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Abstract. We study the local mass of a dyadic branching Brownian motion Z
evolving in Rd. By ‘local mass’, we refer to the number of particles of Z that
fall inside a ball with fixed radius and time-dependent center, lying in the region
where there is typically exponential growth of particles. Using the strong law of
large numbers for the local mass of branching Brownian motion and elementary
geometric arguments, we find large deviation results giving the asymptotic behavior
of the probability that the local mass is atypically small on an exponential scale.
As corollaries, we obtain an asymptotic result for the probability of absence of Z
in a ball with fixed radius and time-dependent center, and lower tail asymptotics
for the local mass in a fixed ball. The proofs are based on a bootstrap argument,
which we use to find the lower tail asymptotics for the mass outside a ball with
time-dependent radius and fixed center, as well.

1. Introduction

The setting in this paper is a branching Brownian motion (BBM) evolving in
Rd. A classical problem in this setting is how the local mass of BBM grows in
time asymptotically as time tends to infinity. In this work, by ‘local mass,’ we
refer to the number of particles that fall inside a ball of fixed size with a possibly
time-dependent center. By an elementary calculation based on a first moment
formula, one can find the expected local mass at a given time. The strong law of
large numbers for local mass of BBM in Rd was proved by Watanabe (1967), and
later improved by Biggins (1992), saying that almost surely the local mass at time t
behaves as its expectation as t tends to infinity. Hence, we know how the local mass
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typically grows for large time. In this paper, we mainly study the large deviations
for local mass in the downward direction, and obtain large-time asymptotic results
on the probability that the local mass is atypically small on an exponential scale
(Theorem 2.1). We then study the lower tail asymptotics for the mass that falls
outside a ball with a fixed center and time-dependent radius (Theorem 2.6). The
proofs are based on a bootstrap argument, which is given in two stages, where the
first stage is completed by Lemma 3.4. We now present the formulation of the
problem and a brief review of history on the topic, followed by our motivation to
study the current problem.

1.1. Formulation of the problem. Let Z = (Z(t))t≥0 be a d-dimensional strictly
dyadic BBM with constant branching rate β > 0. Here, t represents time, and
strictly dyadic means that every time a particle branches, it gives exactly two
offspring. The process starts with a single particle, which performs a Brownian
motion in Rd for a random exponential time of parameter β > 0. Then, the
particle dies and simultaneously gives birth to precisely two offspring. Similarly,
starting from the position where their parent dies, each offspring particle repeats the
same procedure as their parent independently of others and of the parent, and the
process evolves through time in this way. The Brownian motions and exponential
lifetimes of particles are all independent from one another. For each t ≥ 0, Z(t)
can be viewed as a discrete measure on Rd. Let Px and Ex, respectively, denote
the probability and corresponding expectation for Z when the process starts with
a single particle at position x ∈ Rd, that is, when Z(0) = δx, denoting the Dirac
measure at x. When Z(0) = δ0, we simply use P and E. For a Borel set B ⊆ Rd
and t ≥ 0, we write Zt(B) to denote the number of particles, i.e., the mass, of Z
that fall inside B at time t, and we write Nt := Zt(Rd) for the total mass at time t.

For x ∈ Rd, we use |x| to denote its Euclidean norm, and B(x, r) to denote the
open ball of radius r > 0 centered at x. Also, for a Borel set B and x ∈ Rd, we
define their sum in the sense of sum of sets as B + x := {y + x : y ∈ B}. Now let
0 ≤ θ < 1, B = B(y, r) be any fixed ball, and e be the unit vector in Rd in the
direction of y. (If y is the origin, we may take e to be any unit vector in Rd.) For
t ≥ 0, let

Bt = B + θ
√

2βte.
Observe that (Bt)t≥0 represents a ball of fixed size and time-dependent center that
is moving away from the origin radially at a linear speed, but not moving faster
than the BBM. Indeed, by the classical result of McKean (1975), it is well-known
that the ‘speed’ of strictly dyadic BBM in one dimension is equal to

√
2β, which

was later generalized to higher dimensions by Engländer and den Hollander (2003).
More precisely, we have:

Theorem A (Speed of BBM; McKean, 1975; Engländer and den Hollander, 2003).
Let Z be a strictly dyadic BBM in Rd. For t ≥ 0 define Mt := inf{r > 0 :
supp(Z(t)) ⊆ B(0, r)} to be the radius of the minimal ball that contains the support
of BBM at time t. Then, in any dimension,

Mt/t→
√

2β in probability as t→∞.

We remark that Mt quantifies the spatial spread of BBM so that Mt/t is a
measure of the speed of BBM. More sophisticated results on the speed of BBM,
such as almost sure results and higher order sublinear corrections, exist in the
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literature (see for example Bramson, 1978; Kyprianou, 2005; Mallein, 2015). For
our purposes, Theorem A suffices; it says that typically for large t and any 0 < ε < 1,
at time t there will be particles outside B(0,

√
2β(1− ε)t) but no particles outside

B(0,
√

2β(1+ε)t). Therefore, when we study the asymptotics of the mass in moving
balls, to obtain meaningful results, we require that the ball moves in the ‘subcritical
zone’(defined below). This explains why we consider (Bt)t≥0, where the center of
the ball Bt is at a distance of θ

√
2βt + o(t) from the origin with the requirement

that 0 ≤ θ < 1.

Definition 1.1 (Subcritical zone). For a family of Borel sets (Bt)t≥0 in Rd, we say
that (Bt)t≥0 moves in the subcritical zone for Z if there exists 0 < ε < 1 and time
t0 such that

Bt ⊆ B
(

0,
√

2β(1− ε)t
)

for all t ≥ t0.

Remark 1.2. It is usual terminology to call a branching process ‘supercritical’ when
it can grow exponentially. Nonetheless, in Definition 1.1, we use the prefix sub- as
a replacement for ‘below’ (or ‘less than’). Since the speed of BBM equals

√
2β in

the sense given in Theorem A above, we regard
√

2β(1 − ε)t with 0 < ε < 1 as
a subcritical distance from origin with the meaning ‘below’ in mind for the prefix
sub-. Also, the term ‘subcritical’ was used for similar purposes in two other works
(see Öz and Engländer, 2019, Lemma 1 and Öz, 2020, Def. 1.1).

The strong law of large numbers for local mass of BBM arises as a special case
of Watanabe (1967, Corollary, p. 222), where Watanabe established an almost sure
result on the asymptotic behavior of certain branching Markov processes. The
relevant special case of this result is as follows.

Theorem B (SLLN for local mass of BBM; Watanabe, 1967). Let Z be a strictly
dyadic BBM in Rd. Then, for any fixed Borel set B ⊆ Rd,

Zt(B)

eβtt−d/2
→ (2π)−d/2|B| ×W as t→∞ almost surely (a.s.),

where |B| is the Lebesgue measure of B, and W is a P -a.s. strictly positive random
variable.

Theorem B can be viewed as a SLLN for local mass, because it says that with
probability one, the mass in B grows as its expectation as t → ∞. Note that the
expected mass in B at time t can be calculated using the first moment formula

E[Zt(B)] = E[Zt(Rd)]× pt(0, B) = eβt × 1

(2πt)d/2

∫
B

e−|x|
2/(2t)dx,

where pt(0, B) denotes the probability that a Brownian particle starting at the
origin falls inside B at time t. Recall that Bt = B + θ

√
2βte, where B = B(y, r) is

a fixed ball, e is the unit vector in the direction of y (if y is the origin, take e to be
any unit vector), and 0 ≤ θ < 1. An extension of Theorem B for the local mass in
moving Borel sets was given in Biggins (1992, Corollary 4), and implies that

lim
t→∞

1

t
logZt(Bt) = β(1− θ2) a.s. (1.1)

This means, the mass that falls inside Bt is typically exp[β(1 − θ2)t + o(t)]. In
this work, we mainly study the large deviations for local mass in a linearly moving
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ball (Bt)t≥0 in the downward direction. More precisely, in Theorem 2.1, we will be
interested in the asymptotic behavior of

P
(
Zt(Bt) < eβat

)
for 0 ≤ a < 1− θ2,

where a is an aytpically small exponent due to (1.1). In addition, in Theorem 2.6,
we also consider the mass that falls outside a linearly expanding ball (B̂t)t≥0 with
B̂t := B(0, xt) and xt := θ

√
2βt, and study the asymptotic behavior of

P
(
Zt(B̂

c
t ) < eβat

)
for 0 ≤ a < 1− θ2,

where B̂ct denotes the complement of B̂t in Rd, and a is again an aytpically small
exponent for the mass in B̂ct at time t.

1.2. History. In the past fifty years, a variety of results have been obtained con-
cerning the asymptotic behavior of the mass of BBM. It is well known that the
total mass of BBM, that is, Nt := Zt(Rd) satisfies the following SLLN:

lim
t→∞

Nte
−βt = M > 0 a.s.,

meaning that the limit exists and is positive almost surely (see for example Athreya
and Ney, 1972, Thm.III.7.1). In what follows, we refer to the mass that falls inside
a time-dependent domain as local mass if for each t ≥ 0 the domain is bounded.
Otherwise, we use the term non-local mass.

The first result on the SLLN for local mass of BBM goes back to Watanabe
(1967, Corollary, p. 222), where Watanabe established an almost sure result on the
asymptotic behavior of certain branching Markov processes, from which the SLLN
for local mass in fixed Borel sets emerged as a special case. This was improved
by Biggins (1992), saying that almost surely the local mass in a linearly moving
Borel set at time t behaves as its expectation as t→∞. We note that the result of
Biggins (1992, Corollary 4) was originally cast in the discrete setting of a branching
random walk in discrete time, and then extended in the same paper to the contin-
uous setting of a BBM. Asymptotics of local mass of branching Markov processes
other than BBM, involving more general motion components and branching mech-
anisms, have also been studied. In Asmussen and Hering (1976), weak and strong
laws of large numbers were proved for a certain class of branching Markov processes
including branching diffusions. In Engländer and Kyprianou (2004), an interest-
ing dichotomy between local extinction and local exponential growth for certain
branching diffusions (and superprocesses) was studied. More recently in Chen and
Shiozawa (2007) and Engländer et al. (2010), SLLN for a more general class of
branching diffusions were proved. We refer the reader to Engländer (2007, Chapter
5) for a brief survey on the LLN for local mass of spatial branching processes and
superprocesses.

The growth of non-local mass of BBM, that is, the mass inside unbounded time-
dependent domains in Rd has also been frequently studied; the most popular domain
being the complement of a ball centered at the origin with a radius linearly growing
in time but at a rate smaller than the speed of BBM. Recall that Mt := inf{r >
0 : supp(Z(t)) ⊆ B(0, r)}, and that by Theorem A for large t, typically there are
no particles outside of B(0, rt) for r >

√
2β, and there are particles outside of

B(0, r̄t) for r̄ <
√

2β. In Chauvin and Rouault (1988), the asymptotics of the large
deviation probabilities P (Mt ≥ rt) for r >

√
2β was found in one dimension. Note
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that in this case P (Mt ≥ rt) is a probability of presence in a region where there
would typically be no particles. In Engländer (2004), the asymptotics of the large
deviation probabilities P (Mt ≤ r̄t) for 0 < r̄ <

√
2β was found in any dimension.

In this case, contrary to the event studied in Chauvin and Rouault (1988), since
0 < r̄ <

√
2β, P (Mt ≤ r̄t) is a probability of absence in the region (B(0, r̄t))c where

there would typically be particles.
Recently in Shiozawa (2018) and Aïdékon et al. (2017), asymptotic results have

been obtained concerning the mass of BBM outside B(0, rt), where r is smaller
than the typical Mt/t. In Aïdékon et al. (2017), upper tail asymptotics in one
dimension for Zt([θ

√
2βt,∞)) with 0 < θ < 1, were obtained for a strictly dyadic

BBM with constant branching rate β. Due to (1.1), the mass inside [θ
√

2βt,∞) at
time t is typically exp[β(1−θ2)+o(t)]; and in Aïdékon et al. (2017), large deviation
probabilities P (Zt([θ

√
2βt,∞)) ≥ eβat) are studied for 1−θ2 < a < 1. In Shiozawa

(2018), BBMs with space-dependent branching mechanisms and branching rate
measures on Rd satisfying a certain Kato class condition were considered; first the
speed (corresponding to typical Mt/t for large t) of such processes was obtained,
and then the SLLN for the mass outside B(0, rt) was proved for r smaller than the
speed of the process.

1.3. Motivation. The motivation for present work comes from Öz and Engländer
(2019, Lemma 1), which was originally cast in the setting of a trap-avoiding prob-
lem, and which could be formulated in terms of the local mass of BBM as follows.

Proposition 1.3. Let 0 < θ < 1, and for t ≥ 0 define xt = θ
√

2βt. Let ρ : R+ →
Rd be a function, where |ρ(t)| ∈ B(0, xt) for all large t, and let r > 0 be fixed.
Abbreviate Bt := B(ρ(t), r) and define St :=

⋂
0≤s≤t {Zs(Bs) = 0} to be the event

that Z has not hit B = (Bs)s≥0 up to time t. Then, the non-hitting probability of
B by Z up to time t satisfies the following asymptotics:

lim sup
t→∞

1

t
logP (St) ≤ −β(1− θ)

(√
2− 1

)
. (1.2)

Remark 1.4. In the context of trap-avoiding, the event St is the event of ‘survival
up to time t’ for the BBM from a single moving trap B = (Bs)s≥0 of fixed size.

The present work was motivated by a search for a sharp upper bound that
improves (1.2). This is achieved in the next section under Corollary 2.5, where a
detailed comparison between Proposition 1.3 and Corollary 2.5 is also given.

We conclude this section with an often used terminology and the outline of the
paper.

Definition 1.5 (SES). A generic function g : R+ → R is called super-exponentially
small (SES) if limt→∞ log g(t)/t = −∞.

Outline: The rest of the paper is organized as follows. In Section 2, we present
our main results. In Section 3, we develop the preparation needed, including
Lemma 3.4 and its proof, for the proofs of Theorem 2.1 and Theorem 2.6. In
Section 4, we present the proof of Theorem 2.1, which is our main result. The
optimization problem given in the statement of Theorem 2.1 (see (2.2)) is analyzed
in Section 5, and the proof of Theorem 2.6 is given in Section 6.
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2. Results

We introduce further notation before stating our results. For a Borel set A ⊂ Rd,
we use Ac = Rd−A to denote its complement in Rd. Also, for any event E in some
underlying set Ω of outcomes, we use Ec to denote its complement event in Ω. We
use c as a generic positive constant, whose value may change from line to line. If we
wish to emphasize the dependence of c on a parameter p, then we write cp or c(p).
We write o(t) to refer to g(t), where g : R+ → R is a generic function satisfying
lim
t→∞

g(t)/t = 0.
Our main result is a large deviation result, giving the asymptotic exponential

rate of decay for the probability that the mass of BBM inside a linearly moving
ball of fixed size is atypically small on an exponential scale.

Theorem 2.1 (Lower tail asymptotics for mass inside a moving ball). Let 0 ≤ θ < 1
and B be a fixed ball in Rd. Let e be the unit vector in the direction of the center of
B if B is not centered at the origin; otherwise let e be any unit vector. For t ≥ 0
define Bt = B + θ

√
2βte. Then, for 0 ≤ a < 1− θ2,

lim
t→∞

1

t
logP

(
Zt(Bt) < eβat

)
= −β × I(θ, a), (2.1)

where

I(θ, a) = inf
ρ∈(0,ρ̄]

ρ+

(√
(1− ρ)2 − a(1− ρ)− θ

)2

ρ

 , (2.2)

and
ρ̄ = ρ̄(θ, a) = 1− a/2−

√
(a/2)2 + θ2.

Remark 2.2. (i) In terms of the BBM’s optimal strategies for realizing the large
deviation event

{
Zt(Bt) < eβat

}
, this means (see the proof of Theorem 2.1 for

details) to realize
{
Zt(B) < eβat

}
: the system suppresses the branching completely,

and sends the single particle to a distance of
√

2β(
√

(1− ρ̂)2 − a(1− ρ̂) − θ)t +
o(t) in the opposite direction of the center of Bt over [0, ρ̂t], and then behaves
‘normally’ in the remaining interval [ρ̂t, t], where ρ̂ denotes the unique minimizer
(see Proposition 5.1) of the optimization problem in (2.2).

(ii) For θ = 0, the optimization problem in (2.2) can be solved to give (2.3),
from which it follows that lima→1− I(θ, a) = 0. For fixed 0 < θ < 1, one can again
show that lima→(1−θ2)− I(θ, a) = 0 (see Proposition 5.1(iii)).

Two corollaries of interest follow immediately from Theorem 2.1 as special cases.
Setting θ = 0 in Theorem 2.1 covers the case of fixed balls, and yields Corollary 2.3.
Next, setting a = 0 in Theorem 2.1 gives the asymptotic exponential rate of decay
for the probability that no particle of BBM falls inside a linearly moving ball of
fixed size, and yields Corollary 2.5. The optimization problem on the right-hand
side of (2.2) cannot be solved to find a closed-form expression for I(θ, a) in the
general case, where both θ and a are nonzero; we analyze this case in Section 5.

Corollary 2.3 (Lower tail asymptotics for mass inside a fixed ball). Let B ⊆ Rd
be any fixed ball. Then, for 0 ≤ a < 1,

lim
t→∞

1

t
logP

(
Zt(B) < eβat

)
=

{
−β
[
2
√

2(1− a)− 2 + a
]
, 0 ≤ a < 1/2,

−β(1− a), 1/2 ≤ a < 1.
(2.3)
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Proof : Set θ = 0 in (2.2). Then, ρ̄ = 1 − a, and over ρ ∈ (0, 1 − a] the functional
on the right-hand side of (2.2) has a unique minimizer at ρ̂ =

√
(1− a)/2 for

0 ≤ a < 1/2, and at ρ̂ = 1− a for 1/2 ≤ a < 1. �

Remark 2.4. Corollary 2.3 says that there is a continuous phase transition at
a = 1/2 in the asymptotic behavior of P

(
Zt(B) < eβat

)
, which is revealed by the

Lyapunov exponent in (2.3) (see Figure 1). In terms of the BBM’s optimal strate-
gies for realizing the large deviation event

{
Zt(B) < eβat

}
, this means to realize{

Zt(B) < eβat
}
:

• for 0 ≤ a < 1/2, the system suppresses the branching completely, and sends
the single particle to a distance of ((1− ρ̂)2 − a(1− ρ̂))t + o(t) away from
the origin over [0, ρ̂t], and then behaves ‘normally’ in the remaining interval
[ρ̂t, t];
• for 1/2 ≤ a < 1, the system only suppresses the branching completely over

[0, ρ̂t], and behaves ‘normally’ otherwise. This means, the parameter a is
high enough so that there is no need to initially move the single particle to
a linear distance away from B in order to realize

{
Zt(B) < eβat

}
.

0 a

ρ̂(a)
(i)

r

b
1/2

1/2

1

√
2/2

0 a

I(0, a)
(ii)

r

b
1/2

1/2

1

2(
√

2− 1)

Figure 1. Qualitative plot of: (i) a 7→ ρ̂(a), (ii) a 7→ I(0, a) when θ = 0.
Phase transition occurs at a = 1/2.

Corollary 2.5 (Asymptotic probability of no particle inside a moving ball). Let
0 ≤ θ < 1 and B be a fixed ball in Rd. Let e be the unit vector in the direction of
the center of B if B is not centered at the origin; otherwise let e be any unit vector.
For t ≥ 0 define Bt = B + θ

√
2βte. Then,

lim
t→∞

1

t
logP (Zt(Bt) = 0) = −2β(

√
2− 1)(1− θ). (2.4)

Proof : Set a = 0 in (2.2). Then, ρ̄ = 1 − θ, and over ρ ∈ (0, 1 − θ] the functional
on the right-hand side of (2.2) has a unique minimizer at ρ̂ = (1− θ)/

√
2. �

We note that Corollary 2.5 has been partly proved in Derrida and Shi (2017,
Theorem 1) for d = 1.

As stated in the introduction, the starting point of the present work is Öz and
Engländer (2019, Lemma 1), which is equivalently formulated in terms of local mass
of BBM in Proposition 1.3. Corollary 2.5 improves Proposition 1.3 in two respects:
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• it sharpens the Lyapunov exponent in Proposition 1.3 from β(
√

2− 1)θ to
2β(
√

2− 1)θ,
• in Corollary 2.5, the large deviation event is {Zt(Bt) = 0}, whereas in

Proposition 1.3 it was
⋂

0≤s≤t {Zs(Bs) = 0}. Clearly,
⋂

0≤s≤t {Zs(Bs) = 0}
⊆ {Zt(Bt) = 0}.

Next, we have a large deviation result, giving the asymptotic exponential rate
of decay for the probability that the mass of BBM outside a ball with a linearly
growing radius and fixed center, is atypically small on an exponential scale.

Theorem 2.6 (Lower tail asymptotics for mass outside a linearly expanding ball).
Let 0 ≤ θ < 1. For t ≥ 0, let xt = θ

√
2βt if 0 < θ < 1, and let xt = r with r > 0 if

θ = 0. Denote B̂t = B(0, xt). Then, for 0 ≤ a < 1− θ2,

lim
t→∞

1

t
logP

(
Zt(B̂

c
t ) < eβat

)
= −β

[
1− a/2−

√
θ2 + (a/2)2

]
. (2.5)

Remark 2.7. The optimal strategy for the BBM to realize the event {Zt(B̂ct ) <
eβat}, is to suppress the branching completely over [0, ρ̄t], where ρ̄ = 1 − a/2 −√
θ2 + (a/2)2 as before, and then to behave ‘normally’ in the remaining interval

[ρ̄t, t] (see Section 6 for details).

Note that by setting a = 0 in (2.5), we obtain the asymptotic rate of decay for the
probability of confinement of BBM into B̂t = B(0, xt) at time t, which expectedly
turns out to be identical to that of probability of confinement of BBM into B̂t
throughout the interval [0, t] (see Engländer, 2004, Thm.2). That is, logP (Zt(B̂

c
t ) =

0) ∼ −β(1− θ)t ∼ logP (∩0≤s≤t{Zs(B̂ct ) = 0}) as t→∞.
In the case of balls of fixed size, that is, when B̂t := B(0, r) for some r > 0, the

leading order behavior of P (Zt(B̂
c
t ) < eβat) is the same as that of P (Nt < eβat),

where Nt = Zt(Rd) is the total mass at time t. That is, logP (Zt(B̂
c
t ) < eβat) ∼

−β(1− a)t ∼ logP (Nt < eβat) as t→∞.

3. Preparations

In this section, we first list a few well-known results concerning the global growth
of branching systems, and asymptotic probability of atypically large Brownian dis-
placements. These results will be useful in the proofs of the main theorems and
Lemma 3.4. Then, we state and prove Lemma 3.4, which will be the crucial ingre-
dient in the proofs of the upper bounds of Theorem 2.1 and Theorem 2.6, which are
done via bootstrap arguments that are composed of two steps. Lemma 3.4 consti-
tutes the first of these steps, and can be viewed as a weaker form of Theorem 2.1.

The following proposition is standard in the theory of branching processes. For
a proof, see for example Karlin and Taylor (1975, Sect.8.11).

Proposition 3.1 (Distribution of mass in branching systems). For a strictly dyadic
continuous-time branching process N = (N(t))t≥0 with constant branching rate
β > 0, the probability distribution at time t is given by

P (N(t) = k) = e−βt(1− e−βt)k−1, k ≥ 1,

from which it follows that

P (N(t) > k) = (1− e−βt)k (3.1)
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and
E[N(t)] = eβt.

The following result is taken from Öz et al. (2017) (see Lemma 5 and its proof
therein).

Proposition 3.2 (Linear Brownian displacements). Let X = (X(t))t≥0 represent
a standard d-dimensional Brownian motion starting at the origin, and P0 the cor-
responding probability. Then, for γ > 0,

P0

(
sup

0≤s≤t
|X(s)| > γt

)
= exp[−γ2t/2 + o(t)].

The term ‘overwhelming probability’ is used with a precise meaning throughout
the paper, which is given as follows.

Definition 3.3 (Overwhelming probability). Let (At)t>0 be a family of events
indexed by time t. We say that At occurs with overwhelming probability as t→∞
if there is a constant c > 0 and time t0 such that

P (Act) ≤ e−ct for all t ≥ t0.

We now state and prove Lemma 3.4.

Lemma 3.4. Let 0 ≤ θ < 1, B be a fixed ball in Rd, and e be the unit vector in
the direction of the center of B if B is not centered at the origin; otherwise let e be
any unit vector. For t ≥ 0 define Bt = B+θ

√
2βte. Then, for each 0 ≤ a < 1−θ2,

there exists a constant c = c(β, θ, a) > 0 such that

lim sup
t→∞

1

t
logP

(
Zt(Bt) < eβat

)
≤ −c.

Proof : The strategy is to split the time interval [0, t] into two pieces so that with
overwhelming probability, sufficiently many particles are created and kept close
enough to the origin in the first piece, and then in the second piece at least one of
these particles initiates a sub-BBM that contributes at least exp(βat) particles to
Bt at time t.

To start the proof, split the time interval [0, t] into two pieces as [0, δt] and [δt, t],
where 0 < δ < 1 is a number which will later depend on θ and a.

Step 1: For 0 ≤ a < 1− θ2 and t > 0, let

At :=
{
Zt(Bt) < eβat

}
.

Next, for y > 0 and t > 0, let y(t) = y
√

2βt, and define the events

Et :=
{
Nδt ≥ t2

}
, Ft :=

{
Zδt (B(0, y(t))) ≥ t2

}
.

Estimate
P (At) ≤ P (At | Ft) + P (F ct | Et) + P (Ect ). (3.2)

Using (3.1), we bound P (Ect ) from above as

P (Ect ) ≤ exp[−βδt+ o(t)]. (3.3)

Conditional on Et, among the particles present at time δt, consider the first
⌈
t2
⌉

particles with respect to their birth time for instance. Then, an upper bound on
P (F ct | Et) is given by the probability that at least one among these

⌈
t2
⌉
particles

has escaped B(0, y(t)) during [0, δt]. Since motion and branching mechanisms are
independent; even conditioned on Et, the position of each particle present at time δt
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is identically distributed as X(δt), where X = (X(s))s≥0 represents the standard d-
dimensional Brownian motion. It follows from the union bound and Proposition 3.2
that

P (F ct | Et) ≤
⌈
t2
⌉

exp

[
−β y

2

δ
t+ o(t)

]
= exp

[
−β y

2

δ
t+ o(t)

]
. (3.4)

On the event Ft, there are at least
⌈
t2
⌉
particles inside B(0, y(t)) at time δt, and

by triangle inequality each of them is at most at a distance of

(θ + y)
√

2βt+ o(t) =: r(t)

from Bt. Here, the distance between a Borel set B and a point y ∈ Rd is defined
as inf

x∈B
|y − x|.

Step 2: Apply the branching Markov property at time δt. By (1.1), for any ε > 0,
with probability at least 1− ε, the sub-BBM initiated by a particle in B(0, y(t)) at
time δt, independently of all others, contributes at least

exp

[
(1− ε)βt

(
(1− δ)− (θ + y)2

1− δ

)]
particles to Bt at time t. To be precise, let S(δt) = {X1, X2, . . . , XNδt} denote the
positions of particles present at time δt, where we suppress the dependence of Xj

on t for brevity. Abbreviate
mt :=

⌈
t2
⌉
.

Conditioned on the event Ft, we may and do order the elements in S(δt) so that
|Xj | < y(t) for all 1 ≤ j ≤ mt. Let Zj denote the BBM starting at Xj , running
over a time (1− δ)t. Then, (1.1) implies that for any ε > 0, for all large t,

PXj

(
Zj(1−δ)t(Bt) < exp

[
(1− ε)βt

(
(1− δ)− (θ + y)2

1− δ

)])
≤ ε

uniformly over j = 1, . . . ,mt. Choose ε, δ and y small enough to satisfy

(1− ε)
(

(1− δ)− (θ + y)2

1− δ

)
> a. (3.5)

Then, for At to occur conditional on Ft, it is necessary that each of the at least
mt many particles present in B(0, y(t)) at time δt should contribute less than
exp

[
(1− ε)βt

(
(1− δ)− (θ+y)2

1−δ

)]
particles to Bt at time t. By independence of

particles, this has probability bounded above by

εt
2

= exp[− log(1/e)t2],

which is SES in t. Along with (3.2)-(3.4), this implies that there exists c =
c(β, θ, a) > 0 and t0 such that for all t ≥ t0,

P (At) ≤ e−ct.
We may choose ε, δ and y all small enough so as to satisfy the condition in (3.5)
since a < 1− θ2; take for instance ε = δ = y = (1− θ2 − a)/2. This completes the
proof. �

The proof of the upper bound of (2.1) in Theorem 2.1 uses a bootstrap argument
given in two steps. The first step is completed by Lemma 3.4 above, and the second
step will be given below in the next section. In this respect, Lemma 3.4 completes
the preparation needed for the proof of Theorem 2.1.
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4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. For the lower bound, we
simply find a strategy that realizes the desired event with optimal probability on
an exponential scale. The proof of the upper bound is more technical, where we
effectively show that the strategy that gave the lower bound is indeed optimal, that
is, there is no better strategy that realizes the desired event at a smaller exponential
cost of probability. The proof of the upper bound that is given below uses a method
similar to that of Öz et al. (2017, Thm.1), and can be viewed as the second step of
the bootstrap argument, whose first step was completed by Lemma 3.4.

4.1. Proof of the lower bound. The lower bound arises from the following strategy
which gives a mass of less than exp(βat) to Bt at time t. Define

ρ̄ = ρ̄(θ, a) = 1− a/2−
√

(a/2)2 + θ2, (4.1)

which is chosen so that (1−ρ̄)2−a(1−ρ̄) = θ2. Let 0 < ρ ≤ ρ̄ and ε > 0. First, in the
time interval [0, ρt], suppress branching completely and move the single Brownian
particle to a distance of

d(t) :=
(√

(1− ρ)2 − a(1− ρ)− θ + ε
)√

2βt+ o(t)

from the origin in the opposite direction of e, where e is the direction of motion of
(Bt)t≥0. By Proposition 3.2, this partial strategy has probability

exp(−βρt) exp

[
−

((
√

(1− ρ)2 − a(1− ρ)− θ + ε)
√

2β)2

2ρ
t+ o(t)

]

= exp

[
−β

(
ρ+

(
√

(1− ρ)2 − a(1− ρ)− θ + ε)2

ρ

)
t+ o(t)

]
(4.2)

where the first exponential factor comes from suppressing the branching, and the
second from the linear Brownian displacement. Next, in the remaining interval
[ρt, t], prevent the BBM from sending at least exp(βat) particles to Bt at time t.
This comes for ‘free’ and has probability exp[o(t)] since it is realized when the BBM
behaves ‘normally.’ Indeed, the distance between Bt and the position of the single
particle at time ρt is

d(t) + θ
√

2βt+ o(t) =
(√

(1− ρ)2 − a(1− ρ) + ε
)√

2βt+ o(t).

This distance is too large for the sub-BBM emanating from the particle at time ρt
to contribute a mass of exp(βat) to Bt at time t due to (1.1) since

β(1− ρ)− 1

2

(√
(1− ρ)2 − a(1− ρ) + ε

)2

(
√

2β)2

1− ρ
< βa.

(For a = 0 = θ, we have ρ̄ = 1. Therefore, take ρ < ρ̄.) Then, applying the Markov
property at time ρt, using (4.2), and letting ε→ 0 yields

lim inf
t→∞

1

t
logP

(
Zt(Bt) < eβat

)
≥ −β

[
ρ+

(
√

(1− ρ)2 − a(1− ρ)− θ)2

ρ

]
. (4.3)
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Finally, optimize the right-hand side of (4.3) over ρ ∈ (0, ρ̄]; equivalently, minimize

fθ,a(ρ) := ρ+
(
√

(1− ρ)2 − a(1− ρ)− θ)2

ρ

over ρ ∈ (0, ρ̄], which completes the proof of the lower bound. (Note that I(θ, a) =
infρ∈(0,ρ̄] fθ,a(ρ). If ρ̄ < ρ ≤ 1, then there is no need to move the initial particle to
a linear distance from the origin; suppressing the branching alone over [0, ρt] and
letting the BBM behave normally over [ρt, t] realizes the event {Zt(Bt) < eβat}.
However, this strategy cannot be optimal, because it has probability exp(−βρt)
with ρ > ρ̄, which is smaller than exp[−βI(θ, a)t] on a logarithmic scale. Indeed,
note that fθ,a(ρ̄) = ρ̄ by choice of ρ̄, hence I(θ, a) ≤ ρ̄ < ρ.)

4.2. Proof of the upper bound. A bootstrap argument is given for the proof of the
upper bound, where the central ingredient is Lemma 3.4. Namely, we have already
shown in Lemma 3.4 that for large t the probability of exponentially few particles
in Bt at time t decays at least as fast as exp(−ct) for some c = c(β, θ, a) > 0. Here,
using this, we show that the decay constant c(β, θ, a) can actually be improved to
β × I(θ, a), where I is given in (2.2).

We split the time interval [0, t] into two pieces at ρt, ρ ∈ [0, 1], which is the instant
at which the total mass exceeds btc. In the first piece, the branching is partially
suppressed to give polynomially many particles only, which has an exponential
probabilistic cost; whereas we are able to keep all of these particles close enough
to the origin (at sublinear distance) at no cost since there are not exponentially
many of them. In the second piece, given that we now have btc particles close
enough to the origin, we argue that with overwhelming probability, at least one of
these particles initiates a sub-BBM, that evolves in [ρt, t] and eventually sends at
least exp(βat) particles to Bt at time t. To catch the optimal ρ, we discretize [0, t]
into many small pieces, and condition the process on in which piece ρt falls, which
results in a sum of terms, of which only the largest contributes on an exponential
scale.

Recall that Nt = Zt(Rd), and for t > 1 define the random variable

ρt = sup {ρ ∈ [0, 1] : Nρt ≤ btc} .

Observe that for x ∈ [0, 1], we have {ρt ≥ x} ⊆ {Nxt ≤ btc + 1}. We start by
conditioning on ρt. For t > 0 define the event

At := {Zt(Bt) < eβat},

and recall the definition of ρ̄ from (4.1). Then, for every n = 1, 2, 3, . . .

P (At) =

bρ̄n−1c−1∑
i=0

P

(
At ∩

{
i

n
≤ ρt <

i+ 1

n

})
+ P

(
At ∩

{
ρt ≥

bρ̄n− 1c
n

})

≤
bρ̄n−1c−1∑

i=0

exp

[
−β i

n
t+ o(t)

]
P

(i,n)
t (At) + exp

[
−β
(
ρ̄− 2

n

)
t+ o(t)

]
,

(4.4)
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where we use (3.1), which yields P (N(i/n)t ≤ btc + 1) = exp[−β(i/n)t + o(t)], to
control P ( in ≤ ρt <

i+1
n ), and introduce the conditional probabilities

P
(i,n)
t (·) = P

(
·
∣∣∣∣ in ≤ ρt < i+ 1

n

)
, i = 0, 1, . . . , bρ̄n− 1c − 1.

For each pair (i, n) with n = 1, 2, 3, . . . and i = 0, 1, . . . , bρ̄n− 1c − 1, define the
interval

I(i,n) := [i/n, (i+ 1)/n),

and the radius

r
(i,n)
t :=

√
2β

√(1− i+ 1

n

)2

− a
(

1− i+ 1

n

)
− θ − ε

 t. (4.5)

By definition of ρt, conditional on the event ρt ∈ I(i,n), there exists an instant
in [ti/n, t(i + 1)/n), namely ρtt, at which there are exactly btc + 1 particles in
the system. Let ε = ε(n) > 0 be small enough so that (4.5) is positive for each
i = 0, 1, . . . , bρ̄n−1c−1, and let E(i,n)

t be the event that among the btc+1 particles
alive at ρtt, there is at least one outside B(i,n)

t := B
(

0, r
(i,n)
t

)
. Estimate

P
(i,n)
t (At) ≤ P (i,n)

t

(
E

(i,n)
t

)
+ P

(i,n)
t

(
At | [E(i,n)

t ]c
)
. (4.6)

On the event [E
(i,n)
t ]c, there are btc + 1 particles in B

(i,n)
t at time ρtt. Then,

conditional on ρt ∈ I(i,n), Lemma 3.4 and (4.5) imply that with overwhelming
probability, the sub-BBM emanating from each such particle at time ρtt evolves in
the remaining time of length at least (1− (i+1)/n)t to contribute at least exp(βat)
particles to Bt at time t. This is because

a <

(
1− i+ 1

n

)
−

(√(
1− i+1

n

)2 − a (1− i+1
n

)
− ε
)2

1− i+1
n

, (4.7)

that is, the distance between Bt and the starting point of the sub-BBM is too
short for the sub-BBM to send less than exp(βat) particles to Bt in the remaining
time, which is at least (1 − (i + 1)/n)t. More precisely, let pyt be the probability
that a BBM starting with a single particle at position y ∈ Rd contributes less
than exp(βat) particles to Bt at time t. Then since ρtt < t(i + 1)/n conditioned
on ρt ∈ I(i,n), by Lemma 3.4 and (4.7), uniformly over y ∈ B

(i,n)
t there exists a

constant c > 0 and t0 such that

pyt(1−ρt) ≤ e
−ct for all t ≥ t0.

Hence, by the strong Markov property applied at time ρtt and the independence of
particles present at that time, for all large t we have

P
(i,n)
t

(
At | [E(i,n)

t ]c
)
≤
(
e−ct

)btc+1 ≤ e−ct
2

, (4.8)

which is SES in t. Now consider the first term on the right-hand side of (4.6). Recall
that if the event E(i,n)

t occurs, then at least one among btc+ 1 many particles has
escaped B(i,n)

t by time at most t(i + 1)/n. Note that each particle alive at time s
is at a random point, whose spatial distribution is identical to that of X(s), where
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X = (X(t))t≥0 denotes the standard Brownian motion in d dimensions. Therefore,
by Proposition 3.2 and the union bound, we have

P
(i,n)
t

(
E

(i,n)
t

)
≤ (btc+1) exp

−
(
r

(i,n)
t

)2

2(i+ 1)/n
t+ o(t)

= exp

−
(
r

(i,n)
t

)2

2(i+ 1)/n
t+ o(t)

.
(4.9)

From (4.5), (4.6), (4.8) and (4.9), we obtain

P
(i,n)
t (At) ≤ exp

−β
(√(

1− i+1
n

)2 − a (1− i+1
n

)
− θ − ε

)2

(i+ 1)/n
t+ o(t)

+ e−ct
2

.

(4.10)
Substituting (4.10) into (4.4), and optimizing over i ∈ {0, 1, . . . , bρ̄n− 1c − 1} gives

lim sup
t→∞

1

t
logP (At) ≤

− β

[
min

i∈{0,1,...,bρ̄n−1c−1}

{
i

n
+

(√(
1− i+1

n

)2

−a
(

1− i+1
n

)
−θ−ε

)2

(i+ 1)/n

}
∧
(
ρ̄− 2

n

)]
,

(4.11)

where we use a ∧ b to denote the minimum of a and b. Now first let ε → 0, then
set ρ = i/n, let n → ∞, and use the continuity of the functional form from which
the minimum is taken to obtain

lim sup
t→∞

1

t
logP (At) ≤ −β inf

ρ∈(0,ρ̄]

ρ+

(√
(1− ρ)2 − a(1− ρ)− θ

)2

ρ

 . (4.12)

(Note that we have not written the last term on the right-hand side of (4.11)
explicitly in (4.12), because once n → ∞, this term becomes ρ̄, which is attained
by the function inside the infimum on the right-hand side of (4.12) if we set ρ = ρ̄.)

5. Analysis of the optimization problem

Here, we analyze the optimization problem given in the statement of Theo-
rem 2.1:

I(θ, a) = inf
ρ∈(0,ρ̄]

ρ+

(√
(1− ρ)2 − a(1− ρ)− θ

)2

ρ

 . (5.1)

Let θ and a be such that 0 ≤ a < 1 − θ2 ≤ 1, and for ρ ∈ (0, 1 − a] define the
function fθ,a by

fθ,a(ρ) = ρ+
(√

(1− ρ)2 − a(1− ρ)− θ
)2

/ρ (5.2)

so that
I(θ, a) = inf

ρ∈(0,ρ̄]
fθ,a(ρ).
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Here we consider f on the larger interval (0, 1 − a] as opposed to (0, ρ̄]. This is
harmless, because for each pair (θ, a), the minimizer of (5.2) will be shown to exist,
be unique over ρ ∈ (0, 1 − a], and be at most ρ̄ (see Proposition 5.1(i)). For each
pair (θ, a), denote the minimizer by ρ̂ = ρ̂(θ, a). (For notational convenience, when
θ or a is fixed in the analysis below, we suppress the dependence of f and ρ̂ on
that parameter in the notation. We also occasionally write simply f and ρ̂, and
suppress their dependence on both θ and a.) The optimization problem in (5.1)
can be solved to find closed-form formulas for ρ̂ and f(ρ̂) when θ = 0 and when
a = 0; these were found in Corollary 2.3 and Corollary 2.5, respectively. Therefore,
here we suppose that

0 < a < 1− θ2 < 1.

Observe that for each pair (θ, a), f is differentiable on (0, 1−a), and its derivative,
which we denote by f ′, has the following rule:

f ′θ,a(ρ) =
1

ρ2

[
(1− θ2 − a)− 2(1− a− ρ2) + θ

(1− ρ)(1− a− ρ) + (1− a− ρ2)√
(1− ρ)(1− a− ρ)

]

=
1

ρ2

[
2ρ2 − 1 + a− θ2 + θ

2(1− a− ρ) + aρ√
(1− ρ)2 − a(1− ρ)

]
. (5.3)

Recall the definition

ρ̄ = ρ̄(θ, a) = 1− a/2−
√

(a/2)2 + θ2,

which is obtained by choosing ρ so as to kill the second term on the right-hand side
of (5.2).1 The minimization problem of f satisfies the following properties.

Proposition 5.1. For each θ, a ∈ R satisfying 0 < a < 1 − θ2 < 1, let fθ,a :
(0, 1− a]→ R+ be the function defined in (5.2).

(i) The function fθ,a is strictly convex, and has a unique minimizer on (0, 1−
a). Denote this minimizer by ρ̂ = ρ̂(θ, a). Then, ρ̂ satisfies 0 < ρ̂ < ρ̄.

(ii) For fixed θ ∈ (0, 1), both ρ̂ and f(ρ̂) are strictly decreasing over a ∈ [0, 1−
θ2).

(iii) For fixed θ ∈ (0, 1),

lim
a→0+

ρ̂(a) = ρ̂(0) =
1− θ√

2
, lim

a→0+
fa(ρ̂(a)) = f0(ρ̂(0)) = 2(

√
2− 1)(1− θ),

lim
a→(1−θ2)−

ρ̂(a) = 0, lim
a→(1−θ2)−

fa(ρ̂(a)) = 0. (5.4)

(iv) For fixed a ∈ (0, 1), both ρ̂ and f(ρ̂) are strictly decreasing over θ ∈
[0,
√

1− a).
(v) For fixed a ∈ (0, 1),

lim
θ→0+

ρ̂(θ) = ρ̂(0) =

√
1− a

2
, lim

θ→0+
fθ(ρ̂(θ)) = f0(ρ̂(0)) = 2

√
2(1− a)− (2− a),

lim
θ→
√

1−a−
ρ̂(θ) = 0, lim

θ→
√

1−a−
fθ(ρ̂(θ)) = 0. (5.5)

1ρ = ρ̄ corresponds to the strategy that the initial particle is not moved to a linear distance in
the interval [0, ρt]; in this case, the only exponential probability cost comes from suppressing the
branching over [0, ρt].
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Proof of (i). Note that f ′ is continuous on (0, 1− a), and it is easy to check that
when 0 < a < 1− θ2 < 1,

lim
ρ→0+

f ′(ρ) = −∞, lim
ρ→(1−a)−

f ′(ρ) =∞.2

It follows that f ′ has a root in (0, 1 − a). Also, one can check that the second
derivative of f , which we denote by f ′′, is strictly positive on (0, 1−a). This means
f ′ is strictly increasing on (0, 1 − a), implying that f ′ has at most one root in
(0, 1 − a). Hence, f ′ has exactly one root in (0, 1 − a). Since f ′′ > 0, this root is
a minimizer. Then, left continuity of f at ρ = 1 − a implies that f has a unique
minimizer, denoted by ρ̂, on (0, 1 − a]. It is easy to check that f ′(ρ̄) = 1, which,
being positive, implies that 0 < ρ̂ < ρ̄ < 1− a. This completes the proof of (i).

Before turning to the proof of Proposition 5.1 parts (ii)-(v), we first state and
prove two lemmas, which will be used in the subsequent proofs.

Lemma 5.2. Let fθ,a : (0, 1 − a] → R+ be the function defined in (5.2) and f ′θ,a
denote its derivative.

(i) Fix θ ∈ (0, 1). If 0 < a1 < a2 < 1− θ2, then f ′a2(ρ̂(a1)) > 0.
(ii) Fix a ∈ (0, 1). If 0 < θ1 < θ2 <

√
1− a, then f ′θ2(ρ̂(θ1)) > 0.

Proof : Let P = Pθ,a be the sixth degree polynomial defined by the rule

P (ρ) =
[
4ρ4 − 4(1 + θ2 − a)ρ2 + (1− θ2 − a)2

] [
ρ2 − (2− a)ρ+ (1− a)

]
− (θa)2ρ2

(5.6)

=
[
(1− θ2 − a− 2ρ2)2 − 8θ2ρ2

] [
ρ2 − (2− a)ρ+ (1− a)

]
− (θa)2ρ2. (5.7)

From (5.3), it can be shown that for ρ ∈ (0, 1−a] we have the following implications:

(a) f ′(ρ) = 0 ⇒ P (ρ) = 0,

(b) f ′(ρ) > 0 ⇔ P (ρ) < 0.

To prove (i), we first show that for any pair (θ, a) with 0 < a < 1− θ2 < 1, we have
ρ̂(θ, a) <

√
(1− θ2 − a)/2. It is easy to check via (5.6) that P ((

√
1− a− θ)/

√
2) <

0, which implies by (b) that f ′((
√

1− a − θ)/
√

2) > 0. Since f ′(ρ̂) = 0 and f ′ is
strictly increasing on (0, 1 − a), this implies ρ̂ < (

√
1− a − θ)/

√
2, which in turn

implies ρ̂ <
√

(1− θ2 − a)/2.
Now fix θ. Choose ε0 > 0 small enough such that a1+ε0 < 1−θ2 and 1−θ2−(a1+

ε0)− 2(ρ̂(a1))2 > 0. (We have already shown above that 1− θ2 − a1 − 2(ρ̂(a1))2 >
0.) Set a2 = a1 + ε0 and start with f ′a1(ρ̂(a1)) = 0. Then, (a) implies that
Pa1(ρ̂(a1)) = 0. Since 1− θ2 − a2 − 2(ρ̂(a1))2 > 0 by the choice of a2, (5.7) implies
that Pa2(ρ̂(a1)) < 0, which by (b) implies that f ′a2(ρ̂(a1)) > 0 for a2 = a1 + ε0.
Now since f ′ is strictly increasing on (0, 1−a), we conclude that f ′a2(ρ̂(a1)) > 0 for
any a2 with a1 < a2 < 1− θ2.

To prove (ii), fix a and start with f ′θ1(ρ̂(θ1)) = 0. By (a), this implies that
Pθ1(ρ̂(θ1)) = 0. By (5.6), for θ2 > θ1 it is clear that Pθ2(ρ̂(θ1)) < 0, which by (b)
implies that f ′θ2(ρ̂(θ1)) > 0. �

The following lemma says that when viewed as a function of θ and a, ρ̂ is sepa-
rately continuous.

2When θ = 0 or a = 0, limρ→(1−a)− f ′(ρ) <∞.
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Lemma 5.3. Let fθ,a : (0, 1− a]→ R+ be the function defined in (5.2) and ρ̂(θ, a)
denote its unique minimizer.

(i) Fix θ ∈ (0, 1) and let (an)n≥1 be a sequence with all terms in [0, 1− θ2).
If an → a0 and a0 ∈ [0, 1− θ2), then ρ̂(an)→ ρ̂(a0) as n→∞.

(ii) Fix a ∈ (0, 1) and let (θn)n≥1 be a sequence with all terms in [0,
√

1− a).
If θn → θ0 and θ0 ∈ [0,

√
1− a), then ρ̂(θn)→ ρ̂(θ0) as n→∞.

Proof : We prove (i). The proof of (ii) is similar. Fix θ and let an → a0 with
a0 ∈ [0, 1− θ2). Since {ρ̂(an)} is a bounded sequence (all terms are in [0, 1]), it has
a convergent subsequence, say {ρ̂(ank)} with limit ρ0. Let ρ∗ be the minimizer of
fa0 . Then, fank (ρ∗) → fa0(ρ∗) since ank → a0 and fa is continuous in a. Since
fank (ρ∗) ≥ fank (ρ̂(ank)), ank → a0 and ρ̂(ank)→ ρ0, continuity of f in both a and
ρ implies that fa0(ρ∗) ≥ fa0(ρ0). By uniqueness of minimizers, we conclude that
ρ0 = ρ∗. This implies that ρ̂(an)→ ρ∗ = ρ̂(a0). �

Proof of (ii). For fixed θ, let a1 and a2 be in [0, 1 − θ2) with a1 < a2. Observe
that (5.2) implies fa1(ρ) > fa2(ρ) for each ρ ∈ (0, 1− a2]. Then,

fa1(ρ̂(a1)) > fa2(ρ̂(a1)) ≥ fa2(ρ̂(a2)) when ρ̂(a1) ∈ (0, 1− a2],

and

fa1(ρ̂(a1)) ≥ ρ̂(a1) > 1− a2 ≥ fa2(ρ̂(a2)) when ρ̂(a1) ∈ (1− a2, 1− a1],

where the last inequality follows since fa2(ρ̄(a2)) = ρ̄(a2) < 1− a2 and ρ̂(a2) is the
minimizer for fa2 . This implies that fa(ρ̂(a)) is strictly decreasing in a.

To show that ρ̂(a) is strictly decreasing in a ∈ [0, 1 − θ2), let a1 < a2, and use
that f ′a2(ρ̂(a1)) > 0 (Lemma 5.2(i)), which implies that ρ̂(a2) < ρ̂(a1) since f ′ is
strictly increasing. This completes the proof of (ii).

Proof of (iii). It follows directly from Lemma 5.3(i) that lim
a→0+

ρ̂(a) = ρ̂(0). Also,

if an → a then fan(ρ̂(an))→ fa(ρ̂(a)) since an → a, ρ̂(an)→ ρ̂(a) by Lemma 5.3(i),
and f is continuous in both a and ρ. It follows that lim

a→0+
fa(ρ̂(a)) = f0(ρ̂(0)).

We now prove (5.4). Fix θ and let a = 1 − θ2 − ε, where ε > 0 is small. Write
the second term on the right-hand side of (5.2) as[√

(1− ρ)2 − a(1− ρ)− θ
]2

ρ
=

[
(1− ρ)2 − a(1− ρ)− θ2

]2
ρ
[√

(1− ρ)2 − a(1− ρ) + θ
]2

=
ρ(ρ− 1− θ2 + ε(1− ρ)/ρ)2[√

(1− ρ)2 − (1− θ2 − ε)(1− ρ) + θ
]2

≤ ε θ4/θ2 ≤ ε,

where we have used a = 1−θ2−ε in passing to the second line, and we set ρ = ε in
passing to the last line. This shows that for a = 1−θ2−ε, inf

ρ∈(0,1−a]
fa(ρ) ≤ fa(ε) ≤

2ε, which proves that lim
a→(1−θ2)−

fa(ρ̂(a)) = 0. Note that for sufficiently small ε, we

may take ρ = ε since θ > 0, and we have 1 − a = 1 − (1 − θ2 − ε) = θ2 − ε > ε
so that ρ = ε falls inside (0, 1 − a]. Since both terms in the formula for f(ρ) are
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positive (see (5.2)), this in turn implies that lim
a→(1−θ2)−

ρ̂(a) = 0. This completes

the proof of (iii).

Proof of (iv). For fixed a, let θ1 and θ2 be in [0,
√

1− a) with θ1 < θ2. Observe
that (5.2) implies fθ1(ρ) > fθ2(ρ) for each ρ ∈ (0, 1− a]. Then,

fθ1(ρ̂(θ1)) > fθ2(ρ̂(θ1)) ≥ fθ2(ρ̂(θ2)),

which implies that fθ(ρ̂(θ)) is strictly decreasing in θ. To show that ρ̂(θ) is strictly
decreasing in θ ∈ [0,

√
1− a), let θ1 < θ2, and use that f ′θ2(ρ̂(θ1)) > 0

(Lemma 5.2(ii)), which gives ρ̂(θ2) < ρ̂(θ1) since f ′ is strictly increasing. This
completes the proof of (iv).

Proof of (v). It follows directly from Lemma 5.3(ii) that lim
θ→0+

ρ̂(θ) = ρ̂(0). Also,

if θn → θ then fθn(ρ̂(θn))→ fθ(ρ̂(θ)) since θn → θ, ρ̂(θn)→ ρ̂(θ) by Lemma 5.3(ii),
and f is continuous in both θ and ρ. It follows that lim

θ→0+
fθ(ρ̂(θ)) = f0(ρ̂(0)).

We now prove (5.5). Fix a and let θ =
√

1− a− ε, where ε > 0 is small. Write
the second term on the right-hand side of (5.2) as[√

(1− ρ)2 − a(1− ρ)− θ
]2

ρ
=

[
(1− ρ)2 − a(1− ρ)− θ2

]2
ρ
[√

(1− ρ)2 − a(1− ρ) + θ
]2

=
ρ(ρ− 2 + a+ ε/ρ)2[√

(1− ρ)2 − a(1− ρ) +
√

1− a− ε
]2

≤ ε(ε+ a− 1)2

1− a− ε
≤ ε(ε+ a− 1) ≤ ε,

where we have used θ =
√

1− a− ε in passing to the second line, and we set ρ = ε
for ε < 1 − a in passing to the last line. This shows that for θ =

√
1− a− ε,

inf
ρ∈(0,1−a]

fθ(ρ) ≤ fθ(ε) ≤ 2ε, which proves that lim
θ→
√

1−a−
fθ(ρ̂(θ)) = 0. Since both

terms in the formula for f(ρ) are positive, this in turn implies that lim
θ→
√

1−a−
ρ̂(θ) =

0, completing the proof of (v). �

6. Proof of Theorem 2.6

In this section we prove Theorem 2.6. The method of proof is similar to that of
Theorem 2.1. The best strategy to realize the rare event {Zt(B̂ct ) < eβat} will be to
suppress branching completely up to time ρ̄t and then evolve normally afterwards,
and this strategy will have optimal cost of exp(βρ̄t).

In the case of balls of fixed size, that is, when θ = 0 and B̂t := B(0, r) for some
r > 0, the lower bound for (2.5) follows easily from P (Nt < eβat) ≤ P (Zt(B̂

c
t ) <

eβat) along with (3.1), and the upper bound can be proved similarly to the case
0 < θ < 1 (see Subsection 6.2 below). We now prove (2.5) in the case 0 < θ < 1.
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6.1. Proof of the lower bound. The lower bound arises from the following strategy
which gives a mass of less than exp(βat) to B̂ct at time t, where B̂t := B(0, xt) with
xt = θ

√
2βt and 0 < θ < 1.

For 0 < θ < 1 and 0 ≤ a < 1− θ2, as before, let

ρ̄ := 1− a/2−
√

(a/2)2 + θ2,

and for 0 < δ1 < 1 − ρ̄, split the time interval [0, t] into two pieces at (ρ̄ + δ1)t.
In [0, (ρ̄+ δ1)t], suppress the branching completely and for 0 < δ2 < θ, confine the
single particle to B(0, δ2

√
2βt). Suppressing the branching costs a probability of

exp[−β(ρ̄ + δ1)t], whereas confining the particle to B(0, δ2
√

2βt) comes for ‘free’,
i.e., costs exp[o(t)], since a Brownian particle typically moves a distance of order√
t over linear time.
Next, in the remaining interval [(ρ̄+ δ1)t, t], let the BBM behave ‘normally,’ and

send typically many particles to B̂ct at time t. To be precise, denote the position of
the single particle at time (ρ̄+δ1)t by Xt. Then, uniformly over Xt ∈ B(0, δ2

√
2βt),

(1.1) implies that for any ε > 0, for all large t,

PXt

(
Z(1−(ρ̄+δ1))t(B̂

c
t ) ≤ exp

[(
1− (ρ̄+ δ1)− (θ − δ2)2

1− (ρ̄+ δ1)

)
βt+ εβt

])
> 1− ε.

(6.1)
Choose ε and δ2 small enough to satisfy

ε+

[
1− (ρ̄+ δ1)− (θ − δ2)2

1− (ρ̄+ δ1)

]
< a. (6.2)

Indeed, it is possible to choose ε and δ2 satisfying (6.2). Using the definition of ρ̄,
it is not hard to show that the left-hand side of (6.2) can be bounded from above
by ε+ a− δ1 + 2δ2/θ, which is less than a if we choose δ2 = θδ1/4 and ε = δ1/4.

Applying the Markov property at (ρ̄ + δ1)t, and combining the costs of the
‘partial’ strategies over [0, (ρ̄+ δ1)t] and [(ρ̄+ δ1)t, t], we obtain

lim inf
t→∞

1

t
logP

(
Zt(B̂

c
t ) < eβat

)
≥ −β(ρ̄+ δ1) = −β[1− a/2−

√
θ2 + (a/2)2 + δ1].

Let δ1 → 0 to obtain the lower bound.

6.2. Proof of the upper bound. Let 0 < δ < ρ̄. Estimate

P
(
Zt(B̂

c
t ) < eβat

)
≤ P

(
N(ρ̄−δ)t ≤ btc

)
+ P

(
Zt(B̂

c
t ) < eβat | N(ρ̄−δ)t > btc

)
.

(6.3)
We will show that the second term on the right-hand side of (6.3) is SES in t.
Consider a particle that is present at time (ρ̄ − δ)t. Regardless of its position at
that time, it is at most at a distance of xt away from the boundary of B̂t. Recall
that xt = θ

√
2βt, which is small enough for the sub-BBM emanating from the

particle at time (ρ̄ − δ)t to contribute at least exp(βat) particles to B̂ct at time t.
More precisely, the remaining time is (1− ρ̄+ δ)t, and since

βa < β(1− ρ̄+ δ)− 1

2

(θ
√

2β)2

1− ρ̄+ δ
, (6.4)

Lemma 3.4 implies that each particle present at time (ρ̄− δ)t initiates a sub-BBM
which, with overwhelming probability, contributes at least eβat particles to B̂ct at
time t, that is, the probability of the complement event is at most e−ct for some
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c for all large t. (It is easy to see (6.4) since a = (1 − ρ̄) − θ2

1−ρ̄ and δ > 0.)
Conditional on the event {N(ρ̄−δ)t > btc}, there are at least btc particles at time
(ρ̄− δ)t. Therefore, by independence of sub-BBMs emanating from these particles
at that time, for all large t,

P
(
Zt(B̂

c
t ) < eβat | N(ρ̄−δ)t > btc

)
≤ (e−ct)btc, (6.5)

which is SES in t. Next, we use (3.1) to bound the first term on the right-hand side
of (6.3) from above as

P
(
N(ρ̄−δ)t ≤ btc

)
≤ e−β(ρ̄−δ)t+o(t). (6.6)

Using (6.3), (6.5), and (6.6), we obtain

lim sup
t→∞

1

t
logP

(
Zt(B̂

c
t ) < eβat

)
≤ −β(ρ̄− δ) = −β[1− a/2−

√
θ2 + (a/2)2 − δ].

Let δ → 0 to complete the proof.

Acknowledgements

The author would like to thank the anonymous reviewer for valuable comments
that helped to improve the presentation of the manuscript.

References

Aïdékon, E., Hu, Y., and Shi, Z. Large deviations for level sets of branching Brow-
nian motion and Gaussian free fields. Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI), 457 (Veroyatnost’i Statistika. 25), 12–36 (2017).
MR3723574.

Asmussen, S. and Hering, H. Strong limit theorems for general supercritical branch-
ing processes with applications to branching diffusions. Z. Wahrscheinlichkeits-
theorie und Verw. Gebiete, 36 (3), 195–212 (1976). MR420889.

Athreya, K. B. and Ney, P. E. Branching processes. Springer-Verlag, New York-
Heidelberg (1972). MR0373040.

Biggins, J. D. Uniform convergence of martingales in the branching random walk.
Ann. Probab., 20 (1), 137–151 (1992). MR1143415.

Bramson, M. D. Maximal displacement of branching Brownian motion. Comm.
Pure Appl. Math., 31 (5), 531–581 (1978). MR494541.

Chauvin, B. and Rouault, A. KPP equation and supercritical branching Brownian
motion in the subcritical speed area. Application to spatial trees. Probab. Theory
Related Fields, 80 (2), 299–314 (1988). MR968823.

Chen, Z.-Q. and Shiozawa, Y. Limit theorems for branching Markov processes. J.
Funct. Anal., 250 (2), 374–399 (2007). MR2352485.

Derrida, B. and Shi, Z. Large deviations for the rightmost position in a branch-
ing Brownian motion. In Modern problems of stochastic analysis and statistics,
volume 208 of Springer Proc. Math. Stat., pp. 303–312. Springer, Cham (2017).
MR3747671.

Engländer, J. Large deviations for the growth rate of the support of supercrit-
ical super-Brownian motion. Statist. Probab. Lett., 66 (4), 449–456 (2004).
MR2045138.

http://www.ams.org/mathscinet-getitem?mr=MR3723574
http://www.ams.org/mathscinet-getitem?mr=MR420889
http://www.ams.org/mathscinet-getitem?mr=MR0373040
http://www.ams.org/mathscinet-getitem?mr=MR1143415
http://www.ams.org/mathscinet-getitem?mr=MR494541
http://www.ams.org/mathscinet-getitem?mr=MR968823
http://www.ams.org/mathscinet-getitem?mr=MR2352485
http://www.ams.org/mathscinet-getitem?mr=MR3747671
http://www.ams.org/mathscinet-getitem?mr=MR2045138


Large deviations for local mass of branching Brownian motion 731

Engländer, J. Branching diffusions, superdiffusions and random media. Probab.
Surv., 4, 303–364 (2007). MR2368953.

Engländer, J. and den Hollander, F. Survival asymptotics for branching Brownian
motion in a Poissonian trap field. Markov Process. Related Fields, 9 (3), 363–389
(2003). MR2028219.

Engländer, J., Harris, S. C., and Kyprianou, A. E. Strong law of large numbers for
branching diffusions. Ann. Inst. Henri Poincaré Probab. Stat., 46 (1), 279–298
(2010). MR2641779.

Engländer, J. and Kyprianou, A. E. Local extinction versus local exponential
growth for spatial branching processes. Ann. Probab., 32 (1A), 78–99 (2004).
MR2040776.

Karlin, S. and Taylor, H. M. A first course in stochastic processes. Academic Press,
New York-London, second edition (1975). MR0356197.

Kyprianou, A. E. Asymptotic radial speed of the support of supercritical branching
Brownian motion and super-Brownian motion in Rd. Markov Process. Related
Fields, 11 (1), 145–156 (2005). MR2099406.

Mallein, B. Maximal displacement of d-dimensional branching Brownian motion.
Electron. Commun. Probab., 20, Paper no. 76, 12 pp. (2015). MR3417448.

McKean, H. P. Application of Brownian motion to the equation of Kolmogorov-
Petrovskii-Piskunov. Comm. Pure Appl. Math., 28 (3), 323–331 (1975).
MR400428.

Öz, M. On the volume of the shrinking branching Brownian sausage. Electron.
Commun. Probab., 25, Paper No. 37, 12 pp. (2020). MR4112768.

Öz, M., Çağlar, M., and Engländer, J. Conditional speed of branching Brownian
motion, skeleton decomposition and application to random obstacles. Ann. Inst.
Henri Poincaré Probab. Stat., 53 (2), 842–864 (2017). MR3634277.

Öz, M. and Engländer, J. Optimal survival strategy for branching Brownian motion
in a Poissonian trap field. Ann. Inst. Henri Poincaré Probab. Stat., 55 (4), 1890–
1915 (2019). MR4029143.

Shiozawa, Y. Spread rate of branching Brownian motions. Acta Appl. Math., 155,
113–150 (2018). MR3800279.

Watanabe, S. Limit theorem for a class of branching processes. InMarkov Processes
and Potential Theory (Proc. Sympos. Math. Res. Center, Madison, Wis., 1967),
pp. 205–232. Wiley, New York (1967). MR0237007.

http://www.ams.org/mathscinet-getitem?mr=MR2368953
http://www.ams.org/mathscinet-getitem?mr=MR2028219
http://www.ams.org/mathscinet-getitem?mr=MR2641779
http://www.ams.org/mathscinet-getitem?mr=MR2040776
http://www.ams.org/mathscinet-getitem?mr=MR0356197
http://www.ams.org/mathscinet-getitem?mr=MR2099406
http://www.ams.org/mathscinet-getitem?mr=MR3417448
http://www.ams.org/mathscinet-getitem?mr=MR400428
http://www.ams.org/mathscinet-getitem?mr=MR4112768
http://www.ams.org/mathscinet-getitem?mr=MR3634277
http://www.ams.org/mathscinet-getitem?mr=MR4029143
http://www.ams.org/mathscinet-getitem?mr=MR3800279
http://www.ams.org/mathscinet-getitem?mr=MR0237007

	1. Introduction
	1.1. Formulation of the problem
	1.2. History
	1.3. Motivation

	2. Results
	3. Preparations
	4. Proof of Theorem 2.1
	4.1. Proof of the lower bound
	4.2. Proof of the upper bound

	5. Analysis of the optimization problem
	6. Proof of Theorem 2.6
	6.1. Proof of the lower bound
	6.2. Proof of the upper bound

	Acknowledgements
	References

