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Abstract. We investigate the anisotropic stable JCIR process which is a multi-
dimensional extension of the stable JCIR process but also a multi-dimensional ana-
logue of the classical JCIR process. We prove that the heat kernel of the anisotropic
stable JCIR process exists and it satisfies an a-priori bound in a weighted anisotropic
Besov norm. Based on this regularity result we deduce the strong Feller property
and prove, for the subcritical case, exponential ergodicity in total variation. Also,
we show that in the one-dimensional case the corresponding heat kernel is smooth.

1. Introduction

The classical JCIR process is a commonly used building block for different models
in mathematical finance, see Alfonsi (2015). For given b, σ ≥ 0 and β ∈ R it is
obtained as the unique R+-valued strong solution to

dXx(t) = (b+ βX(t))dt+
√
σX(t)dB(t) + dJ(t), Xx(0) = x ≥ 0,

where (B(t))t≥0 is a one-dimensional Brownian motion and (J(t))t≥0 is a Lévy
subordinator on R+ that is independent of the Brownian motion. For a particular
choice of subordinator (J(t))t≥0 such a process was first introduced in Duffie and
Gârleanu (2001). Some of its specific properties were studied in Jin et al. (2019),
see also the references therein. Replacing the Brownian motion (B(t))t≥0 by a
spectrally positive α-stable Lévy process (Zα(t))t≥0 whose symbol is given, for
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α ∈ (1, 2), by

Ψα(ξ) =

∫ ∞
0

(
eiξz − 1− iξz

)
µα(dz), µα(dz) = 1R+(z)

1

c(α)

dz

z1+α
, (1.1)

and replacing the square-root by α
√
· one obtains the stable JCIR process

dXx(t) = (b+ βXx(t))dt+ α
√
σXx(t)dZα(t) + dJ(t), Xx(0) = x ≥ 0. (1.2)

Note that the normalization constant c(α) =
∫∞

0
(e−z − 1 + z) z−1−αdz is chosen

in such a way that Ψα(iξ) = ξα for ξ ≥ 0. This process is a special case of
the short-rate models used in Jiao et al. (2017, 2018); Chazal et al. (2018a). One
important advantage of these models is their analytical tractability as many desired
expressions (e.g. the Laplace transform) can be computed explicitly.

In this work we study the anisotropic stable JCIR process, i.e., the multi-
dimensional analogue of the stable JCIR process (1.2), obtained as the unique
Rm+ -valued strong solution to the system of stochastic equations

dXx
k (t) =

bk +

m∑
j=1

βkjX
x
j (t)

 dt+ αk

√
σkXx

k (t)dZk(t) + dJk(t), (1.3)

where k ∈ {1, . . . ,m}, Xx(0) = x ∈ Rm+ , b = (b1, . . . , bm), (σ1, . . . , σm) ∈ Rm+ and
β = (βjk)j,k∈{1,...,m} is such that βjk ≥ 0 for all j 6= k. Here Z1, . . . , Zm are
independent and each Zk, k = 1, . . . ,m, is a one-dimensional spectrally positive
αk-stable Lévy process with symbol Ψαk as in (1.1), where α1, . . . , αm ∈ (1, 2).
The process J , which is independent of Z = (Z1, . . . , Zm), is a Lévy subordinator
on Rm+ , i.e., its Lévy measure ν is supported on Rm+ and J has symbol

ΨJ(ξ) =

∫
Rm+

(
ei〈ξ,z〉 − 1

)
ν(dz),

∫
Rm+

min{1, |z|}ν(dz) <∞.

It follows from Barczy et al. (2015) that (1.3) has a unique Rm+ -valued strong
solution. Moreover, this process is an affine process on state space Rm+ (see Duffie
et al., 2003; Barczy et al., 2015) whose characteristic function satisfies

E[e〈u,X
x(t)〉] = eφ(t,u)+〈x,ψ(t,u)〉, x ∈ Rm+ , (1.4)

where u ∈ Cm is such that Re(u) ≤ 0. Here φ and ψ = (ψ1, . . . , ψm) are the unique
solutions to the generalized Riccati equations{

∂tφ(t, u) = F (ψ(t, u)), φ(t, 0) = 0,

∂tψ(t, u) = R(ψ(t, u)), ψ(t, 0) = u,
(1.5)

where F and R = (R1, . . . , Rm) are given by

F (u) = 〈b, u〉+

∫
Rm+

(
e〈u,z〉 − 1

)
ν(dz),

Rj(u) =

m∑
k=1

βkjuk +

∫ ∞
0

(eujz − 1− ujz)µαj (dz).

Following the general theory of affine processes it can be shown that (Xx(t))t≥0 is a
Feller process, that its transition semigroup acts on the Banach space of continuous
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functions vanishing at infinity, and that its generator (L,D(L)) has core C∞c (Rm+ )
and for f ∈ C∞c (Rm+ )

Lf(x) = 〈b+ βx,∇f(x)〉+

∫
Rm+

(f(x+ z)− f(x)) ν(dz)

+

m∑
j=1

σjxj

∫ ∞
0

(
f(x+ ejz)− f(x)− z ∂f(x)

∂xj

)
µαj (dz),

where e1, . . . , em denote the canonical basis vectors in Rm.
The purpose of this work is twofold. Firstly, we investigate regularity of the heat

kernel including a very simple proof of the strong Feller property, and secondly,
based on the obtained results we study the convergence to equilibrium in total
variation. On the way proving these results we also obtain non-extinction for the
anisotropic stable JCIR process in the spirit of Foucart and Uribe Bravo (2014);
Duhalde et al. (2014); Friesen et al. (2019b).

One commonly used method to study existence and smoothness of heat kernels
is based on Malliavin calculus, see e.g. Bass and Cranston (1986); De Marco (2011);
Picard (1996) and the references therein. Concerning other analytical methods we
refer to Bogdan et al. (2020); Chaker (2019); Knopova and Kulik (2018); Kulczycki
and Ryznar (2018, 2019); Kulczycki et al. (2020+) where some interesting progress
for stochastic equations driven by cylindrical Lévy processes has been obtained.
Having in mind that the anisotropic stable JCIR process has no diffusion compo-
nent, that the Lévy measure of the driving noise is singular and has no second
moments, and finally that the volatility coefficients in (1.3) are merely Hölder con-
tinuous and degenerate at the boundary, it is not clear how the aforementioned
techniques could be applied in the setting of this paper. Based on the affine struc-
ture of the process it is reasonable to study the heat kernel by Fourier methods
similarly to Filipović et al. (2013), where affine processes with non-degenerate dif-
fusion component were treated, or by spectral expansions in the spirit of Chazal
et al. (2018b). While Fourier methods turn out to be adequate for proving existence
of a smooth density for the one-dimensional stable JCIR process (see Section 3), it
seems difficult to extend them to the anisotropic framework with absent diffusion
component. Moreover, it would be interesting to extend the techniques developed
in Chazal et al. (2018b) to this multi-dimensional setting. In contrast, our ap-
proach for the study of the multi-dimensional case is based on a suitable short-time
approximation of the process combined with a discrete integration by parts in the
spirit of Debussche and Fournier (2013), Romito (2018), Friesen et al. (2020) and
Friesen et al. (2020+a). Since these methods do not use the affine structure of the
process, they can be applied to other Markov processes as well.

The long-time behavior of one-dimensional affine processes with state space R+

was studied in Keller-Ressel and Mijatović (2012), Li (2011, Chapter 3) and Li and
Ma (2015). Results applicable to a class of non-affine Markov processes on R+ have
been recently obtained in Friesen et al. (2019a). The coupling method in Li and Ma
(2015) is very effective for 1-dimensional continuous-state branching processes with
immigration. However, it used the fact the the extinction time of a continuous-state
branching process can be estimated via the Laplace transform of the process. It is
not clear if this approach can be extended to higher dimensional cases. For subcriti-
cal OU-type processes and 1-dimensional continuous-state branching processes with
immigration, the exponential ergodicity in total variation has been derived under
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rather general conditions, see Wang (2012); Li and Ma (2015) and Friesen et al.
(2019a), all of which used coupling techniques. Other than these two cases, only
very few results on ergodicity in total variation are available for multi-dimensional
affine processes, except for the models treated in Barczy et al. (2014); Jin et al.
(2017); Mayerhofer et al. (2020); Zhang and Glynn (2018). The reason is as fol-
lows: in the general case it is not clear if the powerful coupling technique (see Wang,
2012; Li and Ma, 2015) still works; also, it remains a difficult problem to verify the
irreducibility of the process when applying the Meyn-Tweedie method (see Meyn
and Tweedie, 2009). To overcome these difficulties we use instead a Harris-type
theorem based on a local Dobrushin condition, see Theorem D.1 and Hairer (2016);
Kulik (2018). In order to verify the local Dobrushin condition we use continuity
(regularity) of the heat kernel combined with some weak form of irreducibility sim-
ilarly to Peng and Zhang (2018). At this point it is worthwhile to mention that
the verification of the local Dobrushin condition does not require the full strength
of our regularity result. Indeed, one could apply Kulik (2018, Proposition 2.9.1
and Remark 2.9.2) for which the Besov regularity from Section 4 is sufficient. This
work seems to provide the first result on ergodicity in total variation for multi-
dimensional affine processes which does not rely on smoothing properties of the
diffusion component. Moreover, the method of this paper can be also applied to
non-affine Markov processes.

This paper is organized as follows. In Section 2 we state and discuss the main
results of this work. Regularity of the heat kernel for the one-dimensional stable
JCIR process as in (1.2) is discussed in Section 3. Regularity of the anisotropic
stable JCIR process is studied in Section 4, while ergodicity in total variation is
proved in Section 5. Finally, some auxiliary results and general theory on ergodicity
of Markov processes are collected in the appendix.

2. Statement of results

2.1. Existence and smoothness of the heat kernel in dimension m = 1. Let
(Xx(t))t≥0 be the one-dimensional stable JCIR process, i.e., the unique R+-valued
strong solution to (1.2) and Pt(x, dy) its transition probability kernel. The following
is our first main result.

Theorem 2.1. Suppose that there exist constants C,M > 0 and ϑ ∈ (α−1, 1] such
that

bξ +

∫ ∞
0

(
1− e−zξ

)
ν(dz) ≥ Cξϑ, ξ ≥M. (2.1)

Then for each t > 0 and each x ≥ 0, the heat kernel Pt(x, dy) has density pt(x, y)
which is jointly continuous in (t, x, y) ∈ (0,∞)× [0,∞)2. Moreover, for each t > 0,
the function R+ × R+ 3 (x, y) 7−→ pt(x, y) is smooth and

sup
(x,y)∈R+×R+

|∂nx∂kypt(x, y)| <∞, ∀n, k ∈ N0.

Condition (2.1) is natural to guarantee that the process does not hit the boundary
and hence Pt(x, dy) has no atom at the boundary, i.e. pt(x, y) is also continuous
at y = 0. Let us refer to Foucart and Uribe Bravo (2014); Duhalde et al. (2014)
for some related results. If b > 0, then (2.1) is satisfied with ϑ = 1 and C = b. In
the case b = 0 condition (2.1) is still satisfied provided that the subordinator J has
sufficiently many small jumps (see the examples at the end of this section).
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The proof of Theorem 2.1 is given in Section 3 and deeply relies on the affine
structure of the process (see (1.4)), i.e. we exploit the fact that its characteristic
function satisfies

E[euX
x(t)] = eφ(t,u)+xψ(t,u), t ≥ 0, x ≥ 0, (2.2)

where u ∈ C is such that Re(u) ≤ 0, and φ, ψ solve uniquely the generalized Riccati
equations{

∂tφ(t, u) = bψ(t, u) +
∫∞

0

(
ezψ(t,u) − 1

)
ν(dz), φ(0, u) = 0

∂tψ(t, u) = βψ(t, u) +
∫∞

0

(
ezψ(t,u) − 1− ψ(t, u)z

)
µα(dz), ψ(0, u) = u.

(2.3)

We deduce the assertion by showing enough integrability for the characteristic func-
tion R 3 u 7−→ E[eiuXx(t)]. For this purpose we adapt some ideas from the multi-
dimensional diffusion case studied in Filipović et al. (2013), where a Hörmander-
type condition on the drift and diffusion parameters is imposed.

2.2. Existence of heat-kernel and strong Feller property in dimension m ≥ 1. Here
and below we denote by (Xx(t))t≥0 the anisotropic stable JCIR process obtained
from (1.3) with initial condition Xx(0) = x ∈ Rm+ , and recall that it depends on
the parameters b ∈ Rm+ , σ1, . . . , σm ≥ 0, α1, . . . , αm ∈ (1, 2), (βkj)k,j=1,...,m with
βkj ≥ 0 for k 6= j, and a Lévy subordinator ν(dz) on Rm+ . Finally, let us assume
that σ1, . . . , σm > 0. The case where σi = 0 holds for some i ∈ {1, . . . ,m} can be
also studied by the methods of this paper provided we assume an additional ”non-
degeneracy” condition on the one-dimensional Lévy process (Ji(t))t≥0. However,
in order to keep the arguments simple and neat we decided to exclude these cases.
The following condition is a multi-dimensional analogue of (2.1).

(A) There exist constants C,M > 0 and ϑ1, . . . , ϑm such that for all k =
1, . . . ,m, ϑk ∈ (αk − 1, 1] and

bkξ +

∫
Rm+

(
1− e−ξzk

)
ν(dz) ≥ Cξϑk , ∀ξ ≥M. (2.4)

Remark 2.2. If b ∈ Rm++ = {x ∈ Rm+ | x1, . . . , xm > 0}, then condition (A) is
satisfied. If b ∈ ∂Rm+ , then condition (A) is still satisfied provided that the Lévy
process J has sufficiently many jumps in direction k with bk = 0. Some particular
examples satisfying condition (A) with b ∈ ∂Rm+ are given in the end of this section.

Condition (A) guarantees that the process has a sufficiently strong drift pointing
inwards (i.e. in the interior Rm++) and hence does not hit the boundary of its state
space, see Section 4 for additional details. The next remark states that (A) imposes
essentially a condition that is independent of the big jumps of the subordinator J .

Remark 2.3. Let b ∈ Rm+ and let ν be a Lévy measure on Rm+ . Then condition (A)
is satisfied for b, ν if and only if it is satisfied for b,1{|z|≤1}ν(dz).

The following is our main regularity result for the heat kernel of the anisotropic
stable JCIR process.

Theorem 2.4. Suppose that condition (A) is satisfied. Then Pt(x, dy) = pt(x, y)dy
and

Rm+ 3 x 7−→ pt(x, ·) ∈ L1(Rm+ )



648 M. Friesen and P. Jin

is continuous for each t > 0. In particular, the anisotropic stable JCIR process has
the strong Feller property.

The proof of this result is given in Section 4 and is divided into 4 steps. Namely,
we first prove existence of a heat kernel under an additional moment condition for
ν and provide an estimate in a suitably weighted anisotropic Besov norm which
takes also the behavior of the process at the boundary into account. Secondly, we
estimate uniformly the probability that the process hits its boundary in positive
time. Then, with the same moment condition for ν, we deduce the assertion from
a compactness argument combined with previous two steps. Finally, we use a
convolution trick to remove the extra moment assumption and prove the assertion
in the general case. The same approach can also be applied to general affine (and
non-affine) processes.

2.3. Exponential ergodicity in total variation. The anisotropic stable JCIR process
is called subcritical, if β = (βjk)j,k∈{1,...,m} has only eigenvalues with negative real-
parts. Assuming that the anisotropic stable JCIR process is subcritical and satisfies∫

Rm+
1{|z|>1} log(1 + |z|)ν(dz) <∞, (2.5)

existence, uniqueness and a representation of the characteristic function for the
invariant measure π was first obtained in Jin et al. (2020) where stability for the
corresponding Riccati equations was investigated. Then∫

Rm+
log(1 + |x|)π(dx) <∞ (2.6)

and an exponential rate of convergence for Pt(x, ·) −→ π in different Wasserstein
distances was shown in Friesen et al. (2020+b) where affine processes on the canon-
ical state space have been obtained as unique strong solutions to a system of sto-
chastic equations. For one-dimensional affine processes on R+ regularity (and other
properties) of the invariant measure π was studied in Chazal et al. (2018b); Keller-
Ressel and Mijatović (2012). Using the regularity for the heat kernel obtained in
Theorem 2.4 we prove exponential ergodicity in the total variation norm

‖ρ‖TV = sup
A∈B(Rm+ )

|ρ|(A) = sup
‖f‖∞≤1

∣∣∣∣∣
∫
Rm+

f(x)ρ(dx)

∣∣∣∣∣ , (2.7)

where |ρ| = ρ+ + ρ− and ρ± denote the Hahn-Jordan decomposition of a signed
Borel measure ρ on Rm+ . Our last main result provides a sufficient condition for the
exponential ergodicity in the stronger total variation distance.

Theorem 2.5. Suppose that the anisotropic stable JCIR process is subcritical, sat-
isfies condition (A) and (2.5). Then there exist constants C, δ > 0 such that for all
t ≥ 0 and x ∈ Rm+

‖Pt(x, ·)− π‖TV ≤ C

(
1 + log(1 + |x|) +

∫
Rm+

log(1 + |y|)π(dy)

)
e−δt.

The proof of this theorem is based on a Harris-type theorem and is given in
Section 5. It basically requires to check a local Dobrushin condition and a Foster-
Lyapunov drift condition for the extended generator. The local Dobrushin condition
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is deduced from the regularity results from Theorem 2.4 combined with a weak form
of irreducibility similar to Peng and Zhang (2018). Finally, the Foster-Lyapunov
condition can be checked by direct computation combined with a convolution ar-
gument similar to Friesen et al. (2020+b); Jin et al. (2020).

2.4. Examples for main conditions. Recall that condition (A) is satisfied, if b ∈
Rm++. So let us consider the case b ∈ ∂Rm+ . For simplicity, we suppose that b = 0
and provide conditions on ν such that (A) is still satisfied. Set

αmax := max{α1, . . . , αm}, αmin := min{α1, . . . , αm}.

Example 2.6. Let ν be given by the spherical decomposition

ν(A) =

∫ ∞
0

∫
Sm−1
+

1A(rσ)λ(dσ)
dr

r1+ϑ
(2.8)

where ϑ ∈ (αmax− 1, 1), Sm−1
+ = {σ ∈ Rm+ | |σ| = 1}, and λ is a measure on Sm−1

+ .
Then we obtain∫

Rm+

(
1− e−ξzk

)
ν(dz) = ξϑ

∫
Sm−1
+

σϑkλ(dσ)

∫ ∞
0

(
1− e−r

) dr

r1+ϑ
.

Hence (A) holds, if
∫
Sm−1
+

σϑkλ(dσ) > 0. This includes the following cases:

(a) If λ(dσ) = 1Sm−1
+

(σ)dσ is the uniform distribution on Sm−1
+ , then

ν(dz) = 1Rm+ (z)
dz

|z|d+ϑ
.

(b) If λ(dσ) =
∑m
k=1 δek(dσ), then

ν(dz) =

m∑
k=1

1R+
(zk)

dzk

z1+ϑ
k

⊗
∏
j 6=k

δ0(dzj).

The next example shows that the stability index ϑ appearing in (2.8) is also
allowed to depend on the direction of the jump.

Example 2.7. Let J(t) = (J1(t), . . . , Jm(t)) where J1, . . . , Jm are independent Lévy
subordinators on R+ with Lévy measures 1R+(zk)z−1−ϑk

k dzk with νk ∈ (αk −
1, 1)and k = 1, . . . ,m. Then J has Lévy measure

ν(dz) =

m∑
k=1

1R+(zk)
dzk

z1+ϑk
k

⊗
∏
j 6=k

δ0(dzj)

and for ξ ≥ 0 it holds that∫
Rm+

(
1− e−ξzk

)
ν(dz) = ξϑk

∫ ∞
0

(
1− e−r

) dr

r1+ϑk
.

In particular condition (A) is satisfied.

We may also easily find examples where in some directions bk > 0 while for
other directions bk = 0 and the Lévy measure ν has sufficiently many jumps (e.g.
it is given by previous two examples). Our last example provides a deviation from
anisotropic stable Lévy measures.
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Example 2.8. Take ϑk ∈ (αk − 1, 1), k = 1, . . . ,m, and let ν be given by

ν(dz) =

m∑
k=1

gk(zk)
dzk

z1+ϑk
k

⊗
∏
j 6=k

δ0(dzj),

where gk : R+ −→ R+ are bounded. For each ξ ≥ 1 we obtain∫
Rm+

(
1− e−ξzk

)
ν(dz) = ξϑk

∫ ∞
0

(
1− e−r

)
gk

(
r

ξ

)
dr

r1+ϑk

≥ ξϑk
∫ 1

0

(
1− e−r

) dr

r1+ϑk
· inf
x∈[0,1]

{gk(x)}

Hence condition (A) is satisfied, provided infx∈[0,1]{gk(x)} > 0 holds for all k =
1, . . . ,m.

3. Regularity of the heat kernel for the one-dimensional stable JCIR
process

In this section we suppose that the conditions of Theorem 2.1 are satisfied.
Letting f(t, u) = Re(ψ(t, u)) and g(t, u) = Im(ψ(t, u)), where ψ is obtained from
(2.3), we find that f(t, iy), g(t, iy) are the unique solutions to{

∂tf = βf +
∫∞

0

(
efz cos(gz)− 1− fz

)
µα(dz), f(0, iy) = 0,

∂tg = βg +
∫∞

0

(
efz sin(gz)− gz

)
µα(dz), g(0, iy) = y.

It follows from the general theory of affine processes (see Duffie et al., 2003, The-
orem 2.7) that f ≤ 0. This property will be frequently used. The following is our
crucial estimate.

Proposition 3.1. For each t0 > 0, there exist constants M,C1, C2 > 0, which
depend on t0, such that for all |y| ≥M and t ≥ t0,

b

∫ t

0

f(s, iy)ds+

∫ t

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz) ≤ −C1|y|1+ϑ−α + C2. (3.1)

Below we first prove Theorem 2.1 and then Proposition 3.1.

Proof of Theorem 2.1: Let t > 0 be fixed and choose t0 ∈ (0, t). Note that for
u ∈ R, we have f(t, iu) ≤ 0 and

Re(φ(t, iu)) = b

∫ t

0

f(s, iu)ds+

∫ t

0

∫ ∞
0

(
ezf(s,iu) cos(zg(s, iu))− 1

)
ν(dz)

≤ b
∫ t

0

f(s, iu)ds+

∫ t

0

∫ ∞
0

(
ezf(s,iu) − 1

)
ν(dz). (3.2)

By (3.2) and Proposition 3.1, there exist constants M,C1, C2 > 0 such that for all
|u| ≥M and t ≥ t0,∣∣∣E[eiuXx(t)]

∣∣∣ =
∣∣∣eφ(t,iu)+xψ(t,iu)

∣∣∣
= eRe(φ(t,iu))exf(t,iu)

≤ eRe(φ(t,iu)) ≤ exp
{
−C1|u|1+ϑ−α + C2

}
. (3.3)
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Hence ∫ ∞
−∞
|u|p

∣∣∣E[eiuXx(t)]
∣∣∣du <∞

for all p ≥ 0. So Pt(x, dy) = pt(x, y)dy, where pt(x, y) is given by

pt(x, y) =
1

2π

∫ ∞
−∞

e−iyuE[eiuXx(t)]du

=
1

2π

∫ ∞
−∞

e−iyueφ(t,iu)+xψ(t,iu)du. (3.4)

It is clear that the integrand in (3.4) is jointly continuous in (t, x, y) ∈ (0,∞) ×
[0,∞)2, and in view of the estimate (3.3) we may apply dominated convergence to
find that pt(x, y) is also jointly continuous in (t, x, y). Using formula (6.16) in the
proof of Duffie et al. (2003, Proposition 6.1) we find a constant C = Ct > 0 such
that |ψ(t, iu)| ≤ C(1 + |u|), u ∈ R. Hence using (3.3) we may differentiate under
the integral in (3.4) and find that (x, y) 7−→ pt(x, y) is smooth with all derivatives
being bounded. The assertion is proved. �

The rest of this section is devoted to the proof of Proposition 3.1. For the proof
we use some ideas taken from Filipović et al. (2013). Namely, for y ∈ R with
|y| 6= 0, introduce F (t, y) := 1

|y|f
(

t
|y|α−1 , iy

)
, t ≥ 0,

G(t, y) := 1
|y|g

(
t

|y|α−1 , iy
)
, t ≥ 0.

Using the substitution z 7−→ |y|z shows that (F,G) solve{
∂tF = β F

|y|α−1 +
∫∞

0

(
eFz cos(Gz)− 1− Fz

)
µα(dz), F (0, y) = 0,

∂tG = β G
|y|α−1 +

∫∞
0

(
eFz sin(Gz)−Gz

)
µα(dz), G(0, y) = y

|y| .

We first prove the following lemma.

Lemma 3.2. There exist constants t0, δ > 0 and M > 1 such that for all t ∈ (0, t0]
and |y| ≥M ,

F (t, y) ≤ −δt.

Proof : Note that ∂tF (0, y) =
∫∞

0
(cos(z)− 1)µα(dz) < 0 and

∂tG(0, y) =

{
β

|y|α−1 +
∫∞

0
(sin(z)− z)µα(dz), y > 0,

− β
|y|α−1 −

∫∞
0

(sin(z)− z)µα(dz), y < 0.

Without loss of generality we suppose y > 0, which implies G(0, y) = 1.
By continuity, we find a > 0 small enough and M > 0 large enough such that

for all (F,G) ∈ D = [−a, 0]× [1− a, 1 + a] and all |y| ≥M ,

− 2δ ≤ β F

|y|α−1
+

∫ ∞
0

(
eFz cos(Gz)− 1− Fz

)
µα(dz) ≤ −δ (3.5)

and ∣∣∣∣β G

|y|α−1
+

∫ ∞
0

(
eFz sin(Gz)−Gz

)
µα(dz)

∣∣∣∣ ≤ K, (3.6)

where δ,K > 0 are constants.
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Starting from (0, 1), the solution (F (t, y), G(t, y)) will stay within D for some
positive time, since the velocity vector field is bounded in D. More precisely, let

t0 :=
a√

4δ2 +K2
> 0,

then (3.5) and (3.6) imply that for t ∈ (0, t0] and |y| ≥M ,

(F (t, y), G(t, y)) ∈ D
and thus

F (t, y) =

∫ t

0

∂sF (s, y)ds ≤ −
∫ t

0

δds = −δt.

The lemma is proved. �

We are now prepared to provide a full proof of Proposition 3.1.

Proof of Proposition 3.1: Let T > 1 be such that T−1 < t0 < T . In the following
we first prove that there exist constants K,C1, C2 > 0 such that for all |y| ≥ K and
t ∈ [T−1, T ],

b

∫ t

0

f(s, iy)ds+

∫ t

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz) ≤ −C1|y|1+ϑ−α + C2. (3.7)

Define

β̃ :=

{
β, if β < 0,

−1, if β ≥ 0.

Using that cos(Gz) ≤ 1 combined with∫ ∞
0

(
eFz − 1− Fz

)
µα(dz) = (−F )α,

we find that F (s, y) satisfies{
∂sF ≤ β̃ F

|y|α−1 + (−F )α, s ≥ t1,
F (t1, y) ≤ −ρ,

(3.8)

for all |y| ≥M > 1. Here t1, ρ,M > 0 are constants whose existence is guaranteed
by Lemma 3.2, and t1 can actually be made arbitrarily small such that

t1 < T−1. (3.9)

Since for κ ∈ R the solution to

∂sF̄ = κF̄ + (−F̄ )α, F̄ (0) = −ρ
is given by

F̄ (s) = −
((
ρ1−α − κ−1

)
e−κ(α−1)s + κ−1

) 1
1−α

,

by comparison theorem for 1-dimensional ODEs, we obtain

F (s, y) ≤ −

((
ρ1−α − |y|

α−1

β̃

)
exp

(
β̃(1− α)

|y|α−1
(s− t1)

)
+
|y|α−1

β̃

) 1
1−α

, s ≥ t1.

So

f(s, iy)

= |y|F (|y|α−1s, y)
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≤ −|y|
((

ρ1−α − |y|
α−1

β̃

)
exp

(
β̃(1− α)

(
s− t1
|y|α−1

))
+
|y|α−1

β̃

) 1
1−α

,

(3.10)

whenever s ≥ t1/|y|α−1.
“Case 1”: Suppose b > 0. Without loss of generality assume b = 1. Note that

(3.9) holds. For |y| ≥M > 1 and t ∈ [T−1, T ], we have∫ t

0

f(s, iy)ds

≤
∫ t

t1/|y|α−1

f(s, iy)ds

≤ −|y|
∫ t

t1
|y|α−1

((
ρ1−α − |y|

α−1

β̃

)
e
β̃(1−α)

(
s− t1
|y|α−1

)
+
|y|α−1

β̃

) 1
1−α

ds.

Set

η(s) :=

((
ρ1−α − |y|

α−1

β̃

)
exp

(
β̃(1− α)

(
s− t1
|y|α−1

))
+
|y|α−1

β̃

) 1
1−α

> 0.

(3.11)
Then

η′(s) = β̃

(
ρ1−α − |y|

α−1

β̃

)
exp

(
β̃(1− α)

(
s− t1
|y|α−1

))
·
((

ρ1−α − |y|
α−1

β̃

)
exp

(
β̃(1− α)

(
s− t1
|y|α−1

))
+
|y|α−1

β̃

) α
1−α

= β̃η(s)α
(
η(s)1−α − |y|

α−1

β̃

)
.

Therefore, substituting s→ η(s) = z yields∫ t

0

f(s, iy)ds ≤ −|y|
∫ η(t)

η(t1/|y|α−1)

z

β̃zα
(
z1−α − |y|

α−1

β̃

)dz

= −|y|
∫ η(t)

ρ

1(
β̃ − |y|α−1zα−1

)dz

= −
∫ |y|ρ
|y|η(t)

1

zα−1 − β̃
dz ≤ − |y| (ρ− η(t))

(|y|ρ)
α−1 − β̃

. (3.12)

Note that β̃ < 0 and the function((
ρ1−α − rα−1

β̃

)
exp

(
β̃(1− α)

(
t− t1

rα−1

))
+
rα−1

β̃

) 1
1−α

=

(
ρ1−αeβ̃(1−α)(t− t1

rα−1 ) − rα−1

β̃

(
eβ̃(1−α)(t− t1

rα−1 ) − 1
)) 1

1−α

is monotone increasing in r ∈ (0,∞). Therefore, for |y| ≥ M and t ∈ [T−1, T ], we
obtain

ρ ≥ ρ− η(t)
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≥ ρ−
((

ρ1−α − Mα−1

β̃

)
exp

(
β̃(1− α)

(
t− t1

Mα−1

))
+
Mα−1

β̃

) 1
1−α

≥ ρ−
((

ρ1−α − Mα−1

β̃

)
exp

(
β̃(1− α)

(
T−1 − t1

Mα−1

))
+
Mα−1

β̃

) 1
1−α

=: c1 > 0. (3.13)

Combining (3.12) and (3.13) gives∫ t

0

f(s, iy)ds ≤ − c1|y|
(|y|ρ)

α−1 − β̃
.

Obviously, we can choose a larger M ′ > M such that∫ t

0

f(s, iy)ds ≤ − c1|y|
2 (|y|ρ)

α−1 ≤ −c2|y|
2−α, ∀ |y| ≥M ′, t ∈ [T−1, T ].

“Case 2”: Suppose b = 0. Similarly as in Case 1, by (2.1), (3.2) and (3.10), we
obtain, for |y| ≥M > 1 and t ∈ [T−1, T ],∫ t

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz)ds

= −
∫ t

0

∫ ∞
0

(
1− ezf(s,iy)

)
ν(dz)ds

≤ −
∫ t

t1
|y|α−1

[
c3 (−f(s, iy))

ϑ − c4
]

ds

≤ c4t− c3|y|ϑ
∫ t

t1
|y|α−1

((
ρ1−α − |y|

α−1

β̃

)
e
β̃(1−α)

(
s− t1
|y|α−1

)
+
|y|α−1

β̃

) ϑ
1−α

ds,

where we have used (2.1) so that
∫∞

0
(1− e−ξz)ν(dz) ≥ c3ξϑ − c4 for all ξ ≥ 0 and

some constants c3, c4 > 0. Using again the change of variables z = η(s), where η is
defined in (3.11), we get∫ t

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz)ds

≤ c4t− c3
∫ |y|ρ
|y|η(t)

zϑ−1

zα−1 − β̃
dz

≤ c4T −
c3|y| (|y|ρ)

ϑ−1

(|y|ρ)
α−1 − β̃

(ρ− η(t))

(3.13)

≤ c4T −
c1c3|y| (|y|ρ)

ϑ−1

(|y|ρ)
α−1 − β̃

≤ −c5|y|1+ϑ−α + c6, ∀ |y| ≥M ′′, t ∈ [T−1, T ],

where M ′′ > M is another large enough constant.
Summarizing Case 1 and 2, and noting that 2− α ≥ 1 + ϑ− α, we obtain (3.7).

Now, for t > T and |y| ≥ K, it holds also that

b

∫ t

0

f(s, iy)ds+

∫ t

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz)

≤ b
∫ T

0

f(s, iy)ds+

∫ T

0

∫ ∞
0

(
ezf(s,iy) − 1

)
ν(dz)
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≤ −C1|y|1+ϑ−α + C2.

The proposition is proved. �

4. Existence and regularity of the heat kernel

4.1. Heat kernel and anisotropic Besov regularity. In order to measure anisotropic
smoothness related to the cylindrical Lévy process Z = (Z1, . . . , Zm), we use an
anisotropic analogue of classical Besov spaces. Corresponding to the regularity
indices (α1, . . . , αm) we define a mean order of smoothness α > 0 and an anisotropy
a = (a1, . . . , am) by

1

α
=

1

m

(
1

α1
+ · · ·+ 1

αm

)
, ai =

α

αi
, i = 1, . . . ,m. (4.1)

Then note that 0 < a1, . . . , am < ∞ and a1 + · · · + am = m. Take λ > 0 with
λ/ak ∈ (0, 1) for all k ∈ {1, . . . ,m}. For a measurable function f : Rm −→ R
introduce

‖f‖Bλ,a1,∞
:= ‖f‖L1(Rm) +

m∑
k=1

sup
h∈[−1,1]

|h|−λ/ak‖∆hekf‖L1(Rm), (4.2)

where ∆hf(x) = f(x+ h)− f(x), h ∈ Rm. The anisotropic Besov space Bλ,a1,∞(Rm)

is defined as the set of all L1(Rm) functions f with ‖f‖Bλ,a1,∞
<∞ (see Dachkovski,

2003 and Triebel, 2006 for additional details and references). By studying estimates
on the heat kernel weighted by

ρδ(x) = min{δ, x1/α1

1 , . . . , x1/αm
m }1Rm+ (x), δ ∈ (0, 1],

we can also take the behavior of the process at the boundary into account. The
following is our main result for the regularity of the heat kernel.

Theorem 4.1. Suppose that condition (A) is satisfied and assume there exists
τ > 0 satisfying ∫

Rm+
1{|z|>1}|z|1+τν(dz) <∞.

Then for each t > 0 and each x ∈ Rm+ the transition kernel Pt(x, dy) has density
pt(x, y) with respect to the Lebesgue measure. Moreover, there exists some small
constant λ > 0 such that for each T > 0, κ ∈ (0, 1] and δ ∈ (0, 1],

‖pδt (x, ·)‖Bλ,a1,∞(Rm+ ) ≤ C(1 + |x|)κ(1 ∧ t)−1/αmin , t ∈ (0, T ], x ∈ Rm+ , (4.3)

where pδt (x, y) := ρδ(y)pt(x, y) and C = C(λ, τ,κ, δ, T ) > 0 is a constant.

The proof of this result follows the arguments given in Friesen et al. (2020) and
Friesen et al. (2020+a) where general stochastic equations have been considered.
Since we need the precise dependence on x in (4.3) and since the proofs are signifi-
cantly simpler for (1.3) compared with the general case, we provide, for convenience
of the reader, a full proof of Proposition 4.1 in the appendix.
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4.2. Boundary non-attainment. In this section we prove the following estimate on
the behavior of the anisotropic stable JCIR process at the boundary.

Proposition 4.2. Suppose that condition (A) is satisfied. Then for each t > 0 and
each R > 0, there exists C > 0 such that

P[min{Xx
1 (t), . . . , Xx

m(t)} ≤ ε] ≤ Cε, ε ∈ (0, 1), x ∈ Rm+ , |x| ≤ R.

In particular, P[Xx(t) ∈ Rm++] = 1 holds for all t > 0 and all x ∈ Rm+ .

Proof : Consider x = (x1, . . . , xm) ∈ Rm+ and let (Xx(t))t≥0 be the anisotropic sta-
ble JCIR process obtained from (1.3). Moreover, let Y x(t) = (Y x1

1 (t), . . . , Y xmm (t))
be the unique Rm+ -valued strong solution to

dY xkk (t) = (bk + βkkY
xk
k (t)) dt+ αk

√
σkY

xk
k (t)dZk(t) + dJk(t), (4.4)

where k ∈ {1, . . . , d} and Y xkk (0) = xk. Existence and uniqueness of such a process
is again a direct consequence of Barczy et al. (2015), see also Fu and Li (2010).
Moreover, (Y x(t))t≥0 is the anisotropic JCIR process where all off-diagonal drift
terms equal to zero. Using the fact that βkj ≥ 0 whenever k 6= j we may apply the
comparison result established in Friesen et al. (2019b, Proposition 4.2) to deduce

P[Xx
k (t) ≥ Y xkk (t), t ≥ 0] = 1, k ∈ {1, . . . ,m}.

Since (Jk(t))t≥0 is a Lévy subordinator on R+ whose Lévy measure is given by
νk = ν ◦ pr−1

k , where prk(z) = zk denotes the projection on the k-th coordinate,
we can apply Theorem 2.1 for the process (Y xkk (t))t≥0. Let pkt (xk, yk) be its heat
kernel. Then

P[min{Xx
1 (t), . . . , Xx

m(t)} ≤ ε] ≤
m∑
k=1

P[Xx
k (t) ≤ ε]

≤
m∑
k=1

P[Y xkk (t) ≤ ε]

=

m∑
k=1

∫ ε

0

pkt (xk, yk)dyk ≤ Cε,

since pkt (xk, yk) is jointly continuous in (xk, yk) and |x| ≤ R. This proves the
assertion. �

4.3. Proof of Theorem 2.4. Let us first prove a slightly weaker assertion.

Lemma 4.3. Assume the same assumptions as in Theorem 4.1. Then the mapping
Rm+ 3 x 7−→ pδt (x, ·) ∈ L1(Rm+ ) is continuous for each t > 0 and each δ ∈ (0, 1],
where pδt (x, y) = ρδ(y)pt(x, y).

Proof : Using the Feller property (see Duffie et al., 2003, Proposition 8.2), we find
that x 7−→ pt(x, y)dy is weakly continuous, i.e.

x 7−→
∫
Rm+

f(y)ρδ(y)pt(x, y)dy (4.5)

is continuous for each bounded continuous function f .
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Let x ∈ Rm+ be fixed. Suppose (xn)n is a sequence such that xn → x. Using
(4.3) we find that

sup
n∈N
‖pδt (xn, ·)‖Bλ,a1,∞

<∞.

Next observe that for each K,R > 0,

sup
|x|≤K

∫
|y|≥R

pδt (x, y)dy ≤ δ sup
|x|≤K

∫
|y|≥R

pt(x, y)dy ≤ δ

R
sup
|x|≤K

E[|Xx
t |] ≤

δKCt
R

,

where we have used Proposition A.1. Hence we may apply the Kolmogorov-Riesz
compactness criterion which gives existence of a subsequence (xnk)k such that
pδt (xnk , ·) has a limit in L1(Rm+ ). By the weak continuity (4.5) this limit is ex-
actly pδt (x, ·).

So for each sequence (xn)n with xn → x we have found a subsequence (xnk)k such
that pδt (xnk , ·)→ pδt (x, ·) in L1 as k →∞. This proves the desired L1 continuity. �

We are now prepared to provide a full proof of Theorem 2.4. The affine structure
of the anisotropic JCIR process allows us to study first the particular case with ν
having no big jumps, i.e., ν(dz) = 1{|z|≤1}ν(dz), and then the general case by
a convolution argument. Namely, define ν0(dz) = 1{|z|≤1}ν(dz) and ν1(dz) =
1{|z|>1}ν(dz), and write F (u) = 〈b, u〉+ F0(u) + F1(u) where for i = 0, 1,

Fi(u) =

∫
Rm+

(
e〈u,z〉 − 1

)
νi(dz), u ∈ Cm with Re(u) ≤ 0.

Let (Y x(t))t≥0 the unique strong solution to (1.3) with ν = ν0 and let (Ỹ x(t))t≥0

be the unique strong solution to (1.3) with b = 0 and ν = ν1, i.e.,

E
[
ei〈u,Y x(t)〉

]
= exp

(∫ t

0

(〈b, ψ(s, iu)〉+ F0(ψ(s, iu))) ds+ 〈x, ψ(s, iu)〉
)
,

E
[
ei〈u,Ỹ x(t)〉

]
= exp

(∫ t

0

F1(ψ(s, iu))ds+ 〈x, ψ(s, iu)〉
)
,

where ψ is obtained from (1.5). Denote by Q0
t (x, ·) the transition probabilities of

(Y x(t))t≥0 and by Q1
t (x, ·) the transition probabilities of (Ỹ x(t))t≥0. Using (1.4)

we find

E
[
ei〈u,Y x(t)〉

]
E
[
ei〈u,Ỹ 0(t)〉

]
= exp

(∫ t

0

(〈b, ψ(s, iu)〉+ F0(ψ(s, iu))) ds+ 〈x, ψ(s, iu)〉
)

exp

(∫ t

0

F1(ψ(s, iu))ds

)
= exp (φ(t, iu) + 〈x, ψ(t, iu)〉)

= E
[
ei〈u,Xx(t)〉

]
which yields

Pt(x, ·) = Q0
t (x, ·) ∗Q1

t (0, ·), t > 0, x ∈ Rm+ , (4.6)

where ∗ denotes the convolution of measures.

Proof of Theorem 2.4: According to Theorem 4.1, the kernel Q0
t (x, ·) has a density

q0
t (x, ·) for t > 0. In view of (4.6), for t > 0 and x ∈ Rm+ , the measure Pt(x, ·)
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possesses also a density pt(x, ·) with respect to the Lebesgue measure and it is
given by

pt(x, y) =

∫
Rm+

q0
t (x, y − z)Q1

t (0,dz), y ∈ Rm+ ,

and pt(x, y) = 0 for y /∈ Rm+ .
Fix t > 0 and x ∈ Rm+ . Let (xn)n∈N ⊂ Rm+ be such that xn → x. Our aim is to

show that
pt(xn, ·)→ pt(x, ·) in L1

(
Rm+
)
, as n→∞. (4.7)

We will finish the proof in two steps:
“Step 1”: We show that q0

t (xn, ·) converges in L1
(
Rm+
)
to q0

t (x, ·) as n→∞. Let
ε ∈ (0, 1). Write ρ̃(z) = min{z1/α1

1 , . . . , z
1/αm
m } so that ρε(z) = min{ε, ρ̃(z)}. Then

‖q0
t (xn, ·)− q0

t (x, ·)‖L1(Rm+ )

≤
∫
Rm+

(
q0
t (xn, y) + q0

t (x, y)
)
1{ρ̃(y)≤ε}dy

+

∫
Rm+

∣∣q0
t (xn, y)− q0

t (x, y)
∣∣1{ρ̃(y)>ε}dy

= P[ρ̃(Y xn(t)) ≤ ε] + P[ρ̃(Y x(t)) ≤ ε]

+

∫
Rm+

∣∣q0
t (xn, y)− q0

t (x, y)
∣∣1{ρ̃(y)>ε}dy.

Using Proposition 4.2 we can have

sup
n∈N

P[ρ̃(Y xn(t)) ≤ ε] + P[ρ̃(Y x(t)) ≤ ε]

≤ sup
n∈N

P

[
m⋃
i=1

{
(Y xni (t))

1/αi ≤ ε
}]

+ P

[
m⋃
i=1

{
(Y xi (t))

1/αi ≤ ε
}]

≤ sup
n∈N

mP [min {Y xn1 (t), . . . , Y xnm (t)} ≤ εαmin ]

+mP [min {Y x1 (t), . . . , Y xm(t)} ≤ εαmin ]

≤ Cεαmin ≤ Cε.

For the third term we use∫
Rm+

∣∣q0
t (xn, y)− q0

t (x, y)
∣∣1{ρ̃(y)>ε}dy

= ε−1

∫
Rm+

∣∣ρε(y)q0
t (xn, y)− ρε(y))q0

t (x, y)
∣∣1{ρ̃(y)>ε}dy

≤ ε−1

∫
Rm+

∣∣ρε(y)q0
t (xn, y)− ρε(y))q0

t (x, y)
∣∣dy,

where the right-hand side tends by Lemma 4.3 to zero as n→∞. So

lim sup
n→∞

‖q0
t (xn, ·)− q0

t (x, ·)‖L1(Rm+ ) ≤ Cε.

Since ε ∈ (0, 1) is arbitrary, the desired convergence q0
t (xn, ·)→ q0

t (x, ·) in L1
(
Rm+
)

is proved.
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“Step 2”: We show that (4.7) is true in the general case. We have∫
Rm+
|pt(xn, y)− pt(x, y)|dy

=

∫
Rm
|pt(xn, y)− pt(x, y)|dy

≤
∫
Rm

∫
Rm

∣∣q0
t (xn, y − z)− q0

t (x, y − z)
∣∣Q1

t (0,dz)dy

=

∫
Rm

∫
Rm

∣∣q0
t (xn, y − z)− q0

t (x, y − z)
∣∣dyQ1

t (0,dz)

= ‖q0
t (xn, ·)− q0

t (x, ·)‖L1(Rm+ ) → 0, as n→∞.

So (4.7) is true. The theorem is proved. �

5. Exponential ergodicity in total variation

5.1. Regularity for the invariant measure. As a consequence of our regularity results
for the heat kernel (see Sections 3 and 4), we can also deduce similar results for the
invariant measure. We start with the one-dimensional case.

Corollary 5.1. Suppose that (2.1) is satisfied. Assume that β < 0 and
∫

(1,∞)
log(1+

z)ν(dz) < ∞. Then the unique invariant measure π(dx) has a smooth density g
which satisfies g(x) = 0 for all x ≤ 0 and vanishes at infinity.

Proof : It was shown in Keller-Ressel and Mijatović (2012), see also Jin et al. (2020),
that for all y ∈ R,

lim
t→∞

eφ(t,iy)+xψ(t,iy) = eφ(∞,iy) =

∫
R

eixyπ(dx),

where

φ(∞, iy) =

∫ ∞
0

(
bψ(s, iy) +

∫
(0,∞)

(
ezψ(s,iy) − 1

)
ν(dz)

)
ds

and the integral against ds is absolutely convergent. Since the process is supported
on R+ it is clear that π((−∞, 0)) = 0. Using Proposition 3.1 we may take the limit
t→∞ in (3.1) and find for t0 = 1 constants M,C > 0 such that∣∣∣eφ(∞,iy)

∣∣∣ ≤ e−C|y|
1+ϑ−α

, |y| ≥M.

The assertion follows from classical properties of the Fourier transform. �

In the multi-dimensional case we may use (4.3) to deduce the same regularity
for the unique invariant measure π.

Corollary 5.2. Suppose that the anisotropic stable JCIR process is subcritical,
satisfies condition (A) and ν satisfying∫

Rm+
1{|z|>1}|z|1+τν(dz) <∞

for some τ > 0. Then π is absolutely continuous with respect to the Lebesgue
measure, i.e., π(dx) = g(x)dx and there exists a constant C > 0 such that

‖g1‖Bλ,a1,∞
≤ C

∫
Rm+

(1 + |x|)π(dx) <∞,
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where g1(x) = ρ1(x)g(x) and λ, a are given as in Theorem 4.1.

Proof : Using the invariance of π we get

π(dx) =

∫
Rm+

Pt(y,dx)π(dy) =

(∫
Rm+

pt(y, x)π(dy)

)
dx,

i.e., π(dx) has a density g(x) which satisfies

g(x) =

∫
Rm+

pt(y, x)π(dy).

Hence we obtain, for p1
t (x, y) = ρ1(y)pt(x, y),

‖π1‖Bλ,a1,∞
≤
∫
Rm+
‖p1
t (y, ·)‖Bλ,a1,∞

π(dy)

≤ C
∫
Rm+

(1 + |y|)π(dy).

Using Proposition A.2 combined with the weak convergence pt(x, y)dy −→ π(dy)
we find that

∫
Rm+
|y|π(dy) <∞. The assertion is proved. �

5.2. Proof of Theorem 2.5. Here and below we suppose that the conditions of The-
orem 2.5 are satisfied. As in Section 4.3, let ν0(dz) = 1{|z|≤1}ν(dz), ν1(dz) =

1{|z|>1}ν(dz) and let (Y x(t))t≥0 be the solution to (1.3) with ν = ν0 and (Ỹ x(t))t≥0

be the solution to (1.3) with b = 0 and ν = ν1. Denote by Q0
t (x, ·) the transition

probabilities of (Y x(t))t≥0 and by Q1
t (x, ·) the transition probabilities of (Ỹ x(t))t≥0.

Recall that (4.6) holds. In order to prove Theorem 2.5 we first establish a similar
statement for (Y x(t))t≥0.

Proposition 5.3. There exists constants C, δ > 0 such that

‖Q0
t (x, ·)−Q0

t (y, ·)‖TV ≤ C min
{

1, (1 + |x|+ |y|)e−δt
}
, (5.1)

for all x, y ∈ Rm+ and all t ≥ 0.

Proof : Following Jin et al. (2020, Lemma 3.4) we define a new norm by

|x|M = 〈x, x〉1/2M = 〈x,Mx〉1/2 where M =

∫ ∞
0

etβ
>

etβdt. (5.2)

Then note that M is symmetric, positive definite and satisfies Mβ + β>M = −1.
In view of Theorem D.1 it suffices to show that the following two properties are
satisfied.

(i) The function V (x) = (1 + |x|2M )1/2 belongs to the domain of the extended
generator and there exist constants c1, c2 > 0 such that

L0V (x) ≤ −c1V (x) + c2, x ∈ Rm+ ,

where L0 denotes the extended generator of (Y x(t))t≥0.
(ii) For every R > 0 there exist h > 0 and δ ∈ (0, 2) with

‖Q0
h(x, ·)−Q0

h(y, ·)‖TV ≤ 2− δ,

for all x, y ∈ Rm+ with |x|, |y| ≤ R.
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Property (i) can be shown by similar (but essentially simpler) arguments to Jin
et al. (2020, Lemma 3.4 and Proposition 3.7). For the sake of completeness a proof
is outlined in the appendix, see Lemma B.1. Let us now prove property (ii). Let
R > 0 and take any x, y ∈ Rm+ with |x|, |y| ≤ R. Fix any bounded measurable
function f on Rm+ satisfying ‖f‖∞ ≤ 1. Choose h > 1 and R̃ > 0 to be specified
later on. Let H = Hh,x,y be the joint distribution of (Y x(h − 1), Y y(h − 1)),
i.e. H(dx̃,dỹ) = P[Y x(h − 1) ∈ dx̃, Y y(h − 1) ∈ dỹ]. Since (Q0

t )t≥0 satisfies
the conditions of Theorem 2.4, Q0

t (x, ·) has density q0
t (x, ·) being continuous in x

with respect to L1(Rm). Hence we find η(R̃) > 0 (independent of f) such that
‖q0

1(x̃, ·)− q0
1(ỹ, ·)‖L1(Rm+ ) ≤ 1 for (x̃, ỹ) ∈ Θ, where

Θ = {(x̃, ỹ) ∈ Rm+ × Rm+ | |x̃− ỹ| ≤ η(R̃), |x̃|, |ỹ| ≤ R̃}.

It follows easily that |Q0
1f(x̃) − Q0

1f(ỹ)| ≤ 1 for (x̃, ỹ) ∈ Θ. Then we obtain from
‖Q0

1f‖∞ ≤ 1

|Q0
hf(x)−Q0

hf(y)| ≤
∣∣∣∣∫

Θ

(Q0
1f(x̃)−Q0

1f(ỹ))H(dx̃, dỹ)

∣∣∣∣
+

∣∣∣∣∫
Θc

(Q0
1f(x̃)−Q0

1f(ỹ))H(dx̃, dỹ)

∣∣∣∣
≤ H(Θ) + 2H(Θc)

= 2−H(Θ).

Next we obtain

H(Θc) ≤ P[|Y x(h− 1)− Y y(h− 1)| > η(R̃)] + P[|Y x(h− 1)| > R̃]

+ P[|Y y(h− 1)| > R̃]

≤ η(R̃)−1E[|Y x(h− 1)− Y y(h− 1)|] + R̃−1E [|Y x(h− 1)|+ |Y y(h− 1)|]

≤ m

η(R̃)
|x− y|e−c(h−1) +

C(1 + |x|+ |y|)
R̃

≤ 2mRec

η(R̃)
e−ch +

C(1 + 2R)

R̃
,

where c > 0 and C > 0 are some constants given by Friesen et al. (2020+b,
Proposition 6.1) and Proposition A.2. Take first R̃ > 0 and then h > 1 large
enough such that

C(1 + 2R)

R̃
<

1

2
and

2mRec

η(R̃)
e−ch <

1

2
.

Then

H(Θ) = 1−H(Θc) ≥ 1− 2mRec

η(R̃)
e−ch − C(1 + 2R)

R̃
=: δ ∈ (0, 1).

This proves the assertion. �

We are now prepared to give a proof for Theorem 2.5.

Proof of Theorem 2.5: Let π be the unique invariant measure and let H be a cou-
pling of δx and π, i.e., a Borel probability measure over Rm+ ×Rm+ whose marginals
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are δx and π, respectively. Then

‖Pt(x, ·)− π‖TV ≤
∫
Rm+×Rm+

‖Pt(y, ·)− Pt(ỹ, ·)‖TVH(dy,dỹ)

≤
∫
Rm+×Rm+

‖Q0
t (y, ·)−Q0

t (ỹ, ·)‖TVH(dy,dỹ)

≤ C
∫
Rm+×Rm+

min
{

1, (1 + |y|+ |ỹ|)e−δt
}
H(dy,dỹ),

where we have used Friesen et al. (2019a, Lemma 2.3) and then (5.1) for the inte-
grand. Note that for a, b ≥ 0,

1 ∧ (ab) ≤ C log(1 + ab)

≤ C min{log(1 + a), log(1 + b)}+ C log(1 + a) log(1 + b)

≤ C log(1 + a)(1 + log(1 + b))

≤ Ca(1 + log(1 + b)),

where the second inequality is proved in Friesen et al. (2020+b, Lemma 8.5). Choos-
ing a = e−δt and b = 1 + |y|+ |ỹ| in the last inequality gives

‖Pt(x, ·)− π‖TV ≤ Ce−δt
∫
Rm+×Rm+

(1 + log(2 + |y|+ |ỹ|))H(dy,dỹ)

≤ Ce−δt
∫
Rm+×Rm+

(1 + log(1 + |y|) + log(1 + |ỹ|))H(dy,dỹ)

= Ce−δt

(
1 + log(1 + |x|) +

∫
Rm+

log(1 + |y|)π(dy)

)
,

where we have used the subadditivity log(1 + a+ b) ≤ log(1 + a) + log(1 + b). This
completes the proof of Theorem 2.5. �

Appendix A. Moments of the anisotropic stable JCIR process

The following can be shown by rather standard arguments, see e.g. Friesen et al.
(2020+b, Proposition 5.1).

Proposition A.1. Let η ∈ (0, αmin) and suppose that∫
|z|>1

|z|ην(dz) <∞. (A.1)

Then for each T > 0, there exists a constant CT > 0 such that

sup
t∈[0,T ]

E[|Xx(t)|η] ≤ CT (1 + |x|)η, x ∈ Rm+ .

In particular, if (A.1) holds for η = 1, then (X(t))t≥0 has finite first moment.
This moment was computed in Barczy et al. (2015) where it was shown that

E[Xx(t)] = eβtx+

∫ t

0

eβs

(
b+

∫
Rm+

zν(dz)

)
ds. (A.2)

Actually in Barczy et al. (2015) the more general class of multi-type continuous-
state branching processes were studied. An extension of such a formula to general
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affine processes on the canonical state space was obtained in Friesen et al. (2020+b).
One simple consequence is the uniform boundedness of the first moment stated
below.

Proposition A.2. Suppose that β has only eigenvalues with negative real-parts and
(A.1) holds for η = 1. Then there exists a constant C > 0 such that

sup
t≥0

E[|Xx(t)|] ≤ C(1 + |x|), x ∈ Rm+ .

Proof : Let κ > 0 be such that |eβty| ≤ e−κt|y| for all y ∈ Rm and set

b̃ = b+

∫
Rm+

zν(dz).

Using first the sub-additivity of the square-root, then the Cauchy-Schwartz inequal-
ity and finally (A.2) we find that

E[|Xx(t)|] ≤
m∑
k=1

E[Xx
k (t)]

≤
√
m|E[Xx(t)]|

≤
√
m|eβtx|+

√
m

∫ t

0

|eβsb̃|ds

≤
√
me−κt|x|+

√
m

∫ t

0

e−κs |̃b|ds

≤
√
m|x|+

√
m
|̃b|
κ
,

which proves the assertion. �

Appendix B. Lyapunov estimate for the extended generator

Recall that |x|M is defined by (5.2), V (x) = (1 + |x|2M )1/2 and observe that we
can find constants c∗ ≥ c∗ > 0 such that

c∗|x| ≤ |x|M ≤ c∗|x|, x ∈ Rm+ . (B.1)

Let L0 be the extended generator of the anisotropic stable JCIR process (Y x(t))t≥0

obtained from (1.3) whose subordinator ν has only small jumps, i.e., ν({|z| > 1}) =
0.

Lemma B.1. Suppose that β has only eigenvalues with negative real-parts. Then
V belongs to the domain of the extended generator L0, one has

L0V (x) = 〈b+ βx,∇V (x)〉+

∫
{|z|≤1}

(V (x+ z)− V (x)) ν(dz)

+

m∑
j=1

σjxj

∫ ∞
0

(
V (x+ ejz)− V (x)− z ∂V (x)

∂xj

)
µαj (dz), x ∈ Rm+

and there exists two constants c1, c2 > 0 such that

L0V (x) ≤ −c1V (x) + c2, x ∈ Rm+ . (B.2)
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Proof : By direct computation one finds that

∇V (x) =
Mx

V (x)
and

∂2V (x)

∂xj∂xk
=

Mjk

V (x)
− (Mx)k(Mx)j

V (x)3
,

which, together with (B.1), imply |∇V (x)| ≤ C and
∣∣∣ ∂2V (x)
∂xj∂xk

∣∣∣ ≤ CV (x)−1 for all
k, j ∈ {1, . . . ,m}. Here and below we use C to denote a generic positive constant
whose precise value is not important and may vary from time to time. By the
mean-value theorem we obtain

|V (x+ z)− V (x)| ≤ C|z|, x, z ∈ Rm+ ,

and applying the mean-value theorem twice gives∣∣∣∣V (x+ ejz)− V (x)− z ∂V (x)

∂xj

∣∣∣∣ =

∣∣∣∣∣z2

∫ 1

0

∫ 1

0

∂2V (x+ ejzsr)

∂x2
j

drds

∣∣∣∣∣
≤ Cz2

∫ 1

0

∫ 1

0

1

V (x+ ejzrs)
drds

≤ C z2

V (x)
,

where we have used V (x+ejzrs) ≥ (1+c2∗|x+ejzrs|2)1/2 ≥ (1+c2∗|x|2)1/2 ≥ CV (x).
Hence all integrals in L0V are well defined and one easily finds that |L0V (x)| ≤
CV (x), x ∈ Rm+ . Applying the Itó formula gives V (Y xt ) = V (x) +

∫ t
0
L0V (Y xs )ds+

Mt(V ), where (Mt(V ))t≥0 is a local martingale. Using the fact that Y xt has finite
first moment combined with the particular form of Mt(V ), one can easily show
that (Mt(V ))t≥0 is, indeed, a true martingale. Hence taking expectations gives
E[V (Y xt )] = V (x)+

∫ t
0
E[L0V (Y xs )]ds, i.e., V belongs to the domain of the extended

generator L0 and has the desired form.
It remains to prove (B.2). By continuity, for |x|M ≤ 1 one clearly has L0V (x) ≤

|L0V (x)| ≤ C. Take x ∈ Rm+ with |x|M > 1. For the drift we obtain

〈b,∇V (x)〉 ≤ |〈b,∇V (x)〉| ≤ C.

Likewise, using the identity Mβ + β>M = −1 we find that

〈βx,∇V (x)〉 =
1

2
〈Mβx+ β>Mx, x〉V (x)−1

≤ −1

2
|x|2V (x)−1

≤ − 1

2(c∗)2
|x|2MV (x)−1

≤ − c2∗
2
√

2(c∗)2
|x|M

≤ − c2∗
4(c∗)2

V (x),

where we have used (B.1) and V (x) ≤
√

2|x|M since |x|M > 1. For the state-
independent jumps we obtain∫

{|z|≤1}
(V (x+ z)− V (x)) ν(dz) ≤ C,
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while the state-dependent jumps can be estimated by
m∑
j=1

σjxj

∫ ∞
0

(
V (x+ ejz)− V (x)− z ∂V (x)

∂xj

)
µαj (dz)

=

m∑
j=1

σjxj

∫ R

0

(
V (x+ ejz)− V (x)− z ∂V (x)

∂xj

)
µαj (dz)

+

m∑
j=1

σjxj

∫ ∞
R

(
V (x+ ejz)− V (x)− z ∂V (x)

∂xj

)
µαj (dz)

≤ C
m∑
j=1

xj
V (x)

∫ R

0

z2µαj (dz) + C

m∑
j=1

xj

∫ ∞
R

zµαj (dz)

≤ C max
j∈{1,...,m}

∫ R

0

z2µαj (dz) + C max
j∈{1,...,m}

∫ ∞
R

zµαj (dz)V (x),

where R > 0 is some constant to be fixed below. Combining all estimates we obtain

L0V (x) ≤ C

(
1 + max

j∈{1,...,m}

∫ R

0

z2µαj (dz)

)

−
(

c2∗
4(c∗)2

− C max
j∈{1,...,m}

∫ ∞
R

zµαj (dz)

)
V (x).

Choosing R large enough such that

C max
j∈{1,...,m}

∫ ∞
R

zµαj (dz) ≤
c2∗

8(c∗)2
,

the assertion is proved. �

Appendix C. Proof of Theorem 4.1

Let λ > 0 and (a1, . . . , am) be the anisotropy defined in (4.1). The anisotropic
Hölder-Zygmund space Cλ,ab (Rm) is defined as the Banach space of functions φ with
finite norm

‖φ‖Cλ,ab
= ‖φ‖∞ +

m∑
k=1

sup
h∈[−1,1]

|h|−λ/ak‖∆hekφ‖∞.

The following lemma provides our main technical tool for the proof of Theorem 4.1.

Lemma C.1. Let λ, η > 0 be such that (λ + η)/ak ∈ (0, 1) for all k = 1, . . . , d.
Suppose that G is a finite measure over Rm and there exists A > 0 such that for all
φ ∈ Cη,ab (Rm), all k = 1, . . . ,m and all h ∈ [−1, 1]∣∣∣∣∫

Rm
(φ(x+ hek)− φ(x))G(dx)

∣∣∣∣ ≤ A‖φ‖Cη,ab |h|(λ+η)/ak . (C.1)

Then there exists g ∈ Bλ,a1,∞(Rm) such that G(dx) = g(x)dx and

‖g‖Bλ,a1,∞
≤ G(Rm) + 3mA(2m)η/λ

(
1 +

λ

η

)1+ η
λ

. (C.2)
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This lemma was first proved in Debussche and Fournier (2013, Lemma 2.1)
and Debussche and Romito (2014) for the isotropic case a1 = · · · = am. Above
anisotropic version is due to Friesen et al. (2020+a). The essential step in the
process of proving Theorem 4.1 is based on a suitable application of this lemma to
the finite measure Gt(dy) = ρδ(y)Pt(x, dy). In order to prove (C.1) for Gt, we use
an approximation similar to Debussche and Fournier (2013), Friesen et al. (2020),
and Friesen et al. (2020+a). From now on we fix x ∈ Rm+ and let Xx = (Xx(t))t≥0

be the unique solution to (1.3) with Xx(0) = x and ν satisfying∫
Rm+

1{|z|>1}|z|1+τν(dz) <∞

for some τ > 0. To simplify the notation we let (X(t))t≥0 stand for (Xx(t))t≥0.

C.1. Short time approximation. For ε ∈ (0, 1∧t), define the approximation Xε(t) =
(Xε

1(t), . . . , Xε
m(t)) by

Xε
i (t) = Xi(t− ε) +

(
bi +

m∑
k=1

βikXk(t− ε)

)
ε (C.3)

+ σ
1/αi
i Xi(t− ε)1/αi(Zi(t)− Zi(t− ε)) + (Ji(t)− Ji(t− ε)),

where i = 1, . . . ,m. Define κ1, . . . , κm > 0 by

κi = min

{
1 +

1

αmax
,

1

αi
+

1

α2
i

}
, i = 1, . . . ,m. (C.4)

The next proposition shows that the convergence rate for Xε
i (t)→ Xi(t) as ε→ 0

is precisely given by κi.

Proposition C.2. Let i ∈ {1, . . . ,m} be arbitrary. The following assertions hold:
(a) For each η ∈ (0, (1 + τ) ∧ αmin) and T ≥ 1, there exists a constant C =

C(η, T ) > 0 such that, for all 0 ≤ s ≤ t ≤ s+ 1 ≤ T , it holds that

E[|Xi(t)−Xi(s)|η] ≤ C(1 + |x|)η(t− s)η/αi .
(b) For each η ∈ (0, 1) and T > 0, there exists a constant C = C(η, T ) > 0

such that

E[|Xi(t)−Xε
i (t)|η] ≤ C(1 + |x|)ηεηκi , t ∈ (0, T ], ε ∈ (0, 1 ∧ t).

Proof : Fix constants γ1, . . . , γm, satisfying for each i = 1, . . . ,m

γi ∈ (αi, 2) and
γi
αi

< min{1 + τ, αmin}.

In the following we will use C to denote a positive constant, whose exact value is
not important and may change from time to time.

(a) Write E[|Xi(t)−Xi(s)|η] ≤ R1 +R2 +R3, where

R1 = CE

[∣∣∣∣∣
∫ t

s

(
bi +

m∑
k=1

βikXk(u)

)
du

∣∣∣∣∣
η]
,

R2 = CE

[∣∣∣∣∫ t

s

Xi(u−)1/αidZi(u)

∣∣∣∣η
]
,

R3 = CE [|Ji(t)− Ji(s)|η] .
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If η ∈ (0, 1], then we use the Jensen inequality and Proposition A.1 to obtain

R1 ≤ C

(
E

[∣∣∣∣∣
∫ t

s

(
bi +

m∑
k=1

βikXk(u)

)
du

∣∣∣∣∣
])η

≤ C(t− s)η + C(t− s)η sup
u∈[s,t]

(E[|X(u)|])η

≤ C(1 + |x|)η(t− s)η.

If η ∈ (1, αmin), then we use the Hölder inequality with 1
η + 1

η
η−1

= 1 to obtain

R1 ≤ C(t− s)η−1

∫ t

s

E

[∣∣∣∣∣bi +

m∑
k=1

βikXk(u)

∣∣∣∣∣
η]

du

≤ C(t− s)η−1(t− s)

(
1 + sup

u∈[s,t]

E[|X(u)|η]

)
≤ C (1 + |x|)η (t− s)η.

Combining both cases η ∈ (0, 1] and η ∈ (1, αmin) we find that R1 ≤ C (1 + |x|)η (t−
s)η. For the second term we apply Lemma E.2 to obtain

R2 ≤ C(t− s)η/αi sup
u∈[s,t]

(
E[Xi(u)γi/αi ]

)η/γi
. (C.5)

Since γi also satisfies γi/αi < min{1 + τ, αmin}, we may apply Proposition A.1 to
find that

sup
u∈[s,t]

E[Xi(u)γi/αi ] ≤ sup
u∈[s,t]

E[|X(u)|γi/αi ] ≤ C (1 + |x|)γi/αi .

Inserting this into (C.5) gives R2 ≤ C(1 + |x|)η/αi(t − s)η/αi . For the last term
we may apply the estimates for the stochastic integrals from Friesen et al. (2020,
appendix) to find that R3 = CE[Ji(t− s)η] ≤ C(t− s)η∧1. Combining all estimates
for R1, R2, R3 yields

E[|Xi(t)−Xi(s)|η] ≤ C(1 + |x|)η(t− s)η∧1 + C(1 + |x|)η/αi(t− s)η/αi

≤ C(1 + |x|)η(t− s)η/αi .

This proves the assertion.
(b) Write E[|Xi(t)−Xε

i (t)|η] ≤ R1 +R2, where

R1 = E

[∣∣∣∣∣
∫ t

t−ε

(
m∑
k=1

βik(Xk(u)−Xk(t− ε))

)
du

∣∣∣∣∣
η]
,

R2 = σ
η/αi
i E

[∣∣∣∣∫ t

t−ε
(Xi(u−)1/αi −Xi(t− ε)1/αi)dZi(u)

∣∣∣∣η
]
.

For the first term we use part (a) and the fact that η ∈ (0, 1) to obtain

R1 ≤

(
E

[∫ t

t−ε

m∑
k=1

|βik||Xk(u)−Xk(t− ε)|du

])η

≤ Cεη
m∑
k=1

sup
u∈[t−ε,t]

(E [|Xk(u)−Xk(t− ε)|])η
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≤ Cεη
m∑
k=1

(1 + |x|)ηεη/αk

≤ C(1 + |x|)ηεη+η/αmax .

Let us turn to the second term. We use Lemma E.2 and then |y1/αi − z1/αi | ≤
|y − z|1/αi for y, z ≥ 0 to find that

R2 ≤ Cεη/αi sup
u∈[t−ε,t]

(
E
[
|Xi(u)1/αi −Xi(t− ε)1/αi |γi

])η/γi
≤ Cεη/αi sup

u∈[t−ε,t]

(
E[|Xi(u)−Xi(t− ε)|γi/αi ]

)η/γi
.

Since γi/αi < min{1 + τ, αmin}, we may apply part (a) which gives

sup
u∈[t−ε,t]

E[|Xi(u)−Xi(t− ε)|γi/αi ] ≤ C(1 + |x|)γi/αiεγi/α
2
i

and hence
R2 ≤ C(1 + |x|)η/αiε

η
αi

(1+1/αi).

This proves the assertion. �

C.2. The key estimate. Recall that κ1, . . . , κm are defined in (C.4). Based on the
previous approximation we show the following.

Proposition C.3. Let t > 0 be arbitrary and fixed. Take κ ∈ (0, 1/αmax] and let
η ∈ (0,κamin). Then there exists a constant C > 0 such that, for any ε ∈ (0, 1∧ t),
h ∈ [−1, 1], φ ∈ Cη,ab (Rm) and i ∈ {1, . . . ,m},

|E [ρδ(X(t))∆heiφ(X(t))]|

≤ C‖φ‖Cη,ab (1 + |x|)κ
(
|h|η/aiεκ/αmax + |h|ε−1/αi + max

j∈{1,...,m}
εηκj/aj

)
.

Proof : For ε ∈ (0, 1∧ t) let Xε(t) = (Xε
1(t), . . . , Xε

m(t)) be given as in (C.3). Then

|E [ρδ(X(t))∆heiφ(X(t))]| ≤ R1 +R2 +R3,

where R1, R2, R3 are given by

R1 = |E [∆heiφ(X(t)) (ρδ(X(t))− ρδ(X(t− ε)))]| ,
R2 = E [|∆heiφ(X(t))−∆heiφ(Xε(t))|ρδ(X(t− ε)] ,
R3 = |E [ρδ(X(t− ε))∆heiφ(Xε(t))]| .

For the first term we use ρδ ≤ 1 and κ ≤ 1/αk to find

|ρδ(x)− ρδ(y)| ≤ 2 ∧

(
m∑
k=1

|x1/αk
k − y1/αk

k |

)

≤
m∑
k=1

2 ∧ |xk − yk|1/αk

≤ C
m∑
k=1

|xk − yk|κ ,
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and hence deduce from Proposition C.2.(a) that

R1 ≤ C‖φ‖Cη,ab |h|
η/ai

m∑
k=1

E[|Xk(t)−Xk(t− ε)|κ ]

≤ C‖φ‖Cη,ab |h|
η/ai

m∑
k=1

(1 + |x|)κεκ/αk

≤ C‖φ‖Cη,ab |h|
η/ai(1 + |x|)κεκ/αmax .

For R2 we first use that φ ∈ Cη,ab (Rm), then ρδ ≤ 1 and finally Proposition C.2.(b)
to obtain

R2 ≤ C‖φ‖Cη,ab max
j∈{1,...,m}

E
[
|Xj(t)−Xε

j (t)|η/aj
]

≤ C‖φ‖Cη,ab max
j∈{1,...,m}

εηκj/aj (1 + |x|)η/aj

≤ C‖φ‖Cη,ab (1 + |x|)κ max
j∈{1,...,m}

εηκj/aj .

Let us turn to R3. Define σ(x) = diag((σ1x1)1/α1 , . . . , (σmxm)1/αm). Let fZt be
the density of Z(t) = (Z1(t), . . . , Zm(t)). Using (C.3) we find that

Xε(t) = Uε(t) + σ(X(t− ε))(Z(t)− Z(t− ε)),
with Uε(t) = (Uε1 (t), . . . , Uεm(t)) being given by

Uεi (t) = Xi(t− ε) +

(
bi +

m∑
k=1

βikXk(t− ε)

)
ε+ (Ji(t)− Ji(t− ε)).

Finally note that σ(X(t−ε))−1 = diag((σ1X1(t−ε))−1/α1 , . . . , (σmXm(t−ε))−1/αm)
is well-defined, since P[X(t − ε) ∈ Rm++] = 1 holds by Proposition 4.2. Then we
obtain for each ε ∈ (0, 1 ∧ t),

R3 =

∣∣∣∣E [∫
Rm

ρδ(X(t− ε))(∆heiφ)(Uε(t) + σ(X(t− ε))z)fZε (z)dz

]∣∣∣∣
=

∣∣∣∣E [∫
Rm

ρδ(X(t− ε))φ(Uε(t) + σ(X(t− ε))z)(∆−hσ(X(t−ε))−1eif
Z
ε )(z)dz

]∣∣∣∣
≤ ‖φ‖∞E

[
ρδ(X(t− ε))

∫
Rm
|(∆−hσ(X(t−ε))−1eif

Z
ε )(z)|dz

]
≤ ‖φ‖∞|h|σ−1/αi

i E
[
ρδ(X(t− ε))Xi(t− ε)−1/αi

∫
Rm

∣∣∣∣∂fZε (z)

∂zi

∣∣∣∣ dz]
≤ C‖φ‖Cη,ab |h|ε

−1/αi ,

where we have used Lemma E.1 and ρδ(x)x
−1/αi
i ≤ 1. Summing up the estimates

for R1, R2, R3 yields the assertion. �

C.3. Concluding the proof of Theorem 4.1. Below we provide the proof of Theorem
4.1. Fix t > 0 and x ∈ Rm+ . We will show that Lemma C.1 applies to the finite
measure Gt(x,dy) = ρδ(y)Pt(x, dy). Using the particular form of κj we obtain
κjαj > 1 and hence κj/aj > 1/α for all j ∈ {1, . . . ,m}. This implies

aj
κj

1

ai
<
α

ai
= αi, i, j ∈ {1, . . . ,m}.
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Hence we find η ∈ (0, 1) and c1, . . . , cm > 0 such that, for all i, j ∈ {1, . . . ,m},

0 < η < aiκ,
aj
κj

1

ai
< ci < αi

(
1− η

ai

)
.

Define

λ = min
i,j∈{1,...,m}

{
κciai/αmax, ai − η −

aici
αi

, η

(
ciai

κj
aj
− 1

)}
> 0.

Let φ ∈ Cη,ab (Rm). By Proposition C.3 we obtain, for h ∈ [−1, 1], ε = |h|ci(1 ∧ t)
and i ∈ {1, . . . ,m},
|E [ρδ(X(t))∆heiφ(X(t))]|

≤ C‖φ‖Cη,ab (1 + |x|)κ
(
|h|η/aiεκ/αmax + |h|ε−1/αi + max

j∈{1,...,m}
εηκj/aj

)
≤

C‖φ‖Cη,ab
(1 ∧ t)1/αi

(1 + |x|)κ
(
|h|η/ai+ciκ/αmax + |h|1−ci/αi + max

j∈{1,...,m}
|h|ciηκj/aj

)
=

C‖φ‖Cη,ab
(1 ∧ t)1/αi

|h|η/ai(1 + |x|)κ
(
|h|ciκ/αmax + |h|1−η/ai−ci/αi

+ max
j∈{1,...,m}

|h|ciηκj/aj−η/ai
)

≤
C‖φ‖Cη,ab
(1 ∧ t)1/αi

(1 + |x|)κ |h|(η+λ)/ai .

This shows that Lemma C.1 is applicable to Gt(x,dy). Hence Gt(x, dy) has a
density gt(x, y), i.e., ρδ(y)Pt(x, dy) = gt(x, y)dy. In view of (C.2) this density
satisfies

‖gt(x, ·)‖Bλ,a1,∞(Rm+ ) ≤
∫
Rm+

ρδ(y)Pt(x, dy) + C(t)(1 + |x|)κ(1 ∧ t)−1/αmin

≤ C(t)(1 + |x|)κ(1 ∧ t)−1/αmin ,

where we have used ρ ≤ 1 and C(t) is a generic constant which is locally bounded
in t ≥ 0. Since ρδ(y) > 0 for y ∈ Rm++, Pt(x, dy) has also a density pt(x, y)

on Rm++ which gives Pt(x, dy) = pt(x, y)dy + P sing
t (x, dy), where P sing

t (x, dy) is
supported on ∂Rm+ . Using Proposition 4.2 we conclude that P sing

t (x, dy) = 0 and
hence pδt (x, y) = gt(x, y). This proves the assertion of Theorem 4.1.

Appendix D. Some results on ergodicity in total variation norm

In this section we briefly summarize some results on geometric ergodicity in the
total variation distance for continuous-time Markov processes. For additional de-
tails we refer to Hairer (2016) and Kulik (2018). Let E be a Polish space and let
(Xt)t≥0 be a Feller process on E. Denote by (Pt(x, dy))t≥0 its transition probabil-
ities and by L the extended generator.

Theorem D.1. Suppose that the following conditions are satisfied:
(a) There exists a continuous function V : E 7−→ [1,∞) which belongs to the

domain of the extended generator such that

LV (x) ≤ −aV (x) +M, x ∈ E,
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where a,M > 0 are some constants. Moreover, for each R > 0 the level
sets {(x, y) ∈ E2 | V (x) + V (y) ≤ R} are compact.

(b) For each R > 0, there exists h > 0 and δ ∈ (0, 2) such that

‖Ph(x, ·)− Ph(y, ·)‖TV ≤ 2− δ

holds for all x, y ∈ E with V (x) + V (y) ≤ R.
Then there exists constants C, β > 0 such that for all t ≥ 0 and x, y ∈ E,

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ Ce−βt (V (x) + V (y)) .

Moreover, there exists a unique invariant probability measure π. This measure
satisfies ∫

E

V (x)π(dx) <∞ (D.1)

and for all t ≥ 0 and x ∈ E one has

‖Pt(x, ·)− π‖TV ≤ Ce−βt
(
V (x) +

∫
E

V (y)π(dy)

)
.

A proof of this Theorem is given in Hairer (2016, Theorem 4.1). Moreover,
the same result can also be obtained from a combination of Corollary 2.8.3 and
Theorem 3.2.3 in Kulik (2018), where also additional comments and examples are
given.

Appendix E. Some properties of the cylindrical Lévy process (Z1, . . . , Zm)

Observe that the Lévy process Z = (Z1, . . . , Zm) has symbol

ΨZ(ξ) =

∫
Rm+

(
ei〈ξ,z〉 − 1− i〈ξ, z〉

)
µ(dz) = Ψα1

(ξ1) + · · ·+ Ψαm(ξm),

where the Lévy measure µ is given by

µ(dz) =

m∑
k=1

µαk(dzk)⊗
∏
j 6=k

δ0(dzj).

The next lemma is standard and follows from the scaling property Zj(t) =

t1/αjZj(1), j = 1, . . . ,m, where equality holds in the sense of distributions.

Lemma E.1. Z(t) has for each t > 0 a smooth density fZt on Rm. Moreover, there
exists a constant C > 0 such that∫

Rm

∣∣∣∣∂fZt (z)

∂zj

∣∣∣∣dz ≤ Ct−1/αj , t > 0.

Below we state some useful estimates on stochastic integrals with respect to the
Lévy processes Z1, . . . , Zm due to Debussche and Fournier (2013, Lemma A.2).

Lemma E.2. Let 0 < η ≤ αj < γ ≤ 2. Then there exists a constant C = C(η, γ) >
0 such that, for any predictable process H(u) and 0 ≤ s ≤ t ≤ s+ 1,

E

[∣∣∣∣∫ t

s

H(u)dZj(u)

∣∣∣∣η
]
≤ C(t− s)η/αj sup

u∈[s,t]

E [|H(u)|γ ]
η/γ

.
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