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Abstract. We prove that the speed of a λ-biased random walk on a supercriti-
cal Galton-Watson tree is differentiable for λ such that the walk is ballistic and
obeys a central limit theorem, and give an expression of the derivative using a cer-
tain 2-dimensional Gaussian random variable. The proof heavily uses the renewal
structure of Galton-Watson trees that was introduced in Lyons et al. (1996).

1. Introduction

In this paper, we investigate the speed of biased random walks on supercritical
Galton-Watson trees. Specifically, we show that the speed is differentiable within
a certain range of bias and obtain an expression for the derivative in terms of the
covariance of a 2-dimensional Gaussian random variable.

Random walks on GW-trees are a natural setting for studying trapping phenom-
ena as dead-ends, caused by leaves in the trees, trap the walk. Even without leaves,
the randomness in the environment slows the walk and several properties that seem
obvious turn out to be non-trivial and interesting problems. These models can be
used to approach related problems concerning biased random walks on percolation
clusters (as studied in Fribergh and Hammond, 2014) and random walk in random
environment (see for example Sznitman, 2000) which experience similar phenom-
ena. For a recent review of trapping phenomena we direct the reader to Ben Arous
and Černý (2006), Ben Arous and Fribergh (2016) and Fontes and Mathieu (2014)
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Figure 1.1. A sample section of a supercritical GW-tree condi-
tioned to survive T with solid lines representing the backbone Tg

and dashed lines representing the traps. Here, the root e is the
parent of w (i.e. e = π(w)) which has children x, y, z where x, z
are on the backbone and y is a bud in the only trap rooted at w.
Similarly, u, v are two of the children of z, both of which are buds
of individual traps rooted at z.

which detail the history of trapping models including their motivation via spin-
glasses and cover recent developments in a range of models of random walks on
underlying graphs including supercritical GW-trees.

We now briefly describe the supercritical GW-tree conditioned on survival via
the Harris decomposition; for more detail see Athreya and Ney (2004); Janson
(2012). Let {pk}k≥0 denote the offspring distribution of a GW-process Wn with a
single progenitor, mean µ > 1 and probability generating function f . The process
Wn gives rise to a random tree Tf where individuals are represented by vertices
and edges connect individuals with their offspring. Let q denote the extinction
probability of Wn which is strictly less than 1 since µ > 1 and non-zero only when
p0 > 0. In this case we then define

g(s) :=
f((1− q)s+ q)− q

1− q
and h(s) :=

f(qs)

q

which are generating functions of a GW-process without deaths and a subcritical
GW-process respectively (cf. Chapter I.12 of Athreya and Ney, 2004). An f -GW-
tree conditioned on nonextinction T can be constructed by first generating a g-
GW-tree Tg and then, to each vertex x of Tg, appending a random number of
independent h-GW-trees (see Figure 1.1). We refer to Tg as the backbone of T,
the finite trees appended to Tg as the traps and the vertices in the first generation
of the traps as the buds.

We now introduce the biased random walk on a fixed tree T . We denote by
e(T ) the root, which is the vertex representing the unique progenitor. For x ∈ T ,
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let π(x) denote the parent of x and ν(x) the number of children of x. A λ-biased
random walk on T is a random walk (Zn)n≥0 on the vertices of T started from
e(T ) with transition probabilities

PT
λ (Zn+1 = y|Zn = x) = Aλ(x, y) :=


λ

λ+ν(x) , if y = π(x),
1

λ+ν(x) , if x = π(y) 6= e(T ),
1

ν(x) , if x = π(y) = e(T ),

0, otherwise.

We use Pλ(·) :=
∫
PT
λ (·)P(dT) for the annealed law obtained by averaging the

quenched law PT
λ over the law P on f -GW-trees conditioned to survive. For x ∈ T,

let d(x) denote the distance between x and the root of the tree and write λc := f ′(q)
where we note that λc = 0 when p0 = 0.

The behaviour of λ-biased random walks on the GW-treeT have been extensively
studied since Lyons et al. (1996) showed that if λ ∈ (λc, µ) then the walk is ballistic;
that is, d(Zn)n−1 converges Pλ-a.s. to a deterministic constant υλ > 0 called the
speed of the walk. When λ > µ the walk is recurrent and d(Zn)n−1 converges Pλ-
a.s. to 0. When λ is small and p0 > 0, the walk is transient but slowed by having
to make long sequences of movements against the drift in order to escape the traps;
in particular, if λ ≤ λc then the slowing affect is strong enough to cause d(Zn)n−1

to converge Pλ-a.s. to 0. This regime has been studied further in Ben Arous et al.
(2012) and Bowditch (2018a) where polynomial scaling results are shown.

The aim of this paper is to study how the value of υλ depends on the parameter
of bias λ; specifically, our main result is the following.

Theorem 1.1. Suppose that there exists β > 1 such that
∑∞
k=1 pkβ

k <∞. Then,
the function λ 7→ υλ is differentiable on (λ

1/2
c , µ). Moreover, the derivative of the

speed υ′λ can be expressed as the covariance of a two dimensional Gaussian random
variable (X,Y ). Namely, we have that υ′λ = Eλ[XY ].

We remark here that 0 ≤ λc ≤ λ
1/2
c < 1 since 0 ≤ λc < 1 and note that the

covariance matrix of (X,Y ) is given in (3.20).
In the unpublished note Aïdékon (2013), the differentiability of the function

λ 7→ υλ was shown for 0 < λ < 1 in the case p0 = 0, and an expression of the
derivative was given which is based on the description of invariant measures for the
environment seen from the particle obtained in Aïdékon (2014).

A fluctuation-dissipation theorem FDT (see Dembo and Deuschel, 2010; Kubo,
1966) suggests that the internal fluctuations of a system at equilibrium should be
related to the response of the system to an external disturbance. In the context of a
random walk, this would suggest that the fluctuations of the walk should be related
to the response of imposing a drift. A widely held conjecture is that an FDT should
hold in many random walk models (e.g. Gantert et al., 2012; Lebowitz and Rost,
1994); however, it has been shown in Cugliandolo and Kurchan (1993) that this
is violated by several mean-field spin glass models at low temperature due to slow
dynamics and aging. This is of particular interest due to the connections between
spin-glasses and models of random walks in random trapping environments. Some
progress towards proving an FDT for a random walk on a supercritical GW-tree
without leaves was made in Ben Arous et al. (2013) where it was shown that the
diffusivity is equal to the mobility (the derivative of the speed with respect to
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the exterior force αλ = log(µ/λ)) at the diffusive point λ = µ. Understanding
the relation between the diffusivity and the mobility for λ in the ballistic regime
remains open.

It has been shown in Bowditch (2018b) and Peres and Zeitouni (2008) that,
under the conditions of Theorem 1.1, there exists a constant ς ∈ (0,∞) such that,
for P-a.e. T,

Bnt :=
d(Znt)− ntυλ

ς
√
n

converges in PT
λ -distribution to a Brownian motion. In particular, the range of

bias (λ
1/2
c , µ) is precisely the range in which the walk is ballistic and a central

limit theorem holds. We expect that the differentiability should extend to (λc, µ)
however, our proof relies heavily on second moment bounds of regeneration times
which only hold in the smaller range of bias.

The key ingredients of the proof are the renewal structure, the discrete Girsanov
formula and suitable moment bounds on excursion times of random walks in GW-
trees.

The renewal structure allows paths of a random walk to be decomposed into
i.i.d. components. This technique is frequently used to analyse random walks in
random environments as well as various other models in probability and statistical
mechanics. Lyons et al. (1996) constructed the renewal structure for supercritical
GW-trees, which we will heavily utilise in this paper. See Ben Arous et al. (2014);
Berger et al. (2019); Dembo et al. (2002) for applications of this method to the
analysis of the speed of random walks in random environments. In particular, we
refer to the paper Berger et al. (2019), where the authors study the speed of biased
random walks on a random conductance model, since our strategy resembles theirs.
See Mathieu (2015) also for a study of a similar problem in the context of random
walks on word-hyperbolic groups.

We now describe the discrete Girsanov formula which allows us to relate the walk
for different values of the bias. Let T be a rooted infinite tree and

(
Fn(T )

)
n≥0

be the filtration on the probability space (Ω̃(T ),F(T ), PT
λ ) generated by the λ-

biased random walk (Zn) on T . Then for an
(
Fn(T )

)
-stopping time S, an FS(T )-

measurable function F : Ω̃(T )→ R and h ≥ −λ, we have that

ET
λ+h

[
F
(
(Zk)k≥0

)]
= ET

λ

[
F
(
(Zk)k≥0

) S∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

]
. (1.1)

We remark here that regeneration times are not stopping times, thus the formula
(1.1) does not apply directly to them. Moreover, we will mostly work with the
annealed measure conditioned on non-backtracking in order to avoid bad behaviour
of the first regeneration time. (See Remark 2.7 for details.) The presence of the
non-backtracking condition is also an obstacle to apply the Girsanov formula. We
will solve this problem using Lemma 3.3.

In order to study the change in υλ as we vary the bias λ, we require control on
the walk that is uniform in the bias. Specifically, due to the regeneration structure,
it will suffice to control the variation of the walk within a single regeneration block.
To this end, an important role is played by Proposition 2.5, which gives a moment
estimate of regeneration times that is uniform in the bias. Its proof is the main
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technical contribution of this paper and Sections 4, 5 and 6 are entirely devoted to
the fairly intricate arguments involved in it.

The organisation of this paper is as follows; in Section 2, we first introduce
several basic facts on the renewal structure of GW-trees. In Section 3, we will
prove Theorem 1.1 using the formula (1.1). We defer the more technical aspects
concerning moments of regeneration times to Sections 4, 5 and 6. Specifically,
in Section 4 we show that the uniform moment estimates for regenerations times
hold for GW-trees without leaves, in Section 5 we prove a moment bound on the
generation sizes of GW-trees and, finally, in Section 6 we combine these estimates
to prove that the uniform moment estimates for regenerations times extends to the
case with leaves.

2. Renewal structure of Galton-Watson trees

In this section, we introduce regeneration times and state their moment esti-
mates, which will be very important for this study.

Definition 2.1. For a rooted tree T and x ∈ T , define PT
λ,x(·) := PT

λ (·|Z0 = x).
(Thus, PT

λ = PT
λ,e(T ).) We will denote the expectation with respect to Pλ (resp.

PT
λ ) by Eλ (resp. ET

λ ).

Definition 2.2. Let (Zn)n≥0 be the λ-biased random walk on a rooted tree T .
1: A time n ∈ N is called a regeneration time if d(Zn) > d(Zk) for all k < n and

d(Zl) > d(Zn−1) for all l > n.
2: For x ∈ T , define the first return time σx by σx := inf{n ≥ 1 ; Zn = x}.

Remark 2.3. Regeneration times defined above are called level-regeneration times
in Dembo et al. (2002), and are different from what are defined in Lyons et al.
(1996).

Definition 2.4. Let T be a rooted tree.
1: For x ∈ T , define T (x) as the subtree of T which consists of x and its descen-

dants. The vertex x is naturally regarded as the root of T (x).
2: We will denote by T ∗ a new tree obtained by adding to the graph T an edge

connecting e(T ) and a new vertex e∗(T ). The vertex e∗(T ) is considered
as the root of T ∗ and the parent of e(T ). We often write e and e∗ for
e(T ) and e∗(T ) when the tree is clear from context.

The usefulness of renewal structure and regeneration times is that they provide
a way to decompose sample paths of random walks into i.i.d. pieces. When we deal
with random walks on graphs carrying good renewal structures, approximations
using regeneration times often enable us to reduce the analysis of the statistical
behaviour of random walks to that of i.i.d. random variables.

We note that a different sequence of regeneration times (called super-regeneration
times) have been introduced in Ben Arous et al. (2012) which decouple the event
of a regeneration from the structure of the tree. These are particularly useful in
decomposing the walk; however, this definition of regeneration times is only suitable
when λ < 1 because it relies on comparison with a biased random walk on Z with
this bias.

An important property is that, by Lemma 3.3 and Proposition 3.4 of Lyons
et al. (1996), for λ ∈ (0, µ) there exist, Pλ-a.s., infinitely many regeneration times
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0 =: τ0 < τ1 < τ2 < .... and the sequences {(τi+1−τi, d(Zτi+1
)−d(Zτi)}i≥0 are i.i.d.

random vectors under Pλ. A useful fact is that the law of (τ2 − τ1, d(Zτ2)− d(Zτ1))
under the probability measure Pλ is identical to the law of (τ1, d(Zτ1)) under the
probability measure P NB

λ , where

P NB
λ (A) :=

∫
P(dT)PT∗

λ,e(T)(A ∩ σe∗(T) =∞) ·
(∫

P(dT)PT∗

λ,e(T)(σe∗(T) =∞)

)−1

.

Therefore, under P NB
λ , the distribution of (τ2 − τ1, d(Zτ2)− d(Zτ1)) coincides with

that of (τ1, d(Zτ1)). We will denote by ENB
λ the expectation with respect to P NB

λ .
The following moment estimate of regeneration times which is uniform in λ will

play an important role in this paper. We note that λc < 1 thus the condition a < 1
is to ensure that log(λc)/ log(a) > 0. Since the proof is quite technical, we postpone
it to Sections 4, 5 and 6.

Proposition 2.5. Suppose [a, b] ⊂ (0, µ) with a < 1 and that there exists β > 1
such that

∑∞
k=1 pkβ

k <∞. Then, for any α < log(λc)/ log(a) we have

sup
λ∈[a,b]

ENB
λ [τα1 ] = sup

λ∈[a,b]

ENB
λ [(τ2 − τ1)α] = sup

λ∈[a,b]

Eλ[(τ2 − τ1)α] <∞.

If a > λ
1/2
c then log(λc)/ log(a) > 2 therefore we immediately have the following

corollary.

Corollary 2.6. Suppose [a, b] ⊂ (λ
1/2
c , µ) and that there exists β > 1 such that∑∞

k=1 pkβ
k <∞. Then, for some ε > 0 we have

sup
λ∈[a,b]

ENB
λ [τ2+ε

1 ] = sup
λ∈[a,b]

ENB
λ [(τ2 − τ1)2+ε] = sup

λ∈[a,b]

Eλ[(τ2 − τ1)2+ε] <∞.

Remark 2.7. In general, τ1 does not satisfy these good moment estimates under the
law Pλ which is one of the reasons that we use instead the law PNB

λ . This problem
arises from the number of excursions of the random walk from the root to itself until
the walk escapes. Denote by RE the number of visits of the walk to the root, we
have that τ1 ≥ RE Pλ-a.s. Moreover, RE under PT

λ is distributed as the geometric
random variable whose termination probability is the quenched escape probability
PT
λ (σe∗(T) =∞).
Suppose that p1 > 0 and λ > 1. We denote by Rλ(T) the effective resistance

from e(T) to ∞ of T where T is regarded as the electric network corresponding to
the λ-biased random walk. Let us consider the event where every individual up to
nth generation gives birth to only one child, which occurs with probability pn1 . On
this event, Rλ(T) is of order λn. This observation implies that

P(Rλ(T) > n) ≥ cnlog p1/ log λ

for some constant c > 0. (Note that log p1 < 0 since 0 < p1 < 1.) In the light of
a well-known fact in the theory of electric networks and reversible random walks
(see Theorem 2.11 of Barlow, 2017 for instance), the above estimate implies that
RE (therefore τ1 also) does not even satisfy a finite first moment in general.

We also need the following estimates in what follows. Their proofs will also be
given in Sections 4, 5 and 6.
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Proposition 2.8. Suppose that there exists β > 1 such that
∑∞
k=1 pkβ

k < ∞.
Then for any λ ∈ (λc, µ), we have that

E
[
ET∗

λ

[
σe∗(T)1{σe∗(T)<∞}

]]
<∞.

Proposition 2.9. The function

λ 7→ E
[
PT∗

λ

(
σe∗(T) =∞

)]
is continuous on (λc, µ).

3. Expressions of derivatives of the speed

In this section we prove Theorem 1.1 assuming Proposition 2.5. The following
result gives the finite approximation of the derivative. Notice that we do not use
expectations Eλ[d(Zn)] and Eλ+h[d(Zn)], but ENB

λ [d(Zn)] and ENB
λ+h[d(Zn)], to ap-

proximate the derivative, which is a non-negligible difference from the approach of
Berger et al. (2019). This is necessary because of the lack of good moment esti-
mates of the first regeneration time τ1, which arises from a special role played by
the root. See Remark 2.7 for details.

Proposition 3.1. Suppose λ ∈ (λ
1/2
c , µ) and that there exists β > 1 such that∑∞

k=1 pkβ
k < ∞. Let h tend to 0 and n tend to ∞ in such a way that h2n tends

to 1 (i.e. hn ∼ n1/2). Then

υλ+h − υλ
h

−
ENB
λ+h[d(Zn)]− ENB

λ [d(Zn)]

hn

tends to 0.

Proof : Define ηn := inf{k : τk ≥ n} for n ∈ N, then ηn is a stopping time with
respect to the filtration generated by random variables τ1, and {τi+1 − τi}i≥1. By
the definition of ηn, we have

n ≤ τηn ≤ n+ max
0≤i≤n

(τi+1 − τi), P NB
λ -a.s. (3.1)

Combining this with Wald’s identity we then have

n ≤ ENB
λ [τηn ] = ENB

λ [ηn]ENB
λ [τ1] ≤ n+ ENB

λ

[
max

0≤i≤n
(τi+1 − τi)

]
. (3.2)

Using that 0 ≤ |d(Zn)− d(Zτηn )| ≤ τηn − n, (3.1) then implies that

|ENB
λ [d(Zn)]− ENB

λ [d(Zτηn )]| ≤ ENB
λ

[
max

0≤i≤n
(τi+1 − τi)

]
.

Wald’s identity then gives

ENB
λ [d(Zτηn )] = ENB

λ [ηn]ENB
λ [d(Zτ1)].

Hence, we get∣∣∣ENB
λ [d(Zn)]− nυλ

∣∣∣ ≤ ∣∣ENB
λ [d(Zn)]− ENB

λ [d(Zτηn )]
∣∣+
∣∣ENB

λ [d(Zτηn )]− nυλ
∣∣

≤ ENB
λ

[
max

0≤i≤n
(τi+1 − τi)

]
+
∣∣ENB

λ [ηn]ENB
λ [d(Zτ1)]− nυλ

∣∣ (3.3)
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By (6.4) in Lyons et al. (1996) we have that

υλ =
Eλ[d(Zτ2)− d(Zτ1)]

Eλ[τ2 − τ1]
=
ENB
λ [d(Zτ1)]

ENB
λ [τ1]

, (3.4)

therefore, using (3.2) and that υλ ≤ 1, we have∣∣ENB
λ [ηn]ENB

λ [d(Zτ1)]− nυλ
∣∣ ≤ ∣∣ENB

λ [ηn]ENB
λ [τ1]− n

∣∣ ≤ ENB
λ

[
max

0≤i≤n
(τi+1 − τi)

]
.

(3.5)

By combining (3.3) and (3.5), we get∣∣ENB
λ [d(Zn)]− nυλ

∣∣ ≤ 2ENB
λ

[
max

0≤i≤n
(τi+1 − τi)

]
In order to complete the proof of Proposition 3.1, it suffices to show that there exist
constants 0 < tλ < min{µ− λ, λ− λc}, 0 < κ < 1/2 and cλ > 0 such that

ENB
λ′

[
max

0≤i≤n
(τi+1 − τi)

]
≤ cλnκ (3.6)

for any λ′ ∈ (λ− tλ, λ+ tλ). The estimate (3.6) can be proved as follows: for κ > 0,
we have

ENB
λ′

[
max

0≤i≤n
(τi+1 − τi)

]
≤ nκ +

∑
k≥[nκ]

P NB
λ′

(
max

0≤i≤n
(τi+1 − τi) ≥ k

)
.

By Corollary 2.6, there exists a constant cλ > 0 such that for λ′ ∈ (λ− tλ, λ+ tλ)
and sufficiently large k, we have

P NB
λ′

(
max

0≤i≤n
(τi+1 − τi) ≥ k

)
= 1− {1− Pλ′ (τ2 − τ1 ≥ k)}n

≤ 1− (1− cλk−(2+ε))n ≤ 2cλnk
−(2+ε).

Thus, for sufficiently large n, we get

ENB
λ′

[
max

0≤i≤n
(τi+1 − τi)

]
≤ nκ + 4cλn

−κ(1+ε)+1.

Since max{κ,−κ(1 + ε) + 1} ≤ 1
2+ε , we obtain the estimate (3.6). Therefore, we

have shown that
ENB
λ+h[d(Zn)− nυλ+h]− ENB

λ [d(Zn)− nυλ]

hn

tends to 0 when h tends to 0 and n tends to ∞ in such a way that h2n tends
to 1. �

By Proposition 3.1, in order to show the differentiability of the function λ 7→ υλ,
it suffices to prove the existence of the limit

lim
h,n

ENB
λ+h[d(Zn)]− ENB

λ [d(Zn)]

hn
,

where h tends to 0 and n tends to ∞ in such a way that h2n tends to 1. We will
need the following estimates.
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Lemma 3.2. Suppose that λ ∈ (λ
1/2
c , µ) and that there exists β > 1 such that∑∞

k=1 pkβ
k <∞. Then, we have

sup
n

1

n
ENB
λ [(d(Zn)− nυλ)2] <∞ (3.7)

and

sup
n

1

n
E
[
ET∗

λ

[
(d(Zn)− nυλ)21{σe∗(T)>n}

]]
<∞. (3.8)

Proof : We first prove (3.7). Using (3.1) and the arguments of Proposition 3.1 we
have that

|d(Zn)− nυλ| ≤
∣∣d(Zτηn )− nυλ

∣∣+ max
0≤i≤n

(τi+1 − τi) P NB
λ -a.s.,

and, P NB
λ -a.s.,

d(Zτηn )− nυλ =

ηn−1∑
i=0

(
d(Zτi+1)− d(Zτi)− ENB

λ [d(Zτ1)]
)

+
(
ηn · ENB

λ [d(Zτ1)]− nυλ
)

Hence, we get

ENB
λ [(d(Zn)− nυλ)2]

≤ 4

{
ENB
λ

[(
max

0≤i≤n
(τi+1 − τi)

)2
]

+ ENB
λ

[(
ηn · ENB

λ [d(Zτ1)]− nυλ
)2]

+ ENB
λ

{ηn−1∑
i=0

(
d(Zτi+1

)− d(Zτi)− ENB
λ [d(Zτ1)]

)}2
}.

Recall that d(Zτi+1)− d(Zτi) are i.i.d. then Wald’s second identity implies

ENB
λ

(ηn−1∑
i=0

(
d(Zτi+1

)− d(Zτi)− ENB
λ [d(Zτ1)]

))2


= ENB
λ

[(
d(Zτ2)− d(Zτ1)− ENB

λ [d(Zτ1)]
)2]

Eλ[ηn]

thus by Corollary 2.6 and the estimate (3.2) along with (3.6), we have

sup
n

1

n
ENB
λ

(ηn−1∑
i=0

(
d(Zτi+1

)− d(Zτi)− ENB
λ [d(Zτ1)]

))2
 <∞.

It is not difficult to see that Corollary 2.6 implies n−1ENB
λ [(max0≤i≤n(τi+1 − τi))2]

is also bounded in n. Hence, we get the conclusion if we show

sup
n≥1

1

n
ENB
λ

[(
ηn · ENB

λ [d(Zτ1)]− nυλ
)2
]
<∞.

It is shown in Chapter 4 of Cox (1962) that

ENB
λ [η2

n] = ENB
λ [ηn]2 +O(n) =

n2

ENB
λ [τ1]2

+O(n).

By using the formula (3.4) and the estimate (3.2), we get

ENB
λ

[(
ηn · ENB

λ [d(Zτ1)]− nυλ
)2
]
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= ENB
λ [ηn]2ENB

λ [d(Zτ1)]2 − ENB
λ [d(Zτ1)]2

ENB
λ [τ1]2

· n2 +O(n)

which is at most order n therefore this implies (3.7).
We next prove (3.8). In order to deduce (3.8) from (3.7), it suffice to show that

sup
n

1

n
E
[
ET∗

λ

[
(d(Zn)− nυλ)21{n<σe∗(T)<∞}

]]
<∞.

This immediately follows from Proposition 2.8 and an obvious bound |d(Zn) −
nυλ| ≤ (1 + υλ)n. �

Lemma 3.2 implies uniform integrability of the sequence {(d(Zn)−nυλ)/
√
n}n≥1

under the conditioned annealed measure P NB
λ when λ ∈ (λ

1/2
c , µ) and the offspring

distribution {pk}k≥0 has finite exponential moment. On the other hand, by Corol-
lary 2.6 and a standard argument in the renewal theory, we get that the sequence
{(d(Zn) − nυλ)/

√
n}n≥1 satisfies the annealed CLT under the same assumptions.

Hence, we have

lim
n→∞

ENB
λ [d(Zn)− nυλ]√

n
= 0,

for any λ ∈ (λ
1/2
c , µ). Thus, in order to prove the differentiability of the speed, we

only need to show the existence of the limit
1

hn
ENB
λ+h[d(Zn)− nυλ], (3.9)

for any sequence h and n such that h→ 0 and n→∞ in such a way that h2n→ 1.
To do so, we wish to relate the measures ENB

λ and ENB
λ+h by using the Girsanov

formula (1.1). However, the formula (1.1) does not directly apply to ENB
λ+h[d(Zn)−

nυλ] because of the presence of the non-backtracking condition {σe∗(T) = ∞}. In
order to overcome this problem, we need the following lemma.

Lemma 3.3. Suppose that λ ∈ (λ
1/2
c , µ) and that there exists β > 1 such that∑∞

k=1 pkβ
k <∞. Then, we have that

1√
n

(
E
[
ET∗

λ+h

[
(d(Zn)− nυλ)1{σe∗(T)=∞}

]]
− E

[
ET∗

λ

[
(d(Zn)− nυλ)

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)
1{σe∗(T)=∞}

]])
(3.10)

converges to 0 as h tends to 0 and n tends to ∞ in such a way that h2n→ 1.

Since the proof of Lemma 3.3 requires a careful analysis of the Girsanov weight,
we will defer it until the end of the next subsection.

3.1. The discrete Girsanov formula. In this subsection, we will analyse the Gir-
sanov weight

∏n
i=1

Aλ+h(Zi−1,Zi)
Aλ(Zi−1,Zi)

. By the Taylor expansion, there exists s = s(x, y) ∈
[0, 1] such that

log
Aλ+h(x, y)

Aλ(x, y)
= hBλ(x, y) +

h2

2
Cλ(x, y) +

h3

6
Dλ+sh(x, y),
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where

Bλ(x, y) =
d

dλ
logAλ(x, y) =


0 when x = e,
1
λ −

1
λ+ν(x) when y = π(x),

− 1
λ+ν(x) when x = π(y),

Cλ(x, y) =
d

dλ
Bλ(x, y) =


0 when x = e,

− 1
λ2 + 1

(λ+ν(x))2 when y = π(x),
1

(λ+ν(x))2 when x = π(y),

and

Dλ(x, y) =
d

dλ
Cλ(x, y) =


0 when x = e,
2
λ3 − 2

(λ+ν(x))3 when y = π(x),

− 2
(λ+ν(x))3 when x = π(y).

By using these expressions, we have
n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)
= exp(hPn − h2Qn +Rn,h) Pλ-a.s., (3.11)

where

Pn :=

n−1∑
j=0

Bλ(Zj , Zj+1),

Qn :=

n−1∑
j=0

1

2
B2
λ(Zj , Zj+1),

Rn,h :=

n−1∑
j=0

{
h2

(
1

2
B2
λ(Zj , Zj+1) +

1

2
Cλ(Zj , Zj+1)

)
+
h3

6
Dλ+sh(Zj , Zj+1)

}
.

Since

|Bλ(x, y)| ≤ 1

λ
+ 1, |Cλ(x, y)| ≤ 1

λ2
+ 1, |Dλ(x, y)| ≤ 2

λ3
+ 2, (3.12)

we get

1 =
∑
y

Aλ+h(x, y) =
∑
y

Aλ(x, y) exp
(
hBλ(x, y) +

h2

2
Cλ(x, y) +

h3

6
Dλ+sh(x, y)

)
=
∑
y

Aλ(x, y)
(

1 + hBλ(x, y) +
h2

2
B2
λ(x, y) +

h2

2
Cλ(x, y) +O(h3)

)
.

This implies that for any x ∈ T,∑
y

Aλ(x, y)Bλ(x, y) = 0, Pλ-a.s., (3.13)

∑
y

Aλ(x, y)
(
B2
λ(x, y) + Cλ(x, y)

)
= 0, Pλ-a.s.

By using the Markov property and the equality (3.13), we obtain

ET
λ [Bλ(Zj , Zj+1) | Zj ] =

∑
y

B(Zj , y)Aλ(Zj , y) = 0, PT
λ -a.s.
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This implies

ET
λ [Bλ(Zj , Zj+1)] = Eλ[Bλ(Zj , Zj+1)] = 0, Pλ-a.s. (3.14)

Similarly, we have

ET
λ [B2

λ(Zj , Zj+1) + Cλ(Zj , Zj+1)] = 0, Pλ-a.s. (3.15)

We now let h tend to 0 and n tend to∞ in such a way that h2n tends to 1. We show
that the limits of hPn and h2Qn are described by a CLT and a LLN respectively
and the limit of Rn,h is negligible.

1) The CLT for Pn: By the renewal structure of GW-trees, we know that the
collection {

∑τi+1−1
j=τi

Bλ(Zj , Zj+1)}i≥1 are i.i.d. random variables under Pλ, and are
distributed as

∑τ1−1
i=0 Bλ(Zj , Zj+1) under P NB

λ . Recall that by (3.14) we have that

Eλ[Pn] = 0. (3.16)

On the other hand, noticing that τ1 is finite a.s. by the renewal structure we have
the following LLN:

lim
n→∞

n−1Pn =
Eλ

[∑τ2−1
j=τ1

Bλ(Bj , Bj+1)
]

Eλ[τ2 − τ1]
=
ENB
λ

[∑τ1−1
j=0 Bλ(Bj , Bj+1)

]
ENB
λ [τ1]

Pλ-a.s.

(3.17)

Noticing that n−1Pn ≤ 1 + λ−1 by (3.12), the dominated convergence theorem
implies that the same convergence as (3.17) holds in L1(Pλ). This fact together
with (3.16) implies that

Eλ

τ2−1∑
j=τ1

Bλ(Zj , Zj+1)

 = ENB
λ

τ1−1∑
j=0

Bλ(Zj , Zj+1)

 = 0. (3.18)

By (3.12) and Corollary 2.6 we also have that

Eλ


τ2−1∑
j=τ1

Bλ(Zj , Zj+1)

2
 ≤ ENB

λ


τ1−1∑

j=0

Bλ(Zj , Zj+1)

2


≤
(

1 +
1

λ

)2

ENB
λ

[
τ2
1

]
<∞.

Moreover, we have that

n−1/2

τηn−1∑
j=0

Bλ(Zj , Zj+1)− Pn

 ≤ n−1/2

(
1 +

1

λ

)
max

0≤i≤n
(τi+1 − τi),

which converges to 0 in probability by (3.6). It therefore follows that n−1/2Pn
converges in distribution to a centred Gaussian.

2) The LLN for Qn: Recalling that τ1 is Pλ-a.s. finite and from (3.12) that
B2
λ(Zj , Zj+1) is bounded above, by the law of large numbers we know that, Pλ-a.s.

lim
n→∞

1

n
Qn =

1

2Eλ[τ2 − τ1]
Eλ

τ2−1∑
j=τ1

B2
λ(Zj , Zj+1)


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=
1

2ENB
λ [τ1]

ENB
λ

τ1−1∑
j=0

B2
λ(Zj , Zj+1)

 .
3) The estimate for Rn,h: For some constant c < ∞, we have n ≤ ch−2.

Using this and (3.12), we have∣∣∣∣∣∣
n−1∑
j=0

h3

6
Dλ+sh(Zj , Zj+1)

∣∣∣∣∣∣ ≤ ch

3

(
1

λ3
+ 1

)
.

By (3.15) we have that

ET
λ

n−1∑
j=0

(
B2
λ(Zj , Zj+1) + Cλ(Zj , Zj+1)

) = 0, Pλ-a.s.

hence, by using the similar argument to the above one, we see that

lim
n→∞

Rn,h = 0, Pλ-a.s.

Note also that Rn,h satisfies the following uniform estimate for h sufficiently small.

|Rn,h| ≤ h2n

(
1

λ
+ 1 +

1

2

(
1

λ2
+ 1

))
+
ch

3

(
1

λ3
+ 1

)
≤ 2c

(
1

λ
+ 1 +

1

2

(
1

λ2
+ 1

))
+

1

λ3
+ 1. (3.19)

4) The joint CLT for
(
n−1/2(d(Zn) − nυλ), n−1/2Pn

)
n≥1

: We have given a

proof of the annealed CLT for the sequences of random variables {n−1/2(d(Zn) −
nυλ)}n≥1 and {n−1/2Pn}n≥1, but in what follows, we need the joint CLT for the
sequence of random vectors

(
n−1/2(d(Zn) − nυλ), n−1/2Pn

)
. Note that for any

λ ∈ (λ
1/2
c , µ),d(Zτl+1

)− d(Zτl)− υλ(τl+1 − τl),
τl+1−1∑
j=τl

Bλ(Zj , Zj+1)


l≥1

are i.i.d. R2-valued random variables under Pλ.
This fact together with the moment estimate of regeneration times immediately im-
plies the following result. Note that for σ10(λ), we use Eλ

[∑τ2−1
j=τ1

Bλ(Zj , Zj+1)
]

=

0 from (3.18) and that σ00(λ) coincides with the diffusion constant in the central
limit theorems proved in Bowditch (2018b).

Proposition 3.4. Suppose λ ∈ (λ
1/2
c , µ) and that there exists β > 1 such that∑∞

k=1 pkβ
k < ∞. Then, the sequence

{
(n−1/2(d(Zn) − nυλ), n−1/2Pn)

}
n≥1

under
Pλ converges weakly to the two dimensional Gaussian random variable (X,Y ) with
the covariance matrix Σλ := (σij(λ))0≤i,j≤1 given by

σ00(λ) :=
1

Eλ[τ2 − τ1]
Eλ

[((
d(Zτ2)− d(Zτ1)

)
− Eλ[d(Zτ2)− d(Zτ1)]

)2
]
,

σ11(λ) :=
1

Eλ[τ2 − τ1]
Eλ

τ2−1∑
j=τ1

B2
λ(Zj , Zj+1)

 , (3.20)
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σ10(λ) = σ01(λ) :=
1

Eλ[τ2 − τ1]
Eλ

(d(Zτ2)− d(Zτ1)
) τ2−1∑
j=τ1

Bλ(Zj , Zj+1)

 .
Moreover, under P NB

λ the sequence
{

(n−1/2(d(Zn)− nυλ), n−1/2Pn)
}
n≥1

converges
weakly to the same two dimensional Gaussian random variable (X,Y ).

Proof : We have already proved the first claim. The second claim is immediate from
the fact that the distribution ofd(Zτ2)− d(Z1)− υλ(τ2 − τ1),

τ2−1∑
j=τ1

Bλ(Zj , Zj+1)

 under Pλ

is same as that ofd(Z1)− υλτ1,
τ1∑
j=0

Bλ(Zj , Zj+1)

 under P NB
λ .

�

We now prove Lemma 3.3 by using discussions given in this subsection.

Proof of Lemma 3.3. By the Markov property, we have that

E
[
ET∗

λ+h

[
(d(Zn)− nυλ)1{σe∗=∞}

]]
= E

[
ET∗

λ

[
(d(Zn)− nυλ)

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)
1{σe∗>n} · E

T∗

λ+h,Zn

[
1{σe∗=∞}

]]]
and

E

[
ET∗

λ

[
(d(Zn)− nυλ)

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)
· 1{σe∗=∞}

]]

= E

[
ET∗

λ

[
(d(Zn)− nυλ)

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)
1{σe∗>n} · E

T∗

λ,Zn

[
1{σe∗=∞}

]]]
.

Thus, by Hölder’s inequality and Jensen’s inequality we have that (3.10) is equal
to∣∣∣∣∣E
[
ET∗

λ

[(
d(Zn)− nυλ√

n

)
1{σe∗>n} ·

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

·
(
ET∗

λ+h,Zn

[
1{σe∗=∞}

]
− ET∗

λ,Zn

[
1{σe∗=∞}

])]]∣∣∣∣∣
which is bounded above by E1

h,n · E2
h,n · E3

h,n where

E1
n := E

[
ET∗

λ

[(
d(Zn)− nυλ√

n

)2

1{σe∗>n}

]]1/2

,

E2
h,n := E

ET∗

λ

( n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)4
1/4

,
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E3
h,n := Eλ

[(
ET∗

λ+h,Zn

[
1{σe∗=∞}

]
− ET∗

λ,Zn

[
1{σe∗=∞}

])4
]1/4

.

It suffices to show that

sup
n
E1
n <∞, (3.21)

sup
h,n:h2n∼1

E2
h,n <∞, and (3.22)

lim
h,n:h2n∼1

E3
h,n = 0. (3.23)

The estimate (3.21) follows from (3.8).
We now prove the estimate (3.22). Notice that(

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)4

= exp(4hPn − 4h2Qn + 4Rn,h)

and

n∏
i=1

Aλ+4h(Zi−1, Zi)

Aλ(Zi−1, Zi)
= exp(4hPn − 16h2Qn +Rn,4h).

By the estimate (3.19), there exists a constant Cλ > 0 such that |Rn,h| ≤ Cλ and
|Rn,3h| ≤ Cλ. Since h2 ∼ n−1, there exists a constant C ′λ such that |h2Qn| ≤ C ′λ.
Thus, there exists a constant C ′′λ > 0 such that(

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)4

≤ C ′′λ

(
n∏
i=1

Aλ+4h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)
.

Noticing that

ET∗

λ

[
n∏
i=1

Aλ+4h(Zi−1, Zi)

Aλ(Zi−1, Zi)

]
= ET∗

λ+4h[1] = 1,

we get the conclusion.
Finally, we show (3.23). Note that

Q(λ) := ET∗

λ,Zn

[
1{σe∗=∞}

]
= PT∗

λ,Zn (σe∗ =∞)

is bounded above by 1 and monotonically decreasing in λ. Furthermore, since d(Zn)

converges Pλ-a.s. to∞ as n→∞, we have that Q(λ̃) converges Pλ-a.s. to 1 for any
λ̃ ∈ (λc, µ). Fix t > 0 such that [λ− t, λ+ t] ⊂ (λc, µ) then for |h| ≤ t, by bounded
convergence theorem we then have that

E3
h,n ≤

√
2Eλ

[
PT∗

λ−t,Zn (σe∗ =∞)− PT∗

λ+t,Zn (σe∗ =∞)
]1/4

which converges to 0 as n→∞. �

3.2. The proof of the differentiability of the speed. In this subsection, we will prove
Theorem 1.1.
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Proof of Theorem 1.1: By Proposition 3.4 it is now sufficient to prove that υ′λ =
ENB
λ [XY ]. By (3.11), we have that

ENB
λ

[
(d(Zn)− nυλ)

n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

]
= ENB

λ

[
(d(Zn)− nυλ) exp(hPn − h2Qn +Rn,h)

]
. (3.24)

Therefore, once we justify that we can pass to the limit in (3.24), by using Lemma 3.3
and Proposition 3.4 we will get

1

hn
ENB
λ+h [d(Zn)− nυλ]

→ ENB
λ

X exp

Y − 1

2Eλ[τ2 − τ1]
Eλ

τ2−1∑
j=τ1

B2
λ(Zj , Zj+1)

 (3.25)

where (X,Y ) is the two dimensional Gaussian random variable with the covariance
matrix Σλ. Notice that we have shown the continuity of the escape probability in
Lemma 2.9. Since it is shown in (3.20) that

Var(Y ) =
1

ENB
λ [τ1]

ENB
λ

τ1−1∑
j=0

B2
λ(Zj , Zj+1)

 ,
the above convergence and the integration by parts formula for Gaussian laws im-
plies

υλ+h − υλ
h

→ ENB
λ

[
X exp

(
Y − 1

2
Var(Y )

)]
= ENB

λ [XY ] = Eλ[XY ].

In order to justify the step (3.25), it suffices to show the uniform integrability of{
1

hn

(
d(Zn)− nυλ

)
·
n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

}
n≥1

.

under P NB
λ . By Hölder’s inequality, we have

ENB
λ

( 1

hn

(
d(Zn)− nυλ

)
·
n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)6/5


≤ ENB
λ

[
1

(hn)2

(
d(Zn)− nυλ

)2
]3/5

ENB
λ

( n∏
i=1

Aλ+h(Zi−1, Zi)

Aλ(Zi−1, Zi)

)3
2/5

In Lemma 3.2, we have already seen that ENB
λ

[
1

(hn)2

(
d(Zn)− nυλ

)2] is bounded

in n. That ENB
λ

[(∏n
i=1

Aλ+h(Zi−1,Zi)
Aλ(Zi−1,Zi)

)3
]

is also bounded in n follows from the

estimate (3.22). �
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4. Uniform moment bounds on regeneration times

In this section we study regeneration and return times for biased random walks
on supercritical GW-trees whose offspring law has exponential moments and no
deaths (i.e. p0 = 0). First, we prove that for any u ∈ N and [a, b] ⊂ (0, µ) we have

sup
λ∈[a,b]

ENB
λ [τu1 ] = sup

λ∈[a,b]

Eλ [(τ2 − τ1)
u
] <∞. (4.1)

This will be used in the proof of Proposition 2.5 where we consider the case with
leaves. Following this, we show that the escape probability is continuous in λ thus
proving Proposition 2.9.

Towards proving (4.1), we note that, since the interval [a, b] is compact, it suffices
to show that for any λ ∈ (0, µ) and u ∈ N there exists ε > 0 such that

sup
|h|≤ε

ENB
λ [τu1 ] = sup

|h|≤ε
Eλ+h [(τ2 − τ1)

u
] <∞.

For λ < 1 this follows trivially by choosing ε < 1− λ and comparing with a biased
random walk on Z (e.g. Lemma 5.1 of Dembo et al., 1996). We consider the case
λ ≥ 1 and proceed similarly to Proposition 3 in Peres and Zeitouni (2008) in which
it is shown that ENB

λ [τu1 ] = Eλ [(τ2 − τ1)
u
] <∞ for any λ ∈ (0, µ) and u ∈ N.

Our main contribution here is that we show that this bound is uniform in the
bias λ in compact intervals for which Remark 4.1 will play an important role.

Remark 4.1. By Rayleigh’s monotonicity principle we have that for any infinite tree
T and any v ∈ T ,

PT
λ,v(σe =∞)

is monotonically decreasing in λ. This follows using the relationship between elec-
trical networks and reversible Markov chains (see Lyons and Peres, 2016 for further
detail).

We now show that the speed υλ is bounded away from 0 uniformly in λ in
compact subsets of [1, µ).

Lemma 4.2. Suppose p0 = 0. For any b ∈ [1, µ) there exists a constant cb > 0
such that

inf
λ∈[1,b]

υλ ≥ cb.

Proof : By Theorem 3.1 of Lyons et al. (1996), for λ ∈ (1, µ) we have that υλ ≥
(1 − λ−1)3(1 − qλ)2/12 where qλ is the smallest non-negative solution to f(1 −
λ−1(1−qλ)) = qλ. It is immediate from this that for any a > 1 there exists ca,b > 0
such that

inf
λ∈[a,b]

υλ ≥ ca,b.

It therefore remains to consider λ arbitrarily close to 1.
Let ξ be a random variable with the offspring distribution. By Theorem 1.1 of

Aïdékon (2014) we have that

υλ = E

[
(ξ − λ)p̃

(0)
λ

λ− 1 +
∑ξ
i=0 p̃

(i)
λ

]/
E

[
(ξ + λ)p̃

(0)
λ

λ− 1 +
∑ξ
i=0 p̃

(i)
λ

]
where p̃(i)

λ are independent copies of PT
λ (σe = ∞) (which are also independent of

ξ).
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Since p̃(i)
λ are independent of ξ we have that, for λ ∈ [1, 3/2],

E

[
(ξ − λ)p̃

(0)
λ

λ− 1 +
∑ξ
i=0 p̃

(i)
λ

]

=

∞∑
k=1

P(ξ = k)E

[
(k − λ)p̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]
(4.2)

≥ p1(1− λ)E

[
p̃

(0)
λ

λ− 1 +
∑1
i=0 p̃

(i)
λ

]
+

1

4

∞∑
k=2

pkE

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]
since ξ − λ ≥ ξ/4 for ξ ≥ 2 and λ ≤ 3/2. Similarly,

E

[
(ξ + λ)p̃

(0)
λ

λ− 1 +
∑ξ
i=0 p̃

(i)
λ

]
≤ 2

∞∑
k=1

pkE

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]
. (4.3)

By Remark 4.1, for any tree p̃(i)
λ is decreasing in λ. Moreover, P(p̃

(i)
1+ε > 0) > 0

for any ε ∈ (0, µ− 1). It follows that there exists c > 0 such that for any k ≥ 1 and
λ ∈ [1, 1 + ε] for ε > 0 suitably small we have that

k

k + 1
≥ E

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]

=
k

k + 1

(
1− E

[
λ− 1

λ− 1 +
∑k
i=0 p̃

(i)
λ

])

≥ k

k + 1

(
1− E

[
ε

ε+
∑k
i=0 p̃

(i)
1+ε

])

≥ ck

k + 1
. (4.4)

In particular, we can choose ε > 0 sufficiently small such that

p1(λ− 1)E

[
p̃

(0)
λ

λ− 1 +
∑1
i=0 p̃

(i)
λ

]
≤ 1

8

∞∑
k=2

pkE

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]
uniformly over λ ∈ [1, 1 + ε]. Combining this with (4.2) and (4.3) we have

υλ ≥
1

16

∞∑
k=2

pkE

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]/ ∞∑
k=1

pkE

[
kp̃

(0)
λ

λ− 1 +
∑k
i=0 p̃

(i)
λ

]
which is bounded below for λ ∈ [1, 1 + ε] for ε > 0 suitably small using (4.4) �

We now use the Girsanov formula (1.1) to obtain a useful bound relating the
laws for different values of λ. Let ∆n := inf{m ≥ 0 : d(Zm) = n} be the first time
the walk reaches distance n from the root.

Lemma 4.3. For any tree T of height at least n, λ ∈ (0, 1] and h ∈ (0, λ) we have
that

PT
λ−h(∆n > m,σe > m) ≤ enhPT

λ (∆n > m,σe > m).
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Proof : First note that the function F ((Zk)k≥0) = 1{∆n>m,σe>m} is measurable
with respect to Fm(T ) therefore, by the Girsanov formula (1.1) we have that

PT
λ−h(∆n > m,σe > m) = ET

λ

[
1{∆n>m,σe>m}

m∏
i=1

Aλ−h(Zi−1, Zi)

Aλ(Zi−1, Zi)

]
. (4.5)

For a walk started from the root, every time the walk takes a step back towards
the root it crosses an edge that has previously been crossed. In particular, there is
a most recent time that edge was crossed and, due to the tree structure, it must
have been crossed directed away from the root. It follows that, for any path (zk)mk=0

in T , every pair (zi−1, zi) either corresponds to a unique pair (zj−1, zj) using this
coupling or belongs to the unique self avoiding path starting from the root and
ending at zm. Denote by γ this unique path of length d(zm).

For a neighbouring pair of vertices x, y ∈ T it is straightforward to show that
Aλ−h(x, y)Aλ−h(y, x)

Aλ(x, y)Aλ(y, x)
≤ 1

for λ ∈ (0, 1] and h ∈ (0, λ). It follows that,
d(zm)∏
i=1

Aλ−h(zi−1, zi)

Aλ(zi−1, zi)
=

∏
x∈γ\{z0,zm}

λ+ ν(x)

λ− h+ ν(x)
≤ eh(d(zm)−1). (4.6)

Noting that {∆n > m} ⊂ {d(Zm) < n}, combining (4.5) and (4.6) completes the
proof. �

An important result that we will use in the following proof is that the distance
between regenerations have exponential moments. That is, by Lemma 4.2 of Dembo
et al. (2002) we have that for any λ ∈ (0, µ) there exists θ(λ) =: θ > 0 such
that Eλ[eθd(Zτ1 )] < ∞. In fact, we require the stronger uniform moment bound
Lemma 4.4, whose proof is a straightforward extension of that of Lemma 4.2 in
Dembo et al. (2002) using Remark 4.1 which we omit.

Lemma 4.4. Suppose p0 = 0. For any [a, b] ⊂ (0, µ) there exists θ(a, b) =: θ > 0
such that

sup
λ∈[a,b]

Eλ[eθd(Zτ1 )] <∞. (4.7)

We now proceed to the main result of this section. This follows similarly to
Proposition 3 in Peres and Zeitouni (2008) however, we include the proof since the
extension to uniformity over λ is delicate.

Proposition 4.5. Suppose p0 = 0, b ∈ [1, µ) and that there exists β > 1 such that∑
k≥1 pkβ

k <∞. For all u ∈ N and λ ∈ [1, µ) there exists ε > 0 such that

sup
λ∈[1−ε,b]

Eλ [(τ2 − τ1)
u
] <∞.

Proof : First note that

Eλ[(τ2 − τ1)u] = ENB
λ [τu1 ] =

E
[
ET∗

λ [τu1 1{σe∗=∞}]
]

E
[
PT∗
λ (σe∗ =∞)

] .

Since the denominator E
[
PT∗

λ (σe∗ =∞)
]
is monotonic in λ by Remark 4.1, it suf-

fices to consider supλ∈[1−ε,b] E
[
ET∗

λ

[
τu1 1{σe∗=∞}

]]
. Using the uniform exponential



628 Adam Bowditch and Yuki Tokushige

moment bound (4.7), the Cauchy-Schwarz inequality and integration by parts we
have

E
[
ET∗

λ

[
τu1 1{σe∗=∞}

]]
(4.8)

=

∞∑
n=1

E
[
ET∗

λ [τu1 ;σe∗ =∞, d(Zτ1) = n]
]

=

∞∑
n=1

E
[
ET∗

λ [∆u
n;σe∗ =∞, d(Zτ1) = n]

]
≤
∞∑
n=1

E
[
ET∗

λ

[
∆2u
n ;σe∗ =∞

]]1/2
E
[
PT∗

λ (d(Zτ1) = n)
]1/2

≤ E
[
ET∗

λ

[
eθd(Zτ1 )

]] ∞∑
n=1

e−θnE
[
ET∗

λ

[
∆2u
n ;σe∗ =∞

]]1/2
≤ E

[
ET∗

λ

[
eθd(Zτ1 )

]] ∞∑
n=1

e−θnn10u

( ∞∑
k=0

(k + 1)2uE
[
PT∗

λ (∆n > kn10, σe∗ =∞)
])1/2

.

By Lemma 4.3 we have that for ε > 0 suitably small

sup
h∈(0,ε)

E
[
PT∗

1−h(∆n > kn10, σe∗ =∞)
]
≤ sup
h∈(0,ε)

E
[
PT∗

1−h(∆n > kn10, σe∗ > kn10)
]

≤ eεnE
[
PT∗

1 (∆n > kn10, σe∗ > kn10)
]
.

Choosing ε < θ/2 and using (4.7), it suffices to show that

sup
λ∈[1,b]

∞∑
n=1

e−θn/2n10u

( ∞∑
k=0

(k + 1)2uE
[
PT∗

λ (∆n > kn10, σe∗ > kn10)
])1/2

<∞.

(4.9)

For k ≥ 1, let
A1,k,n :=

⋃
m≤kn10

{|ν(Zm)| ≥ log(kn10)2}

be the event that the walk visits a vertex with at least log(kn10)2 offspring by time
kn10. By the exponential moments assumption we have that for all n large

E
[
PT∗

λ (A1,k,n)
]
≤ kn10P(|ν(e)| ≥ log(kn10)2) ≤ e−c log(n10)2e−c log(k)2

for some constant c depending only on β.
Let Nk,n := |{m ≤ kn10 : Zl 6= Zm∀l < m}| be the number of distinct vertices

visited by time kn10. Set

A2,k,n :=
{
Nk,n <

√
kn10

}
∩
{
σe > kn10

}
to be the event that, up to time kn10, the walk visits at most (kn10)1/2 distinct
vertices and does not return to the root e∗. On the event A2,k,n ∩ Ac1,k,n there is
a time m ≤ kn10 and a vertex v with degree at most log(kn10)2 such that Zm = v
and v is subsequently visited at least (kn10)1/2 times without a visit to the root.
By the Gambler’s ruin, for a walk started at v of distance at most n from the
root, the probability that the walk returns to v before reaching the root is at most
1−1/(2n log(kn10)2) uniformly in k,m, v and λ ≥ 1. It follows that the probability
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that v is visited by the the walk (kn10)1/2 times without a visit to the root is at
most (

1− 1

2n log(kn10)2

)√kn10

.

It follows that for n suitably large (independently of k ≥ 1)

E
[
PT∗

λ (A2,k,n)
]
≤ E

[
PT∗

λ (A1,k,n)
]

+ kn10

(
1− 1

2n log(kn10)2

)√kn10

≤ 2e−c log(n10)2e−c log(k)2 .

On the event Ac2,k,n ∩ {σe > kn10} there are at least k1/2n3 vertices which are
visited by the walk before time kn10 with at least time n2 between the first hitting
times. Write ψ1 := min{m > 0 : Zl 6= Zm∀l < m} and, for i ≥ 2,

ψi := min{m > ψi−1 + n2 : Zl 6= Zm∀l < m}.
Then, let

Gj =

j⋂
i=1

{
max
m≤n2

|d(Zψi)− d(Zψi+m)| < n

}
.

We have that

E
[
PT∗

λ (∆n > kn10, σe > kn10,Ac2,k,n)
]

(4.10)

≤ E

PT∗

λ

k1/2n3⋂
i=1

{
max
m≤n2

|d(Zψi)− d(Zψi+m)| < n

}
=

k1/2n3∏
i=1

E
[
PT∗

λ

(
max
m≤n2

|d(Zψi)− d(Zψi+m)| < n
∣∣Gi−1

)]

=

k1/2n3∏
i=1

(
1− E

[
PT∗

λ

(
max
m≤n2

|d(Zψi)− d(Zψi+m)| ≥ n
∣∣Gi−1

)])
.

If the walk regenerates at time ψi then (Zm)m≥ψi is independent of Gi−1 (condi-
tionally on Zψi) therefore (4.10) is bounded above by

k1/2n3∏
i=1

(
1− E

[
PT∗

λ

(
max
m≤n2

|d(Zψi)− d(Zψi+m)| ≥ n, d(Zm) ≥ d(Zψi)∀m ≥ ψi
)])

=

k1/2n3∏
i=1

(
1− E

[
PT∗

λ

(
∆n < n2, σe∗ =∞

)])

=

k1/2n3∏
i=1

(
1− E

[
PT∗

λ (σe =∞)
]
P NB
λ

(
∆n < n2

))
.

We have seen that Pλ (σe =∞) is bounded away from 0 for λ ∈ [1, b] therefore it
remains to show that, for n large, P NB

λ

(
∆n < n2

)
is bounded away from 0 uniformly

in λ ∈ [1, b]. By Markov’s inequality

P NB
λ

(
∆n ≥ n2

)
≤ ENB

λ [∆n]

n2
≤ ENB

λ [τ1]

n
≤ ENB

λ [d(Zτ1)]

υλn
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where we have used that there are at most n regenerations up to level n and the
formula of the speed (3.4). By Lemmas 4.2 and 4.4 we then have that this converges
to 0 (uniformly in λ) as n→∞ which completes the proof. �

We now prove the following lemma which claims stronger estimates than Propo-
sition 2.8 under the assumption that p0 = 0.

Lemma 4.6. Suppose that p0 = 0 and that
∑
k≥1 pkβ

k <∞ for some β > 1. Then
for any λ ∈ (0, µ) and any ∈ N, we have

E
[
ET∗

λ

[
(σe∗)

l1{σe∗<∞}
]]
<∞.

Proof : On the event {σe∗ <∞}, we obviously have that

σe∗ ≤ τ1 Pλ-a.s. (4.11)

The estimate (4.11) together with Lemma 5.1 in Dembo et al. (1996) implies the
result for 0 < λ < 1. The case λ = 1 can be shown by using (4.11) and Theorem 2
in Piau (1998).

We will show the claim for 1 < λ < µ. Notice that σe∗ = σe∗ ∧ τ1 almost surely
on the event {σe∗ <∞}. Therefore similarly to (4.8), we obtain that

E
[
ET∗

λ

[
(σe∗)

l1{σe∗<∞}
]]

=

∞∑
n=1

E
[
ET∗

λ

[
(σe∗ ∧ τ1)l; σe∗ <∞, d(Zτ1) = n

]]
≤ E

[
ET∗

λ

[
eθd(Zτ1 )

]]
·
∞∑
n=1

e−θnn10k

( ∞∑
k=0

(k + 1)2lE
[
PT∗

λ

(
kn10 < σe∗ <∞, kn10 < ∆n

)])1/2

.

This follows similarly to (4.9). �

We conclude this section by proving Proposition 2.9. For this, we first show the
following lemma.

Lemma 4.7. Suppose that p0 = 0. For any [a, b] ⊂ (0, µ)

lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (n < σe∗ <∞)
]

= 0.

Proof : Let sn →∞ be an increasing sequence that we shall specify later and θ > 0
be as in Lemma 4.4. We now split into the cases where d(Zτ1) < sn and d(Zτ1) ≥ sn.
First, for d(Zτ1) ≥ sn, by Markov’s inequality

lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (n < σe∗ <∞, d(Zτ1) ≥ sn)
]

≤ lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (d(Zτ1) ≥ sn)
]

= lim
n→∞

sup
λ∈[a,b]

Pλ(d(Zτ1) ≥ sn)

≤ lim
n→∞

sup
λ∈[a,b]

Eλ[eθd(Zτ1 )]e−θsn

which converges to 0 as n→∞ by Lemma 4.4.
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For d(Zτ1) < sn we note that

{n < σe∗ <∞, d(Zτ1) < sn} ⊂ {max
m≤n

d(Zm) < sn}

since once the walk reaches level sn it cannot return to e∗ on the event {d(Zτ1) <
sn}. With a slight abuse of notation, let Z+ denote the tree which is isomorphic to
Z+. By comparison with a simple random walk on Z+ we have that

lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (n < σe∗ <∞, d(Zτ1) < sn)
]

≤ lim
n→∞

sup
λ∈[a,b]

Pλ

(
max
m≤n

d(Zm) < sn

)
≤ lim
n→∞

PZ+

µ

(
max
m≤n

d(Zm) < sn

)
= lim
n→∞

PZ+

µ (κ(sn) > n)

where κ(l) := inf{n ≥ 0 : d(Zn) = l} is the first hitting time of level l.
A simple calculation shows that EZ+

µ [κ(l)] ≤ Cµµ
l. Therefore, choosing sn =

log(n)/ log(µ2) and using Markov’s inequality we have that PZ+

µ (κ(sn) > n) ≤
Cµn

−1/2 and therefore

lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (n < σe∗ <∞, d(Zτ1) < sn)
]

= 0.

�

We are now ready to prove that the escape probability E[PT∗

λ (σe∗(T) <∞)] is a
continuous function of the bias.

Proof of Proposition 2.9: First note that we can assume p0 = 0 without loss of
generality since PT∗

λ

(
σe∗(T) =∞

)
= P

T∗g
λ

(
σe∗(Tg) =∞

)
P-a.s. where we recall

that T∗g is the backbone of T∗.
Note that for any tree T and any n ∈ N, the function λ 7→ PT

λ (σe∗ < n) is
continuous since PT

λ (σe∗ < n) only depends on the first n steps of (Zn). We now
show that for any n ∈ N,

the function λ 7→ E
[
PT∗

λ (σe∗ < n)
]

is continuous. (4.12)

For a tree T and n ∈ N we write T [n] for the truncated tree up to nth generation,
and define

Bn,m :=

n⋂
k=1

{T ; every vertex of T [n] in k th generation has at most m children}.

Noticing that PT
λ (σe∗ < n) only depends on T [n] and that {T [n]; T ∈ Bn,m} is a

finite set, we obtain that the function λ 7→ E
[
PT∗

λ (σe∗ < n)1Bn,m
]
is a continuous

function. Now the claim (4.12) follows since P(Bcn,m) is independent of λ and
converges to 0 as m→∞ for any n.

In order to deduce the conclusion from (4.12), it suffices to prove that

E
[
PT∗

λ (n < σe∗ <∞)
]
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is uniformly convergent to 0 in (λc, µ) as n → ∞. This immediately follows from
Lemma 4.7. �

5. Moments of generation sizes of Galton-Watson trees

In this section we prove several technical estimates for subcritical GW-trees
which we will require later when showing moment bounds for the time between
regenerations of the walk. For this section, we take Wn to be a GW-process with
mean number of offspring µ := E[W1] < 1 which will typically be applied as λc in
Section 6.

The following lemma gives a bound on the moments of generation sizes of GW-
processes. The main purpose of this lemma is to prove Lemma 5.2.

Lemma 5.1. Suppose Wn is a GW-process with mean number of offspring µ :=
E[W1] < 1 and which satisfies E[βW1 ] < ∞ for some β > 1. Then, for any m ∈ N
there exists Cm <∞ such that E[Wm

n ] ≤ Cmµn.

Proof : We prove this inductively in m. The case m = 1 holds with E[Wn] = µn

(cf. Chapter I.2 of Athreya and Ney, 2004). Suppose that for some m ≥ 2 there
exist Cj <∞ for j = 1, ...,m− 1 such that E[W j

n] ≤ Cjµn.
Let W (1)

n ,W
(2)
n , ... be independent copies of Wn then, using the branching prop-

erty,

E[Wm
n+1] = E[E[Wm

n+1|W1]] = E

[
E

[(
W1∑
k=1

W (k)
n

)m ∣∣W1

]]
.

For l,m,N ∈ N let Iml (N) := {k = (k1, ..., km) ∈ {1, ..., N}m :
∑N
j=1 1

⋃m
i=1{ki=j} =

l} be the m-tuples of positive integers at most N with exactly l distinct values.
Expanding the term in the above expression and using that W (k)

n are independent
of W1 we have that

E[Wm
n+1] = E

E
 ∑
k∈{1,...,W1}m

m∏
i=1

W (ki)
n

∣∣W1


=

m∑
l=1

E

 ∑
k∈Iml (W1)

E

[
m∏
i=1

W (ki)
n

] . (5.1)

If k ∈ Im1 (W1) then ki = k1 for all i and, since there are W1 choices of k1, we
have

E

 ∑
k∈Im1 (W1)

E

[
m∏
i=1

W (ki)
n

] = E

 ∑
k∈Im1 (W1)

E[(W (k1)
n )m]

 = E[W1]E[Wm
n ]. (5.2)

Otherwise, using independence of W (1)
n ,W

(2)
n , ... and our induction hypothesis that

E[W j
n] ≤ Cjµn for j ≤ m− 1, for k ∈ Iml (W1) we have

E

[
m∏
i=1

W (ki)
n

]
≤ µnl

(
max
j≤m−1

Cj

)l
.
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There are
∏l−1
j=0(W1 − j) choices for the l distinct values in {1, ...,W1} then lm−l

choices for the remaining m− l duplicates and at most m! orderings of the indices.
In particular, for l ≥ 2,

E

 ∑
k∈Iml (W1)

E

[
m∏
i=1

W (ki)
n

] ≤ µnl( max
j≤m−1

Cj)
llm−lm!E

l−1∏
j=0

(W1 − j)

 . (5.3)

By the exponential moment assumption we have that E[
∏l−1
j=0(W1−j)] ≤ E[W l

1] <

∞. Combining (5.1), (5.2) and (5.3), we can choose constants Mm
l such that

E[Wm
n+1] ≤ µE[Wm

n ] +

m∑
l=2

Mm
l µ

nl

≤ µ2E[Wm
n−1] + µ

m∑
l=2

Mm
l µ

(n−1)l +
m∑
l=2

Mm
l µ

nl

= µ2E[Wm
n−1] +

m∑
l=2

Mm
l µ

nl(1 + µ−(l−1)).

Iterating and using the geometric sum formula yields

E[Wm
n+1] ≤ µnE[Wm

1 ] +

m∑
l=2

Mm
l µ

nl
n−1∑
k=0

µ−k(l−1)

≤ µnE[Wm
1 ] +

m∑
l=2

Mm
l µ

nlµ
−n(l−1) − 1

µ−(l−1) − 1

which is bounded above by Cmµn+1 as required since E[Wm
1 ] <∞ by the exponen-

tial moments assumption. �

The corresponding lower bound holds trivially by noting that P(Wn ≥ 1) ≤
E[Wm

n ] for any m ∈ N and using that P(Wn ≥ 1)µ−n is decreasing and converges
(e.g. Theorem B in Lyons et al., 1995). This shows that, up to constants, this is
the best possible bound.

The following result extends Lemma 5.1 to the expectation of products of the
generation sizes at varying times. This is an extension of Lemma 2.4.1 in Bowditch
(2017) which proves this for m ≤ 3.

Lemma 5.2. Suppose Wn is a GW-process with mean number of offspring µ :=
E[W1] < 1 and which satisfies E[βW1 ] < ∞ for some β > 1. Then, for any m ∈ N
there exists C̃m <∞ such that for any (ni)

m
i=1 ∈ Nm we have

E

[
m∏
i=1

Wni

]
≤ C̃mµmaxl≤m nl .

Proof : Let W (k)
n be independent GW-processes for k ≥ 1. Using the branching

property of GW-processes and convexity of polynomials of degree l ∈ N we have

E[W l
n|W0 = j] = E

( j∑
k=1

W (k)
n

)l ≤ jlE

[
j∑

k=1

(W
(k)
n )l

j

]
= jlE[W l

n]. (5.4)
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Without loss of generality let n1 ≤ n2 ≤ ... ≤ nm be ordered. Noting that Wn is
a Markov process, by (5.4) we have

E

[
m∏
i=1

Wni

]
= E

[
E
[
Wnm

∣∣Wnm−1

]m−1∏
i=1

Wni

]
≤ E[Wnm−nm−1

]E

[
W 2
nm−1

m−2∏
i=1

Wni

]
.

Iterating and applying Lemma 5.1 then gives

E

[
m∏
i=1

Wni

]
≤

m∏
i=1

E[Wm+1−i
ni−ni−1

] ≤
m∏
i=1

Cm+1−iµ
nk−ni−1 ≤ C̃mµ

nm

where C̃m = (maxl≤m Cl)
m <∞. �

6. The proof of Proposition 2.5

The main aim of this section is to prove Corollary 2.6 which states that for
any closed ball B contained within (λ

1/2
c , µ) there exists ε > 0 such that the time

between regenerations has finite (2 + ε)th moments uniformly over λ ∈ B. We
deduce this from the more general result Proposition 2.5.

We first state the following lemma which gives a useful bound for the αth mo-
ments of a geometric random variable. This will be used repeatedly throughout
this section.

Lemma 6.1. For any α > 0 there exists Cα < ∞ such that for any p ∈ (0, 1) we
have

∞∑
k=1

kαpk(1− p) ≤ Cαp(1− p)−α.

Proof : Note that if f : R → R+ is increasing and g : R → R+ is decreasing then
for x ∈ [k, k+ 1) we have that f(x− 1) ≤ f(k) ≤ f(x) and g(x) ≤ g(k) ≤ g(x− 1).
Therefore,

∞∑
k=1

f(k)g(k) =

∞∑
k=1

∫ k+1

k

f(k)g(k)dx

≤
∞∑
k=1

∫ k+1

k

f(x)g(x− 1)dx

=

∫ ∞
1

f(x)g(x− 1)dx.

Take the specific case that f(x) = xα (which is increasing since α > 0) and
g(x) = px (which is decreasing for p ∈ (0, 1)). Then, for p ∈ [1/2, 1), we have that

p−1(1− p)1+α
∞∑
k=1

kαpk ≤ p−2(1− p)1+α

∫ ∞
1

xαpxdx

= p−2

(
1− p

log(p−1)

)1+α ∫ ∞
log(p−1)

xαe−xdx

≤ 4Γ(1 + α)

since
(

1−p
log(p−1)

)1+α

≤ 1.
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For p ∈ (0, 1/2] we have that

p−1(1− p)1+α
∞∑
k=1

kαpk ≤
∞∑
k=1

kα2−(k−1)

which converges. �

We now introduce some notation concerning hitting and regeneration times.
Recall that σx := inf{n ≥ 1 : Zn = x} is the first return time to x ∈ T. Let
S(0) := 0, S(n) := inf{k > S(n − 1) : Zk, Zk−1 ∈ Tg} for n ≥ 1 and Yn := ZS(n),
then Yn is a λ-biased random walk on Tg coupled to Zn. Write ζ0 := 0 and for
m = 1, 2, ... let

ζm := inf{k > ζm−1 : d(Yj) < d(Yk), d(Yl) > d(Yk−1) for all j < k ≤ l}
be regeneration times for the walk Y . We then have that τk = inf{m ≥ 0 : Zm =
Yζk} are the corresponding regeneration times for Z and we define %k := Zτk = Yζk
to be the regeneration points. By Proposition 3.4 of Lyons et al. (1996) we have
that there exists, Pλ-a.s., an infinite sequence of regeneration times (τk)k≥1 and

{(τk+1 − τk) , (d(%k+1)− d(%k))}k≥1

are i.i.d. (as are the corresponding variables for Y ).
Let ξf , ξg, ξh be random variables with probability generating functions f, g and

h respectively then let ξ be equal in distribution to the number of vertices in the
first generation of T. Throughout we will assume that ξf has some exponential
moments.

Remark 6.2. Since the generation sizes of Tg are dominated by those of T we
have that ξg is stochastically dominated by ξ. Using Bayes’ law we have that
P(ξ = k) = pk(1−qk)(1−q)−1 ≤ cpk therefore both ξ and ξg inherit the exponential
moment bounds of ξf . Furthermore P(ξh = k) = pkq

k therefore ξh automatically
has exponential moments.

We now show that the duration of an excursion in a single trap has finite αth

moments (uniformly for the bias in a small ball). If p0 = 0 then traps are trivial
therefore assume that p0 > 0. Denote by Th a GW tree with this law and T∗h the
tree Th where we append an additional vertex e∗(Th) as the root in the usual way
(for convenience we write e∗ when there is no confusion). Let WT∗h

k denote the kth

generation size of the tree T∗h. We denote by P
T∗h
λ,x the quenched law of the walk

with bias λ started from x.

Lemma 6.3. Suppose p0 > 0 and a < 1 then, for any α < log(λc)/ log(a),

sup
λ≥a

E
[
E

T∗h
λ [σαe∗ ]

]
<∞.

Proof : Write α := max{k ∈ Z : k < α}. Throughout we will use that for N ∈ N
and xn ∈ R+ for n = 1, ..., N we have(

N∑
n=1

xn

)α
≤ Nα

N∑
n=1

xαn (6.1)

which follows from convexity for α ≥ 1 and the bound || · ||1/α ≤ || · ||1 for lp norms
with α < 1.
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We can write

σe∗ =
∑
x∈T∗h

vx where vx =

σe∗−1∑
k=0

1{Zk=x}

is the number of visits to x before returning to e∗. By (6.1) it then follows that

E
[
E

T∗h
λ [σαe∗ ]

]
= E

ET∗h
λ

∑
x∈T∗h

vx

α ≤ E

d(T∗h)α
∑
x∈T∗h

E
T∗h
λ [vαx ]

 (6.2)

where, using a decomposition up to the first hitting time of x we have that

E
T∗h
λ,e∗ [vαx ] = P

T∗h
λ,e∗ (σx < σe∗)E

T∗h
λ,x [vαx ] ≤ E

T∗h
λ,x [vαx ] .

Started from x, for the walk to reach to e∗ before returning to x, the walk must
initially move to π(x). It follows that the number of visits to x before reaching e∗
is geometrically distributed with termination probability

P
T∗h
λ,x(σe∗ < σx) =

λ

λ+ ν(x)
· PT∗h

λ,π(x)(σe∗ < σx) (6.3)

where PT∗h
λ,π(x)(σe∗ < σx) depends only on λ and the distance between e∗ and x. By

Lemma 6.1 we have that, for some constant Cα,

E
T∗h
λ,x [vαx ] ≤ CαP

T∗h
λ,x(σe∗ < σx)−αP

T∗h
λ,x(σx < σe∗) ≤ CαP

T∗h
λ,x(σe∗ < σx)−α. (6.4)

For r ∈ N write

R(λ, α, r) =


rα if λ = 1,

λ−rα if λ < 1,

1 if λ > 1,

then, by the Gambler’s ruin and (6.3), we have that

P
T∗h
λ,x(σe∗ < σx)−α ≤ (1 + λ−1ν(x))αR(λ, α, d∗(x))

where d∗(x) denotes the distance between x ∈ T∗h and the root e∗. Substituting
this with (6.4) into (6.2) and using (6.1) we have that

E
[
E

T∗h
λ,e∗ [σαe∗ ]

]
≤ CαE

d(T∗h)α
∑
x∈T∗h

(1 + λ−1ν(x))αR(λ, α, d∗(x))


≤ C̃αE

d(T∗h)α
∑
x∈T∗h

(1 + λ−αν(x)α)R(λ, α, d∗(x))


≤ C̃αE

[
d(T∗h)α

∞∑
k=0

W
T∗h
k

(
1 + λ−α

(
W

T∗h
k+1

)α+1
)
R(λ, α, k)

]
where, for the final inequality, we have replaced the sum over vertices in the tree
with a sum over the generations and bounded the number of children of a vertex
in generation k with the total number of vertices in generation k + 1.

Since W
T∗h
1 = 1 = WTh

0 and W
T∗h
k+1 = WTh

k for k ≥ 1, we have that 1 +

λ−α
(
W

T∗h
k+1

)α+1

≤ C
∑∞
j=0

(
WTh
j

)α+1

for any k ≥ 1 and a constant C ≤ 1 + a−α.
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The process WTh
n is a GW-process with offspring distribution ξh which has mean

λc and exponential moments. It therefore follows from Lemma 5.2 that

E
[
E

T∗h
λ,e∗ [σαe∗ ]

]
≤ CαE

 ∞∑
k1=0

· · ·
∞∑

k2α+2=0

R(λ, α, k1)

2α+2∏
j=1

W
T∗h
kj


≤ Cα

∞∑
k1=0

· · ·
∞∑

k2α+2=0

R(λ, α, k1)E

2α+2∏
j=1

W
T∗h
kj


≤ C̃α

∞∑
k1=0

· · ·
∞∑

k2α+2=0

R(λ, α, k1)λ
maxj≤2α+2 kj
c . (6.5)

Taking first those terms in (6.5) where k1 ≥ kj for all j, we have
∞∑
k1=0

· · ·
∞∑

k2α+2=0

1{k1=maxj≤2α+2 kj}R(λ, α, k1)λk1c

≤ (2α+ 1)

∞∑
k1=0

(k1 + 1)R(λ, α, k1)λk1c

which is bounded above uniformly over λ ≥ a since a−αλc < 1 by our choice of α.
Next, writing m = maxj=2,...,2α+2 kj , taking the remaining terms in (6.5) and

noting that
m−1∑
k1=0

R(λ, α, k1) ≤ m2a−m

we have
∞∑
k1=0

· · ·
∞∑

k2α+2=0

1{k1<m}R(λ, α, k1)λmc ≤ (2α+ 1)

∞∑
m=1

m3a−mαλmc

which is finite by our choice of α. �

Let χk := S(k + 1) − S(k) denote the total time taken between Zn making the
kth and (k + 1)th transition along the backbone. This time consists of

Nk :=

S(k+1)∑
n=S(k)+1

1{Zn=Yk}

excursions into the finite trees appended to the backbone at this vertex and one
additional step to the next backbone vertex. Write ϑ(0)

k := S(k) and ϑ(j)
k := inf{n >

ϑ
(j−1)
k : Zn = Yk} for j ≥ 1 to be the hitting times of the backbone after time S(k).

We can then write

χk := 1 +

Nk∑
j=1

γk,j where γk,j := ϑ
(j)
k − ϑ

(j−1)
k (6.6)

is the duration of the jth such excursion.
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Proof of Proposition 2.5: Recall that α := max{k ∈ Z : k < α} and write α :=
min{k ∈ Z : k ≥ α}. We therefore have that E NB

λ [τα1 ] can be written as

E NB
λ [τα1 ] = E NB

λ

( ζ1∑
k=1

χk

)α
≤ E NB

λ

[
ζ
α
1

ζ1∑
k=1

χαk

]
by (6.1). Using (6.1) again with the decomposition (6.6) we can write this as

E NB
λ

ζα1 ζ1∑
k=1

1 +

Nk∑
j=1

γk,j

α
≤ E NB

λ

ζα1 ζ1∑
k=1

(Nk + 1)α

1 +

Nk∑
j=1

γαk,j

 .
The excursion times γk,j are distributed as the first return time to e∗ for a

walk started from e∗ on T∗h. Moreover, under PNB
λ , they are independent of the

backbone, the buds and the walk on the backbone and buds. In particular, they are
independent of the regeneration times of Y and the number of excursions therefore
the above expectation can be bounded above by

E
[
E

T∗h
λ [σαe∗ ]

]
E NB
λ

[
ζ
α
1

ζ1∑
k=1

(Nk + 1)α

]
.

Where, by Lemma 6.3, we have that supλ∈[a,b] E
[
E

T∗h
λ [σαe∗ ]

]
<∞.

Let (zj)
∞
j=0 denote the ordered distinct vertices visited by Y and

L(z, j) :=

j∑
k=0

1{Yk=z}, L(z) := L(z,∞)

the local times of the vertex z. Write

Mz,l :=
∞∑
j=0

1{Zj=z, Zj+1 /∈Tg, L(z,j)=l}

to be the number of excursions from z (by Z) on the lth visit to z (by Y ) for
l = 1, ...,L(z) and J := |{Yj}ζ1−1

j=1 | the number of distinct vertices visited by Y

between time 1 and time ζ1 − 1. Each k ≤ ζ1 corresponds to a unique pair (zj , l)
with j ≤ J and l ≤ L(zj) with Mzj ,l = Nk therefore

E NB
λ

[
ζ
α
1

ζ1∑
k=1

(Nk + 1)α

]

= E NB
λ

ζα1 J∑
j=1

L(zj)∑
l=1

(Mzj ,l + 1)α


=

∞∑
j=1

∞∑
l=1

E NB
λ

[
ζ
α
1 1{j≤J , l≤L(zj)}(Mzj ,l + 1)α

]
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≤
∞∑
j=1

∞∑
l=1

(
E NB
λ

[
ζ

2α
1 1{j≤J , l≤L(zj)}

]
E NB
λ

[
(Mzj ,l + 1)2α

] )1/2

(6.7)

by the Cauchy-Schwarz inequality. For all 1 ≤ j ≤ J we have that L(zj) ≤ ζ1;
moreover, J ≤ ζ1 therefore

1{j≤J , l≤L(zj)} ≤ 1{j,l≤ζ1}.

Due to the independence structure of the GW-tree, for any fixed j the distribu-
tion of the number of children of zj is equal to the distribution of the number of
children of the root. Since the root does not have a parent, we have that the walk is
more likely to take an excursion into one of the neighbouring traps when at the root
than from a vertex with the same number of children. We can, therefore, stochas-
tically dominate the number of excursions from a backbone vertex by the number
of excursions from the root to see that E NB

λ

[
(Mzj ,l + 1)2α

]
≤ E NB

λ

[
(Mz0,1 + 1)2α

]
.

Using this and the Cauchy-Schwarz inequality, the expression (6.7) is bounded
above by

E NB
λ

[
ζ

4α
1

]1/4
E NB
λ

[
(Mz0,1 + 1)2α

]1/2 ∞∑
j,l=1

PNB
λ (j, l ≤ ζ1)

1/4
.

By Remark 6.2 the offspring distribution ξg has exponential moments, we therefore
have that the time between regenerations of Y has finite 4α moments uniformly
over λ ∈ [a, b] by Proposition 4.5. That is, supλ∈[a,b] E

NB
λ

[
ζ

4α
1

]
<∞.

Write Wn and W g
n to be the GW-processes associated with T and Tg. The

number of excursions from the root is geometrically distributed with termination
probability 1− pex where

pex :=
W1 −W g

1

W1
.

Using Lemma 6.1 we therefore have that, for a constant C independent of λ,

E NB
λ

[
(Mz0,1 + 1)2α

]
≤ CE[(1− pex)−2α] ≤ CE[W 2α

1 ] < ∞

since W1
d
= ξ which has exponential moments.

It remains to show that
∞∑
j=1

∞∑
l=1

PNB
λ (j, l ≤ ζ1)

1/4 (6.8)

is finite. Note that PNB
λ (j, l ≤ ζ1) = PNB

λ (ζ1 ≥ l) whenever l ≥ j. Using Chebyshev’s
inequality we can then bound (6.8) above by

2

∞∑
j=1

∞∑
l=j

PNB
λ (ζ1 ≥ l)1/4 ≤ 2

∞∑
j=1

∞∑
l=j

(
E NB
λ [ζu1 ]

lu

)1/4

for any integer u. In particular, we have that supλ∈[a,b] E
NB
λ [ζu1 ] is finite for any

integer u by Proposition 4.5. Choosing u > 8 we then have that this sum is finite
which completes the proof of the moment estimate of τ1. �

Finally, we complete the proof of Proposition 2.8.
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Proof of Proposition 2.8: We first observe that

E
[
ET∗

λ

[
σe∗(T)1{σe∗(T)<∞}

]]
≤ Eλ

1 +

σYe∗(Tg)∑
k=1

χk ; σe∗(T) <∞

 , (6.9)

where σYe∗(Tg) is the first time that (Yn) returns to e∗(Tg). The reason why (6.9)
is an inequality is that the walk (Zn) may enter traps attached to e(T) = e(Tg)
and return to e∗(T) = e∗(Tg) without any transitions on the backbone Tg. It is
straightforward to check (6.9) by using Lemma 4.6, Lemma 6.3 and arguments in
the proof of Proposition 2.8. �
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