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Abstract. We consider a variant of the planted clique problem where we are al-
lowed unbounded computational time but can only investigate a small part of the
graph by adaptive edge queries. We determine (up to logarithmic factors) the num-
ber of queries necessary both for detecting the presence of a planted clique and for
finding the planted clique.

Specifically, let G ∼ G(n, 1/2, k) be a random graph on n vertices with a planted
clique of size k. We show that no algorithm that makes at most q = o(n2/k2 + n)
adaptive queries to the adjacency matrix of G is likely to find the planted clique.
On the other hand, when k ≥ (2 + ε) log2 n there exists a simple algorithm (with
unbounded computational power) that finds the planted clique with high proba-

bility by making q = O((n2/k2) log2 n + n logn) adaptive queries. For detection,
the additive n term is not necessary: the number of queries needed to detect the
presence of a planted clique is n2/k2 (up to logarithmic factors).

1. Introduction

In the planted clique problem the goal is to find a clique that is planted within an
Erdős-Rényi random graph. This problem has received widespread attention in the
past few decades because there exists a (wide) range of clique sizes for which it is
information-theoretically possible to find the planted clique but there are no known
polynomial-time algorithms to do so (Jerrum, 1992; Kučera, 1995; Alon et al.,
1998; Feige and Ron, 2010; Dekel et al., 2014; Deshpande and Montanari, 2015). In
this regime it is conjectured to be computationally hard to find the planted clique
and this conjecture forms the basis of numerous average-case complexity results in
recent years (Berthet and Rigollet, 2013b,a; Gao et al., 2017; Brennan et al., 2018;
Brennan and Bresler, 2019).
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In this paper we consider a variant of the planted clique problem where we are
allowed unbounded computational time but can only investigate a small part of
the graph by adaptive edge queries. We consider the problems of detection and
estimation under this model, and determine (up to logarithmic factors) the number
of queries necessary both for detecting the presence of a planted clique and for
finding the planted clique.

In the problems we consider there is an underlying n vertex graph G with
vertex set [n] := {1, 2, . . . , n}. The algorithms that we consider are allowed un-
bounded computational power but we restrict the number of edges they are al-
lowed to inspect. Specifically, we consider algorithms that evolve dynamically over
a certain number of steps. In the first step, the algorithm chooses a pair (i1, j1),
1 ≤ i1 < j1 ≤ n, and asks whether this pair is an edge or not. Depending on the
outcome, the algorithm selects a second pair (i2, j2), 1 ≤ i2 < j2 ≤ n, and asks
whether this pair is an edge or not. It then selects (i3, j3), and so on. The algorithm
may ask q such edge queries and use unbounded computational time to produce an
output.

The detection problem can be phrased as a simple hypothesis testing problem.
Under the null hypothesis H0, the graph G is an Erdős-Rényi random graph with
edge density 1/2. Under the alternative hypothesis H1, the graph G is drawn from
the planted clique model with clique size k. That is, we first choose a (uniformly)
random subset of the vertices K ⊆ [n] of size |K| = k, we connect all pairs of
vertices in K—that is, the vertices in K form a clique—and every other pair of
vertices is connected independently with probability 1/2. In short:

H0 : G ∼ G(n, 1/2), H1 : G ∼ G(n, 1/2, k). (1.1)

We denote the two probability distributions over n vertex graphs by P0 and P1,
respectively. An algorithm A for detection under the adaptive edge query model
makes up to q adaptive edge queries to G and then outputs a hypothesis in {0, 1}.
We measure the performance of an algorithm A by its risk, which is defined as the
sum of its type I and type II errors:

R(A) := P0 (A(G) = 1) + P1 (A(G) = 0) .

If an algorithm A achieves vanishing risk—R(A) = o(1) as n → ∞—then we say
that A can detect the presence of a planted clique; otherwise, we say that it cannot
do so.

The following theorem determines (up to logarithmic factors) the number of
queries necessary to detect the presence of a planted clique. All logarithms in this
paper are in base 2.

Theorem 1.1 (Detecting a planted clique). Consider the hypothesis testing problem
in (1.1).

(a) Let q = o(n2/k2) as n→∞. If an algorithm A makes at most q adaptive edge
queries then its risk must satisfy R(A) ≥ 1− o(1) as n→∞.

(b) Suppose that k ≥ (2 + ε) logn for some constant ε > 0 and let ε0 > 0 be
arbitrary. There exists an algorithm (with unlimited computational power) that
can detect the presence of a planted clique by querying

q = (2 + ε0)
n2

k2
log2 n

pairs of vertices. Moreover, the queries can be nonadaptive.
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If we can detect the presence of a planted clique, the natural next goal is to find
it. The following theorem determines (up to logarithmic factors) the number of
queries necessary to find the planted clique. In particular, it shows that an extra
n logn queries suffice compared to detection and that this is tight (up to logarithmic
factors).

Theorem 1.2 (Finding the planted clique). Let G ∼ G(n, 1/2, k), where 1 ≤ k < n.

(a) Let q = o(n2/k2 + n) as n → ∞. No algorithm that makes at most q adap-

tive edge queries can find the planted clique. That is, any estimator K̂ of
the planted clique K that is based on at most q adaptive edge queries satisfies

P1

(
K̂ = K

)
= o(1) as n→∞.

(b) Suppose that k ≥ (2 + ε) logn for some constant ε > 0 and let ε0 > 0 be
arbitrary. There exists an algorithm (with unlimited computational power) that
adaptively queries

q = (2 + ε0)
n2

k2
log2 n+ (1 + ε0)n logn

pairs of vertices and finds the planted clique with probability 1−o(1) as n→∞.

Theorems 1.1 and 1.2 give a complete phase diagram of when detection and
estimation are possible as a function of the clique size k and the number of queries q
(up to some boundary cases). A natural parametrization is to take both k and q
to be polynomial in n: k = nγ and q = nδ for some γ ∈ (0, 1) and δ ∈ (0, 2).
Corollary 1.3 summarizes the results with this parametrization—see also Figure 1
for an illustration. Note in particular the region of the phase space where detection
is possible but estimation is not. Note also that the conjectured computational
threshold is at γ = 1/2.
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Recovery impossible
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q = nδ
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Detection
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−→

γ

Figure 1.1. Phase diagram for detecting the presence of a planted
clique and for finding the planted clique, as a function of the clique
size k = nγ and the number of adaptive edge queries q = nδ. The
horizontal axis contains γ ∈ (0, 1), the vertical axis contains δ ∈
(0, 2).

Corollary 1.3 (Phase diagram). Suppose that k = nγ and q = nδ for some γ ∈
(0, 1) and δ ∈ (0, 2).
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(a) If δ < 2− 2γ, then detecting the presence of a planted clique is impossible.
(b) If δ > 2 − 2γ and δ < 1, then it is possible to detect the presence of a planted

clique, but it is impossible to find the planted clique.
(c) If δ > 2− 2γ and δ > 1, then it is possible to find the planted clique.

These results raise several open questions. First, can the logarithmic factors be
closed, to obtain results that are tight up to constant factors? Second, how do these
results change if we plant a different subgraph instead of a clique? For instance,
one can plant a dense random graph G(k, q) with q > 1/2. Finally, while we
neglected all computational considerations in this paper, are there any connections
to average-case computational hardness? We leave exploring these questions to
future work.

The rest of this paper is outlined as follows. After discussing motivation and
related work in the remainder of the introduction, we turn to algorithms for de-
tection and estimation in Section 2, proving Theorem 1.1(b) and Theorem 1.2(b).
Finally, we prove the impossibility results of Theorem 1.1(a) and Theorem 1.2(a)
in Section 3.

1.1. Motivation. There are several potential applications where understanding the
query complexity necessary to finding cliques may be of interest. For instance, in
scientific applications one may wish to find closely related entities (corresponding
to a clique or dense subgraph), and querying an edge may correspond to performing
a physical experiment which is costly and/or time-consuming.

Another potential application is to the analysis of social media connections.
Here the nodes of a graph represent individuals and the edges represent connec-
tions between individuals such as Facebook friends, Twitter following, or LinkedIn
connections. Access to these connections may be expensive to obtain or limited (due
to privacy limitations or any other source of incomplete information), and hence
query complexity may be relevant when trying to reconstruct a specific close-knit
group within the network.

The planted clique problem and related subgraph inference problems have been
applied to a variety of applications, including biological networks (Milo et al., 2002),
cryptography (Juels and Peinado, 2000), and finance (Arora et al., 2011). Obtaining
full information about the underlying networks in these applications may not be
possible due to queries being expensive and/or limited, and hence the planted clique
problem with limited adaptive probing could be relevant to these same applications.

1.2. Related work. This paper is a natural follow-up to the recent work of Feige et al.
(2020), where the authors consider the problem of finding cliques in an Erdős-Rényi
random graph under the same adaptive edge query model. While the largest clique
in an Erdős-Rényi random graph with edge density 1/2 has size approximately
2 logn, the current best algorithm that makes at most q = O(nδ) adaptive edge
queries finds a clique of size approximately (1+ δ/2) logn. Feige et al. (2020) show
an impossibility result if the adaptivity of the algorithm is limited: any algorithm
that makes q = O(nδ) edge queries (δ < 2) in ℓ rounds finds cliques of size at most
(2 − ε) logn where ε = ε (δ, ℓ) > 0. Very recently, Alweiss et al. (2019) improved
upon this result, showing that there exists such ε that depends only on δ and not
on ℓ. However, closing the gap between the upper and lower bounds remains an
open problem.
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Several recent works consider finding structure in a random graph under such
an adaptive edge query model. Ferber, Krivelevich, Sudakov, and Vieira studied
finding a Hamilton cycle (Ferber et al., 2016) and finding long paths (Ferber et al.,
2017), while Conlon et al. (2019) studied finding a copy of a fixed target graph
(such as a constant size clique). All of these works focus on sparse random graphs.

As mentioned in the introduction, the planted clique problem has been studied
from many angles in the past few decades (Jerrum, 1992; Kučera, 1995; Alon et al.,
1998; Feige and Ron, 2010; Dekel et al., 2014; Deshpande and Montanari, 2015;
Berthet and Rigollet, 2013b,a; Gao et al., 2017; Brennan et al., 2018; Brennan and
Bresler, 2019). To the best of our knowledge, it has not been considered under an
edge query model before. It would be interesting to see if there are any connections
to computational aspects of the planted clique problem. The recent work of Mardia
et al. (2020) develops sublinear1 time algorithms for finding the planted clique in
the regime k = ω

(√
n log logn

)
and makes such connections. As the authors point

out, our results imply an Ω (n) running time lower bound for finding the planted
clique, which shows that their algorithms are optimal (up to logarithmic factors)
whenever k = Ω

(
n2/3

)
.

Finally, we mention that query complexity arises naturally in many other areas,
such as clustering (Vinayak and Hassibi, 2016; Mazumdar and Saha, 2017a,b),
where answers to queries are often noisy due to them being crowdsourced, and
community detection (Hartmann et al., 2016; Anagnostopoulos et al., 2016), where
the evolution of the underlying graph necessitates repeated queries. Statistical
queries have also been widely studied (Kearns, 1998), including in the setting of
the planted clique model (Feldman et al., 2017). More generally, our work fits into
the framework of online learning, a large and rapidly growing area which is beyond
the scope of this article to survey.

2. Algorithms

We start with a simple sampling-based algorithm to detect the presence of a
planted clique. This is contained in Section 2.1 and proves Theorem 1.1(b). We
then extend this algorithm in Section 2.2 to find all vertices of the planted clique,
thus proving Theorem 1.2(b).

First, recall that the largest clique in an Erdős-Rényi random graph has size
approximately 2 logn. In fact, very precise results are known. Define ωn = 2 logn−
2 log logn+2 log e−1. Matula (1972) showed that for any ε > 0, the clique number
(the size of the largest clique) ω(G) of a random graph G drawn from G(n, 1/2)
satisfies ⌊ωn − ε⌋ ≤ ω(G) ≤ ⌊ωn + ε⌋ with probability tending to 1 as n→ ∞; see
also Bollobás and Erdős (1976). For our purposes much weaker estimates suffice.
Indeed, a first moment argument shows that P0 (ω(G) ≤ 2 logn+ 3)→ 1 as n→∞
(see Lugosi, 2017).

2.1. Detecting the presence of a planted clique. The basic idea in detecting the
presence of a planted clique is to sample all pairs of vertices among a set S ⊆ [n]
of size m := (2 + ε′) (n/k) logn. After these queries we learn the induced subgraph
on S and we can use the size of the largest clique in S as a statistic to distinguish
between the hypotheses H0 and H1, as follows. We know (see above) that under

1Here the input size is Θ(n2), hence sublinear refers to o(n2).
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P0 this statistic is at most 2 logn+3 with probability 1− o(1). On the other hand,
under P1 the set S contains, in expectation, (2 + ε′) logn vertices from the planted
clique, so with probability 1− o(1) this statistic is at least (2 + ε′/2) logn.

The following proof makes this reasoning precise. Note that this algorithm to
detect the presence of a planted clique is nonadaptive, making all queries at the
same time.

Proof of Theorem 1.1(b): Let ε′ > 0 be such that 2ε′ + ε′2/2 ≤ ε0 and ε′ ≤ ε.
First, we choose an arbitrary subset S of the n vertices of size m := |S| =
(2 + ε′) (n/k) logn; for instance, choose S := {1, 2, . . . ,m}. We then query all
pairs of vertices among S. This results in

(
m

2

)
≤ m2

2
= (2 + 2ε′ + ε′2/2)

n2

k2
log2 n ≤ (2 + ε0)

n2

k2
log2(n)

queries. After the queries we know the induced subgraph on S. In particular—due
to the fact that we have no restrictions on computational power—we can com-
pute the size of the largest clique in this induced subgraph. The algorithm then
chooses a hypothesis based on this statistic: if S contains a clique of size at least
(2 + ε′/2) logn, then it accepts the alternative hypothesis H1; otherwise, it accepts
the null hypothesis H0.

We now argue that this algorithm achieves vanishing risk. First, as we discussed
at the beginning of Section 2, if G ∼ G (n, 1/2), then the largest clique in G has size
approximately 2 logn. In particular, P0 (ω(G) ≥ (2 + ε′/2) logn) → 0 as n → ∞;
that is, the type I error vanishes in the limit.

Next, assuming H1, let X denote the number of planted clique vertices in S.
Observe that X has a hypergeometric distribution with parameters n, k, and m.
Thus we have that E [X ] = m× (k/n) = (2+ε′) log(n) and Var(X) ≤ m k

n (1− k
n ) ≤

(2+ ε′) log(n), so Chebyshev’s inequality implies that P1 (X ≤ (2 + ε′/2) log(n)) ≤
c/ log(n) for some constant c < ∞ depending on ε′. To conclude, note that if
X ≥ (2 + ε′/2) logn then S contains a clique of size at least (2 + ε′/2) logn. �

2.2. Finding the planted clique. In order to find the planted clique, we start with
the same step as in Section 2.1 above: we sample all pairs of vertices among a
set S ⊆ [n] of size m := (2 + ε′) (n/k) logn. As we show below, with probability
1− o(1) under P1, the set of vertices in the largest clique in S is exactly the set of
vertices in S that are in the planted clique. Thus the remaining goal is to identify
the vertices of the planted clique that are not in S.

To do this, a natural idea is to query all pairs of vertices where one vertex is
part of the largest clique in S and the other vertex is not in S. Any vertex that
is in the planted clique and not in S will necessarily be connected to all planted
clique vertices in S, while vertices not in S and not in the planted clique will not
be connected to all of the planted clique vertices in S (with probability 1 − o(1)
under P1). Thus in the second step the algorithm selects all vertices not in S that
were connected to all vertices in S where the pair was queried.

Finally, the algorithm outputs the union of the two sets of vertices identified in
the two steps. The following proof makes all this precise and proves Theorem 1.2(b).
Note that in the second step we take only a subset of the largest clique in S—this
is done in order to lessen the number of queries made. Note furthermore that this
algorithm has limited adaptivity, as it can be implemented in two “rounds”.



Finding a planted clique by adaptive probing 781

Proof of Theorem 1.2(b): The algorithm for finding the planted clique consists of
two steps, the first step being the same as the one used for detection.

• Step 1: Choose a subset S of the n vertices of size

m := |S| = (2 + ε′) (n/k) logn,

where ε′ is chosen as in Section 2.1. We then query all pairs of vertices
among S.
• Step 2: Let D be the set of vertices in the largest clique in S. Let D′ ⊆ D

be a fixed subset of size (1 + ε0) logn (e.g., take D′ to be the (1 + ε0) log n
nodes in D with lowest label). (If ε0 is large such that |D| ≤ (1 + ε0) log n,
then let D′ := D.) We then query all pairs of vertices where one of the
vertices is in D′ and the other is in [n] \ S.

Let T denote the vertices in [n] \ S that are connected to all vertices
in D′. The algorithm then outputs D ∪ T as its estimate for the planted
clique.

We have seen in Section 2.1 that we make at most (2 + ε0)(n
2/k2) log2 n queries in

the first step, while in the second step we make at most (1+ ε0)n logn queries. We
now argue that this algorithm succeeds in finding the planted clique with probability
1− o(1).

As we argued in Section 2.1, we have that P1 (|D| ≥ (2 + ε′/2) logn) = 1 −
o(1) as n → ∞. Furthermore, with probability 1 − o(1), the set D contains only
planted clique vertices. Indeed, as we discussed at the beginning of Section 2, with
probability 1 − o(1) the largest clique in an Erdős-Rényi random graph with edge
density 1/2 has size at most 2 logn+ 3, so no vertex outside of the planted clique
is in a clique of size greater than 2 logn+3. Thus in the first step of the algorithm
we have found at least (2 + ε′/2) logn vertices of the planted clique. Moreover, we
have found all vertices of the planted clique that are in S.

Any vertex in [n] \ S that is in the planted clique will be connected to every
planted clique vertex and hence every vertex in D. Thus all vertices of the planted
clique are contained in D ∪ T . To see that there are no false positives in this set,
note that the probability that a vertex not in the planted clique is connected to a
fixed set of (1+ ε0) logn planted clique vertices is 2−(1+ε0) log n = n−(1+ε0). Taking
a union bound over vertices in [n] \ S, we see that the probability that there exists
a vertex not in the planted clique that is in T is at most n−ε0 . �

Note that this algorithm succeeds in finding the planted clique even though it
does not check that all pairs of vertices within the planted clique are connected.
In fact, it checks the edge between O

(
k logn+ log2 n

)
pairs of vertices within the

planted clique, instead of the Θ
(
k2
)

pairs that exist.

3. Lower bounds

To prove our lower bounds we introduce a simpler variant problem that removes
all graph structure from the problem. In this hypothesis testing problem we con-
sider the set [n] = {1, 2, . . . , n}, where each element of the set is either marked

or unmarked. Under the null hypothesis H̃0, all elements are unmarked. Under

the alternative hypothesis H̃1, a uniformly randomly chosen subset K ⊆ [n] of size
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|K| = k is chosen and its elements are marked, and the elements of [n] \K are un-

marked. We denote the two probability distributions over {unmarked, marked}[n]
by P̃0 and P̃1, respectively.

We consider algorithms that can adaptively query (i, j) pairs, where 1 ≤ i <
j ≤ n. We refer to such queries as pair queries to distinguish them from the edge
queries of the original problem. When pair (i, j) is queried, the query evaluates to
true if both i and j are marked and it evaluates to false otherwise. The algorithm
may ask q such adaptive pair queries and use unbounded computational time to

produce an output in {0, 1} (corresponding to H̃0 or H̃1). We again measure the

performance of an algorithm Ã by its risk, defined as

R̃(Ã) := P̃0

(
Ã = 1

)
+ P̃1

(
Ã = 0

)
.

We consider randomized algorithms as well, in which case the type I and type II
error probabilities in the display above are taken over the internal randomness of
the algorithm as well.

The following lemma connects this variant problem with the original hypothesis
testing problem.

Lemma 3.1 (Reduction). Suppose that there exists an algorithm A that makes at
most q adaptive edge queries and achieves risk R(A) ≤ r for the hypothesis testing

problem in (1.1). Then there exists an algorithm Ã that makes at most q adaptive

pair queries in the variant problem described above—distinguishing between H̃0 and

H̃1—and achieves risk R̃(Ã) ≤ r.

Proof : There is a direct correspondence between the two hypothesis testing prob-
lems, which allows the answers to pair queries to simulate answers to edge queries.
Specifically, marked elements of [n] correspond to planted clique vertices. Thus a
pair query that evaluates to true corresponds to querying two planted clique ver-
tices, while a pair query that evaluates to false corresponds to querying two vertices
between which the edge is random. Thus given the answer to a pair query, the an-
swer to an edge query can be simulated as follows: if the answer to the pair query is
true, the answer to the corresponding edge query is that the edge exists, while if the
answer to the pair query is false, then flip a fair coin to answer the corresponding
edge query.

Thus for any algorithm A that makes at most q adaptive edge queries, there

exists a corresponding algorithm Ã that makes at most q adaptive pair queries in

the variant problem and simulates A. We then let the output of Ã be the same
as the output of the simulated algorithm A. Since the simulation of A involves

extra randomness, Ã is thus a randomized algorithm. By conditioning on the extra

randomness, it follows that the risk of Ã is the same as the risk of A. �

This lemma implies that to prove Theorem 1.1(a) it suffices to prove the analo-
gous result for the variant problem. Consequently, we turn our focus to the variant

problem. Observe that under H̃0 all answers to all pair queries will be false. The

next lemma considers the alternative hypothesis H̃1.

Lemma 3.2. Let q ≤ n(n−1)
k(k−1) − 1. Let Ã be any algorithm that makes at most

q adaptive pair queries. Let Eq denote the event that all of the pair queries of Ã
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evaluate to false. We then have that

P̃1 (Eq) ≥ 1− q
k(k − 1)

n(n− 1)
. (3.1)

In particular, if q = o(n2/k2) as n→∞, then P̃1 (Eq) = 1− o(1) as n→∞.

Proof : To highlight the key elements of the proof, we first prove the claim for de-
terministic algorithms, where each query is a deterministic function of the previous
queries and the answers to them; at the end of the proof we address how the proof
changes for randomized algorithms, which may use additional randomness. Thus

for now assume that the algorithm Ã is deterministic. To describe the structure
of deterministic algorithms we introduce some notation. We let e1, e2, . . . denote
the pair queries made by the algorithm. Furthermore, let X1, X2, . . . denote the
answers to the pair queries, as follows: Xℓ = 0 if the ℓth pair query eℓ evaluates
to false, and Xℓ = 1 if the ℓth pair query eℓ evaluates to true. Any deterministic

algorithm Ã can thus be described as follows:

• First, Ã makes the pair query e1 = (i1, j1). The algorithm receives the
answer X1 (which depends on the realization of K).

• The next pair query of Ã depends on the answer X1:

– if X1 = 0, then Ã makes the pair query e2 =
(
i
(0)
2 , j

(0)
2

)
;

– if X1 = 1, then Ã makes the pair query e2 =
(
i
(1)
2 , j

(1)
2

)
.

The algorithm receives the answer X2 (which again depends on the realiza-
tion of K).

• The third pair query of Ã depends on the answers X1 and X2:

– if X1 = 0 and X2 = 0, then Ã makes the pair query e3 =
(
i
(0,0)
3 , j

(0,0)
3

)
;

– if X1 = 0 and X2 = 1, then Ã makes the pair query e3 =
(
i
(0,1)
3 , j

(0,1)
3

)
;

– if X1 = 1 and X2 = 0, then Ã makes the pair query e3 =
(
i
(1,0)
3 , j

(1,0)
3

)
;

– if X1 = 1 and X2 = 1, then Ã makes the pair query e3 =
(
i
(1,1)
3 , j

(1,1)
3

)
.

The algorithm receives the answer X3.

• And so on. The pair query eℓ+1 of Ã depends on the answers X1, X2, . . . , Xℓ

as follows: for every x ∈ {0, 1}ℓ, if (X1, X2, . . . , Xℓ) = x, then eℓ+1 =(
ixℓ+1, j

x
ℓ+1

)
.

Thus the set of pairs

{(i1, j1)} ∪
{
(ixℓ , j

x
ℓ ) : ℓ ≥ 2, x ∈ {0, 1}ℓ−1

}
(3.2)

completely determines how the algorithm Ã behaves for any realization of K; and
vice versa: any set of pairs as in (3.2) determines a deterministic pair query algo-

rithm Ã. (Note that in the description of a deterministic algorithm Ã we have only
described how the algorithm makes the pair queries and not how the algorithm
produces an output after making q adaptive pair queries—for the purposes of the
claim this is all that we care about.)

In the following we thus fix the deterministic algorithm Ã by fixing the set of
pairs in (3.2). Also, for notational convenience, we write (i′ℓ, j

′
ℓ) for (ixℓ , j

x
ℓ ) when

ℓ ≥ 2 and x = (0, 0, . . . , 0) ∈ {0, 1}ℓ−1; furthermore, let i′1 ≡ i1 and j′1 ≡ j1. Recall
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that Eq denotes the event that the first q adaptive pair queries of Ã all evaluate
to false. We prove (3.1) by determining the conditional law of K given the event
Eq. Note that we fixed the set of pairs in (3.2), and thus we know that, given Eq,
the first q pair queries were e1 = (i′1, j

′
1) , . . . , eq =

(
i′q, j

′
q

)
. Let Sq denote the set

of k-tuples such that there was a pair query among these first q pair queries that
queried a pair from this k-tuple; that is,

Sq := {S ⊆ [n] : |S| = k, ∃ ℓ ∈ [q] : i′ℓ, j
′
ℓ ∈ S} .

Since all pair queries evaluated to false, no k-tuple in Sq can be the marked subset
given Eq (since otherwise a pair query would have evaluated to true). That is,

P̃1 (K = S | Eq) = 0

for all S ∈ Sq. Now let us consider a k-tuple that is not in Sq. By Bayes’s rule we
have that

P̃1 (K = S | Eq) =
P̃1 (Eq |K = S) P̃1 (K = S)

P̃1 (Eq)
.

Since the prior on K is uniform, we have that P̃1 (K = S) = 1/
(
n
k

)
. Now since

S /∈ Sq, if K = S, then the answers to the pair queries e1 = (i′1, j
′
1) , . . . , eq =

(
i′q, j

′
q

)

are necessarily all false (due to the definition of Sq). Therefore for every S /∈ Sq we

have that P̃1 (Eq |K = S) = 1. Thus we have shown that for every S /∈ Sq we have
that

P̃1 (K = S | Eq) =
1(

n
k

)
P̃1 (Eq)

.

Altogether, we have shown that the conditional law of K given Eq is given by

P̃1 (K = S | Eq) =
1

(
n
k

)
P̃1 (Eq)

1{S/∈Sq}.

Notice that this conditional probability is equal for all k-tuples that are not in Sq.
Therefore we also have that

P̃1 (K = S | Eq) =
1(

n
k

)
− |Sq|

1{S /∈Sq}.

Putting together the previous two displays we have that

P̃1 (Eq) = 1− |Sq|(
n
k

) . (3.3)

Note that every pair (i, j) (where 1 ≤ i < j ≤ n) is part of exactly
(
n−2
k−2

)
different

subsets of k elements. This implies the following upper bound on the size of Sq:

|Sq| ≤ q

(
n− 2

k − 2

)
= q

k(k − 1)

n(n− 1)

(
n

k

)
.

Plugging this bound back into (3.3) we obtain (3.1), as desired.
Finally, we discuss randomized algorithms, which may use additional random-

ness. We may condition on the extra randomness and then use the argument above
for deterministic algorithms. This shows that no matter what the realization of
the additional randomness is, the conditional probability of all q pair queries eval-

uating to false is at least 1 − q k(k−1)
n(n−1) . Taking an expectation over the additional

randomness then shows the desired claim. �
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We are now ready to prove the analogue of Theorem 1.1(a) for the variant prob-
lem.

Corollary 3.3 (Detecting a marked set of elements). Consider the hypothesis test-

ing problem H̃0 versus H̃1. Let q = o(n2/k2) as n→∞. If an algorithm Ã makes

at most q adaptive pair queries then its risk must satisfy R̃(Ã) ≥ 1−o(1) as n→∞.

Proof : No matter what algorithm Ã does, all of its pair queries will evaluate to

false under H̃0 (by definition), and all of its pair queries will evaluate to false under

H̃1 with probability 1 − o(1) (by Lemma 3.2). Suppose that Ã outputs 0 with
probability α and 1 with probability 1− α when all of its queries evaluate to false,
where α ∈ [0, 1]. The first sentence of the proof then implies that its risk is at least

R̃(Ã) ≥ (1− α) + α(1 − o(1)) = 1− o(1). �

Proof of Theorem 1.1(a): This follows directly from Lemma 3.1 and Corollary 3.3.
�

We now turn to proving Theorem 1.2(a). Here too we leverage the connection
to the corresponding estimation problem for the simplified variant problem, where
we aim to estimate the set of marked elements.

Lemma 3.4. Let K ⊆ [n] be a uniformly randomly chosen set of size |K| = k,
where 1 ≤ k < n. Let the elements of K be marked and let the elements of [n] \K
be unmarked. Let q = o(n2/k2 + n) as n → ∞. If K̂ is any estimator of the

marked set K that is based on at most q adaptive pair queries, then K̂ satistifies

P̃1

(
K̂ = K

)
= o(1) as n→∞.

Proof : There are two cases to consider. First, consider the case when q = o(n2/k2).
The proof of Lemma 3.2 shows that, with probability 1−o(1), after q adaptive pair
queries there remain a (1− o(1)) fraction of subsets of size k that are equally likely
to be the marked set. No estimator can do better than pick randomly among these,
and this will succeed with probability (1 + o(1)) /

(
n
k

)
= o(1).

Next, consider the case when q = o(n). In this case we show that it is not possible
to estimate the marked set even for algorithms with significantly more information.
Specifically, we consider algorithms that can adaptively query (i, j) pairs, where
1 ≤ i < j ≤ n, and when pair (i, j) is queried, the algorithm learns, for both i
and j, whether they are marked or unmarked. We refer to such queries as strong
pair queries to distinguish them from pair queries. From the answer to a strong
pair query it is possible to determine the answer to the appropriate pair query.
Therefore any algorithm that makes q adaptive pair queries can be simulated by
an algorithm that makes q adaptive strong pair queries. Thus in order to prove the

claim it suffices to show that if K̂ is any estimator of the marked set K that is based

on at most q adaptive strong pair queries, then K̂ satistifies P̃1

(
K̂ = K

)
= o(1)

as n→∞. This is what we will show; thus in the following we consider algorithms
that make at most q adaptive strong pair queries, and we assume that q = o(n).

We now argue that for q < n/2 we may, without loss of generality, consider the
algorithm that makes the strong pair queries (1, 2), (3, 4), . . . , (2q−1, 2q). We argue
this by induction. Since the marked set K is chosen uniformly at random, the first
strong pair query may be (1, 2) without loss of generality. There are now three
cases to consider, depending on the answer to this first strong pair query.
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• Both elements are unmarked. Suppose that the answer to the strong
pair query (1, 2) is that both 1 and 2 are unmarked. Thus 1, 2 /∈ K and

therefore neither 1 nor 2 will be in any estimator K̂ (since otherwise the
estimator will be incorrect). The algorithm thus knows that K ⊆ [n]\{1, 2}.
Moreover, by Bayes’s rule, the conditional distribution of K, given that
both 1 and 2 are unmarked, is uniform among k-tuples in [n] \ {1, 2}.
• One element is unmarked, the other is marked. Suppose that the

answer to the strong pair query (1, 2) is that 1 is marked and 2 is unmarked.

Thus 1 ∈ K and therefore 1 will be in any estimator K̂ (since otherwise
the estimator will be incorrect). We also learn that 2 /∈ K, so 2 will not

be in any estimator K̂ (since otherwise the estimator will be incorrect).
Moreover, by Bayes’s rule, the conditional distribution of K, given that 1
is marked and 2 is unmarked, is uniform among k-tuples in [n] that contain
the element 1 and do not contain the element 2. Thus the conditional
distribution of K \ {1, 2}, given that 1 is marked and 2 is unmarked, is
uniform among (k − 1)-tuples in [n] \ {1, 2}.

The case where 1 is unmarked and 2 is marked is analogous.
• Both elements are marked. Suppose that the answer to the strong pair

query (1, 2) is that both 1 and 2 are marked. Thus 1, 2 ∈ K and therefore

both 1 and 2 will be in any estimator K̂ (otherwise the estimator will be
incorrect). Moreover, by Bayes’s rule, the conditional distribution of K,
given that both 1 and 2 are marked, is uniform among k-tuples in [n] that
contain both 1 and 2. Thus the conditional distribution of K \ {1, 2}, given
that both 1 and 2 are marked, is uniform among (k−2)-tuples in [n]\{1, 2}.

In summary, no matter what the answer to the strong pair query (1, 2) is, the
algorithm deduces the following two points.

• For elements 1 and 2, the algorithm knows whether or not to include them

in any estimator K̂ that has any possibility of being correct.
• The conditional distribution of K \ {1, 2}, given the answer to the strong

pair query (1, 2), is uniform among m-tuples in [n] \ {1, 2}; here m = k if
both 1 and 2 are unmarked, m = k− 1 if one is unmarked and the other is
marked, and m = k − 2 if both 1 and 2 are marked.

Due to the uniformity of the conditional distribution in the last bullet point, the
next strong pair query may, without loss of generality, be (3, 4). More generally,
after having made the strong pair queries (1, 2), (3, 4), . . . , (2ℓ−1, 2ℓ), the algorithm
deduces the following two points.

• For each element in {1, 2, . . . , 2ℓ}, the algorithm knows whether or not to

include them in any estimator K̂ that has any possibility of being correct.
• The conditional distribution of K \ {1, 2, . . .2ℓ}, given the answers to the

strong pair queries (1, 2), (3, 4), . . . , (2ℓ− 1, 2ℓ), is uniform among m-tuples
in [n] \ {1, 2, . . . , 2ℓ}, where m is equal to k minus the number of marked
elements in {1, 2, . . . , 2ℓ}.

Again, due to the uniformity of the conditional distibution in the bullet point above,
the next strong pair query may, without loss of generality, be (2ℓ+1, 2ℓ+2). This
finishes the proof of the induction.

Finally, we analyze the algorithm that makes the strong pair queries

(1, 2), (3, 4), . . . , (2q − 1, 2q).
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After the answers to these strong pair queries, the algorithm knows for each element
in [2q] = {1, 2, . . . , 2q} whether they are marked or unmarked. Let S denote the

subset of marked elements in [2q], and let X := |S|. Any estimator K̂ that has any
possibility of being correct must include S as a subset (since otherwise the estimator

will be incorrect); similarly, any estimator K̂ that has any possibility of being
correct must not include any elements in [2q] \ S. If X = k, then this determines

that the estimator should be K̂ = S, and indeed in this case the estimator is correct:

K̂ = K. If X < k, then the estimator has to choose a subset T̂ ⊆ [n] \ [2q] of size

k−X and outputs K̂ = S∪ T̂ . The estimator is then correct (that is, K̂ = K holds)

if and only if T̂ = K \ [2q]. As we have argued above, the conditional distribution of
K \ [2q], given the answers to the strong pair queries (1, 2), (3, 4), . . . , (2q−1, 2q), is
uniform among (k−X)-tuples in [n]\ [2q]. Due to the uniformity of this conditional

distribution, for any estimator T̂ the conditional probability of T̂ = K \ [2q] is equal
to 1/

(
n−2q
k−X

)
. Putting everything together we have thus obtained that

P̃1

(
K̂ = K

)
= Ẽ1

[
P̃1

(
K̂ = K

∣∣∣X
)]

= Ẽ1

[
P̃1

(
T̂ = K \ [2q]

∣∣∣X
)]

= Ẽ1

[
1(

n−2q
k−X

)
]
. (3.4)

Since the distribution of K is uniform among k-tuples in [n], the distribution of X
is hypergeometric with parameters n, k, and 2q. We now distinguish three cases
based on how the parameters n, k, and 2q relate to each other, and in each case we
bound the expected value in (3.4).

• Case 1: k ≤ 2q. Since q = o(n), we have that q < n/4 for all n large enough.
Thus for all n large enough we have that k −X ≤ k ≤ 2q < n− 2q. This
implies that, for all n large enough, if X < k, then

(
n−2q
k−X

)
≥ n− 2q ≥ n/2.

Also, if X = k, then
(
n−2q
k−X

)
= 1. We thus have, for all n large enough, that

Ẽ1

[
1(

n−2q
k−X

)
]
≤ 2

n
+ P̃1 (X = k) . (3.5)

Since X is a hypergeometric random variable with parameters n, k, and
2q, we have that

P̃1 (X = k) =

(
k
k

)(
n−k
2q−k

)
(
n
2q

) =
(2q)(2q − 1) · . . . · (2q − k + 1)

n(n− 1) · . . . · (n− k + 1)
≤ 2q

n
. (3.6)

Combining (3.5) and (3.6) we have that Ẽ1

[
1/

(
n−2q
k−X

)]
≤ (2q+2)/n = o(1)

as n→∞.
• Case 2: 2q < k < n− 2q. Since X ≤ 2q, in this case we always have that
k−X > 2q−X ≥ 0, so k−X ≥ 1. Also, k−X ≤ k < n−2q. Put together,
we have that 1 ≤ k − X < n − 2q, which implies that

(
n−2q
k−X

)
≥ n − 2q.

Therefore in this case we have that

Ẽ1

[
1(

n−2q
k−X

)
]
≤ 1

n− 2q
.

• Case 3: n − 2q ≤ k. Since q = o(n), we have that q < n/4 for all n large
enough. Note also that X ≤ 2q. Thus for all n large enough we have that
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k −X ≥ (n− 2q)− 2q > 0, so k −X ≥ 1. Also note that k −X ≤ n− 2q
by definition. If 1 ≤ k −X < n − 2q, then

(
n−2q
k−X

)
≥ n− 2q ≥ n/2, where

the second inequality holds for all n large enough. We thus have, for all n
large enough, that

Ẽ1

[
1(

n−2q
k−X

)
]
≤ 2

n
+ P̃1 (X = k − (n− 2q)) . (3.7)

Since X is a hypergeometric random variable with parameters n, k, and
2q, we have that

P̃1 (X = k − (n− 2q)) =

(
k

k−(n−2q)

)(
n−k
n−k

)
(
n
2q

)

=
2q(2q − 1) · . . . · (k − (n− 2q) + 1)

n(n− 1) · . . . · (k + 1)
≤ 2q

n
. (3.8)

Combining (3.7) and (3.8) we have that Ẽ1

[
1/

(
n−2q
k−X

)]
≤ (2q+2)/n = o(1)

as n→∞.

In summary, in all three cases above we have that Ẽ1

[
1/

(
n−2q
k−X

)]
= o(1) as n→∞.

Combining this with (3.4) proves the claim. �

Proof of Theorem 1.2(a): There exists a direct correspondence between the prob-
lem of estimating the planted clique and the problem of estimating the marked set
in the variant problem. This correspondence for the estimation problem is anal-
ogous to the correspondence for the detection problem described in the proof of
Lemma 3.1. The proof then follows directly from Lemma 3.4 and this correspon-
dence. �
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