed, as v is the equilibrium distribution for

the system seen from the leftmost particle, a renewal argument readily implies that

(&[1])t=0 has stationary increments and thus

Egn [miv] = Epn [miv —&[1]] + Epn [&[1]] = c1 + eat,
with ¢; and ¢o depending on N. The limit in (2.5) forces ¢o to equal vy which
implies our claim. Combining this with (4.5) and (4.9) we conclude that
liminf oy = V2.

n—oo
Upper bound. For this bound, we embed the process into N independent BBMs.
Recall that the maximum M; of a BBM at time t verifies
lim &t = /2 as. (4.10)

5o ¢

We provide a last alternative construction of the process. Instead of using a
Poisson clock of rate 1 for the jumps of each particle, we use a Poisson clock of rate
% for each rank k = 1,..., N. Whenever the k-th clock rings the particle whose
rank is k£ branches into two particles. At that time, a particle is chosen uniformly
at random among those particles with rank less than k and is eliminated from the
system. Between jumps, particles evolve as independent Brownian motions. It is
clear that (i) the process constructed in this way has generator (2.1) and (ii) each
particle branches at a rate which is less or equal than one. Hence we can couple
this process with a BBM by adding extra branchings to achive rate one.

More precisely, let us construct a coupling between a process with generator
(2.1) and N independent BBM systems. We will still denote it (& )i=0. Let
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X1(t),..., Xn(t), Xn41(¢),... denote the positions of all the particles of N in-
dependent BBM starting at (1), ...,&(N), labeled according to its appearence
time. Let (7;);>1 be the branching times (in increasing order) and (I;);>1 the
corresponding labels of the branching particles. Let (U;);>1 and (Df)ksN@;l be
independent random variables with U; uniform in [0,1], 4 > 1 and D¥ uniform in

{1,...,k—1}fori > 1, k < N. Finally, let o, = %, k=2,...,N. We construct

a process (L}, ..., LY) on the set of labels N. We will use these labels to determine
the particles of the BBM that are going to be used to construct the coupling. For
j=1,...,N, we define

R} = rank of XLZ(t) in the set {Xp1(¢),...., Xy~ (1)} € {1,.... N}
We build (L}, ..., L)) inductively as follows:

o At time zero (L},...,LY) =(1,...,N).
e Assume (L1 .., LY _ ) is known. For t € (1;_1, ;] we define:

Tiyre
L {N+z’ ift=m, lL=L_.j#k, Ui<ay, DM =R
Lf, otherwise,
k=1,...,N.
We leave to the reader to verify that
(1), &(N)) i= (Xps (Do Xy (),
has generator 2.1. With this coupling we have that
&[N] < max(M},...,MN), Vt=0, (4.11)
with M the maximum of the j-th BBM. Combining (4.10) with (4.11) we conclude
lim sup % <V2.

t—0

\%
o
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