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Abstract. In this paper we are concerned with the two-stage contact process in-
troduced by Krone (1999) on a high-dimensional lattice. By comparing this process
with an auxiliary model which is a linear system, we obtain two limit theorems for
this process as the dimension of the lattice grows to infinity. The first theorem
is about the upper invariant law of the process. The second theorem is about as-
ymptotic behavior of the critical value of the process. These two theorems can be
considered as extensions of their counterparts for the basic contact processes proved
by Griffeath (1983) and Schonmann and Vares (1986).

1. Introduction

In this paper we are concerned with the two-stage contact process on Zd intro-
duced in Krone (1999) authored by Krone. First we introduce some notation and
definitions for later use. For each

x =
(
x(1), . . . , x(d)

)
∈ Zd,

we use ‖x‖ to denote the l1-norm of x, i.e., ‖x‖ =
∑d
i=1 |x(i)|. For any x, y ∈ Zd,

we write x ∼ y when and only when ‖x−y‖ = 1. In other words, x ∼ y means that
x and y are neighbors on Zd. For 1 ≤ i ≤ d, we use ei to denote the ith elementary
unit vector of Zd, i.e.,

ei = (0, . . . , 0, 1
ith
, 0, . . . , 0).

We use O to denote the origin of Zd, i.e., O = (0, 0, . . . , 0).
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The two-stage contact process {ηt}t≥0 on Zd is a continuous-time Markov process
with state space X = {0, 1, 2}Zd and generator Ω given by

Ωf(η) =
∑
x∈Zd

∑
i=0,1,2

H(x, i, η)
[
f(ηx,i)− f(η)

]
(1.1)

for any η ∈ {0, 1, 2}Zd and f in the domain of Ω, where

ηx,i(y) =

{
η(y) if y 6= x,

i if y = x

and

H(x, i, η) =



1 if η(x) = 2 and i = 0,

1 + δ if η(x) = 1 and i = 0,

γ if η(x) = 1 and i = 2,

λ
∑
y:y∼x 1{η(y)=2} if η(x) = 0 and i = 1,

0 else

for any x ∈ Zd and i ∈ {0, 1, 2}, where λ, δ, γ are positive constants and 1A is the
indicator function of the event A, i.e., 1A = 1 on the event A while 1A = 0 on the
complementary set of A. Note that the domain of Ω is a dense subset of C(X), the
space of continuous functions on X.

Intuitively, the two-stage contact process describes the spread of an epidemic on
the graph Zd. The vertices in state 0 are healthy and vertices in state 1 are semi-
infected while vertices in state 2 are fully-infected. A fully-infected vertex waits
for an exponential time with rate 1 to become healthy. A semi-infected vertex
waits for an exponential time with rate 1 + δ to become healthy while it waits
for an exponential time with rate γ to become fully-infected, depending on which
moment comes first. A healthy vertex is infected to become semi-infected at rate
proportional to the number of fully-infected neighbors.

The two-stage contact process {ηt}t≥0 is introduced in Krone (1999). In Krone
(1999), a duality relationship between the two-stage contact process and a ‘on-off’
process is given. Several important open questions are proposed at the end of
Krone (1999), some of which are answered in Foxall (2015) authored by Foxall. For
instance, it is shown in Foxall (2015) that the complete convergence theorem holds
for the two-stage contact process, i.e., the process converges weakly to a convex
combination of two invariant distributions δ0 and ν, where δ0 is concentrated on
the state where all the vertices are in state 0 and ν is the upper invariant law of
the process, the definition of which we will review in the next section.

Informally, the basic contact process introduced in Harris (1974) can be consid-
ered as a ‘special two-stage contact process’ with γ = +∞, where a semi-infected
vertex becomes fully-infected immediately such that the two states 1 and 2 can
be combined as one infected state. For a detailed survey about the study of the
basic contact process, see Liggett (1985, Chapter 9) and Liggett (1999, Part 1),
two books authored by Liggett. Note that here and in several further places we are
only giving an intuitive relation between the basic and two-stage contact processes
when we talk about setting γ = +∞. Our main results given in the next section
hold rigorously for γ ∈ (0,+∞).
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2. Main results

In this section we give our main results. First we introduce some notation and
definitions. For any t ≥ 0, we define

Ct =
{
x ∈ Zd : ηt(x) = 2

}
as the set of fully-infected vertices at the moment t and

Dt =
{
x ∈ Zd : ηt(x) = 1

}
as the set of semi-infected vertices at the moment t and It = Ct ∪ Dt as the set
of infected vertices at the moment t. For C,D ⊆ Zd, we write ηt, Ct, Dt, It as
η

(C,D)
t , C

(C,D)
t , D

(C,D)
t , I

(C,D)
t when C0 = C,D0 = D. If C = {x} (resp. D = {x})

for some x ∈ Zd, we write (C,D) as (x,D) (resp. (C, x)) instead of ({x}, D) (resp.
(C, {x})). Throughout this paper, we assume that δ, γ are fixed strictly positive
constants. We use Pλ to denote the probability measure of the two-stage contact
process with infection rate λ. The expectation with respect to Pλ is denoted by
Eλ. We write Pλ, Eλ as Pλ,d, Eλ,d when we need to point out the dimension d of
the lattice.

It is shown in Krone (1999) that Pλ
(
I

(O,∅)
t 6= ∅ for all t ≥ 0

)
is increasing with

λ, then it is reasonable to define

λc = sup
{
λ : Pλ

(
I

(O,∅)
t 6= ∅ for all t ≥ 0

)
= 0
}
. (2.1)

λc is called the critical value of the infection rate. When λ < λc, the infected vertices
of the two-stage contact process with infection rate λ die out with probability one
conditioned on O being the unique initially fully-infected vertex while other vertices
being healthy at t = 0.

It is shown in Krone (1999) that the two-stage contact process {ηt}t≥0 is a
monotonic process with respect to the partial order � on {0, 1, 2}Zd such that
η � ξ when and only when η(x) ≤ ξ(x) for all x ∈ Zd. As a result, η(Zd,∅)

t converges
weakly to an invariant distribution ν as t → +∞. ν is called the upper invariant
law of the two-stage contact process. We write ν as νλ when we need to point out
the infection rate λ and further write νλ as νλ,d when we need to point out the
dimension d of the lattice.

It is shown in Krone (1999) that νλ(η(O) 6= 0) is increasing with λ, so it is
reasonable to define

λ̃c = sup
{
λ : νλ(η(O) 6= 0) = 0

}
. (2.2)

The following proposition is proved in Foxall (2015) by Foxall.

Proposition 2.1. (Foxall, 2015) If λc and λ̃c are defined as in Equations (2.1)
and (2.2) respectively, then

λc = λ̃c.

Proposition 2.1 shows that the above two types of critical values of the two-stage
contact process are equal. So from now on, we use λc to denote both of them.

We write λc as λc(d) when we need to point out the dimension d of the lattice
Zd. It is shown in Xue (2018) authored by Xue that

lim
d→+∞

2dλc(d) =
1 + δ + γ

γ
.
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As a result, for sufficiently large d and λ > 1+δ+γ
γ ,

ν λ
2d ,d

(η(O) 6= 0) > 0.

One of our main results in this paper gives a more precise result than the above
inequality. To give this result, we define

π(A,B) = ν
(
η(x) 6= 2 for any x ∈ A and η(y) = 0 for any y ∈ B

)
for any A,B ⊆ Zd such that A ∩ B = ∅. We write π(A,B) as π(A,B, λ, d) when
we need to point out the infection rate λ and the dimension d of the lattice. Then,
for any d ≥ 1,m, n ≥ 0 and λ > 1+δ+γ

γ , we define

Π(m,n, λ, d) =

sup

{∣∣∣∣π(A,B,
λ

2d
, d)−

(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(1 + δ + γ

λγ

)n∣∣∣∣ :

A,B ⊆ Zd, |A| = m, |B| = n,A ∩B = ∅

}
,

where |A| is the cardinality of A. Then, we obtain the following theorem, which is
our first main result.

Theorem 2.2. For any λ > 1+δ+γ
γ and integers m,n ≥ 0,

lim
d→+∞

Π(m,n, λ, d) = 0.

Intuitively, Theorem 2.2 shows that ν λ
2d ,d

with λ > 1+δ+γ
γ and large d is ap-

proximate to a product measure m on {0, 1, 2}Zd such that {η(x) : x ∈ Zd} are
independent under m and

m(η(x) = 0) =
1 + δ + γ

λγ
, m(η(x) = 2) =

λγ − (1 + δ + γ)

λ(γ + 1)

while m(η(x) = 1) =
λγ − (1 + δ + γ)

λγ(γ + 1)

for each x ∈ Zd.
As we have introduced, the basic contact process can be informally considered

as the two-stage contact process with γ = +∞. Let ν̃ be the upper invariant law of
the basic contact process, then it is shown in Schonmann and Vares (1986) authored
by Schonmann and Vares that

lim
d→+∞

sup

{∣∣∣∣ν̃ λ
2d ,d

(
η(x) = 0 for all x ∈ A

)
−
( 1

λ

)m∣∣∣∣ :

A ⊆ Zd, |A| = m

}
= 0 (2.3)

for each m ≥ 0 and λ > 1. Since limγ→+∞
1+δ+γ
λγ = 1

λ , Theorem 2.2 can be
considered as an extension of Equation (2.3).

Theorem 2.2 is consistent with a non-rigorous mean-field analysis. For large d,
{ηt(x)}x∈Zd are considered as approximately independent. Then, P λ

2d

(
ηt(x) = 1

)
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and P λ
2d

(
ηt(x) = 2

)
approach to the solution (xt, yt) to the ODE{

d
dtxt = −(1 + δ + γ)xt + λ(1− xt − yt)yt,
d
dtyt = −yt + γxt,

which has strictly positive fixed points x∞ = λγ−(1+γ+δ)
λγ(γ+1) and y∞ = λγ−(1+δ+γ)

λ(γ+1)

when λ > 1+δ+γ
γ .

Our second main result is about the asymptotic behavior of λc(d) as d → +∞.
According to the approach introduced in Xue (2018),

0 ≤ 2dλc(d)− 1 + δ + γ

γ
≤ O

( (log d)
3

log d

log d

)
as d grows to infinity. The following theorem gives the stronger conclusion that
2dλc(d)− 1+δ+γ

γ and 1/d are infinitesimals of the same order as d→ +∞, which is
our second main result.

Theorem 2.3. If λc is defined as in Equation (2.1), then

f1 ≤ lim inf
d→+∞

d
(

2dλc(d)− 1 + δ + γ

γ

)
≤ lim sup

d→+∞
d
(

2dλc(d)− 1 + δ + γ

γ

)
≤ f2,

where

f1 =
1

2
(1 +

1

γ
)

(1 + δ + γ)2

γ(2 + δ + γ)
and f2 =

1 + γ + δ

γ
(1 +

1

γ
),

which are constants only depend on γ and δ.

The counterpart of Theorem 2.3 for the critical value of the basic contact process
is obtained in former references. Let βc(d) be the critical value of the basic contact
process on Zd. In Holley and Liggett (1981) authored by Holley and Liggett, it is
shown that

lim sup
d→+∞

d
(

2dβc(d)− 1
)
≤ 3

2
.

Griffeath improves the above result in Griffeath (1983) by showing that

lim sup
d→+∞

d
(

2dβc(d)− 1
)
≤ 1.

In Section 3.5 of Liggett (1985), it is shown that

βc(d) ≥ 1

2d− 1

for all d and hence lim infd→+∞ d
(

2dβc(d) − 1
)
≥ 1

2 . In conclusion, former refer-
ences show that

1

2
≤ lim inf

d→+∞
d
(

2dβc(d)− 1
)
≤ lim sup

d→+∞
d
(

2dβc(d)− 1
)
≤ 1. (2.4)

Note that limγ→+∞ f1(γ) = 1
2 while limγ→+∞ f2(γ) = 1, hence Theorem 2.3 can

be considered as an extension of Equation (2.4).
It is natural to ask whether there exists f3 such that

lim
d→+∞

d
(

2dλc(d)− 1 + δ + γ

γ

)
= f3.

This question is open even for the basic contact process, i.e, the case where γ = +∞.
We will work on this question in follow-up work.
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The remainder of this paper is devoted to the proofs of Theorems 2.2 and 2.3.
As we have discussed above, Theorem 2.3 is an improvement of the main result
given in Xue (2018). To prove Theorem 2.3, we utilize different approaches with
those introduced in Xue (2018) to bound λc(d) from below and above. In Xue
(2018), the lower bound 1+δ+γ

2dγ of λc(d) is obtained through a coupling between the

two-stage contact process and an auxiliary process with state space {Z2
+}Z

d

, which
is an analogue of the binary contact path process introduced in Griffeath (1983)
by Griffeath. In Section 3 of this paper, we utilize a graphical representation of
the two-stage contact process introduced in Krone (1999) by Krone and a strategy
similar with that introduced in Section 3.5 of Liggett (1985) to show that

lim inf
d→+∞

d
(

2dλc(d)− 1 + δ + γ

γ

)
≥ f1. (2.5)

In Xue (2018), the upper bound 1+δ+γ
2dγ +O

(
(log d)

3
log d

2d log d

)
of λc(d) is obtained through

an approach similar with that introduced in Kesten (1990) by Kesten to study
critical probabilities of high dimensional site percolation models, which relates the
estimation of the upper bound of the critical value of the model (percolation or
contact process) with the times of collisions of two independent oriented random
walks on Zd. To improve the above upper bound, in Section 4 of this paper, we
introduce a process with state space

(
[0,+∞) × [0,+∞)

)Zd , which is an analogue
of the normalized binary contact path process introduced in Griffeath (1983) by
Griffeath, and utilize a strategy similar with that introduced in Section 9.3 of
Liggett (1985) to show that

lim sup
d→+∞

d
(

2dλc(d)− 1 + δ + γ

γ

)
≤ f2. (2.6)

As we have discussed above, Theorem 2.3 is an analogue of the main result given
in Schonmann and Vares (1986) authored by Schonmann and Vares. Roughly
speaking, the proof of the main result in Schonmann and Vares (1986) has two
steps. First, according to a coupling of the basic contact process and a branching
process, the probability that the number of infected vertices of a high-dimensional
basic contact process reaches a large numberM for some t > 0 is estimated. Second,
according to a coupling of a high-dimensional basic contact process and a given
low-dimensional one, it is proved that the survival probability of the basic contact
process on Zd with M initially infected vertices and infection rate λ

2d , where λ > 1,
converges to 1 as the dimension d first grows to infinity and then the number M
grows to infinity. Lemma 9.14 of Harris (1976) authored by Harris is crucial for
the second step, which shows that the survival probability of a given l-dimensional
supercritical basic contact process converges to 1 as the number M of initially
infected vertices grows to infinity. Our proof of Theorem 2.2 given in Sections
5 and 6 has similar two steps. The duality relationship between the two-stage
contact process and a so-called ‘on-off’ process introduced in Krone (1999) makes
1−π(A,B) the survival probability of types 1 and 2 vertices of the ‘on-off’ process.
We first give a coupling of the ‘on-off’ process and a two-type branching process
to estimate the probability that the number of types 1 and 2 vertices of the ‘on-
off’ process reaches a large number M for some t > 0. We second show that the
survival probability of types 1 and 2 vertices of the ‘on-off’ process on Zd with
M initial types 1 and 2 vertices and parameter λ

2d , where λ > 1+γ+δ
γ , converges
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to 1 as the dimension d first grows to infinity and then the number M grows to
infinity. However, an analogue version of Lemma 9.14 of Harris (1976) for the ‘on-
off’ process has not been proved yet. Hence in the second step we still resort to
the strategy introduced in Section 9.3 of Liggett (1985). We utilize the coupling
relationships between the three models, i.e., the two-stage contact process, the ‘on-
off’ process and our auxiliary model with state space

(
[0,+∞) × [0,+∞)

)Zd , to
bound the survival probability of types 1 and 2 vertices of the ‘on-off’ process with
M initial types 1 and 2 vertices from below for large M . For details, see Sections 5
and 6.

3. Proof of Equation (2.5)

In this section we give the proof of Equation (2.5). Our proof follows the strategy
introduced in Section 3.5 of (Liggett, 1985) to attest Equation (3.5.14) of the same
book, which shows that the critical value of the basic contact process on Zd is
more than or equal to 1

2d−1 . First we review the graphical representation of the
two-stage contact process introduced in Krone (1999). According to this graphical
representation, for given A,B ⊆ Zd such that A ∩B = ∅, the family of processes{

{I(C,D)
t }t≥0 : C ⊆ A,D ⊆ B

}
can be coupled on the same probability space. We consider the set Zd×[0,+∞), i.e,
there is a time axis [0,+∞) on each vertex x ∈ Zd. For each x ∈ Zd, let {Yx(t)}t≥0

be a Poisson process with rate one, then we put a ‘∆’ on (x, s) for each event
moment s of Yx(·). For each x ∈ Zd, let {Wx(t)}t≥0 be a Poisson process with rate
δ, then we put a ‘∗’ on (x, r) for each event moment r of Wx(·). For each x ∈ Zd,
let {Vx(t)}t≥0 be a Poisson process with rate γ, then we put a ‘�’ on (x, u) for each
event moment u of Vx(·). For any x, y ∈ Zd such that x ∼ y, let {U(x,y)(t)}t≥0 be a
Poisson process with rate λ, then we put a ‘→’ from (x, v) to (y, v) for each event
moment v of U(x,y)(·). We assume that all these Poisson processes are independent.
Note that we care about the order of x and y, hence U(x,y) 6= U(y,x).

Now assuming that A,B ⊆ Zd such that A ∩ B = ∅, then we put a ‘�’ on (x, 0)
for each x ∈ A. For x ∈ A ∪B, y ∈ Zd and t > 0, we say that there is an infection
path from (x, 0) to (y, t) when there exist n ≥ 0, x = x0 ∼ x1 ∼ x2 ∼ . . . ∼ xn = y
and 0 = t0 < t1 < t2 < . . . < tn < tn+1 = t such that the following five conditions
all hold.

(1) There is an ‘→’ from (xi−1, ti) to (xi, ti) for all 1 ≤ i ≤ n.
(2) There exists at least one ‘�’ on {xi} × [ti, ti+1) for all 0 ≤ i ≤ n− 1.
(3) There is no ‘∆’ on {xi} × [ti, ti+1) for all 0 ≤ i ≤ n.
(4) For each 0 ≤ i ≤ n− 1, let

mi = inf{s ∈ [ti, ti+1) : there is a ‘�’ on (xi, s)},
then there is no ‘∗’ on {xi} × [ti,mi) for all 0 ≤ i ≤ n.

(5) Let
mn = inf{s ∈ [tn, t) : there is a ‘�’ on (xi, s)},

then there is no ‘∗’ on {y}×[tn,mn) ifmn < +∞ while there is no ‘∗’ on {y}×[tn, t)
if mn = +∞.

Note that condition (2) ensures that mi < +∞ for 0 ≤ i ≤ n− 1 while mn may
equals inf ∅ = +∞, so condition (5) contains two cases.



832 X. Xue

For C ⊆ A, D ⊆ B and t ≥ 0, we define

Î
(C,D)
t =

{
y ∈ Zd : there is an infection path from (x, 0)

to (y, t) for some x ∈ C ∪D
}
.

According to the theory of the graphical method introduced in Harris (1978) au-
thored by Harris, it is easy to check that {Î(C,D)

t }t≥0 and {I(C,D)
t }t≥0 are identically

distributed, where
I

(C,D)
t =

{
x : η

(C,D)
t (x) > 0

}
defined as in Section 2. For readers not familiar with the graphical method, we
give an intuitive explanation here. An (semi- of fully-) infected vertex x becomes
healthy at the event moment of Yx(·). If x is semi-infected, it also becomes healthy
at the event moment of Wx(·) while becomes fully-infected at the event moment of
Vx(·). If x is fully infected while the neighbor y of x is healthy, then y is infected
by x to become semi-infected when there is an ‘→’ from x to y. As a result, if there
is an infection path from (x, 0) to (y, t) for x ∈ C ∪ D, then for each i ≤ n − 1,
xi is (semi- or fully-) infected at ti and is full-infected at mi while maintains fully-
infected till ti+1 to ensure that xi+1 is infected at ti+1 for all 0 ≤ i ≤ n− 1. Hence,
y = xn is infected at tn. If mn < +∞, then y becomes fully-infected at mn and
maintains fully-infected till t. If mn = +∞, then y maintains semi-infected till t.
Therefore,

Î
(C,D)
t ⊆

{
y : η

(C,D)
t (y) > 0

}
.

The opposite direction that Î(C,D)
t ⊇

{
y : η

(C,D)
t (x) > 0

}
follows from similar

analysis, we omit the details.
From now on, we assume that

{
{I(C,D)
t }t≥0 : C ⊆ A,D ⊆ B

}
are coupled on

the same probability space such that

I
(C,D)
t =

{
y ∈ Zd : there is an infection path from (x, 0) (3.1)

to (y, t) for some x ∈ C ∪D
}

for any t > 0. According to Equation (3.1), we have the following lemma, which is
crucial for us to prove Equation (2.5).

Lemma 3.1. For A,B ⊆ Zd such that A∩B = ∅ and C+, C− ⊆ A while D+, D− ⊆
B,

Pλ

(
I

(C+∪C−,D+∪D−)
t 6= ∅

)
+ Pλ

(
I

(C+∩C−,D+∩D−)
t 6= ∅

)
≤ Pλ

(
I

(C+,D+)
t 6= ∅

)
+ Pλ

(
I

(C−,D−)
t 6= ∅

)
for any t ≥ 0.

Note that Lemma 3.1 is an analogue of Proposition 3.5.9 of Liggett (1985).

Proof of Lemma 3.1: For C ⊆ A and D ⊆ B, we use Ht(C,D) to denote the
indicator function of the event that there exists an infection path from (x, 0) to
(y, 0) for some x ∈ C ∪D and y ∈ Zd. Then, we claim that

Ht(C+ ∪ C−, D+ ∪D−) +Ht(C+ ∩ C−, D+ ∩D−) (3.2)
≤ Ht(C+, D+) +Ht(C−, D−)

for C+, C− ⊆ A and D+, D− ⊆ B.
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Lemma 3.1 follows from inequality (3.2) directly since

Pλ

(
I

(C,D)
t 6= ∅

)
= Eλ

(
Ht(C,D)

)
according to Equation (3.1).

Now we prove inequality (3.2). For the case where Ht(C+ ∪ C−, D+ ∪ D−) =
Ht(C+ ∩ C−, D+ ∩D−) = 0, inequality (3.2) holds trivially. To check other cases,
first note that H(C1, D1) ≤ H(C2, D2) when C1 ⊆ C2, D1 ⊆ D2 according to the
definition of H. Consequently, for the case where Ht(C+∩C−, D+∩D−) = 1, since
C+ ∩ C− ⊆ C+, C−, C+ ∪ C+ and D+ ∩D− ⊆ D+, D−, D+ ∪D−, we have

Ht(C+ ∪ C−, D+ ∪D−) = Ht(C+, D+) = Ht(C−, D−) = 1

and hence both sides of inequality (3.2) are equal to 2. For the case where Ht(C+∩
C−, D+ ∩ D−) = 0 while Ht(C+ ∪ C−, D+ ∪ D−) = 1, there is an infection path
from (x, 0) to (y, 0) for some x ∈ C+∪C−∪D+∪D− and y ∈ Zd. Since such x is in
C+ ∪D+ or C− ∪D−, the right hand side of inequality (3.2) is more than or equal
to 1 while the left hand side is 1 and hence inequality (3.2) holds. In conclusion,
inequality (3.2) holds and the proof is complete.

�
For simplicity, we denote

α = Pλ

(
I

(∅,O)
t 6= ∅ for all t > 0

)
,

q1 = Pλ

(
I

(O,∅)
t 6= ∅ for all t > 0

)
,

k1 = Pλ

(
I

(O,e1)
t 6= ∅ for all t > 0

)
,

k2 = sup
{
Pλ

(
I

(O,{e1,y})
t 6= ∅ for all t > 0

)
: y ∼ O, y 6= e1

}
,

q2 = Pλ

(
I

({O,e1},∅)
t 6= ∅ for all t > 0

)
,

q3 = sup
{
Pλ

(
I

({O,e1},y)
t 6= ∅ for all t > 0

)
: y ∼ O, y 6= e1

}
,

where e1 = (1, 0, . . . , 0) defined as in Section 1, then we have the following lemma,
which is an application of Lemma 3.1.

Lemma 3.2.
k2 ≤ 2k1 − q1 and q3 ≤ k1 + q2 − q1.

The motivation to establish Lemma 3.2 is that we want to estimate events in-
volving three-dimensional marginals of the upper invariant law in terms of one- and
two- dimensional marginals.

Proof of Lemma 3.2: For y ∼ O and y 6= ∅, let C+ = C− = A = {O}, B = {e1, y},
D+ = {e1} and D− = {y}, then by Lemma 3.1 and the spatial homogeneity of the
process,

Pλ

(
I

(O,{e1,y})
t 6= ∅

)
+ Pλ

(
I

(O,∅)
t 6= ∅

)
≤ Pλ

(
I

(O,e1)
t 6= ∅

)
+ Pλ

(
I

(O,y)
t 6= ∅

)
= 2Pλ

(
I

(O,e1)
t 6= ∅

)
for any t ≥ 0. Let t→ +∞ and then

Pλ

(
I

(O,{e1,y})
t 6= ∅ for all t > 0

)
+ q1 ≤ 2k1,



834 X. Xue

k2 ≤ 2k1 − q1 follows from which directly.
Let C+ = A = {O, e1}, C− = {O}, B = {y}, D+ = ∅ and D− = {y}, then

q3 ≤ k1 + q2 − q1 follows from the same analysis, we omit the details.
�

Now we give the proof of Equation (2.5).

Proof of Equation (2.5): Let C0 = {x : η0(x) = 2} and D0 = {x : η0(x) = 1}
defined as in Section 2. If C0 = {O} and D0 = ∅, then according to the property of
independent exponential times, a neighbor of O is infected to become semi-infected
with probability 2dλ

1+2dλ while O becomes healthy without infecting any neighbor
with probability 1

1+2dλ . Therefore, according to the strong Markov property and
the spatial homogeneity of the process,

q1 =
2dλ

2dλ+ 1
k1. (3.3)

If C0 = ∅ and D0 = {O}, then according to a similar analysis,

α =
γ

1 + δ + γ
q1. (3.4)

If C0 = {O} and D0 = {e1}, then (C0, D0) jumps to (C,D) with probability

1+δ
(2d−1)λ+2+δ+γ if C = {O}, D = ∅,

1
(2d−1)λ+2+δ+γ if C = ∅, D = {e1},

γ
(2d−1)λ+2+δ+γ if C = {O, e1}, D = ∅,

λ
(2d−1)λ+2+δ+γ if y ∼ O, y 6= e1, C = {O}, D = {e1, y},
0 else.

Then, according to the strong Markov property, spatial homogeneity of the process
and Lemma 3.2,

k1 ≤
1 + δ

(2d− 1)λ+ 2 + δ + γ
q1 +

1

(2d− 1)λ+ 2 + δ + γ
α (3.5)

+
γ

(2d− 1)λ+ 2 + δ + γ
q2 +

(2d− 1)λ

(2d− 1)λ+ 2 + δ + γ
(2k1 − q1).

If C0 = {O, e1} and D0 = ∅, then according to Lemma 3.2 and a similar analysis
with that leads to Equation (3.5),

q2 ≤
2

2(2d− 1)λ+ 2
q1 +

2(2d− 1)λ

2(2d− 1)λ+ 2
(k1 + q2 − q1)

and hence

q2 ≤
(4d− 1)λ

2dλ+ 1
k1. (3.6)

By Equations (3.3), (3.4), (3.5) and (3.6),

k1

(
M(λ, δ, γ)− 1

)
≥ 0, (3.7)
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where

M(λ, δ, γ) =

γ

(2d− 1)λ+ 2 + δ + γ

(4d− 1)λ

2dλ+ 1
+

1

(2d− 1)λ+ 2 + δ + γ

γ

1 + δ + γ

2dλ

2dλ+ 1

+
1 + δ

(2d− 1)λ+ 2 + δ + γ

2dλ

2dλ+ 1
+

(2d− 1)λ

(2d− 1)λ+ 2 + δ + γ

2dλ+ 2

2dλ+ 1
.

By direct calculation, it is easy to check that

M(λ, δ, γ) < 1

when

λ <
1 + δ + γ

2dγ

2 + δ + γ

1 + [1− 1
2d (1 + 1

γ )](1 + δ + γ)
.

Note that here we assume that d is sufficiently large such that

1 + [1− 1

2d
(1 +

1

γ
)](1 + δ + γ) > 0.

Then, by Equations (3.7) and (3.3), k1 = 0 and hence q1 = 0 when

λ <
1 + δ + γ

2dγ

2 + δ + γ

1 + [1− 1
2d (1 + 1

γ )](1 + δ + γ)
.

Then, according to the definition of λc(d) given in Equation (2.1),

λc(d) ≥ 1 + δ + γ

2dγ

2 + δ + γ

1 + [1− 1
2d (1 + 1

γ )](1 + δ + γ)
. (3.8)

Since
2 + δ + γ

1 + [1− 1
2d (1 + 1

γ )](1 + δ + γ)
= 1 +

1

2d
(1 +

1

γ
)
1 + δ + γ

2 + δ + γ
+O(

1

d2
),

Equation (2.5) follows from Equation (3.8) directly.
�

4. Proof of Equation (2.6)

In this section we give the proof of Equation (2.6). Our proof is inspired by the
strategy introduced in Section 9.3 of Liggett (1985). The outline of the proof is
as follows. First we introduce a Markov-process {ρt =

(
ζt, gt

)
: t ≥ 0} such that

ζt, gt ∈ [0,+∞)Z
d

and

ηt(x) = 2× 1{ζt(x)>0} + 1{ζt(x)=0,gt(x)>0}.

We will choose proper transition rates function of ρt such that

Eζt(x) = Egt(x) ≡ 1.

Then, according to the Cauchy-Schwartz inequality,

lim inf
t→+∞

P
(
ηt(x) > 0

)
≥ 1

supt≥0E
(
ζ2
t (x)

) .
The auxiliary process {ρt}t≥0 belongs to the family of processes called linear systems
introduced in Section 9 of Liggett (1985). By utilizing Theorem 9.3.1 of Liggett
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(1985), we show that
{
E(ζt(x)ζt(y)) : x, y ∈ Zd

}
are given by some marginal

dimensions of the solution to a linear ODE
d

dt
Ft = GλFt,

where Ft is a function from X4 = Zd × {1, 2, 3} to R and Gλ is a X4 ×X4 matrix.
According to a lemma which is an analogue of Theorem 9.3.12 of Liggett (1985), we
can show that supt≥0E

(
ζ2
t (x)

)
< +∞ if Gλ has a positive eigenvector with respect

to eigenvalue 0. At last we find λ which makes Gλ have the aforesaid eigenvector
and then such λ is an upper bound of λc.

Now we give the details of the proof. As we have discussed above, first we define
a continuous-time Markov process {ρt}t≥0 as an auxiliary process for the proof.

The state space of {ρt}t≥0 is X2 =
(
[0,+∞) × [0,+∞)

)Zd , i.e., at each vertex
x ∈ Zd there is a spin ρ(x) =

(
ζ(x), g(x)

)
such that ζ(x), g(x) ≥ 0. The generator

of {ρt}t≥0 is given by

Ω2f(ρ) =
∑
x∈Zd

[
f(ρx)− f(ρ)

]
+ δ

∑
x∈Zd

[
f(ρx,+)− f(ρ)

]
(4.1)

+ γ
∑
x∈Zd

[
f(ρx,−)− f(ρ)

]
+ λ

∑
x∈Zd

∑
y∼x

[
f(ρx,y)− f(ρ)

]
for any ρ ∈ X2 and f ∈ C(X2), where

ρx(y) =

{
ρ(y) =

(
ζ(y), g(y)

)
if y 6= x,(

0, 0
)

if y = x,

ρx,+(y) =

{
ρ(y) =

(
ζ(y), g(y)

)
if y 6= x,(

ζ(x), 0
)

if y = x,

ρx,−(y) =

{
ρ(y) =

(
ζ(y), g(y)

)
if y 6= x,(

ζ(x) + 1
γ g(x), 0

)
if y = x,

and

ρx,y(z) =

{
ρ(z) =

(
ζ(z), g(z)

)
if z 6= x,(

ζ(x), g(x) + bζ(y)
)

if z = x,

where b = 1+δ+γ
2dλ .

Here we choose the weights 1
γ and b = 1+δ+γ

2dλ for a technical reason. We will
show later that these two weights can make the expectations of ζt(x) and gt(x)
constant conditioned on ζ0(x) = g0(x) = 1 for each x ∈ Zd.

According to the generator Ω2 of {ρt}t≥0, if the state of {ρt}t≥0 jumps at a mo-
ment s, then ζs(x), gs(x) are linear combinations of {ζs−(y)}y∈Zd and {gs−(y)}y∈Zd
for each x ∈ Zd. As a result, {ρt}t≥0 can be considered as a linear system, the
theory of which is introduced in Chapter 9 of Liggett (1985).

In Chapter 9 of Liggett (1985), the state space of a linear system is defined to
be [0,+∞)S , where S is a countable set. Note that {ρt}t≥0 is consistent with this

definition since
(
[0,+∞)× [0,+∞)

)Zd can be identified with [0,+∞)Z
d×{1,2} while

Zd × {1, 2} is a countable set.
The intuitive explanation of the evolution of {ρt}t≥0 is as follows. For any

x ∈ Zd, its state ρ(x) =
(
ζ(x), g(x)

)
flips to (0, 0) at rate 1, to

(
ζ(x), 0

)
at rate δ,
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to
(
ζ(x) + 1

γ g(x), 0
)
at rate γ or to

(
ζ(x), g(x) + bζ(y)

)
at rate λ for each neighbor

y.
From now on, we assume that ρ0(x) = (1, 1) for any x ∈ Zd, then we define

φt(x) =


2 if ζt(x) > 0,

1 if ζt(x) = 0 and gt(x) > 0,

0 if ζt(x) = gt(x) = 0

for any t ≥ 0 and x ∈ Zd, where ρt(x) =
(
ζt(x), gt(x)

)
. The following lemma gives

the relationship between {ρt}t≥0 and the two-stage contact process.

Lemma 4.1. {φt}t≥0 is a version of the two-stage contact process with generator
(1.1).

Proof : We only need to check that {φt}t≥0 evolves in the same way as that of the
two-stage contact process {ηt}t≥0. For any x ∈ Zd, if φ(x) = 0, i.e., ρ(x) =

(
0, 0
)
,

then φ(x) flips to 1 when and only when ρ(x) flips to(
0, 0 + bζ(y)

)
=
(
0, bζ(y)

)
for some y ∼ x such that ζ(y) > 0, i.e, φ(y) = 2. Since ρ(x) flips to

(
ζ(x), g(x) +

bζ(y)
)
at rate λ, φ(x) flips from 0 to 1 at rate

λ
∑
y∼x

1{φ(y)=2} = H(x, 1, φ)

defined in Equation (1.1). Through a similar way, it is easy to check that in every
case φ(x) flips to a different state i at rate H(x, i, φ) defined in Equation (1.1) and
the proof is complete.

�
By Lemma 4.1, from now on we assume that {ρt}t≥0 and the two-stage contact

process {ηt}t≥0 are defined under the same probability space such that

ηt(x) =


2 if ζt(x) > 0,

1 if ζt(x) = 0 and gt(x) > 0,

0 if ζt(x) = gt(x) = 0

for any t ≥ 0 and x ∈ Zd. As a result,

νλ(η(O) = 2) = lim
t→+∞

Pλ

(
η

(Zd,∅)
t (O) = 2

)
= lim
t→+∞

Pλ

(
ζt(O) > 0

)
. (4.2)

In view of Lemma 4.1, we have the following lemma, which gives an upper bound
on the critical value λc.

Lemma 4.2. If λ satisfies

sup
t≥0

Eλ
(
ζ2
t (O)

)
< +∞,

then λc ≤ λ.

Proof : By Equation (4.2) and the Cauchy-Schwartz inequality,

lim
t→+∞

Pλ

(
η

(Zd,∅)
t (O) = 2

)
= lim
t→+∞

Pλ

(
ζt(O) > 0

)
≥ lim sup

t→+∞

(
Eλζt(O)

)2
Eλ
(
ζ2
t (O)

) . (4.3)
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For any given x ∈ Zd, we define

f (1)
x (ρ) = ζ(x) and f (2)

x (ρ) = g(x)

for any ρ =
{

(ζ(u), g(u)) : u ∈ Zd
}
∈ X2, i.e., f (i)

x (ρ) is the ith coordinate of
ρ(x). Let {S(t)}t≥0 be the semi-group of {ρt}t≥0. According to Theorem 9.1.27 of
Liggett (1985), which is an extension version of the Hille-Yosida Theorem for the
linear system, we can execute the calculation

d

dt
S(t)f (i)

x (ρ) = S(t)Ω2f
(i)
x (ρ)

for i = 1, 2. Then, taking x = O, according to the definition of Ω2,{
d
dtEλζt(O) = −Eλζt(O) + γEλ

(
1
γ gt(O)

)
,

d
dtEλgt(O) = −(1 + δ + γ)Eλgt(O) + λb

∑
y:y∼O Eλζt(y)

and hence {
d
dtEλζt(O) = −Eλζt(O) + Eλgt(O),
d
dtEλgt(O) = −(1 + δ + γ)Eλgt(O) + (1 + δ + γ)Eλζt(O)

(4.4)

by the spatial homogeneity of {ρt}t≥0 and the initial condition where ρ0(x) = (1, 1)
for all x ∈ Zd.

Since ζ0(O) = g0(O) = 1, it is easy to check that the unique solution to ODE
(4.4) is

Eλζt(O) = Eλgt(O) ≡ 1.

Then, by Equation (4.3),

νλ
(
η(O) = 2

)
= lim
t→+∞

Pλ

(
η

(Zd,∅)
t (O) = 2

)
(4.5)

≥ lim sup
t→+∞

1

Eλ
(
ζ2
t (O)

) ≥ 1

supt≥0Eλ
(
ζ2
t (O)

) > 0

if λ satisfies
sup
t≥0

Eλ
(
ζ2
t (O)

)
< +∞.

Lemma 4.2 follows directly from Equation (4.5) and the equivalent definition of λc
given in Equation (2.2).

�
In view of Lemma 4.2, we want to bound Eλ

(
ζ2
t (O)

)
from above. For this

purpose, we define

Ft(x, 1) = Eλ
(
ζt(O)ζt(x)

)
, Ft(x, 2) = Eλ

(
ζt(O)gt(x)

)
and Ft(x, 3) = Eλ

(
gt(O)gt(x)

)
for each x ∈ Zd and any t ≥ 0. For any t > 0, we

define
Ft =

{
Ft(x, i) : x ∈ Zd, i ∈ {1, 2, 3}

}
as a function from X4 = Zd × {1, 2, 3} to [0,+∞). For a X4 ×X4 matrix

G = {G
(
(x, i), (y, j)

)
}(x,i),(y,j)∈X4

and two functions F+, F− from X4 to R, we write

F+ = GF−
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if and only if
F+(x, i) =

∑
(y,j)∈X4

G
(
(x, i), (y, j)

)
F−(y, j)

for any (x, i) ∈ X4, as the product of finite dimensional matrixes. Then we have
the following lemma.

Lemma 4.3. Let
d

dt
Ft =

{ d
dt
Ft(x, i) : (x, i) ∈ X4

}
,

then
d

dt
Ft = GλFt, (4.6)

where Gλ is a X4 ×X4 matrix such that

Gλ
(
(x, i), (y, j)

)
=



−2 if x 6= O, i = 1 and (y, j) = (x, 1),

2 if x 6= O, i = 1 and (y, j) = (x, 2),

−1 if x = O, i = 1 and (y, j) = (O, 1),

2 if x = O, i = 1 and (y, j) = (O, 2),
1
γ if x = O, i = 1 and (y, j) = (O, 3),

−(2 + δ + γ) if x 6= O, i = 2 and (y, j) = (x, 2),

1 if x 6= O, i = 2 and (y, j) = (x, 3),
1+δ+γ

2d if x 6= O, i = 2, y ∼ x and j = 1,

−(1 + δ + γ) if x = O, i = 2 and (y, j) = (O, 2),

1 + δ + γ if x = O, i = 2 and (y, j) = (e1, 1),

−2(1 + δ + γ) if x 6= O, i = 3 and (y, j) = (x, 3),
1+δ+γ
d if x 6= O, i = 3, y ∼ x and j = 2,

−(1 + δ + γ) if x = O, i = 3 and (y, j) = (O, 3),

2(1 + δ + γ) if x = O, i = 3 and (y, j) = (e1, 2),
(1+δ+γ)2

2dλ if x = O, i = 3 and (y, j) = (O, 1),

0 else.

Proof : According to the spatial homogeneity of the process {ρt}t≥0,

Eλ
(
ζt(u)ζt(v)

)
= Ft(u− v, 1) = Ft(v − u, 1),

Eλ
(
ζt(u)gt(v)

)
= Eλ

(
ζt(v)gt(u)

)
= Ft(u− v, 2) = Ft(v − u, 2), (4.7)

Eλ
(
gt(u)gt(v)

)
= Ft(u− v, 3) = Ft(v − u, 3),

Ft(e1, i) = Ft(y, i)

for any y ∼ O, u, v ∈ Zd and i ∈ {1, 2, 3}.
For given x, y ∈ Zd and any ρ =

{
(ζ(u), g(u)) : u ∈ Zd

}
∈ X2, we define

J (1)
x,y(ρ) = ζ(x)ζ(y), J (2)

x,y(ρ) = ζ(x)g(y) and J (3)
x,y(ρ) = g(x)g(y).

Theorem 9.3.1 of Liggett (1985) is an extended version of the Hille-Yosida Theorem
for the linear system, according to which we can execute the calculation that

d

dt
S(t)J (i)

x,y(ρ) = S(t)Ω2J
(i)
x,y(ρ)
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for any x, y ∈ Zd and i = 1, 2, 3. Therefore, by Equation (4.7) and the definition of
Ω2,

d

dt
Ft(x, 1) = −2Ft(x, 1) + 2Ft(x, 2), (4.8)

d

dt
Ft(x, 2) = −(2 + δ + γ)Ft(x, 2) + Ft(x, 3) +

1 + δ + γ

2d

∑
y:y∼x

Ft(y, 1),

d

dt
Ft(x, 3) = −2(1 + δ + γ)Ft(x, 3) +

(1 + δ + γ)

d

∑
y:y∼x

Ft(y, 2)

when x 6= O and

d

dt
Ft(O, 1) =− Ft(O, 1) + 2Ft(O, 2) +

1

γ
Ft(O, 3), (4.9)

d

dt
Ft(O, 2) =− (1 + δ + γ)Ft(O, 2) + (1 + δ + γ)Ft(e1, 1),

d

dt
Ft(O, 3) =− (1 + δ + γ)Ft(O, 3)

+ 2(1 + δ + γ)Ft(e1, 2) +
(1 + δ + γ)2

2dλ
Ft(O, 1).

Lemma 4.3 follows from Equations (4.8) and (4.9) directly.
�

According to Lemma 4.3, we have the following lemma about a sufficient condi-
tion for supt≥0Eλ

(
ζ2
t (O)

)
< +∞.

Lemma 4.4. If λ satisfies that there exists Kλ : X4 → [0,+∞) such that

GλKλ = 0 (zero function)

and inf(x,i)∈X4
Kλ(x, i) > 0, then

sup
t≥0

Eλ
(
ζ2
t (O)

)
< +∞.

Lemma 4.4 is an analogue of Theorem 9.3.12 of Liggett (1985). Readers familiar
with the theory of linear systems can skip the following proof of this lemma.

To prove Lemma 4.4, we need to define the product of two X4 × X4 matrixes.
For two X4 × X4 matrixes G+ and G−, G+G− is defined as a X4 × X4 matrixes
such that

(G+G−)
(
(x, i), (y, j)

)
=

∑
(u,l)∈X4

G+

(
(x, i), (u, l)

)
G−
(
(u, l), (y, j)

)
for any (x, i), (y, j) ∈ X4, conditioned on the sum is absolute convergence (otherwise
G+G− does not exists). Note that this definition is the same as that of the product
of two finite dimensional matrix, except that the sum must convergence since there
are infinite many terms. Then, we useG2

λ to denoteGλGλ and defineGn+1
λ = GnλGλ

for n ≥ 2 by induction. According to the definition of Gλ, for each (x, i), the number
of (y, j)s satisfying

Gλ
(
(x, i), (y, j)

)
6= 0
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is at most 3(2d+ 1). Hence, the definition of Gnλ is reasonable for each n ≥ 2 and
Gnλ grows at most exponentially in n. Therefore,

+∞∑
n=0

tn|Gnλ
(
(x, i), (y, j)

)
|

n!
< +∞

for any t ≥ 0 and (x, i), (y, j) ∈ X4, where G1
λ = Gλ and G0

λ is the identity matrix.
Consequently, it is reasonable to define etGλ as the X4 ×X4 matrix such that

etGλ
(
(x, i), (y, j)

)
=

+∞∑
n=0

tnGnλ
(
(x, i), (y, j)

)
n!

for any (x, i), (y, j) ∈ X4. The above way to define etGλ is surveyed in Liggett’s
book. For details, see page 114 of Liggett (1985). Now we can give the proof of
Lemma 4.4.

Proof of Lemma 4.4: Since GλKλ = 0, Kλ can be considered as the eigenvector of
Gλ with respect to the eigenvalue 0, then according to a similar analysis with that
in the theory of finite-dimensional linear algebra, Kλ is the eigenvector of etGλ with
respect to the eigenvalue et×0 = 1, i.e.,

Kλ(x, i) =
∑

(y,j)∈X4

etGλ
(
(x, i), (y, j)

)
Kλ(y, j) (4.10)

for any t ≥ 0 and (x, i) ∈ X4.
For any function K from X4 to R, we define

‖K‖∞ = sup
{
|K(x, i)| : (x, i) ∈ X4

}
as the l∞ norm of K. Then, we define X5 as the set of functions from X4 to R with
finite l∞ norm ‖ · ‖∞. It is easy to check that there exists a constant Q(λ) > 0 such
that

‖GλK+ −GλK−‖∞ ≤ Q(λ)‖K+ −K−‖∞

for any K−,K+ ∈ X5, i.e., ODE (4.6) satisfies the Lipschitz condition. Since
X5 is a Banach space with the norm ‖ · ‖∞ and ODE (4.6) satisfies the Lipschitz
condition, according to the theory of infinite dimensional order differential equations
introduced in Chapter 19 of Lang (1983), the unique solution on X5 to ODE (4.6)
is

Ft = etGλF0

i.e.,

Ft(x, i) =
∑

(y,j)∈X4

etGλ
(
(x, i), (y, j)

)
F0(y, j) (4.11)

for any t ≥ 0 and (x, i) ∈ X4. Note that Ft ∈ X5 for any t ≥ 0 following from
Theorem 9.3.1 of Liggett (1985). Since Gλ

(
(x, i), (y, j)

)
≥ 0 when (x, i) 6= (y, j), it

is easy to check that

etGλ
(
(x, i), (y, j)

)
≥ 0
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for any (x, i), (y, j) ∈ X4. Then, according to Equations (4.10), (4.11) and the fact
that F0(x, i) = 1 for any (x, i) ∈ X4,

Eλ
(
ζt(O)ζt(x)

)
= Ft(x, 1) =

∑
(y,j)∈X4

etGλ
(
(x, 1), (y, j)

)
(4.12)

≤
∑

(y,j)∈X4

etGλ
(
(x, 1), (y, j)

) Kλ(y, j)

inf(u,i)∈X4
Kλ(u, i)

=
Kλ(x, 1)

inf(u,i)∈X4
Kλ(u, i)

< +∞

for any t ≥ 0. Let x = O, then Lemma 4.4 follows from Equation (4.12) directly.
�

By Lemma 4.4, we want to find λ which ensures the existence of the positive
eigenvector Kλ of Gλ with respect to the eigenvalue 0. For this purpose, we need
two random walks. We denote by {Sn}n≥0 the simple random walk on Zd such
that

P
(
Sn+1 = y

∣∣Sn = x
)

=
1

2d

for any n ≥ 0 and x, y ∈ Zd, x ∼ y. Let {θn}n≥0 be a random walk on

X4 \ {(O, 3)} =
{

(x, i) : x ∈ Zd, i ∈ {1, 2, 3} and(x, i) 6= (O, 3)
}

such that for each n ≥ 0,

P
(
θn+1 = (y, j)

∣∣θn = (x, i)
)

=

1 if x 6= O, i = 1 and (y, j) = (x, 2),
1

2+δ+γ if x 6= O, i = 2 and (y, j) = (x, 3),
1
2d

1+δ+γ
2+δ+γ if x 6= O, i = 2, y ∼ x and j = 1,

1
2d if x 6= O, i = 3, y ∼ x and j = 2,

1 if (x, i) = (y, j) = (O, 1),

1 if (x, i) = (O, 2) and (y, j) = (e1, 1),

0 else,

then we define

Γ(x, i) = P
(
θn = (O, 1) for some n ≥ 0

∣∣∣θ0 = (x, i)
)

for (x, i) ∈ X4 such that (x, i) 6= (O, 3), i.e., Γ(x, i) is the probability that {θn}n≥0

visits (O, 1) at least once conditioned on θ0 = (x, i). By the definition of {θt}t≥0

and the strong Markov property, Γ(x, i) satisfies

Γ(x, 1) = Γ(x, 2) if x 6= O, (4.13)

Γ(x, 2) =
1

2 + δ + γ + λ
Γ(x, 3) +

1

2d

1 + δ + γ + λ

2 + δ + γ + λ

∑
y:y∼x

Γ(y, 1) if x 6= O,

Γ(x, 3) =
1

2d

∑
y:y∼x

Γ(y, 2) if x 6= O,

Γ(O, 2) = Γ(e1, 1) and Γ(O, 1) = 1.
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For any x ∈ Zd, we define

Γ̃(x) = P
(
Sn = O for some n ≥ 0

∣∣∣S0 = x
)

as the probability that {Sn}n≥0 visits O at least once conditioned on S0 = x. We
claim that

Γ(x, 1) ≤ Γ̃(x) (4.14)
for x 6= O. Equation (4.14) follows from the following analysis. For each n ≥ 0, we
write θn as

(
θn(1), θn(2)

)
such that θn(1) ∈ Zd and θn(2) ∈ {0, 1, 2}. Conditioned

on θ0 = (x, 1) with x 6= O, {θn(1)}n≥0 is a lazy version of {Sn}n≥1 with S0 = x
until the first moment n0 that θn0(1) = O according to the definition of {θn}n≥0.
In other words, before hitting O, θ(1) chooses each neighbor to jump with the same
probability 1

2d when θ(1) jumps at some steps while θ(1) stays still at other steps.
Therefore,

Γ(x, 1) = P
(
θn = (O, 1) for some n ≥ 0

∣∣∣θ0 = (x, 1)
)

≤ P
(
θn(1) = O for some n ≥ 0

∣∣∣θ0 = (x, 1)
)

= P
(
Sn = O for some n ≥ 0

∣∣∣S0 = x
)

= Γ̃(x)

and hence Equation (4.14) holds. According to the result given in Kesten (1964)
authored by Kesten,

Γ̃(e1) =
1

2d
+

1

2d2
+O(

1

d3
) (4.15)

as the dimension d of the lattice grows to infinity. An intuitive explanation of the
above equation is that the random walk either visits O in the first step, or it never
goes there. By Equation (4.15),

γ − (2γ + 2)Γ̃(e1) > 0 (4.16)

when the dimension d of the lattice is sufficiently large. Now we can give the proof
of Equation (2.6).

Proof of Equation (2.6): We assume that the dimension d of the lattice is suffi-
ciently large such that Equation (4.16) holds, then we define

λ̃ =
1 + δ + γ

2d
[
γ − (2γ + 2)Γ̃(e1)

] ,
which is positive. Furthermore, we define

hλ =
γ[1− 2Γ(O, 2)]− 2Γ(e1, 2)− 1+δ+γ

2dλ

γ + 2 + 1+δ+γ
2dλ

.

According to Equation (4.14) and the fact that Γ(O, 2) = Γ(e1, 1) while

Γ(x, 1) = Γ(x, 2)

for x 6= O, it is easy to check that hλ > 0 when λ > λ̃. For any λ > λ̃, we define
Kλ : X4 → [0,+∞) as

Kλ(x, i) =

{
Γ(x, i) + hλ if (x, i) 6= (O, 3),

γ[1− 2Γ(e1, 1)− hλ] if (x, i) = (O, 3).
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Since hλ ≤ 1− 2Γ(O, 2) = 1− 2Γ(e1, 1),

inf
(x,i)∈X4

Kλ(x, i) ≥ inf
{
hλ, γ[1− 2Γ(e1, 1)− hλ]

}
> 0 (4.17)

for λ > λ̃. By the definition of Gλ and Equation (4.13), it is easy to check that

GλKλ = 0 (zero function)

by direct calculation. Then, by Lemma 4.4 and Equation (4.17),

sup
t≥0

Eλ
(
ζ2
t (O)

)
< +∞

when λ > λ̃. Therefore, by Lemma 4.2,

λc ≤ λ

for any λ > λ̃ and hence

λc ≤ λ̃ =
1 + δ + γ

2d
[
γ − (2γ + 2)Γ̃(e1)

] . (4.18)

By utilizing the fact that 1
1−x =

∑+∞
n=0 x

n for x ∈ (0, 1), Equation (2.6) follows
directly from Equations (4.15) and (4.18).

�

5. Upper bounds on 1− π(A,B)

In this section we will prove the following lemma, which gives upper bounds on
1− π(A,B).

Lemma 5.1. For any λ > 1+γ+δ
γ , d ≥ 1, m,n ≥ 0 and A,B ⊆ Zd such that

|A| = m, |B| = n while A ∩B = ∅,

1− π(A,B,
λ

2d
, d) ≤ 1−

(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(
1 + δ + γ

λγ

)n
.

After reading the next section, readers can find that the bound in Lemma 5.1 is
sharp in the limit d→ +∞.

To prove Lemma 5.1, we need two auxiliary processes. The first is the ‘on-off’
process introduced in Krone (1999). The second is a two-type branching process.
The ‘on-off’ process {ξt}t≥0 is a continuous-time Markov process with state space
{0, 1, 2}Zd and transition rates function given as follows. For each x ∈ Zd and t ≥ 0,

ξt(x) flips from i to j at rate (5.1)

1 if i ∈ {1, 2} and j = 0,

δ if i = 2 and j = 1,

γ if i = 1 and j = 2,

λ
∑
y∼x 1{ξt(y)=2} if i = 0 and j = 1,

0 otherwise,

where λ, δ, γ are constants defined as in Equation (1.1).
For any t ≥ 0, we define Ĉt = {x : ξt(x) = 2} and D̂t = {x : ξt(x) = 1}. We

write ξt, Ĉt, D̂t as ξ
(C,D)
t , Ĉ

(C,D)
t , D̂

(C,D)
t when Ĉ0 = C and D̂0 = D.
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By utilizing the graphical representation of the two-stage contact process intro-
duced in Krone (1999), which we reviewed in Section 3, Krone gives the following
duality relationship between the two-stage contact process {ηt}t≥0 and the ‘on-off’
process {ξt}t≥0 with identical parameters λ, δ, γ.

Proposition 5.2. (Krone, 1999) For any A,B,C,D ⊆ Zd such that A ∩ B = ∅
and C ∩D = ∅,

Pλ

(
η

(C,D)
t (x) = 2 for some x ∈ A or η(C,D)

t (y) 6= 0 for some y ∈ B
)

= Pλ

(
ξ

(B,A)
t (x) = 2 for some x ∈ D or ξ(B,A)

t (y) 6= 0 for some y ∈ C
)
.

If we let C = Zd and D = ∅ while we let t grow to infinity, then we have the
following direct corollary.

Corollary 5.3. (Krone, 1999) For any A,B ⊆ Zd such that A ∩B = ∅,

1− π(A,B, λ, d) = Pλ

(
Ĉ

(B,A)
t ∪ D̂(B,A)

t 6= ∅ for all t ≥ 0
)
.

To bound Pλ

(
Ĉ

(B,A)
t ∪ D̂(B,A)

t 6= ∅ for all t ≥ 0
)

from above, we introduce a
two-type branching process where there are some type 1 individuals and some type
2 individuals at t = 0. Each individual is independently removed from the system
at rate 1. Each type 1 individual independently becomes a type 2 individual at
rate γ. Each type 2 individual independently becomes a type 1 individual at rate
δ while it gives birth to a type 1 individual at rate λ.

That is to say, if we use ζ̂t to denote the number of type 2 individuals at t while
use ĝt to denote the number of type 1 individuals at t, then {

(
ζ̂t, ĝt

)
}t≥0 evolves as

follows.

(
ζ̂t, ĝt

)
flips to



(
ζ̂t − 1, ĝt

)
at rate ζ̂t,(

ζ̂t, ĝt − 1
)

at rate ĝt,(
ζ̂t + 1, ĝt − 1

)
at rate γĝt,(

ζ̂t − 1, ĝt + 1
)

at rate δζ̂t,(
ζ̂t, ĝt + 1

)
at rate λζ̂t,

0 otherwise.

(5.2)

Form,n ≥ 0, we use π̂(n,m) to denote the probability of the event that ζ̂t+ĝt > 0
for all t ≥ 0 conditioned on there being n type 2 individuals andm type 1 individuals
at t = 0. We write π̂(n,m) as π̂(n,m, λ) when we need to point out the rate λ at
which a type 2 individual gives birth to a type 1 individual. Then, we have the
following lemma.

Lemma 5.4. For any m,n ≥ 0 and λ > 1+δ+γ
γ ,

π̂(n,m, λ) = 1−
(

1 + δ + γ

λγ

)n(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m
.

Proof : According to the property of independent exponential times and the strong
Markov property, {

π̂(1, 0) = λ
1+δ+λ π̂(1, 1) + δ

1+δ+λ π̂(0, 1),

π̂(0, 1) = γ
1+γ π̂(1, 0).

(5.3)
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Since the activities of different individuals are independent, for any m,n ≥ 0,

π̂(n,m) = 1−
(
1− π̂(1, 0)

)n(
1− π̂(0, 1)

)m
. (5.4)

Applying Equations (5.3) and (5.4) with m = n = 1, we have

π̂(1, 0)
[
λγ
(
1− π̂(1, 0)

)
− (1 + δ + γ)

]
= 0. (5.5)

By direct calculation, when λ > 1+δ+γ
γ , the mean of the number of type 2

children of a type 2 father is

λγ

1 + δ + γ
> 1.

Therefore, π̂(1, 0, λ) > 0 when λ > 1+δ+γ
γ according to the classic theory of branch-

ing processes (See Theorem 3.1 of the book van der Hofstad (2017) authored by
van der Hofstad). Then, by Equation (5.5),

π̂(1, 0, λ) = 1− 1 + δ + γ

λγ

when λ > 1+δ+γ
γ . As a result, by Equations (5.3) and (5.4),

π̂(0, 1, λ) =
λγ − (1 + δ + γ)

λ(γ + 1)

and

π̂(n,m, λ) = 1−
(

1 + δ + γ

λγ

)n(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m
(5.6)

for any m,n ≥ 0 and λ > 1+δ+γ
γ .

�
Now we can give the proof of Lemma 5.1.

Proof of Lemma 5.1: For the ‘on-off’ process {ξt}t≥0 on Zd with parameter λ
2d , δ, γ,

a type 2 vertex gives birth to a type 1 vertex at rate

λ

2d

∑
y∼x

1{ξt(y)=0} ≤
λ

2d
× 2d = λ.

As a result, for A,B ⊆ Zd such that |A| = m and |B| = n while A∩B = ∅, |Ĉ(B,A)
t |

and |D̂(B,A)
t | are stochastically dominated from above by the numbers of type 2 in-

dividuals and type 1 individuals at moment t respectively of the two-type branching
process with n initial type 2 individuals and m initial type 1 individuals. In detail,
conditioned on ζ̂0 = n and ĝ0 = m,

{(
|Ĉ(B,A)
t |, |D̂(B,A)

t |
)}

t≥0
and

{(
ζ̂t, ĝt

)}
t≥0

can be coupled in the following way, which is a so called ‘Vasershtein coupling’ (see
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page 124 of Liggett, 1985). For any t ≥ 0,
(
|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t, ĝt
)
flips to

(
|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |, ζ̂t − 1, ĝt

)
at rate |Ĉ(B,A)

t |,(
|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t − 1, ĝt

)
at rate ζ̂t − |Ĉ(B,A)

t |,(
|Ĉ(B,A)
t |, |D̂(B,A)

t | − 1, ζ̂t, ĝt − 1
)

at rate |D̂(B,A)
t |,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t, ĝt − 1
)

at rate ĝt − |D̂(B,A)
t |,(

|Ĉ(B,A)
t |+ 1, |D̂(B,A)

t | − 1, ζ̂t + 1, ĝt − 1
)

at rate γ|D̂(B,A)
t |,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t + 1, ĝt − 1
)

at rate γ
(
ĝt − |D̂(B,A)

t |
)
,(

|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |+ 1, ζ̂t − 1, ĝt + 1
)

at rate δ|Ĉ(B,A)
t |,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t − 1, ĝt + 1
)

at rate δ
(
ζ̂t − |Ĉ(B,A)

t |
)
,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |+ 1, ζ̂t, ĝt + 1
)

at rate
λ
∑
x∈Ĉ(B,A)

t

∑
y∼x 1{ξt(y)=0}

2d ,(
|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂t, ĝt + 1
)

at rate λζ̂t −
λ
∑
x∈Ĉ(B,A)

t

∑
y∼x 1{ξt(y)=0}

2d .

Note that the above coupling maintains the property that |Ĉ(B,A)
t | ≤ ζ̂t and

|D̂(B,A)
t | ≤ ĝt for all t ≥ 0. Therefore,

P λ
2d ,d

(
Ĉ

(B,A)
t ∪ D̂(B,A)

t 6= ∅ for all t ≥ 0
)
≤ π̂(n,m, λ). (5.7)

Lemma 5.1 follows from Corollary 5.3, Lemma 5.4 and Equation (5.7) directly.
�

6. Lower bounds on 1− π(A,B)

In this section we will give lower bounds on 1 − π(A,B) to complete the proof
of Theorem 2.2. First we introduce some notation and definitions for later use.
Let X̃1, . . . , X̃n, . . . be independent and identically distributed Bernoulli random
variables such that

P (X̃1 = 1) = e−(1+δ)(1− e−γ) = 1− P (X̃1 = 0),

then, for each integer M ≥ 1, we define

α̃(M) = P
(∑M

i=1 X̃i

M
≥ e−(1+δ)(1− e−γ)

2

)
.

For any d ≥ 1, λ > 0 and n ≥ 1, we define

b̃(d, n, λ) = inf

{
ν λ

2d ,d

(
η(x) 6= 0 for some x ∈ A

)
:

A ⊆ Zd and |A| = n

}
.

The aim of this section is to prove the following two lemmas.

Lemma 6.1. For λ > 1+γ+δ
γ and n ≥ 1,

lim inf
d→+∞

b̃(d, n, λ) ≥ 1
1
n

2(γ+1)

γ− 1+δ+γ
λ

+ n−1
n

.
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Lemma 6.2. For m,n ≥ 0, λ > 1+δ+γ
γ , M > n+m and sufficiently large d,

1− π(A,B,
λ

2d
, d) ≥

{
1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m}

× α̃(M )̃b
(
d,
⌈Me−(1+δ)(1− e−γ)

2

⌉
, λ
)

for any A,B ⊆ Zd such that |A| = m, |B| = n and A ∩B = ∅, where

dxe = inf
{
m : m ≥ x and m is an integer

}
.

Note that the right-hand side of the inequality in Lemma 6.1 approaches 1 as
n→ +∞.

Before proving Lemmas 6.1 and 6.2, we first show how to utilize these two lemmas
to prove Theorem 2.2.

Proof of Theorem 2.2: For simplicity, we use c̃(M,d, λ) to denote{
1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m}

× α̃(M )̃b
(
d,
⌈Me−(1+δ)(1− e−γ)

2

⌉
, λ
)

while use µ(M) to denote
⌈
Me−(1+δ)(1−e−γ)

2

⌉
. As we have defined in Section 2,

Π(m,n, λ, d) =

sup

{∣∣∣∣π(A,B,
λ

2d
, d)−

(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(1 + δ + γ

λγ

)n∣∣∣∣ :

A,B ⊆ Zd, |A| = m, |B| = n,A ∩B = ∅

}
.

Then, according to Lemmas 5.1 and 6.2,

Π(m,n, λ, d) ≤ 1−
(

1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(
1 + δ + γ

λγ

)n
− c̃(M,d, λ) (6.1)

for m,n ≥ 0 and λ > 1+δ+γ
γ . By Lemma 6.1,

lim inf
d→+∞

c̃(M,d, λ) ≥

{
1−

(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(
1 + δ + γ

λγ

)n}
(6.2)

× α̃(M)
1

2(γ+1)

µ(M)(γ− 1+δ+γ
λ )

+ µ(M)−1
µ(M)
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for sufficiently large M such that µ(M) > 1 and λ > 1+δ+γ
γ . By Equations (6.1)

and (6.2),

lim sup
d→+∞

Π(m,n, λ, d) ≤

{
1−

(
1− λγ − (1 + δ + γ)

λ(γ + 1)

)m(
1 + δ + γ

λγ

)n}
(6.3)

×

(
1− α̃(M)

1
2(γ+1)

µ(M)(γ− 1+δ+γ
λ )

+ µ(M)−1
µ(M)

)

for any sufficiently large M and λ > 1+δ+γ
γ . According to the weak law of large

numbers (See Theorem 2.2.9 of Durrett, 2010),

lim
M→+∞

α̃(M) = 1.

As a result, let M → +∞,

lim sup
d→+∞

Π(m,n, λ, d) ≤ 0 (6.4)

for any λ > 1+δ+γ
γ according to Equation (6.3) and the fact that

lim
M→+∞

µ(M) = +∞.

Since Π(m,n, λ, d) is nonnegative, Theorem 2.2 follows from Equation (6.4) directly.
�

Now we give the proof of Lemma 6.1.

Proof of Lemma 6.1: Let A ⊆ Zd such that |A| = n, then according to the defini-
tion of ν and Cauchy-Schwartz’s inequality,

ν λ
2d ,d

(
η(x) 6= 0 for some x ∈ A

)
(6.5)

= lim
t→+∞

P λ
2d ,d

(
η

(Zd,∅)
t (x) 6= 0 for some x ∈ A

)
= lim
t→+∞

P λ
2d ,d

(
ζt(x) + gt(x) > 0 for some x ∈ A

)
≥ lim sup

t→+∞
P λ

2d ,d

(
ζt(x) > 0 for some x ∈ A

)

= lim sup
t→+∞

P λ
2d ,d

(∑
x∈A

ζt(x) > 0
)
≥ lim sup

t→+∞

(
E λ

2d ,d

∑
x∈A ζt(x)

)2

E λ
2d ,d

((∑
x∈A ζt(x)

)2
) ,

where {
(
ζt(x), gt(x)

)
: t ≥ 0, x ∈ Zd} is our auxiliary model defined as in Section 4.

We have shown in Section 4 that Eζt(x) = Eζt(O) ≡ 1, then by Equation (6.5),

ν λ
2d ,d

(
η(x) 6= 0 for some x ∈ A

)
≥ lim sup

t→+∞

1
1
n2

∑
x,y∈A Ft(y − x, 1)

(6.6)

= lim sup
t→+∞

1
1
nFt(O, 1) + 1

n2

∑
x,y∈A,x6=y Ft(y − x, 1)

,

where Ft(x, 1) = E λ
2d ,d

(
ζt(O)ζt(x)

)
= E λ

2d ,d

(
ζt(y)ζt(x+y)

)
defined as in Section 4.

For λ > 1+δ+γ
γ and sufficiently large d, let K λ

2d
be the function from X4 to R
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defined as before equation (4.17). Then, K λ
2d

is the eigenvector with respect to the
eigenvalue 0 of the X4 ×X4 matrix G λ

2d
and

Ft(x, 1) ≤
K λ

2d
(x, 1)

inf(u,i)∈X4
K λ

2d
(u, i)

(6.7)

as we have shown in Equation (4.12) and the proof of Equation (2.6). Note that
inf(x,i)∈X4

K λ
2d

(x, i) > 0 when λ > 1+γ+δ
γ and d is sufficiently large according to

the definition of K λ
2d

and the fact that

Γ(e1, 1) ≤ Γ̃(e1) =
1

2d
+O(

1

d2
).

As we have defined in Section 4,

K λ
2d

(x, 1) = Γ(x, 1) + h λ
2d
,

where

h λ
2d

=
γ[1− 2Γ(O, 2)]− 2Γ(e1, 2)− 1+δ+γ

λ

γ + 2 + 1+δ+γ
λ

.

By Equation (4.17),

inf
(x,i)∈X4

K λ
2d

(x, i) ≥ inf
{
h λ

2d
, γ[1− 2Γ(e1, 1)− h λ

2d
]
}
.

Then, according to the definition of hλ and the fact that Γ(e1, 1) ≤ Γ̃(e1) = 1
2d +

O( 1
d2 ),

γ[1− 2Γ(e1, 1)− h λ
2d

] > h λ
2d

and hence
inf

(x,i)∈X4

K λ
2d

(x, i) ≥ h λ
2d

(6.8)

for sufficiently large d. By Equations (6.7) and (6.8), for sufficiently large d,

Ft(x, 1) ≤
Γ(x, 1) + h λ

2d

h λ
2d

≤
Γ̃(x) + h λ

2d

h λ
2d

≤
Γ̃(e1) + h λ

2d

h λ
2d

(6.9)

for any x 6= O while

Ft(O, 1) ≤
1 + h λ

2d

h λ
2d

. (6.10)

By Equations (6.6), (6.9) and (6.10),

ν λ
2d ,d

(
η(x) 6= 0 for some x ∈ A

)
≥ 1

1
n

1+h λ
2d

h λ
2d

+ n(n−1)
n2

Γ̃(e1)+h λ
2d

h λ
2d

. (6.11)

Since Γ̃(e1) = 1
2d +O( 1

d2 ) and

lim
d→+∞

h λ
2d

=
γ − 1+δ+γ

λ

γ + 2 + 1+δ+γ
λ

,

Lemma 6.1 follows directly from Equation (6.11).
�

At last, we only need to give the proof of Lemma 6.2. Before jumping into the
proof, we explain the meaning of each term in Lemma 6.2 to make the strategy of the
proof easy to catch. By Corollary 5.3 proved by Krone, the term 1−π(A,B, λ2d , d) is
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the survival probability of types 1 and 2 vertices of the ‘on-off’ process {ξ(B,A)
t }t≥0.

By Lemma 5.4, the term

1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m

is the survival probability of the two-type branching process with parameters
2d−M

2d λ, γ, δ and n type 2 individuals and m type 1 individuals at t = 0, which we
will show in the proof that is a lower bound of the probability that the number of
types 1 and 2 vertices of {ξ(B,A)

t }t≥0 reaches M for some t ≥ 0. We will show in
the proof that the term α̃(M) is a lower bound of the probability that the number
of type 2 vertices of the ‘on-off’ process {ξt}t≥0 reaches

⌈
Me−(1+δ)(1−e−γ)

2

⌉
for some

t ≥ 0 conditioned on there being at least M types 1 and 2 vertices at t = 0. We
will show in the proof that the term b̃

(
d,
⌈
Me−(1+δ)(1−e−γ)

2

⌉
, λ
)
is a lower bound of

the probability that types 1 and 2 vertices of the ‘on-off’ process {ξt}t≥0 survives
conditioned on there being

⌈
Me−(1+δ)(1−e−γ)

2

⌉
type 2 vertices at t = 0. According

to the above meanings of the four terms, Lemma 6.2 holds according to the strong
Markov property. Now we give the details of the proof of Lemma 6.2.

Proof of Lemma 6.2: Throughout this proof we assume that n,m,M, d are fixed
such that M > n+m and 2d > M . For A,B ⊆ Zd such that |A| = m, |B| = n and
A ∩B = ∅, let

τM (A,B) = inf{t ≥ 0 : |Ĉ(B,A)
t |+ |D̂(B,A)

t | = M},

where {ξt}t≥0 is the ‘on-off’ process introduced in Section 5 and

Ĉt = {x : ξt(x) = 2} while D̂t = {x : ξt(x) = 1}

defined as in Section 5. Let {
(
ζ̂Mt , ĝMt

)
}t≥0 be the two-type branching process

defined as in Section 5 with parameter 2d−M
2d λ, γ, δ, then we define

τ̂M = inf{t ≥ 0 : ζ̂Mt + ĝMt = M}.

For the ‘on-off’ process {ξ(B,A)
t }t≥0 on Zd with parameter λ

2d , a type 2 vertex gives
birth to a type 1 vertex at rate at least

λ

2d
× (2d−M)

before the moment τM (A,B), since there are at lest (2d −M) neighbors in state
0 before the moment τM (A,B). As a result, |Ĉ(B,A)

t | + |D̂(B,A)
t | is stochasti-

cally dominated from below by ζ̂Mt + ĝMt with ζ̂M0 = n and ĝM0 = m for t ∈
[0, τM (A,B)). In detail, the Vasershtein coupling of

(
|Ĉ(B,A)
t |, |D̂(B,A)

t |
)

and(
ζ̂Mt , ĝMt

)
for 0 ≤ t ≤ τM (A,B) is given as follows. For any 0 ≤ t ≤ τM (A,B),
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|Ĉ(B,A)
t |, |D̂(B,A)

t |, ζ̂Mt , ĝMt

)
flips to

(
|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |, ζ̂Mt − 1, ĝMt

)
at rate ζ̂Mt ,(

|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |, ζ̂Mt , ĝMt

)
at rate |Ĉ(B,A)

t | − ζ̂Mt ,(
|Ĉ(B,A)
t |, |D̂(B,A)

t | − 1, ζ̂Mt , ĝMt − 1
)

at rate ĝMt ,(
|Ĉ(B,A)
t |, |D̂(B,A)

t | − 1, ζ̂Mt , ĝMt

)
at rate |D̂(B,A)

t | − ĝMt ,(
|Ĉ(B,A)
t |+ 1, |D̂(B,A)

t | − 1, ζ̂Mt + 1, ĝMt − 1
)

at rate γĝMt ,(
|Ĉ(B,A)
t |+ 1, |D̂(B,A)

t | − 1, ζ̂Mt , ĝMt

)
at rate γ

(
|D̂(B,A)

t | − ĝMt
)
,(

|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |+ 1, ζ̂Mt − 1, ĝMt + 1
)

at rate δζ̂Mt ,(
|Ĉ(B,A)
t | − 1, |D̂(B,A)

t |+ 1, ζ̂Mt , ĝMt

)
at rate δ

(
|Ĉ(B,A)
t | − ζ̂Mt

)
,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |+ 1, ζ̂Mt , ĝMt + 1
)

at rate λ(2d−M)
2d ζ̂Mt ,(

|Ĉ(B,A)
t |, |D̂(B,A)

t |+ 1, ζ̂Mt , ĝMt

)
at rate

λ

(∑
x∈Ĉ(B,A)

t

∑
y∼x 1{ξt(y)=0}−(2d−M)ζ̂Mt

)
2d .

Note that the above coupling maintains the property that |Ĉ(B,A)
t | ≥ ζ̂Mt and

|D̂(B,A)
t | ≥ ĝMt for 0 ≤ t ≤ τM (A,B). Therefore,

P λ
2d ,d

(
τM (A,B) < +∞

)
≥ P

(
τ̂M < +∞

∣∣∣ζ̂M0 = n, ĝM0 = m
)
. (6.12)

We claim that

P
(
τ̂M < +∞

∣∣∣ζ̂M0 = n, ĝM0 = m
)
≥ (6.13)

P
(
ζ̂Mt + ĝMt > 0 for all t ≥ 0

∣∣∣ζ̂M0 = n, ĝM0 = m
)
.

Equation (6.13) holds according to the following analysis. Let

Ξ̃ = inf

{
P
(
ζ̂M1

2
+ ĝM1

2
= 0
∣∣∣ζ̂M0 = k, ĝM0 = l

)
: l + k ≤M

}
,

then Ξ̃ > 0 since P
(
ζ̂M1

2

+ ĝM1
2

= 0
∣∣∣ζ̂M0 = k, ĝM0 = l

)
> 0 for each pair of (l, k) and

there are finite many pairs of (l, k)s satisfying l + k ≤M . Let

τ̃ = inf
{
n : n is a nonnegative integer and ζ̂Mn+ 1

2
+ ĝMn+ 1

2
= 0
}
,

then ζ̂Mn + ĝMn ≤M for each integer n ≥ 0 on the event {τ̂M = +∞} and hence τ̃ is
stochastically dominated from above by the geometric random variable Ỹ satisfying

P (Ỹ = n) = Ξ̃(1− Ξ̃)n

for n = 0, 1, 2, . . . on the event {τ̂M = +∞}. As a result,

P
(
τ̃ < +∞

∣∣∣τ̂M = +∞
)
≥ P (Ỹ < +∞) = 1.

That is to say {
ζ̂Mt + ĝMt = 0 for some t ≥ 0

}
⊇
{
τ̂M = +∞

}



Two limit theorems for the high-dimensional two-stage contact process 853

in the sense of ignoring a set with probability zero, Equation (6.13) follows from
which directly.

By Lemma 5.4 with λ replaced by 2d−M
2d λ,

P
(
ζ̂Mt + ĝMt > 0 for all t ≥ 0

∣∣∣ζ̂M0 = n, ĝM0 = m
)

= 1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m
.

Then, by Equations (6.12) and (6.13),

P λ
2d ,d

(
τM (A,B) < +∞

)
(6.14)

≥ 1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m
.

We claim that the ‘on-off’ process is also monotonic with respect to the partial
order ‘�’ defined in Section 2. To prove this claim, we couple two ‘on-off’ processes
{ξ(1)
t }t≥0 and {ξ(2)

t }t≥0 with initial condition ξ(2)
0 � ξ(1)

0 in the following way, which
is also a Vasershtein coupling. For any t ≥ 0 and each x ∈ Zd,

(
ξ

(1)
t (x), ξ

(2)
t (x)

)
flips from (i, j) to (l, k) at rate

δ if (i, j) = (2, 2) and (l, k) = (1, 1),

1 if (i, j) = (2, 2) and (l, k) = (0, 0),

δ if (i, j) = (2, 1) and (l, k) = (1, 1),

1 if (i, j) = (2, 1) and (l, k) = (0, 0),

γ if (i, j) = (2, 1) and (l, k) = (2, 2),

δ if (i, j) = (2, 0) and (l, k) = (1, 0),

1 if (i, j) = (2, 0) and (l, k) = (0, 0),

λ
∑
y∼x 1{ξ(2)t (y)=2} if (i, j) = (2, 0) and (l, k) = (2, 1),

γ if (i, j) = (1, 1) and (l, k) = (2, 2),

1 if (i, j) = (1, 1) and (l, k) = (0, 0),

γ if (i, j) = (1, 0) and (l, k) = (2, 0),

1 if (i, j) = (1, 0) and (l, k) = (0, 0),

λ
∑
y∼x 1{ξ(2)t (y)=2} if (i, j) = (1, 0) and (l, k) = (1, 1),

λ
∑
y∼x 1{ξ(2)t (y)=2} if (i, j) = (0, 0) and (l, k) = (1, 1),

λ
∑
y∼x

(
1{ξ(1)t (y)=2} − 1{ξ(2)t (y)=2}

)
if (i, j) = (0, 0) and (l, k) = (1, 0).

Note that the above coupling maintains the property that ξ(2)
t � ξ

(1)
t for all t ≥ 0.

As a result, for A1, B1 ⊆ Zd such that A1 ∩B1 = ∅ while |A1|+ |B1| = M ,

P λ
2d ,d

(
Ĉ

(B1,A1)
t ∪ D̂(B1,A1)

t 6= ∅ for all t ≥ 0
)
≥ (6.15)

P λ
2d ,d

(
Ĉ

(∅,A1∪B1)
t ∪ D̂(∅,A1∪B1)

t 6= ∅ for all t ≥ 0
)
.
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By direct calculation, an initial type 1 vertex becomes a type 2 vertex at some
moment s < 1 and then stays in state 2 till moment t = 1 with probability at least

P (Ỹ2 > 1, Ỹ3 < 1, Ỹ4 > 1) = e−(1+δ)(1− e−γ),

where Ỹ2, Ỹ3, Ỹ4 are independent exponential times with rates 1, γ, δ respectively.
Therefore, for A1, B1 ⊆ Zd such that A1∩B1 = ∅ while |A1|+|B1| = M , |Ĉ(∅,A1∪B1)

1 |
is stochastically dominated from below by a random variable following the binomial
distribution B(M, e−(1+δ)(1− e−γ)) and

P λ
2d ,d

(
|Ĉ(∅,A1∪B1)

1 | ≥ Me−(1+δ)(1− e−γ)

2

)
≥ α̃(M). (6.16)

For A2, B2 ⊆ Zd such that |B2| =
⌈Me−(1+δ)(1−e−γ)

2

⌉
and A2 ∩ B2 = ∅, by Corol-

lary 5.3 and the definition of b̃(d,
⌈Me−(1+δ)(1−e−γ)

2

⌉
, λ),

P λ
2d ,d

(
Ĉ

(B2,A2)
t ∪ D̂(B2,A2)

t 6= ∅ for all t ≥ 0
)

(6.17)

≥ P λ
2d ,d

(
Ĉ

(B2,∅)
t ∪ D̂(B2,∅)

t 6= ∅ for all t ≥ 0
)

= 1− π(∅, B2,
λ

2d
, d) = ν λ

2d ,d

(
η(x) 6= 0 for some x ∈ B2

)
≥ b̃(d,

⌈Me−(1+δ)(1− e−γ)

2

⌉
, λ).

By Equations (6.16), (6.17) and the Markov property, for A1, B1 ⊆ Zd such that
A1 ∩B1 = ∅ while |A1|+ |B1| = M ,

P λ
2d ,d

(
Ĉ

(B1,A1)
t ∪ D̂(B1,A1)

t 6= ∅ for all t ≥ 0
)

(6.18)

≥ α̃(M )̃b
(
d,
⌈Me−(1+δ)(1− e−γ)

2

⌉
, λ
)
.

On the event τM (A,B) < +∞, B̃ := Ĉ
(B,A)
τM (A,B) and Ã := D̂

(B,A)
τM (A,B) satisfy Ã∩B̃ = ∅

while |Ã|+ |B̃| = M . Therefore, by Equations (6.14), (6.18) and the strong Markov
property,

P λ
2d ,d

(
Ĉ

(B,A)
t ∪ D̂(B,A)

t 6= ∅ for all t ≥ 0
)

(6.19)

≥

{
1−

(
1 + δ + γ
(2d−M)λ

2d γ

)n(
1−

(2d−M)λ
2d γ − (1 + δ + γ)

(2d−M)λ
2d (γ + 1)

)m}

× α̃(M )̃b
(
d,
⌈Me−(1+δ)(1− e−γ)

2

⌉
, λ
)

for A,B ⊆ Zd such that |A| = m, |B| = n and A ∩B = ∅. Lemma 6.2 follows from
Corollary 5.3 and Equation (6.19) directly.

�
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