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Abstract. The purpose of this article is to provide a simple proof of the hydrody-
namic and hydrostatic behavior of the SSEP in contact with reservoirs which inject
and remove particles in a finite size windows at the extremities of the bulk. More
precisely, the reservoirs inject/remove particles at/from any point of a window of
size K placed at each extremity of the bulk and particles are injected/removed
to the first open/occupied position in that window. The reservoirs have slow dy-
namics, in the sense that they intervene at speed N−θ w.r.t. the bulk dynamics.
In the first part of this article, we treated the case θ > 1 for which the entropy
method can be adapted. We treat here the case where the boundary dynamics is
too fast for the Entropy Method to apply. We prove using duality estimates in-
spired by previous work that the hydrodynamic limit is given by the heat equation
with Dirichlet boundary conditions, where the density at the boundaries is fixed by
the parameters of the model.
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1. Introduction

We consider a 1-dimensional boundary driven lattice gas, whose boundary dy-
namics is non-reversible with respect to product measures, and which is slowed
down by an extra factor N−θ with respect to the diffusive scaling N2 of the bulk
SSEP dynamics. In the first part of this article Erignoux et al. (2020+), the con-
stant θ is assumed to be larger or equal to 1, which allowed us to adapt the classical
entropy method to our non-reversible dynamics, to derive both the hydrodynamic
and hydrostatic limits under suitable technical assumptions. In the case θ = 1, we
show that both scaling limits exhibit so-called non-linear Robin boundary condi-
tions, whereas in the θ > 1 regime, the boundary dynamics is to slow to be visible
in the diffusive time scale and the hydrodynamic limit is ruled by the heat equation
with Neumann boundary conditions.

In the case 0 < θ < 1, however, the non-reversible boundary dynamics generates
entropy w.r.t. equilibrium product measure at a fast rate, so that the classical
entropy estimates are not sharp enough to derive the hydrodynamics nor the hy-
drostatic limit. For this reason, we instead adapt the tools exploited in Erignoux
et al. (2018); Erignoux (2018) (non-reversible dynamics, diffusive scaling of the
boundary dynamics) to our non-reversible slowed down case, to prove that the
macroscopic behavior of the system started close to a given profile f0 is ruled by
the heat equation with Dirichlet boundary conditions

∂tρt(u) = ∆ ρt(u) for t > 0, u ∈ (0, 1)

ρt(0) = α for t > 0

ρt(1) = α′ for t > 0

ρ0(·) = f0(·)

,

and that the macroscopic stationary profile is given by the linear interpolation
ρ∗(u) = α + u(α′ − α). The general strategy, both for the hydrostatics and the
hydrodynamics described above, is to directly estimate the discrete density field ρN
defined in (2.7) and the 2-point correlation field ϕN defined in (2.8), which both
solve discrete difference equations. Due to the non-reversible dynamics, however,
these equations are not closed. In Erignoux et al. (2018); Erignoux (2018) (in
the regime θ = 0), this difficulty is solved by artificially closing the equations
with unknown boundary terms, and then estimating the missing terms by using
duality. In De Masi et al. (2012), De Masi et al. treated a non-reversible boundary
dynamics in the slow scaling, corresponding here to the case θ = 1, and instead
completely estimate the cascading n-points correlation field. They prove that for n
large enough, those correlation field vanish, and this is sufficient to backtrack those
estimates to the initial 2-points correlation field. This involves significant technical
and phenomenological difficulties which can be overcome in the case θ > 1 without
so much effort. In fact, their proof can likely be extended to the case θ > 1/2 with
a bit more work, but we do not pursue this issue here since our proof can cover all
the cases θ ∈ (0, 1).

In the present article, we bridge the gap between Erignoux et al. (2018); Erignoux
(2018) (case θ = 0), and De Masi et al. (2012) (case θ = 1), and consider the case
0 < θ < 1. In order to avoid to try and obtain the same type of delicate n-points
correlation estimates used in De Masi et al. (2012), we adapt the strategy of Erig-
noux et al. (2018); Erignoux (2018), and under the assumption (H1) below, we are
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able to artificially close the discrete difference equations for the density and for the
2-points correlation field. More precisely, we consider a boundary dynamics with
two distinct mechanisms, one representing the system being put in contact with
a infinite equilibrium reservoir (occurring at rate r), and a second non-reversible
creation/annihilation process whose rates b(η) depend on the local configuration
at the boundary. The key point of the proof is the study of a branching process,
representing the interaction of a site whose value is currently unknown with the
rest of the system. Whenever a reservoir is queried (rate r), one of its branches
dies, whereas when the non-reversible event occurs, the process branches out. As-
sumption (H1) allows us, roughly speaking, to close the equation, by ensuring that
this dual branching process eventually dies out, thus allowing us to determine the
value of the unknown site. Note that the techniques developed here are not specific
to the choice of the boundary dynamics made in this article, and can be applied to
any local non-reversible dynamics under an assumption analogous to (H1).

Because of the slow boundary, unlike in Erignoux et al. (2018); Erignoux (2018)
the dual branching process determining the value of the density filed at the bound-
ary self-decorrelates. As a consequence, one obtains explicit formulae (cf. (2.3))
for the macroscopic Dirichlet boundary conditions α and α′ appearing in the hy-
drodynamic limit (1). Because of this self-decorrelation property, one could expect
that, unlike in the case θ = 0, assumption (H1) could possibly be dismissed. This,
however, would involve fundamental change in the dual process at the core of our
method, and therefore significant further difficulties in the current proof, it is thus
left as an open problem at this point. Another natural question is that of fluctua-
tions around equilibrium for non-reversible boundary dynamics. Within the current
state of the art however, deriving the equilibrium fluctuations requires sharp esti-
mates on the 2-point space-time correlation field at the boundaries of the system,
and it is not clear whether such estimates actually hold. In any case, such an
estimate is not achievable with the technique employed in the current work.

As does the one laid out in De Masi et al. (2012), our approach works in the case
θ > 1, although technical changes would be required to account for the modified
boundary conditions. Let us comment briefly on the the boundary densities derived
in (2.3). In the case of a single reservoir with 0 < θ < 1, the current due to reservoir
interaction is on a faster time scale than the particle current from the boundary to
the bulk, so that the boundary of the system thermalizes immediately at the density
which makes the reservoir current vanish, i.e. that of the reservoir. In our case,
site 2 is affected by a non-reversible dynamics, but the overall boundary dynamics
is still faster than the bulk dynamics, so that the system immediately enforces a
boundary density at which the reservoir and non-reversible current cancel each other
out. This condition is precisely given by (2.3). In the case θ = 1, the boundary
currents operate on the same time scale as the bulk current, so that the boundary
density takes the value as with the stirring current cancels out the two others.
Finally, for θ > 1, the boundary dynamics is slow, so that in the hydrodynamic
limit, the boundary stirring currents cancel out, thus yielding Neumann boundary
conditions.

2. Model and main result

Let N be a scaling parameter and denote by ΛN = {1, . . . , N − 1} the bulk of
the system. We consider a continuous time Markov process {ηt : t > 0}, with state
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space ΩN := {0, 1}ΛN . We denote η the configurations, i.e. elements of ΩN where
η(x) = 0 means that the site x is vacant while η(x) = 1 means that the site x is
occupied. The process {ηt : t > 0} is driven by the infinitesimal generator

LN = N2LN,0 +N2−θ (LN,l + LN,r) , (2.1)

where θ ∈ (0, 1). The parts of this generator act on functions f : ΩN → R as

(LN,0f)(η) =

N−2∑
x=1

(
f(ηx,x+1)− f(η)

)
(2.2)

and

(LN,lf)(η) = cl,1(η)
(
f(η1)− f(η)

)
+ cl,2(η)

(
f(η2)− f(η)

)
,

(LN,rf)(η) = cr,1(η)
(
f(ηN−1)− f(η)

)
+ cr,2(η)

(
f(ηN−2)− f(η)

)
with rates

cl,1(η) = r [ρ(1− η(1)) + (1− ρ)η(1)] ,

cr,1(η) = r′ [ρ′(1− η(N − 1)) + (1− ρ′)η(N − 1)] ,

cl,2(η) = c [η(1)(1− η(2)) + (1− η(1))η(2)] + bη(1)(1− η(2)),

cr,2(η) = c′ [η(N − 1)(1− η(N − 2)) + (1− η(N − 1))η(N − 2)]

+ b′η(N − 1)(1− η(N − 2)).

In the formulation above, we shortened

ηx,y(z) =


η(z), z 6= x, y

η(y), z = x

η(x), z = y

, and ηx(z) =

{
η(z), z 6= x

1− η(x), z = x
.

For convenience, we reparametrized the boundary generators w.r.t. Part I of this
article (Erignoux et al., 2020+). To get back to the notations from Erignoux et al.
(2020+), one can define

α1 = rρ, γ1 = r(1− ρ), α2 = b+ c, γ2 = c,

β1 = r′ρ′, δ1 = r′(1− ρ′), β2 = b′ + c′, δ2 = c′.

We assumed (using Part 1’s notations) that α2 > γ2 and β2 > δ2. This is purely for
convenience: if for example, α2 6 γ2, one would merely switch α2 = c, γ2 = b+ c,
for which our entire proof holds as well. Throughout this article, r, b, c, r′, b′, c′
and θ are constant, and even without specific mention, all quantities can depend on
them. With these notations, we can reinterpret the boundary generator as follows:
at rate r (resp. r′), site 1 (resp. N − 1) is replaced by a Bernoulli with parameter
ρ (resp. ρ′). At rate c (resp. c′), site 2 (resp. N − 2) becomes a copy of site 1
(resp. N − 1), and finally, at rate b (resp. b′), site 2 (resp. N − 2) is filled by a
particle if site 1 (resp. N − 1) is occupied, otherwise it is left unchanged.

The case θ > 1 was treated in Erignoux et al. (2020+). We consider here the case
where θ < 1, i.e. the case where the reservoirs are strong. The boundary dynamics
we chose does not admit product measures as stationary states, and because θ < 1
they are not slowed down enough for the usual entropy estimates to hold. Instead, as
in Erignoux et al. (2018), Erignoux (2018), we exploit duality estimates on random
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walks, to write both the discrete profile and the two-point correlation function as
solutions of “artificially” closed equations, and then estimate the boundary terms
needed to close them. Our main assumption is

b < r and b′ < r′, (H1)

which is analogous to assumption (2.13) in Erignoux et al. (2018). As briefly de-
scribed in the introduction, this assumption is made in order for the dual branching
process defined in Section 5.2 to eventually die. Define α and α′ as the unique so-
lutions in [0, 1] of the equations

r(ρ− α) + bα(1− α) = 0 and r′(ρ′ − α′) + b′α′(1− α′) = 0. (2.3)

Note that we have the explicit expressions

α = f(r, b, ρ), α′ = f(r′, b′, ρ′), where f(r, b, ρ) =

√
(r − b)2 + 4brρ+ b− r

2b
,

and that the parameters c, c′ play no role in these definitions.

Fix an initial profile f0 : [0, 1] → [0, 1] in C1([0, 1]), and start the process {ηt :
t > 0} from the product measure

µN (η) =
∏
x∈ΛN

[
f0(x/N)η(x) + (1− f0(x/N))(1− η(x))

]
fitting the initial profile f0. We denote by PµN the distribution of the process
{ηt : t > 0} started from the distribution µN and with infinitesimal generator
given by (2.1). We are now ready to state our main result.

Theorem 2.1 (Hydrodynamic limit). Under assumption (H1), for any t > 0, any
Riemann-integrable function G, and any δ > 0

lim
N→∞

PµN

(∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
ηt(x)−

∫ 1

0

G(u)ρt(u)du

∣∣∣∣∣ > δ

)
= 0,

where ρt(·) is the unique classical solution of the heat equation with Dirichlet bound-
ary conditions α and α′ solutions of (2.3):

∂tρt(u) = ∆ ρt(u) for t > 0, u ∈ (0, 1)

ρt(0) = α for t > 0

ρt(1) = α′ for t > 0

ρ0(·) = f0(·)

. (2.4)

Remark 2.2 (Initial distribution). We chose the initial distribution to be a product
measure fitting a smooth initial profile. This is mainly not to burden the proof,
which would hold as well assuming that the correlations of the initial distribution
decay uniformly,

lim sup
`→∞

lim sup
N→∞

sup
x,y∈ΛN
|x−y|>`

µN [(η(x)− f0(x))(η(y)− f0(y))] = 0.

The regularity assumption on the initial profile f0 could also be weakened, but that
would entail significant extra technical difficulties to prove Lemma 3.3 below.
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Remark 2.3 (On assumption (H1)). As was already mentioned, Assumption (H1)
is analogous to assumption (2.13) in Erignoux et al. (2018). The reason for this
assumption is the following. In order to determine the value of ηt at the boundaries,
we are able to write ηt(3) as a function of its past, by following the sites that
had an influence over its value. This allows us to write ηt(3) as a function of a
branching process, which branches at the boundaries at rate b, b′ and dies at rate
r, r′. Assumption (H1) ensures that this branching process ultimately dies out
completely, and that we are able to determine the value of ηt(3).

Remark 2.4 (The case θ = 0). Note that under an assumption analogous to (2.13)
in Erignoux et al. (2018), the case θ = 0 is a consequence of Erignoux et al. (2018).
However, unlike in the present article, in the case θ = 0 correlations are introduced
in the boundary dynamics, so that we no longer have an explicit expression for
the boundary densities α and α′. This is due to the fact that the distribution
of the determination tree (cf. Section 5.4) is no longer close to a Galton-Watson
distribution, i.e. Lemma 5.5 no longer holds.

Remark 2.5 (Heuristics on (2.3)). Roughly speaking, (2.3) is an equilibrium formula
for the boundary dynamics, in which the stirring jump rate is infinite (which is
formally the case in the limit N → ∞, since the boundary dynamics is slowed
down). Unlike in the case θ = 0, the boundary sites decorrelate, and formally
letting α = E(η1) = E(η2) = E(η3) = . . . in the limit N → ∞, and then using
E(LNη1) = E(LNη2) = 0 yields (2.3). This decorrelation at the boundary, due to
the slowed down dynamics, is the reason why an explicit formula for the boundary
density can be achieved.

Remark 2.6 (General jump rates). The proof we present for Theorem 2.1 is not spe-
cific to these jump rates. It would actually hold for any perturbation of the flipping
dynamics considered in Erignoux et al. (2018), (under an analogous assumption to
Equation (2.13) in Erignoux et al., 2018). However, in order not to burden the
proof and for consistency w.r.t. Erignoux et al. (2020+), we choose the boundary
generator given in (2.2). Note that unlike in Erignoux et al. (2018), because of the
slowed down boundary dynamics, an explicit expression for the boundary densities
can be derived, however due to the construction of our dual process and its associ-
ated tree (cf. Section 5.4), obtaining an explicit formula in the general case would
prove burdensome.

The Markov chain induced by the generator (L)N defined in (2.1) is irreducible
on ΩN . We will denote by µssN its unique stationary state. Given the duality
techniques used to prove Theorem 2.1, the hydrostatic limit for this model is a
straightforward adaption of the hydrodynamic limit, we state it but will not prove
it. Instead, we refer the reader to Erignoux et al. (2018) for more details.

Theorem 2.7 (Hydrostatic limit). Under assumption H1, for any Riemann inte-
grable function G and any δ > 0

lim
N→∞

µssN

[∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
η(x)−

∫ 1

0

G(u)ρ∗(u)du

∣∣∣∣∣ > δ

]
= 0,

where ρ∗(·) is harmonic with boundary conditions α and α′ solutions of (2.3), i.e.:{
∆ ρ∗ = 0,

ρ∗(0) = α and ρ∗(1) = α′,
(2.5)
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so that ρ∗(u) is linear connecting α and α′.

Throughout, we shorten

θ̂ := (1− θ)/2 > 0. (2.6)

For x, y ∈ ΛN , t > 0, we further introduce the discrete density profile

ρNt (x) = EµN [ηt(x)] (2.7)

and the two-point correlation function

ϕNt (x, y) = EµN
[(
ηt(x)− ρNt (x)

) (
ηt(y)− ρNt (y)

)]
. (2.8)

The article is organized as follows. To derive the hydrodynamic equation, as
in previous works (Erignoux et al., 2018; Erignoux, 2018), we estimate the dis-
crete density profile (Section 3) and the two-point correlation (Section 4) function,
namely ρNt and ϕNt by writing each one of them as a solution of a discrete differ-
ence equation with unknown boundary terms. One of the main difficulties w.r.t.
Erignoux et al. (2018); Erignoux (2018) is to estimate those boundary terms, which
require to refine the construction because of the slowed down boundary dynamics.
Once this is done, proving the hydrodynamic limit is straightforward (cf. Sec-
tion 4.1). The estimation of the boundary term is the purpose of Section 5. We
will refer to Erignoux et al. (2018); Erignoux (2018) when the results are analogous,
and detail the new contributions of this article.

3. Density field

In this section, we write the discrete profile ρNt defined in (2.7) as an approxi-
mation of the solution of (2.4). More precisely, we have the following:

Proposition 3.1. For any t > 0, and any Riemann integrable function G ∈
C2([0, 1]),

lim sup
N→∞

(
1

N

N−3∑
x=3

G(x/N)ρNt (x)−
∫

[0,1]

G(u)ρt(u)du

)2

= 0.

The main ingredient to prove Proposition 3.1 is the following Lemma, whose
proof is postponed to Section 5.5 because it requires significant work.

Lemma 3.2. Recall from Equation 2.3 the definition of α and α′, there exists ε > 0
such that

sup
t>N−θ̂

|ρNt (3)− α| = O(N−ε) and sup
t>N−θ̂

|ρNt (N − 3)− α′| = O(N−ε).

The first identity is a consequence of Corollary 5.6 below. The second identity
being strictly analogous, we will not prove it. Note that this result fixes the Dirichlet
boundary condition of the discretized density profile ρNt . We assume for now that
Lemma 3.2 holds, and with it we will prove Proposition 3.1.

Proof of Proposition 3.1: We claim that for any t > 0, there exists ε > 0 such that

sup
x∈{3,...,N−3}

|ρNt (x)− ρt(x/N)| = O(N−ε). (3.1)
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Applying Dynkin’s identity ∂tEµN [f(ηt)] = EµN [LNf(ηt)], to f(η) = η(x) for any
x ∈ {4, · · · , N − 4}, elementary computations yield that ρNt (·) is solution of the
discrete difference diffusion equation

∂tρ
N
t = ∆Nρ

N
t , for 4 6 x 6 N − 4

ρNt (3) = αt,N ,

ρNt (N − 3) = α′t,N ,

ρN0 = ρ0(·/N)

, (3.2)

where we defined αt,N = ρNt (3) and α′t,N = ρNt (N − 3), and

∆Nρ
N (x) = N2

[
ρN (x+ 1) + ρN (x− 1)− 2ρN (x)

]
is the discrete Laplacian. Note that the two identities at the space boundaries are
trivial, and “artificially” close the equation satisfied by ρNt .

Denote by Xs (resp. Bs) a continuous time random walk on Z jumping at rate
N2 to each of its neighbors (resp. standard Brownian Motion on R). We denote
by HX (resp. by HB) the hitting time of the boundary {3, N − 3} (resp. {0, 1}),
and shorten HX

t = t ∧ HX (resp. HB
t = t ∧ HB). We denote by EXx , and EBu

the expectations w.r.t. the distributions of both X and B starting from x and
u, respectively. By Feynman-Kac’s formula, we can write for x ∈ {3, . . . , N − 3},
u ∈ [0, 1]

ρNt (x) = EXx
[
ρNt−HXt (XHXt

)
]

and ρt(u) = EBu
[
ρt−HBt (BHBt )

]
.

We can therefore write |ρNt (x) − ρt(x/N)| as the sum of three contributions, the
first one corresponding to the case where XHXt

= 3 (resp. BHBt = 0), the second
XHXt

= N − 3 (resp. BHBt = 1), and the last one to the case HX
t = t (resp.

HB
t = t). We write these three contributions as

Cl(t, x) :=
∣∣∣EXx [ρNt−HXt (3)1{X

HXt
=3}
]
− αPBx/N

(
BHBt = 0

)∣∣∣ ,
Cr(t, x) :=

∣∣∣EXx [ρNt−HXt (N − 3)1{X
HXt

=N−3}
]
− α′PBx/N

(
BHBt = 1

)∣∣∣ ,
C∗(t, x) :=

∣∣∣EXx [ρN0 (Xt)1{HXt =t}
]
− EBx/N

(
ρN0 (Bt)1{HBt =t}

)∣∣∣ .
Given theses notations, we have

|ρNt (x)− ρt(x/N)| 6 Cl + Cr + C∗.

Recall (2.6). To estimate Cl and Cr, we consider two cases, depending on whether
HX
t is in [0, t − N−θ̂] or in (t − N−θ̂, t). In the first case, thanks to Lemma 3.2,

ρN
t−HXt

(3) = α+O(N−ε). More precisely, since ρN is less than 1 we can write

Cl 6
∣∣∣PXx (XHXt

= 3
)
− PBx/N

(
BHBt = 0

)∣∣∣+ 2PXx
(
HX
t ∈ (t−N−θ̂, t)

)
+O(N−ε).

The second term on the right-hand side above can be estimated according to
Lemma 3.3, p.12 of Erignoux (2018), which yields

PXx
(
HX
t ∈ (t−N−θ̂, t)

)
= O

(
N−θ̂t−3/2

)
.
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Finally, the first contribution , as well as C∗, can be estimated by using the Berry
Essen inequality, i.e. approximating the random walk by a Brownian motion as in
the proof of Lemma 3.3 of Erignoux (2018), to obtain for a positive constant ε′ > 0∣∣∣PXx (XHXt

= 3
)
− PBx/N

(
BHBt = 0

)∣∣∣ = O(N−ε
′
)

and
C∗(t, x) = O(N−ε

′
).

The bounds above can be taken independent of x. This proves (3.1) and the propo-
sition. �

Before turning to the two-point correlation function, we state the following tech-
nical Lemma, which will be needed in what follows.

Lemma 3.3. For any δ > 0,

sup
δN6x6(1−δ)N

t>0

|ρNt (x+ 1)− ρNt (x)| 6 O
(
(δN)−1 logN

)
.

Proof of Lemma 3.3: Fix δ > 0, and consider once again a random walk Xs on Z,
for which we denote H{3,N−3} the hitting time of the boundaries x=3, N-3. Recall
that ρNt (x) is solution of (3.2), choose a sequence aN that vanishes as N →∞, and
define the stopping time

τ = τδ,N := δ2N2aN ∧H{3,N−3}.

By the Feynman-Kac formula, we can write for any 3 6 x 6 N − 3

ρNt (x) = Ex
[
ρNt−t∧τ (Xt∧τ )

]
.

A symmetric random walk would typically require a time of order δ2N2 to move
on a distance δN , therefore there exists a universal constant K such that for any
δN 6 x 6 (1− δ)N ,

P(τ = H{3,N−3}) 6 e
−K/aN .

In particular, one can write from the identity above

ρNt (x) =

N−3∑
y=3

Ex
[
ρNt−t∧τ (y)1{Xt∧τ=y,τ=δ2N2aN}

]
+O(e−K/aN ).

In particular, one obtains for t 6 δ2N2aN

|ρNt (x+ 1)− ρNt (x)| = 1

N
||∂uf0||∞ +O(e−K/aN ).

and for t > δ2N2aN

|ρNt (x+ 1)− ρNt (x)|

6
N−3∑
y=3

|Px+1 [Xδ2N2aN = y]− Px [Xδ2N2aN = y] |+O(e−K/aN )

=

N−3∑
y=3

|Py [Xδ2N2aN = x+ 1]− Py [Xδ2N2aN = x] |+O(e−K/aN )

=

x−3∑
y=x+3−N

|P0 [Xδ2N2aN = y + 1]− P0 [Xδ2N2aN = y] |+O(e−K/aN ).



800 C. Erignoux, P. Gonçalves and G. Nahum

Since P0 [Xδ2N2aN = y] is maximal in 0 and decreasing in |y|, most of the terms in
the estimate above cancel out, and we obtain

|ρNt (x+ 1)− ρNt (x)| 6 2P0 [Xδ2N2aN = 0] +O(e−K/aN ).

By approximating the random walk by a Brownian motion, one shows straightfor-
wardly (cf. Equations (3.2) and (3.5) in De Masi et al., 2012) P0 [Xδ2N2aN = 0] 6(√

2πaNδN
)−1, which, letting aN = K/ logN , proves the result. �

4. Estimation on the bulk two-point correlation function

We now estimate the two-point correlation function defined in (2.8).

Proposition 4.1. For any positive t, and any fixed δ > 0

lim sup
N→∞

sup
36x6(1−δ)N−1
δN+16y6N−3

|ϕt(x, y)| = 0.

Once again, the main ingredient to prove this result is an estimate of the correla-
tion function at the boundary of the domain above, given by the following Lemma.

Lemma 4.2. There exists ε such that for any δ > 0,

sup
δN6y6N−1

t>0

|ϕNt (3, y)| = O(N−ε) and sup
16x6N(1−δ)

t>0

|ϕNt (x,N − 3)| = O(N−ε),

where the constant in O(N−ε) can depend on δ.

The proof of this Lemma is also postponed Section 5.5. For now, we assume it
holds and prove Proposition 4.1.

Proof of Proposition 4.1: Define the set, represented in Figure 4.1

BδN =
{

(x, y) ∈ J3, (1− δ)N − 1} × JδN + 1, N − 3K, such that x < y − 1
}
.

We also define the boundary sets

Lδ1 =
{

(3, y) for y ∈ JδN,N − 3K
}
,

Lδ2,N =
{

(x,N − 3) for x ∈ J3, (1− δ)NK
}
,

Sδ1,N =
{

((1− δ)N, y) for y ∈ J(1− δ)N + 1, N − 4K
}
,

Sδ2,N =
{

(x, δN) for x ∈ J4, δN − 1K
}
,

Dδ
N =

{
(x, x+ 1) for x ∈ JδN, (1− δ)NK

}
.

Finally, shorten LδN = Lδ1 ∪ Lδ2,N , SδN = Sδ1,N ∪ Sδ2,N , and ∂BδN = LδN ∪ SδN . Using
once again Dynkin’s identity ∂tEµN [f(ηt)] = EµN [LNf(ηt)] to f(η) = η(x)η(y) for
any (x, y) ∈ BδN , and since the initial measure for the process is a product measure,
elementary computations yield that ϕNt is solution of the discrete difference diffusion
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Figure 4.1.

equation 
∂tϕ

N
t = ∆2,Nϕ

N
t for (x, y) ∈ BδN

∂tϕ
N
t = ∇2,Nϕ

N
t + gt,N for (x, y) ∈ Dδ

N

ϕNt = φt,N for (x, y) ∈ ∂BδN
ϕN0 ≡ 0

. (4.1)

The operator ∆2,N stands for the two-dimensional discrete Laplacian

∆2,Nϕ
N
t (x, y)

= N2[ϕNt (x+ 1, y) + ϕNt (x− 1, y) + ϕNt (x, y + 1) + ϕNt (x, y − 1)− 4ϕNt (x, y)],

the operator ∇2,N represents the reflection at the diagonal Dδ
N

∇2,Nϕ
N
t (x, x+ 1) = N2[ϕNt (x− 1, x+ 1) + ϕNt (x, x+ 2)− 2ϕNt (x, x+ 1)],

and the function gt,N is defined on Dδ
N as

gt,N (x, x+ 1) = −N2(ρNt (x+ 1)− ρNt (x+ 1))2.

We also defined φt,N (x, y) = ϕNt (x, y) on ∂BδN . Note that once again, the boundary
identity is trivial, and “artificially” closes the equation satisfied by ϕNt .

Consider now a random walk Xt on Z2 with generator ∇2,N on

D := {(x, x+ 1), x ∈ Z}
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and ∆2,N on Z2 \D. Defined in this way, Xt is a simple symmetric random walk on
Z2 reflected at the diagonal D. For any set E ⊂ Z2, we denote by H(E) the hitting
time of the set E, H(E) = inf{t > 0, Xt ∈ E}, and shorten Ht(E) = t ∧ H(E).
Finally, we denote by Px,y the distribution of the random walk started from (x, y)
and Ex,y the corresponding expectation. Then, as a consequence of (4.1) and
Feynman-Kac’s formula, one obtains for any t > 0 and (x, y) ∈ BδN ∪Dδ

N

ϕt(x, y) = Ex,y

[
ϕt−Ht(∂BδN )(XHt(∂BδN )) +

∫ Ht(∂B
δ
N )

0

gt−s,N (Xs)1{Xs∈DδN}ds

]
.

(4.2)
Before Ht(∂B

δ
N ), the random walk Xt cannot reach D \Dδ

N , and Ht(∂B
δ
N ) 6 t, so

that according to Lemma 3.3 the absolute value of the second term above is less or
equal than

Ex,y

[∫ Ht(∂B
δ
N )

0

gNt−s(Xs)1{Xs∈DδN}ds

]
6

(
C logN

δ

)2

Ex,y

[∫ Ht(∂B
δ
N )

0

1{Xs∈DδN}ds

]
for some constant C. The right hand side can be estimated using the same steps
in Section 4.4 of Erignoux (2018), after which one obtains straightforwardly that

Ex,y

[∫ Ht(∂B
δ
N )

0

1{Xs∈DδN}ds

]
= O(N−1 logN).

We can now write, using (4.2), that

ϕt(x, y) = Ex,y
[
ϕt−Ht(∂BδN )(XHt(∂BδN ))

]
+O(N−1(logN)3δ−2). (4.3)

The function ϕ is uniformly bounded by 1, vanishes at time 0, and according to
Lemma 4.2

sup
(x,y)∈LδN

t>0

ϕt(x, y) = O(N−ε),

therefore (4.3) yields for any t > 0

|ϕt(x, y)| 6 Px,y
(
Ht(∂B

δ
N ) = H(SδN )

)
+O(N−ε) +O(N−1(logN)3δ−2)

6 Px,y
(
H(LδN ) > H(SδN )

)
+O(δ−2N−ε). (4.4)

Define LN = L1 ∪ L2,N , where L1 = {(3, y), for y ∈ Z} and L2,N = {(x,N −
3) for x ∈ Z} are represented in Figure 4.1. Then one easily checks that

Px,y
(
H(LδN ) > H(SδN )

)
6

2∑
i=1

Px,y
(
H(LN ) > H(Sδi,N )

)
. (4.5)

Both terms in the right hand side above are treated in the same way. Assume, for
example, that i = 1. Then,

Px,y
(
H(LN ) > H(Sδ1,N )

)
6 P̃x,y

(
H(LN ) > H(Sδ1,N )

)
,

where P̃x,y is the distribution of a random walk X̃ is reflected both atD and at L2,N .
Note that a reflected random walk can be mapped into a non-reflecting one by, each
time the random walks hits the reflecting line, choosing with probability 1/2 a side
of the line to carry on with the random walk. Consider δ′ > δ and assume now
that the starting point is in (x, y) ∈ Bδ′N ∪Dδ′

N . Since the random walk is reflected
both at the horizontal boundary L2,N , as illustrated in Figure 4.2, thanks to the
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δN

N

D

L1

Bδ′
N ∪Dδ′

N

δ′N

Figure 4.2. A random walk started in Bδ
′
N (blue area) has a prob-

ability of order log(δ′)/ log(δ) of hitting ΛδN (red boundary) before
ΛcN (green boundary) (dashed trajectory). In particular, as δ → 0,
it will most likely hit the green boundary before the red one (solid
trajectory).

previous observation, the probability P̃x,y
(
H(L1) > H(Sδ1,N )

)
is less or equal than

the probability that a random walk starting at a distance δ′N of the origin hits
ΛδN = {(x, y), x, y 6 δN} before hitting ΛcN , so that for any (x, y) ∈ Bδ′N ∪Dδ′

N

P̃x,y
(
H(L1) > H(Sδ1,N )

)
6 C

log(δ′N)− logN

log(δN)− logN
= C

log δ′

log δ
.

An analogous bound holds for the second term in (4.5), i.e. for any (x, y) ∈ Bδ′N ∪
Dδ′
N ,

Px,y
(
H(LδN ) > H(Sδ2,N )

)
6 C

log δ′

log δ
.

Plugging this bound into (4.4) yields that for any (x, y) ∈ Bδ′N , t > 0,

|ϕt(x, y)| 6 C(δ)O(N−ε)− C(δ′)
log(δ)

.

so that letting N →∞ and then δ → 0+ proves the result. �

4.1. Proof of Theorem 2.1. Propositions 3.1 and 4.1 are enough to prove the hy-
drodynamic limit. Indeed, fix a smooth test function G and a time t > 0. We
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write

EµN

[ 1

N

N−1∑
x=1

G(x/N)ηt(x)−
∫

[0,1]

G(u)ρt(u)du

]2


6 2EµN

[ 1

N

N−1∑
x=1

G(x/N)(ηt(x)− ρNt (x)

]2


+ 2

[
1

N

N−1∑
x=1

G(x/N)ρNt (x)−
∫

[0,1]

G(u)ρt(u)du

]2

. (4.6)

Since G is bounded, the first term on the right-hand side is, for any fixed δ′ > 0,
according to Proposition 4.1 bounded by 2δ′ + O(1/N) + oN (1), so that letting
N →∞ and then δ′ → 0, it vanishes. The second term vanishes as well according
to Proposition 3.1. Using Markov’s inequality concludes the proof.

5. Branching process and estimation of the density at the boundary

5.1. Graphical construction and dual branching process. We now turn to Lem-
mas 3.2 and 4.2, whose proofs were postponed and are presented here. We follow
analogous arguments and constructions to Sections 5.1 and 5.2 in Erignoux et al.
(2018), although significant adaptations need to be made to take into account the
time dependency and the slowed down boundary dynamics.

We start with a graphical construction of the dynamics. We consider N + 6
independent Poisson point processes on R defined as follows :

• N − 2 processes Nx,x+1, x ∈ J1, N − 2K with intensity N2, representing the
exclusion dynamics.

• Two processes N +
1 , N +

N−1 with respective intensitiesN2−θρr andN2−θρ′r′,
representing putting a particle at a boundary site 1, N − 1 regardless of its
previous value.

• Two processes N −
1 , N −

N−1 with respective intensities N2−θ(1 − ρ)r and
N2−θ(1− ρ′)r′ representing emptying a boundary site 1, N − 1 regardless
of its previous value.

• Two processes N c, N c′ with respective intensities N2−θc and N2−θc′ rep-
resenting the copy mechanism.

• Two processes N b, N b′ with respective intensities N2−θb and N2−θb′ rep-
resenting the boundary sites 2,N −2 being filled iff the other boundary site
1, N − 1 is occupied.

In order to build the process starting from a given configuration η0, we order 0 <
t1 < t2, · · · the points

{ti, i ∈ N\{0}} =
(
N ±

1 ∪N c ∪N b ∪N ±
N−1 ∪N c′ ∪N b′ ∪

(
∪N−2
x=1 Nx,x+1

))
∩R+

of these processes, taken in increasing order starting from 0. Note that since it has
probability 0, we discounted the possibility that two of these processes contained
the same point. We refer to the points of the processes together with their type as
marks. For example, if t ∈ N ±

N−1, (resp. t ∈ N b ∪N b′) we say that the mark at t
is of type (±, N −1) (resp. of branching type). If t ∈ Nx,x+1, we say that the mark
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at t is of type (x, x+ 1). For convenience, we store in a variable M the collection
of all the marks up to some arbitrary time horizon T .

With these Poisson point processes, given an initial configuration η0, we are able
to give a graphical construction of our Markov process (ηt)t>0. Define t0 = 0 and
ηt0 = η0, and “solve” the marks t1, t2, · · · one by one in the following way. For any
i > 0, the configuration remains constant on [ti−1, ti). At time ti, the configuration
is changed depending on the type of the mark ti.

• If ti ∈ Nx,x+1, we let ηti = ηx,x+1
ti−1

.

• If ti ∈ N +
1 (resp. ti ∈ N +

N−1), at time ti, a particle is put at site 1 (resp.
N − 1). We let ηti(x) = ηti−1

(x) for any x 6= 1 (resp. x 6= N − 1), and
ηti(1) = 1 (resp. ηti(N − 1) = 1).

• If ti ∈ N −
1 (resp. ti ∈ N −

N−1), at time ti, site 1 (resp. N − 1) is emptied.
We let ηti(x) = ηti−1

(x) for any x 6= 1 (resp. x 6= N − 1), and ηti(1) = 0
(resp. ηti(N − 1) = 0).

• If ti ∈ N c (resp. ti ∈ N c′), at time ti, site 2 (resp. N −2) becomes a copy
of site 1 (resp. N − 1), so that we let ηti(x) = ηti−1

(x) for any x 6= 2 (resp.
x 6= N − 2), and ηti(2) = ηti−1

(1) (resp. ηti(N − 2) = ηti−1
(N − 1)).

• Finally, if ti ∈ N b
2 (resp. ti ∈ N b′), at time ti, we let ηti(x) = ηti−1(x) for

any x 6= 2 (resp. x 6= N − 2), and if ηti−1(1) = 1 (resp. ηti−1(N − 1) = 1),
we let ηti(2) = 1 (resp. ηti(N −2) = 1). Otherwise, we let ηti(2) = ηti−1

(2)
(resp. ηti(N − 2) = ηti−1

(N − 2)).
We leave it to the reader to check that this construction yields a Markov process
ηt, with initial state η0, and infinitesimal generator N2LN .

5.2. Set of unknown sites. Fix x ∈ ΛN , and suppose that we want to determine
the value of ηt(x). To do so, we are going to explore the past of the process, and
define a set Â(s) ⊂ ΛN , s < t of unknown sites at time s on which depends the
value of ηt(x). To do so, re-index the marks t > t−1 > t−2 > · · · > t−κ > 0 in the
time interval [0, t], we leave the set Â(s) constant on each of the intervals [t−1, t],
[t−2, t−1), . . . until time 0 is reached. For k < 0, assume that Â(s) has been defined
down to time tk, i.e. on the whole segment [tk, t]. To define Â(s) down to time
tk−1, we define it at time t−k and leave it constant down to time tk−1. Shorten
A := Â(tk) and A′ := Â(t−k ). We consider all the possible cases for the type of the
mark tk.

• If tk ∈ Nx,x+1, x ∈ A and x + 1 /∈ A (resp. x + 1 ∈ A and x /∈ A), before
the mark, the content of the unknown site x (resp. x+ 1), particle or hole,
was in x+ 1 (resp. x), and we let A′ = Ax,x+1 := A ∪ {x+ 1} \ {x} (resp.
:= A ∪ {x} \ {x+ 1}). Otherwise, if both or neither of the two sites are in
A, we just let A′ = A.

• If tk ∈ N +
1 (resp. tk ∈ N +

N−1), then at the mark a particle was placed
at site 1 (resp. N − 1). Therefore, if site 1 (resp. N − 1) was in the
set A of unknowns, it can be removed, and we let A′ = A \ {1} (resp.
A′ = A \ {N − 1}). Else, we let A′ = A.

• If tk ∈ N −
1 (resp. tk ∈ N −

N−1), then at the mark, site 1 (resp. N − 1) was
emptied. Therefore, if site 1 (resp. N − 1) was in the set A of unknowns,
it is removed, and we let A′ = A \ {1} (resp. A′ = A \ {N − 1}). Else, we
let A′ = A.



806 C. Erignoux, P. Gonçalves and G. Nahum

• If tk ∈ N c (resp. tk ∈ N c′), then at the mark, site 2 (resp. N−2) became
a copy of site 1 (resp. N − 1) so that if 2 ∈ A (resp. N − 2 ∈ A), we let
A′ = A∪{1}\{2} (resp. A′ = A∪{N −1}\{N −2}). Else, we let A′ = A.

• Finally, if tk ∈ N b (resp. tk ∈ N b′), then at the mark tk, something might
have happened at site 2 (resp. N −2) if and only if site 1 (resp. N −1) was
occupied. Else, nothing happened, so that we need to keep track of both
of the sites 1 and 2 to know for sure the value at time t. More precisely, if
2 ∈ A (resp. N−2 ∈ A), we then let A′ = A∪{1} (resp. A′ = A∪{N−1}).
Else, we let A′ = A.

We then iterate the process to build Â(s) backwards in time. Recall that elements
of Â are sites whose value is unknown. To avoid ambiguity, we will refer to the
elements of Â as flags. Once time 0 is reached, all the remaining flags in Â are
determined by the initial configuration η0, so that we let Â(0) = ∅. We say that a
mark tk affected Â if at least one of the sites concerned by the mark was in Â(tk).
For example, a mark at time tk of type (x, x+1) affected Â iff. Â(tk)∩{x, x+1} 6= ∅.

When a mark tk is of type b (resp. b′) and 2 ∈ Â(tk) (resp. N − 2 ∈ Â(tk)), the
process branched and a flag is created in Â (we recall that the process is constructed
backwards in time). Note that this is the only way for the cardinal of Â to increase.
When a mark tk is of type (±, 1) (resp. (±, N − 1)) and 1 ∈ Â(tk) (resp. N − 1 ∈
Â(tk)), a flag is deleted in Â. Another way for the cardinal of Â to decrease is if
the process meets a mark of type c or c′ either at site 2 or N − 2, while site 1 or
N − 1 was also in Â, in which case site 2 (resp. N − 2) is removed from Â, while
site 1 (resp. N − 1) remains. The last way for the cardinal of Â to decrease is
hitting time 0 in which case all remaining flags are removed.

We will call boundary marks the marks that make the cardinal of A change.
Note, in particular, that not all marks of type c or c′ are boundary marks, only
those who occur while both sites of the boundary are flagged. In section 5.4, we
explain how to recover from the process’s value ηx(t) from the process Â and the
marks who affected it. For now, however, we study the process Â itself.

5.3. Markov flag processes. Recall that Â(s) is defined on [0, t], observed backwards
in time, and is right-continuous. For simplicity, we want to observe the process
Â(s) forward in time, so that we define (A(s))s∈[0,t] the right-continuous version
of Â(−s): we set A(s) = Â(−s) on [0, t] except at the time of the marks tk, at
which A(tk) = A(t+k ). Since the Poisson point processes forward and backward in
time have the same distribution, one easily checks that up until time t (forward in
time) A(s) is a Markov process on P(ΛN ) (the set of subsets of ΛN ) with generator
L†N = L†,1N +L†,2N acting on functions f : P(ΛN )→ R. The generator L†,1N represents
the flag’s motion, either due to the stirring dynamics or the copy mechanism,

L†,1N f(A) = N2
N−2∑
x=1

(
f(Ax,x+1)− f(A)

)
+ cN2−θ1{2∈A} (f(A ∪ {2} \ {1})− f(A))

+c′N2−θ1{N−2∈A} (f(A ∪ {N − 2} \ {N − 1})− f(A)) .
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whereas L†,2N represents the branching (creation) and death (deletion) events at the
boundary,

L†,2N f(A) =rN2−θ1{1∈A} (f(A \ {1})− f(A))

+ r′N2−θ1{N−1∈A} (f(A \ {N − 1})− f(A))

+ bN2−θ1{2∈A} (f(A ∪ {1})− f(A))

+ b′N2−θ1{N−2∈A} (f(A ∪ {N − 1})− f(A)) .

(5.1)

In the expression of L†,1N , we denoted

Ax,x+1 =


A if x, x+ 1 /∈ A or x, x+ 1 ∈ A
A \ {x} ∪ {x+ 1} if x ∈ A, x+ 1 /∈ A
A \ {x+ 1} ∪ {x} if x+ 1 ∈ A, x /∈ A.

the set A after exchange of sites x and x+ 1. We also define

L̃†,1N f(A) = N2
N−2∑
x=1

(
f(Ax,x+1)− f(A)

)
+ cN2−θ1{2∈A}

(
f(A1,2)− f(A)

)
+ c′N2−θ1{N−2∈A}

(
f(AN−1,N−2)− f(A)

)
,

which is almost identical to L†,1N , except that when A contains either {1, 2} or
{N − 2, N − 1}, and a mark of type c or c′ occurs. In this case, instead of removing
the flag at site 2 or N − 2, L̃†,1N simply switches the two flags at the boundary.

Remark 5.1. We remark that the generator L̃†,1N above does not allow branchings,
which are the only way for the flags to increase. Moreover, since in the particular
case of the copies mentioned above we do not remove flags but exchange them, this
generator conserves the number of flags.

In what follows, we forget the time horizon t, and consider two Markov processes
A(s) (resp. B(s)) started from a set A ⊂ ΛN , and driven by the generator L†N (resp.
L̃†,1N ). Recall the construction using the Poisson point processes introduced above,
since they are equivalent, we will alternatively use both descriptions (as Markov
processes, or as functions of the Poisson point processes) for the two processes A
and B. Recall that we refer to any element of the processes N b or N± as boundary
marks (For simplicity, we will often ignore the boundary marks of type c or c′, we
will prove later on that they occur with very small probability). The process B
therefore evolves as A, except that the marks that would branch or delete flags
have no effect. Note in particular that until the first time τ > 0 that A is affected
by a boundary mark, we have A(s) = B(s) for any s < τ . We denote P†A the joint
distribution of those two processes started from the set A and E†A the corresponding
expectation.

Fix a starting set A ⊂ ΛN , and give each element of A an arbitrary and unique
label n, n = 1, . . . , |A|. For 1 6 n 6 |A|, we follow the evolution of the flags in A
and B, and denote by Xn(t) (resp. Yn(t)) the position of the flag labeled n in A(t)
(resp. B(t)). Each time a new flag appears in A, we label it by the smallest integer
not used previously. Whenever a mark (x, x+ 1) occurs while both x and x+ 1 are
in A or B, we switch the labels of the flags at x and x+ 1. In other words,

A(t) = {Xn(t), n ∈ K(t)}, and B(t) = {Yn(t), n 6 |A|}
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where K(t) is the set of flag labels currently present at time t in A. Further note
that, fixed a label n, Yn is a random walk on ΛN reflected at the boundary, jumping
at rate N2 to each neighbor, and at an extra rate cN2−θ (resp. c′N2−θ) from 2 to
1 (resp. N−2 to N−1). The processes Xn have the same distribution, except that
they branch when they meet a branching mark (i.e. at rate bN2−θ, when Xn = 2,
and at rate b′N2−θ when Xn = N − 2), and die when they meet a mark ± (i.e. at
rate rN2−θ when Xn = 1 and at rate r′N2−θ when Xn = N − 1). They can also
die when a mark of type c, c′ occurs while another flag is in the same boundary,
but since we will prove the probability that this happens during A’s lifespan is very
small, we do not detail this possibility.

We first focus on the process B. Denote by τn the first time at which the flag
labeled n in B meets a boundary mark. Denote τ = τ1 ∧ τ2 ∧ · · · ∧ τm the first time
a flag meets a boundary mark. For n 6 |A|, we define

C = {At time τ , there was only one flag at the left boundary}
= {|B(τ) ∩ {1, 2}| = 1}

and
D± = {The mark encountered at time τ was of type ±}.

We start with a technical Lemma, which is the main ingredient to prove Lemmas 3.2
and 4.2.

Lemma 5.2. Define νθ = min(θ, 1 − θ)/4. For any A ⊂ {1, . . . , N/2} containing
site 3, and any 1 6 n 6 |A|

P†A(C ∩D± ∩ {τ = τn}) =
rρ±
r + b

P†A(τ = τn) + |A|2O(N−νθ ), (5.2)

where ρ+ = ρ and ρ− = 1− ρ. Furthermore, for any A ⊂ ΛN

P†A(D+ ∪D−) > p+ |A|3O(N−νθ ), (5.3)

where

p := min

{
r

r + b
,

r′

r′ + b′

}
>

1

2
.

In the identities above, the O(N−νθ ) can be chosen uniform in the initial set A
satisfying the relevant conditions.

Although this result involves significant technical difficulties, its content is fairly
simple, so that before proving it, we briefly explain those two identities. Recall
that we ultimately want to estimate the boundary densities (Lemma 3.2) and two-
points correlations (Lemma 4.2), so that we need to examine the value of ηt(3) and
ηt(3)ηt(x) for x of order δN . For the first identity, we concentrate on sets contained
in the left half of the system and containing site 3 to avoid waiting for a long time
for a flag to get close to a boundary, and to know with high probability that
the next boundary mark is gonna be encountered at the left boundary. Equation
(5.2) states that for any n, assuming that the next flag to encounter a boundary
mark is labelled n, the probability that this boundary mark is of type + (resp.
−) converges to ρr/(r + b) (resp. (1 − ρ)r/(r + b)). The second identity states
that at the next boundary mark encountered, the probability that the affected flag
branches rather than dies is less than 1/2, which ultimately ensures that w.h.p. the
branching process ultimately dies out after branching a finite number of times (cf.
Corollary 5.3).
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Proof of Lemma 5.2: This proof being a little intricate, we split it in several steps.

Step 1: a crude estimate on τ . Recall (2.6). We first claim

P†A(τ > N−θ̂) = O(N−θ̂) (5.4)

for any set A containing site 3: Fix such a set, and without loss of generality label 1
the flag at site 3. The proof of this first claim follows the same steps as Lemma 5.3
of Erignoux et al. (2018), which we adapt to the slowed-down rates at the boundary.
To prove (5.4), first note that

E†A(τ) 6 E†A(τ1) = E†{3}(τ).

Consider therefore a single flag initially at site 3, Y1(t) its position in B(t). This flag
performs excursions away from site 3, either in the bulk {4, . . . , N−1}, or in the left
boundary {1, 2}, in which case it has a probability of order N−θ of encountering
a boundary mark, after which it ultimately gets back to site 3. By the Markov
property, all the excursions of the flag are i.i.d. in B. In what follows, we will
neglect the possibility that the flag meets a boundary mark at the right boundary,
which would only decrease τ and is therefore not an issue. Denote ti the time of
the i-th visit to site 3, i.e. t0 = 0, and

ti = inf{t > ti−1, Y1(t) = 3, Y1(t−) 6= 3}.
For i > 0, denote by Ei the event

Ei = {The flag met a left boundary mark during the i-th excursion [ti−1, ti)}.
Since the excursions are i.i.d., so are the Ei’s and ti − ti−1’s, and it is elementary
to show (cf. Lemma 5.3 of Erignoux et al., 2018) that E†{3}(ti − ti−1) = E†{3}(t1) =

O(N−1) (the excursions in the boundary last a time of order N−2, whereas those
in the bulk last a time of order N−1). We can now write

E†{3}(τ) =
∑
i>0

E†{3}
(
τ1{Ei and Ecj for j<i}

)
6
∑
i>0

iE†{3}(t1)P†{3}
(
Ei and Ecj for j < i

)
.

There exists a constant c = c(r, b, c) such that each boundary excursion has a
probability P†{3}(E1) > cN−θ of encountering a boundary mark. This finally yields
as wanted

E†{3}(τ) = O(Nθ−1), (5.5)

the factorNθ being the expectation of the geometric number of excursions necessary
before meeting a boundary mark. This together with Markov’s inequality proves
(5.4) uniformly for any set A containing site 3.

Step 2: inserting independent excursions at the left boundary. Because
of the subtle correlations between the flag’s motions and the marks they encounter,
we detail this step, which is one of the main novelties w.r.t. Erignoux et al. (2018).
We will call excursion at the left boundary a pair (τZ , Z(s), 0 6 s 6 τZ), satisfying

(1) τZ > 0, Z0 = 2, for any s < τZ , Z(s) ∈ {1, 2} and ZτZ = 3.
(2) (Z(s))06s6τZ is right-continuous.
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In order not to burden the notations, when referring to an excursion, we will simply
denote it Z, the stopping time τZ will be implicitly associated with it.

Fix a realization of the marks M on ΛN , on which we build A and B. On the
same probability space, fix an i.i.d. family of boundary excursions (Zj)j∈Z, each
distributed as

P(Zj ∈ ·) = P†{2} ((Y1(s))06s6H3
∈ ·) ,

where H3 = inf{s > 0, Y1(s) = 3}. To each excursion Zj , we also associate bound-
ary marks distributed according to independent Poisson point processes Mj on
[0, τZj ] with the same intensity as the ones appearing in P†. We take the family of
excursions and their associated boundary marks independent of M. We are going
to build a second process B′, distributed as B, using both the marks in M and
these independent excursions Zj . Fix a set A ⊂ {1, . . . , N/2} containing site 3,
and set B′(0) = A. The two processes B, B′ then follow the marks in M (recall
that the boundary marks do not affect the evolution of either B or B′), until the
first time, t1, that a flag is at site 2 while no other flag is at a distance less than
`N := (logN)4 from the left boundary,

t1 = inf{s > 0, B′(s) ∩ {1, . . . , `N} = {2}}.
After time t1, we let all the flags in B′ evolve according to the marks, except the
flag that was at site 2 at time t1, which then performs the excursion Z1 until time

s1 = inf{s > t1, 3 ∈ B′(s)}.
Note that, most likely, we have s1 = t1 + τZ1 , because otherwise another flag has
reached site 3 before the excursion Z1 finished. Since by construction all other flags
were, when the excursion started, at a distance `N of the left boundary, this is very
unlikely. If s1 6= t1 + τZ1 , we say that the construction failed after inserting the
excursion Z1. Regardless of whether or not the construction failed, we let B′ evolve
after time s1 by following the marks in M until the second time

t2 = inf{s > s1, B′(s) ∩ {1, . . . , `N} = {2}}.
We then replace the trajectory of the flag at site 2 by the excursion Z2, until time

s2 = inf{s > t2, 3 ∈ B′(s)}.
Once again, if s2 6= t2 + τZ2 we say that the construction failed after inserting
excursion Z2, and then repeat the construction. More precisely, assume that B′
has been built up until time sj−1, it then follows the marks in M until

tj = inf{s > sj−1, B′(s) ∩ {1, . . . , `N} = {2}}.
After tj , B′(s) follows the marks in M, except the flag present at site 2 at time
tj , which follows the trajectory Zj until time sj = inf{s > tj , 3 ∈ B′(s)}. If
sj 6= tj + τZj , we say that the construction fails after inserting Zj , and we then
carry on with the same scheme. Recall that we built both B and B′ on the same
probability space, we denote QA their joint distribution starting from the set A.
Further note that by Markov property, B (d)

= B′. We denote by τ ′ the first time a
flag in B′ meets a boundary mark.

Step 3: estimation of the probability that the construction failed before
time τ ′. Recall that the construction fails if, after inserting an excursion Zj , a
flag initially at a site x > `N gets to site 3 before the excursion ends. This means
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either that the boundary excursions lasted more than N−2`N , or that another flag
traveled a distance of order `N in a time N−2`N . Both of those probabilities are
at most of order |A|O(e−

√
`N ) = O(N1−logN ), i.e. for any integer j,

QA(The construction failed after inserting Zj) = O(N− logN/2) (5.6)

We now only need a rough bound on the number of excursions inserted before time
τ ′. Define a discrete time random walk Mj as

Mj+1 = Mj +N−31{sj−tj>N−3},

which jumps at a distance N−3 to the right whenever an excursion is inserted that
lasted longer than N−3. Clearly, P(Mj+1 = Mj) = O(N−1) for all steps j and
independently from the other steps, because the jumps in B occur at rate O(N−2).
In particular, by a standard large deviation estimate, P(MN4 6 1) = O(e−N ).
Furthermore, by construction, Mj > 1 ⇒ sj > 1. These two remarks, together
with (5.4), yield that

QA(sN4 6 τ ′) 6 QA(τ ′ > 1) + QA(sN4 6 1) = O(N−θ̂) +O(e−N ) = O(N−θ̂),

so that putting all those bounds together yield, by union bound,

QA(The construction failed before time τ ′) = O(N−θ̂) +O(N4N− logN/2)

= O(N−θ̂).
(5.7)

Step 4: estimation of the time spent with at least two flags close to the
boundary. We introduce the time sets

It := {s 6 t,B′(s) ∩ {1, 2} 6= ∅} := I1
t ∪ I2

t ∪ I3
t ,

where
I1
t =

⋃
j , sj6t

[tj , sj)

I2
t = {s 6 t,B′(s) ∩ {1, 2} 6= ∅ and |B′(s) ∩ {1, . . . , `N}| > 2}

and
I3
t = It \ (I1

t ∪ I2
t ).

Note that for any t > 0, It, I1
t and I2

t can all be split into a disjoint union of a
finite number of time segments of the form [s, s′), therefore so can I3

t . We therefore
write I3 = tj [aj , bj). Since I3

t ∩ I2
t = ∅, during each of the segments [aj , bj), there

is exactly one flag labeled n = n(j) in {1, . . . , `N} and this flag is in {1, 2}. Further
note that we cannot have Yn(a−j ) = 3, because else, since there is no other flag in
{1, . . . , `N}, aj would have been the start of an excursion Zj′ , which is impossible
since I3

t ∩ I1
t = ∅. This means that at time a−j , another flag was at site `N and

jumped to site `N + 1 at time aj . On the other hand, one can check that

bj = inf {s > aj , 2 ∈ B(s) or `N ∈ B(s)} .

We claim that, letting

I4
t = {s 6 t, |B′(s) ∩ {1, . . . , 2`N}| > 2} ,

we have
QA(I2

τ ′ ∪ I3
τ ′ 6⊂ I4

τ ′) = O(N− logN/4). (5.8)
To prove this identity, first note that I2

τ ′ ⊂ I4
τ ′ , therefore we only need to prove

that with high probability I3
τ ′ 6⊂ I4

τ ′ . We already pointed out that if [aj , bj) is one
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of I3’s segments, at time aj , a flag jumped from `N to `N + 1, while another was
at the left boundary. Since the segment ends whenever the boundary flag reaches
site 3, in order to have [aj , bj) 6⊂ I4

1 , the other flag must have reached site 2`N + 1
before time bj . Once again, this means either that the boundary excursions lasted
more than N−2`N , or that the other flag traveled a distance of order `N in a time
N−2`N . Both of those probabilities are of order O(e−

√
`N ) = O(N− logN ), i.e. for

any integer j,
QA([aj , bj) 6⊂ I4

bj ) = O(N− logN ). (5.9)

We now obtain a very rough estimate of the number of segments in I2
τ ′ , which we

bound by the total number of visits K to site `N by any flag occurring before time
τ ′,

K = |{t 6 τ ′, `N /∈ B′(t−) and `N ∈ B′(t)}|.
Not to burden the notation, simply denote EA the expectation w.r.t. QA. We
first write EA(K) =

∑
x∈A E{x}(K). Each term of the sum is less than E{`N}(K).

Consider therefore a single flag initially at site `N . Each time it hits site `N , it has
a probability 1/2`N of reaching the left boundary before getting back to site `N .
Once at the left boundary, it has a probability of order O(N−θ) of encountering a
boundary mark. In particular, we have E{`N}(K) = O(`NN

θ), so that

EA(|{j ∈ N, bj 6 τ ′}|) 6 EA(K) = |A|O(`NN
θ) = O(N2).

Together with (5.9) and Markov’s inequality, this bound proves (5.8).

We now estimate |I4
τ ′ | :=

∫ τ ′
0

1|B′(s)∩{1,...,2`N}|>2ds. First, we write

|I4
τ ′ | 6

∑
n 6=n′6|A|

∫ τ ′

0

1{Yn(s),Yn′ (s)∈{1,...,2`N}}ds.

In particular, according to (5.4) and Markov’s inequality

QA
(
|I4
τ ′ | > Nθ/2−2

)
= QA(τ ′ > N−θ̂) + QA(τ ′ 6 N−θ̂ and |I4

τ ′ | > Nθ/2−2)

6 O(N−θ̂) + |A|2N2−θ/2 max
x,y∈A

EQ{x,y}

(∫ N−θ̂

0

1{Y1(s),Y2(s)∈{1,...,2`N}}ds

)
Assume that

EQ{x,y}

(∫ N−θ̂

0

1{Y1(s),Y2(s)∈{1,...,2`N}}ds

)
= O(N−2`2N logN) (5.10)

uniformly in x, y ∈ ΛN . Then, QA
(
|I4
τ ′ | > Nθ/2−2

)
= |A|2O(N−νθ ), where νθ was

defined in the statement of the Lemma. This bound together with (5.9) yields

QA(|I2
τ ′ ∪ I3

τ ′ | > Nθ/2−2) = |A|2O(N−νθ ),

and in particular, using (5.4), we finally obtain

QA(|I2
N−θ̂
∪ I3

N−θ̂
| > Nθ/2−2) = |A|2O(N−νθ ), (5.11)

where as before |I2
t ∪ I3

t | =
∫
I2t ∪I3t

ds.

We now only need to prove (5.10). Since it is quite burdensome in terms of
notations, we will simply sketch the proof, it is rather elementary. See Y(s) =
(Y1, Y2)(s) as a two dimensional random walk on {(x, y) ∈ Λ2

N , x 6= y}, reflected at
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the boundaries ∆1 = {(1, y) or (y, 1) y ∈ ΛN \{1}} and ∆2 = {(N−1, y) or (y,N−
1), y ∈ ΛN \ {N − 1}}. Since we want an upper bound, we assume without loss of
generality that x, y 6 2`N . Together, the four following claims, which we will not
prove because they are elementary, prove (5.10):

(1) The random variable inside the expectation is bounded by N−θ̂ 6 1. Fur-
thermore, since x, y 6 2`N , in a time N−θ̂ with probability 1−O(e−CN

θ̂

),
the random walk Y never hits the boundary ∆2.

(2) The random walk Y performs excursions, either in the set Λ = {1, . . . ,
10`N}2 or in Λc. Each excursion in Λ lasts on average a time O(`2NN

−2).
(3) Each time an excursion in Λ ends, the Y has a probability of order >

C/ logN of reaching ∆2 before hitting {1, . . . , 2`N}2, so that on average,
Y performs O(logN) excursions in Λ before hitting ∆2.

(4) This means that Y spends a time O(logN`2NN
−2) in {1, . . . , 2`N}2 before

hitting ∆2. Together with the first claim, this proves (5.10).

Step 5: Proof of (5.2). We now have all the ingredients to prove (5.2). Give
the flags an arbitrary label at time 0 (identical in B and B′), and recall that
we want to estimate P†A(C ∩ D± ∩ {τ = τn}) for any n 6 |A|. Denote by τ ′n
the first time the flag labeled n in B′ meets a boundary mark. Finally, simi-
larly to D±, denote C ′ and D′± the events C ′ = {|B′(τ ′) ∩ {1, 2}| = 1} and
D′± = {the mark met by B′ a time τ ′ was of type ±}. Since both processes B and
B′ have the same distribution,

P†A(C ∩D± ∩ {τ = τn}) = QA(C ′ ∩D′± ∩ {τ ′ = τ ′n}).

Denote by j∗ the index of the first excursion Zj to meet a boundary mark inMj ,
and let D∗± be the event D∗± = {The boundary mark met by Zj

∗
was of type ±}.

Further denote n∗ the label of the flag performing the excursion Zj
∗
. Recall that

the flag labels go from 1 to |A|, we denote n∗ = 0 if the construction failed before
one of the excursions met a boundary marks. We claim that

QA(C ′ ∩D′ ∩ {τ ′ = τ ′n}) = QA(D∗± ∩ {n∗ = n}) + |A|2O(N−νθ ). (5.12)

Denote τf the first time the construction fails, we proved in (5.7) that QA(τf 6

τ ′) = O(N−θ̂). We now prove (5.12). We discard the possibility that the boundary
mark was encountered at the right boundary, since with probability O(N−θ̂), as a
consequence of (5.4), no flag made it past N/2 before time τ . The boundary mark
encountered at time τ must therefore have appeared during It defined in (5.3). Fur-
thermore, according to (5.11), and since boundary marks appear at rate O(N2−θ),
the probability that a boundary mark appeared in I2

N−θ̂
∪ I3

N−θ̂
is |A|2O(N−θ/4).

The first boundary mark encountered by B′ must therefore have appeared with
probability 1 − |A|2O(N−νθ ) in I1

t , i.e. during one of the inserted excursions, in
which case, since we assumed the construction did not fail before it appeared, the
mark was met by Zj

∗
. This proves (5.12), because during the inserted excursions,

the flag performing the excursion is alone at the boundary.
Note that all the excursions Zj are independent from the process (B′(s))s6tj so

that in particular, n∗ being measurable w.r.t. (B′(s))s6tj∗ , we have

QA(D∗± ∩ {n∗ = n}) = QA(D∗±)QA(n∗ = n). (5.13)
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Applying the same arguments as before, one obtains straightforwardly

QA(τ ′ = τ ′n) = QA(n∗ = n) + |A|2O(N−νθ ). (5.14)

Finally, given a flag at site 2 performing an excursion at the boundary condi-
tioned to meeting a boundary mark (i.e. conditioned to not jumping to site 3 before
meeting a boundary mark), letting p1,± (resp. p2, p3) the probability that the flag
encountered a mark ± (resp. a branching mark, resp. no boundary mark) before
coming back to site 2, one has the explicit formulas

p1,± =
(c+Nθ)rρ±

(b+ c+Nθ)(r +Nθ)
, p2 =

b

b+ c+Nθ
and p3 =

(c+Nθ)Nθ

(b+ c+Nθ)(r +Nθ)
,

where ρ+ = ρ and ρ− = 1 − ρ. In particular, assuming that an excursion met a
boundary mark, the probability that the first boundary mark encountered was of
type ±, resp. branching, is

pN± =
p1,±

p1,+ + p1,− + p2
=

(c+Nθ)rρ±
(c+Nθ)r + b(r +Nθ)

=
rρ±
r + b

+O(N−θ)

resp. pNb = 1− pN+ − pN− =
b

r + b
+O(N−θ).

(5.15)

In particular QA(D∗±) = pN± , which, together with (5.12), (5.13) and (5.14), finally
allows us to write

QA(C ′ ∩D′± ∩ {τ ′ = τ ′n}) =
rρ±
r + b

QA(τ ′ = τ ′n) + |A|2O(N−νθ ).

Since B′ and B have the same distribution, this proves (5.2).

Step 6: Taking into account the right boundary. We now prove (5.3). By
the Markov property, we first assume without loss of generality that A∩ {1, 2, N −
2, N − 1} 6= ∅, so that by an elementary adaptation of (5.4), E†A(τ) 6 CNθ−1.
Assuming τ 6 N−θ̂, we can remove from A the flags initially at a distance more
than N1−θ̂/4 of the boundaries, since one of those reaches the boundary before time
τ with probability exponentially small in N θ̂/2. More precisely, let us denote

A1 = A ∩ {1, . . . , N1−θ̂/4} and A2 = A ∩ {N −N1−θ̂/4, . . . , N − 1},
according to (5.4), and shortening D = D+ ∪D−, we have

P†A(D) = P†A1∪A2
(D) +O(N−θ̂).

Label initially the flags in increasing order from left to right. Then, according to
(5.2) and its counterpart at the right boundary,

P†A1∪A2
(D) =

|A1∪A2|∑
n=1

P†A1∪A2
(D and τ = τn)

=
r

r + b

|A1|∑
n=1

P†A1∪A2
(τ = τn) +

r′

r′ + b′

|A1∪A2|∑
n=|A1|+1

P†A1∪A2
(τ = τn)

+ |A|2O(N−νθ ) > p+ |A|2O(N−νθ )

where p was defined after (5.3). This concludes the proof. �
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Now that this Lemma is proved, we get back to the process A on which boundary
marks have an effect. Start from A = {3}, and give the label 1 to the flag at site
3. Each time a flag is created by the generator (5.1), it is given the smallest label
not already used up until this point. For any t > 0, we denote

κ(t) = 1 +
∣∣{s 6 t, |A(s)| = |A(s−)|+ 1

}∣∣ . (5.16)

the total number of labels used up to time s. Finally, we define

T = inf{s > 0, A(s) = ∅}. (5.17)

Corollary 5.3. Recall (2.6). For any c > 0, there exists ε1(c) > 0 such that

P†{3}(κ(T ) > c logN) = O(N−ε1(c)), (5.18)

There also exists ε2 > 0 such that

P†{3}(T > N−θ̂/2) = O(N−ε2), (5.19)

P†{3}(∃t ∈ [0, T ], A(t) 3 N/2) = O(N−ε2), (5.20)

P†{3}(A encountered a boundary mark while it contained {1, 2}) = O(N−ε2).

(5.21)

Proof of Corollary 5.3: Fix c > 0, We first prove (5.18), which is a consequence of
equation (5.3), which states that regardless of the initial set, the probability that
the first boundary mark encountered was of type ± (and therefore deleted a flag) is
p+ oN (1) > 1/2. Consider the times 0 < t1 < · · · < tm = T at which |A| changes.
Set t0 = 0, and consider the discrete time random walk Yk = |A(tk)| ∈ N for k > 0.
Note that Yk is not a Markov process in itself since its jump rate depends on A(tk).
However, assuming κ(T ) > k, one easily checks that Yk > 0: else, there has been
less than k updates of |A| before it became empty, so in particular the process must
have branched less than k times. (Note that Yk = 0 iff A(tk) = ∅). Furthermore,
after j updates of |A|, the latter cannot be more than 1 + j. According to (5.3),
there exists a constant C such that

P†{3}(Yk > 0) 6 P

1 +

k∑
j=1

Bj > 0

 ,

where the Bj ’s are independent variables taking the value −1 (resp. 1) w.p. qj :=
p + C(j + 1)2N−νθ (resp. 1 − qj). We refer the reader to lemma 5.2 of Erignoux
et al. (2018) for more details. In particular, by Markov inequality, for any positive
λ

P†{3}(κ(T ) > k) 6 P†{3}(Yk > 0) 6 P

exp

 k∑
j=1

λBj

 > e−λ

 6 eλ k∏
j=1

E
(
eλBj

)
.

Choose p′ = 1/4 +p/2 ∈ (1/2, p), for N large enough, and any j 6 c logN , we have
qj > p′, so that for any N large enough and for any λ > 0

P†{3}(κ(T ) > c logN) 6 eλ
(
p′e−λ + (1− p′)eλ

)c logN
.

Choose λ = (p′ − 1/2)2 small enough so that p′e−λ + (1 − p′)eλ < 1 to obtain as
wanted that there exists ε1 = ε1(c) such that

P†{3}(κ(T ) > c logN) 6 O(N−ε1(c)),
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which proves (5.18).

The second bound (5.19) is a direct consequence of the first. Thanks to the first
bound, we first write for some ε := ε1(1) > 0

P†{3}(T > N−θ̂/2) 6 P†{3}(T > N−θ̂/2 and κ(T ) 6 logN) +O(N−ε).

We then bound from above T by the sum of the lifespans Tk (the difference between
the time the label k encounters a boundary mark of type ±, and the time the label
k is introduced) of its flags, we obtain, since the lifespan only increases when a flag
starts at site 3 instead of sites 1, 2,

P†{3}(T > N−θ̂/2 and κ(T ) 6 logN)

6
logN∑
n=1

P†{3}(T > N−θ̂/2 and κ(T ) = n)

6
logN∑
n=1

P†{3}

∑
k6n

Tk > N−θ̂/2 and κ(T ) = n


6

logN∑
n=1

P†{3}

(
max
k6n

Tk >
N−θ̂/2

n
and κ(T ) = n

)

6 (logN)2P†{3}

(
T1 >

N−θ̂/2

logN
and κ(T ) 6 logN

)
On the event κ(T ) 6 n, the flag labeled 1 has branched at most n times. In
particular, we can use (5.5) to obtain that

E†{3}
(
T11{κ(T )6logN}

)
6 logNE†{3} (τ) ,

where as in (5.5), τ is the time the flag 1 waits before something happens to it at
the left boundary. The right-hand side above, according to (5.5), is O(Nθ−1 logN),
therefore by Markov inequality,

P†{3}(T > N−θ̂/2) 6 O(N−θ̂(logN)4) +O(N−ε),

which proves (5.19) by choosing ε2 strictly smaller than both θ̂ and ε.

Identity (5.20) is an immediate consequence of the first two : assuming that
κ(T ) 6 logN and T 6 N−θ̂, by union bound, the probability that a flag reaches
x = N/2 is less than logNP3

(
sup06t6N−θ̂ X(t) > N/2

)
, which is the probability

that a random walker on {3, . . . , N}, starting at site 3, jumping at rate N2 and
reflected at the boundaries, visits site N/2 before time N−θ̂, which is of order
O(e−N

θ̂/2

), thus proving (5.20).

Finally, (5.21) is a consequence of (5.18) and (5.11). The latter immediately
yields, for any A ⊂ {1, . . . , N/2} and such that A ∩ {1, 2} 6= ∅

P†A({1, 2} ⊂ A(τ−)) = |A|2O(N−νθ ). (5.22)

Note we relaxed slightly the assumption on the set A, which can contain either site
1 or 2 and not just 2. This is not an issue, since with probability 1−O(N−θ), any
flag starting from site 1 or 2 reaches site 3 before any boundary mark appeared.
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Equation (5.22) is therefore a simple consequence of Markov’s inequality and the
fact that νθ < θ. Assuming κ(T ) 6 logN , we have |A(s)| 6 1 + logN for any
s 6 T , and at most 2 logN + 2 boundary marks were encountered by A before
time T . On {κ(T ) 6 logN} ∩ {supt6T A(t) < N/2}, we therefore use the Markov
property together with (5.22) 2 logN + 2 times, to obtain that the probability in
the left hand-side of (5.21) is less than

(2 logN + 2)(logN + 1)2O(N−νθ ) + P†A

(
κ(T ) > logN or sup

t6T
A(t) > N/2

)
.

This proves (5.21) and the Lemma. �

5.4. Determination tree. Now that we studied the process A, we can, with it, de-
termine the nature of ηt(x). Recall from Section 5.2 that the process A observed
forward in time 0 → t, represents the evolution of the set of unknowns Â t → 0
backward in time. To determine the value of ηt(x), we start the process A from
A(0) = {x}, and, following the time evolution of A(s), build a labeled rooted tree
Ts, for s ∈ [0, t]. An example of this construction is represented in Figure 5.3.
Define T0 as the trivial one-vertex rooted tree, and label 1 its only vertex corre-
sponding to the label of the flag in A(0). Then, the tree remains unchanged until
the first time τ at which the process A encounters a boundary mark. if the mark is
of type ±, we give the root a unique child, labeled ±. If the mark is of branching
type, we give the root two children, the first one labeled 1 as well, and the second
one labeled 2.

We then carry on with the construction until time T ∧ t : each time one of the
flags (labeled k) in A encounters a boundary mark at time τ , we build Tτ from
Tτ− , with the following rules depending on the mark encountered by A at time τ .
Denote k the label of the flag affected by the mark τ .

– If the mark is of type ±, we give all leaves labeled k in Tτ− a unique
child labeled ±. This is the case where the value of site Xk(τ) was updated
according to a reservoir (i.e. was filled if the mark was of type +, or emptied
if the mark was of type −).

– If the mark is of type (b, 2) (resp. (b,N − 2), we give all leaves labeled k
in Tτ− two children. We label the first one k, and the second one k′. The
integer k′ is either the label of the flag at site 2 if 2 ∈ A(τ) (resp. at site
N − 2 if N − 2 ∈ A(τ)), or k′ = κ(τ) = κ(τ−) + 1 which is the smallest
unused label until now. This is the case where site 2 (resp. N − 2) was
filled if site 1 was occupied, and nothing happened otherwise.

We carry on with this construction until Tt := T ∧t. At time Tt, either the processes
died (A(Tt) = ∅), in which case the last leaf labeled k received a unique child labeled
±, or it didn’t, and there remains in TTt some leaves with labels k corresponding to
the flag’s labels in A(Tt). Up to this point we neglected the possibility that one of
the boundary marks encountered was of type c or c′ (recall that it requires for two
flags to be at the same boundary at the time of the mark), in this case, we say that
the construction failed. According to (5.21), the probability that the construction
of the tree fails is O(N−ε2).

If Tt := T , we just let Ts = TT constant in s ∈ [T, t]. If however Tt := t, in
order to build TTt = Tt we give each leaf labeled k in Tt− a unique child labeled +
(resp. −) if η0(Xk(t)) = 1 (resp. η0(Xk(t)) = 1) (where Xk(t) is the position of
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1

2

FLAG PROCESS DETERMINATION TREE

Figure 5.3. An example of construction of the determination
tree. Each time a boundary mark is encountered by one of the
flags in the process A, the tree is updated accordingly, by adding
two children (for a branching mark) to each node with the affected
flag’s label, or one single child labelled ± (for a ± mark).

11
1

2
= L(Tt)

Removing the

only children

Solving the

branching events

Figure 5.4. Solving the determination tree.

the flag labeled k in ΛN at time t). For any rooted tree T , and any vertex v ∈ T ,
we denote c(v) the number of its children, and s(v) the number of its siblings (i.e.
the number of children of its parent). We call only children the vertices such that
s(v) = 1. One easily checks that, if the construction did not fail, the tree Tt has
the following properties:

(1) each leaf has a label ±, and no other vertex has a label ±.
(2) Each vertex satisfies c(v) ∈ {0, 1, 2}.
(3) The leaves are exactly the only children, i.e. c(v) = 0 iff s(v) = 1.

We denote by T the set of rooted trees satisfying these three properties.
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Assuming the construction did not fail, we now recover, as represented in Fig-
ure 5.4 the value of ηt(x) by “solving” the tree Tt. We start by deleting the only
children. For each only child deleted, we give their parent, which are now leaves,
the same label ± its child had. Once this procedure is realized, there are no more
only children, so that each vertex of the remaining tree has either two or zero chil-
dren. Then, one vertex at a time, we choose an arbitrary vertex v with two children
(v1, v2) which are both leaves. Then, we delete v1 and v2 from the tree, and give v:

– the label + if v2’s label is also +, regardless of v1’s label. This is the case
where there was a flag at site 1 or N − 1, and a mark of branching type
occurred. At the time of the mark, a particle was therefore placed at site 2
or N − 2.

– the same label as v1 if v2’s label is −. This is the case where at the time of
the mark of branching type, there was not a particle at site 1 or N − 1, so
that the value of site 2 or N − 2 did not change.

Ultimately, this procedure deletes the entire tree except the root, and gives the root
a label ± := L(Tt). This “solving” procedure can be defined for any tree in the set
T, so that we see L as a function T→ {+,−}.

5.5. Proof of Lemmas 3.2 and 4.2. This construction is justified by the following
result, which we will not prove because it is strictly analogous to Lemma 5.1, p.23
of Erignoux et al. (2018).

Lemma 5.4. Assuming that the construction did not fail, we have

ηt(x) = 1 iff L(Tt) = +.

Recall the definition of the outcome’s probabilities of an excursion pN± and pNb
introduced in (5.15), we define the distribution mN

ρ (·) of a labeled random tree
T ∈ T, built as follows :

– The root is labeled ∗.
– As long as there is still a leaf labeled ∗ in the tree, one such vertex chosen
arbitrarily receives two children with probability pNb , each labeled ∗, and
receives a unique child labeled ± w.p. pN± .

– The construction ends when there is no longer any leaf labeled ∗ (note that
we assumed r2 > b, so that a.s., for N large enough, this construction ends
after a finite number of steps).

For any tree T ∈ T, we denote |T | its number of vertices. The main result of this
section is the following.

Lemma 5.5. There exists ε3 > 0 such that for any T ∈ T,

sup
t>N−θ̂

∣∣∣P†{3}(Tt = T )−mN
ρ (T )

∣∣∣ = O(N−ε3).

where the identity Tt = T means that the structure of the tree is the same, and that
the labels ± of the leaves are identical as well.

Before proving the Lemma, we state the following result.

Corollary 5.6. There exists ε4 > 0 such that ,

sup
t>N−θ̂

∣∣ρNt (3)− α
∣∣ = sup

t>N−θ̂

∣∣ρNt (3)−mN
ρ (L(T ) = +)

∣∣+O(N−θ) = O(N−ε4),
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where α is given by (2.3).

Proof of Lemma 5.5: Fix the initial set A = {3}. Given the process A built with the
Poisson marks in M, and given a family of independent left boundary excursions
Zj , we build in the same way that we built in Lemma 5.2 B′ from B a process A′
by inserting the independent excursions each time a flag reaches site 2 while no
other flag is in {1, . . . , `N}, where `N = (logN)4. However, instead of stopping the
excursions Z at the time τZ when they reach site 3, we stop them at the first time
τmZ they either hit site 3 or meet a boundary mark. In particular, the time sj at
which we stop the inserted excursion is

sj = (tj + τmZj ) ∧ inf{s > tj , 3 ∈ A′(s)}.
We do not detail this construction here, it is exactly identical to the one per-

formed in step 2 of the proof of Lemma 5.2, except that the process is affected by the
boundary marks. As for B, the two processes A and A′ have the same distribution.
We also denote QA their joint distribution, and T ′ and κ′(t) the counterparts of T
and κ(t) (cf. (5.17) and (5.16)) for A′. Once again, we say that this construction
failed after inserting the j-th excursion if another flag reached site 3 before the j-th
excursion Zj reached site 3 or met a boundary mark, i.e. if sj 6= (tj + τmZj ). Define
the events

F = {the construction failed before time T ′} ,
M = {A boundary mark occurred before T ′ outside of an excursion} ,

O = {∃s ∈ [0, T ′], A′(s) 3 N/2} and S =
{
T ′ > N−θ̂

}
.

Using the same construction laid out at the beginning of Section 5.4, we build
with the process A′ a tree T ′t distributed as Tt because A and A′ have the same
distribution.

We further build a third process A′′, evolving exactly as A′, except that:
– the boundary marks occurring outside of the inserted excursions are ig-
nored.

– The time horizon t is ignored as well, and when reaching time t, A′′ keeps
evolving by following the marks inM and inserting independent excursions
until T ′′ := inf{s > 0, A′′(s) = ∅}.

We finally build a third tree T ′′t using A′′ following the same construction as before.
On the event F c ∩M c ∩Oc ∩ Sc, we have for any t > N−θ̂

A′′ = A′ on [0, t],

so that in particular T ′t = T ′′t = T ′′T ′′ . Furthermore, by construction, T ′′T ′′ is dis-
tributed according to mN

ρ . In particular, for any tree T ∈ T, and any t > N−θ̂

|Q{3}(T ′t = T )−mN
ρ (T )| 6 2Q{3}(F ∪M ∪O ∪ S). (5.23)

Since A and A′ have the same distribution, according to (5.19) and (5.20) in Corol-
lary 5.3,

Q{3}(O ∪ S) = O(N−ε2).

Furthermore, using the same arguments used to prove (5.12) and the Markov prop-
erty, on the event κ′(T ′) 6 logN , one straightforwardly obtains

Q{3}(M ∩ {κ′(T ′) 6 logN}) = O((logN)3N−νθ ). (5.24)
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We do not detail this step, it is enough to use (5.12) on each interval
[τi, τi+1) of time between two consecutive boundary marks are met. With prob-
ability 1 − |A(τi)|2O(N−νθ ), each of those boundary marks were met during an
excursion, and on κ′(T ′) 6 logN there are at most 2 logN + 1 such intervals, so
that by union bound one obtains (5.24). In particular, using (5.18) and letting
ε = min(ε1(1), νθ/2) yields Q{3}(M) = O(N−ε).

Similarly, using (5.7), a union bound and Markov’s property, we obtain that
Q{3}(F ∩ {κ′(T ′) 6 logN}) 6 O(N−θ̂ logN), therefore using (5.18) and letting
ε′ = ε1(1)∧(θ̂/2) yields Q{3}(F ) = O(N−ε

′
). Finally, letting ε3 = min(ε2, ε, ε

′), the
right-hand side of (5.23) is O(N−ε3) for any t > N θ̂, which proves Lemma 5.5. �

Proof of Corollary 5.6: We start with the first identity. To prove it, one only needs
to show that mN

ρ (L(T ) = +) = α+O(N−θ). Define the events

R± = {the root has only one child, labeled ±},
and

Rb = {the root has two children v1 and v2}.
On Rb, for i = 1, 2, we denote Ti the sub-tree of T composed of vi and its descen-
dants. Note that conditionally to Rb, T1 and T2 are independent and distributed
according to mN

ρ . Furthermore, by construction of the application L, we have the
identity

{L(T ) = +} = R+ ∪ (Rb ∩ {L(T2) = +}) ∪ (Rb ∩ {L(T2) = −} ∩ {L(T1) = +}) .
The three events in the union above are disjoint, so that taking the measure mN

ρ

of both sides of the identity above yields, shortening αN = mN
ρ (L(T ) = +)

αN = pN+ + pNb αN + pNb (1− αN )αN ,

which rewrites using the definition (5.15) of pN± and pNb ,

r (ρ− αN ) + bαN (1− αN ) = O(N−θ),

which determines the boundary conditions for the equation, since it proves αN =
α+O(N−θ) defined in (2.3) as wanted.

We now prove that the supremum in the second term in the Corollary isO(N−ε4).
Fix θ̂ > 0 and t > N−θ̂, and shorten Tk = {T ∈ T | |T | 6 k}

ρNt (3) = P†{3}(L(Tt) = +)

= P†{3}(L(Tt) = + and |Tt| > k) +
∑
T ∈Tk

P†{3}(L(T ) = + and Tt = T ).

In particular, thanks to Lemma 5.5, we have for any k and any t > N−θ̂∣∣ρNt (3)−mN
ρ (L(T ) = +)

∣∣ 6 P†{3}(|Tt| > k)+mN
ρ (|Tt| > k)+O(|Tk|N−ε3). (5.25)

We now obtain a crude estimate on |Tk|. Forgetting the leave’s labels, to each tree
T ∈ Tk, one can associate a unique full binary tree (whose vertices all have either
0 or 2 children) by removing all the leaves in T , which are by assumption the only
children. Since there are at most k leaves in a tree with k vertices, there are at
most 2k ways to associate to each leaf a label ±. In particular, |Tk| is less than 2k
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times the number of full binary trees with less than k vertices. The number of full
binary trees with k vertices is Catalan’s number Ck−1 = O(4k). In particular,

|Tk| 6 2k
k∑

n=1

Cn−1 = O(8k).

We now choose k = ε3
2 log 8 logN , which yields that the last term in (5.25) is

O(Nε3/2). According to (5.18), the first term in (5.25) isO(N−ε1(ε3/2 log 8)), whereas
by construction of mN

ρ the second term is O(N−ε
′
) for some positive ε′. Choosing

ε4 = min(ε3/2, ε1 (ε3/2 log 8) , ε′)

proves Corollary 5.6. �

Proof of Lemma 4.2: In order to estimate the correlations between site 3 and site
` > δN , we start the process A from {3, `}, and denote A{3}, A{`} ⊂ A the sets of
descendants of the flag initially at 3, `. Let us denote τ the first time A{3}, A{`}
encounter,

τ = sup
{
t 6 0, d

(
A{3}(t),A{`}

)
(t) 6 1

}
,

with the convention d(∅, A) = ∞ for any set A. Also denote by T {3} the lifespan
of A{3},

T {3} = sup
{
t 6 0, A{3}(t) = ∅

}
.

Then, up until time τ , A{3} and A{`} can be coupled with two independent copies
Ã{3} and Ã{`}. In particular, we can write

|ϕNt (3, `)| 6 P̂{3,l}
(
τ > t ∨ T {3}

)
6 P̂{3,`}

(
τ > T {3}

)
.

To estimate the right-hand side, recall from (5.18) that with probability
1 − O(N−ε1(1)), the total number of flags C(T {3}) created by A{3} is less than
logN . Further recall according to (5.19), P̂{3,k}(T {3} > N−θ̂) = O(N−ε2). Finally,
the probability that a flag travelled a distance at least δN/4 in a time N−θ̂ is of
order e−cδ

2N θ̂ . In summary, in order to have τ > T {3}, one of three cases must
have occurred.

• Either κ(T ) > logN , which occurs with probability O(N−ε1(1)).
• Or T {3} > N−θ̂, which occurs with probability O(N−ε2).
• Or finally one of the (at most) logN + 2 flags (either one of the two flags

initially in the system or one of the flags created) must have travelled
a distance δN/4 before a time N−ε, which by union bound occurs with
probability O(logNe−cδ

2N θ̂ ).

Letting ε = ε1∧ε2, with probability 1−O(N−ε), the two processesA{3}, A{`} evolve
independently up until the process A{3} dies. All these bounds being independent
of ` > δN , this proves

sup
δN6`6N−1

|ϕNt (3, `)| = O(N−ε).

The second bound is identical. �
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