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1. Introduction and main results

Branching processes have been introduced independently by Bienaymé (1845)
and by Watson and Galton (1875) in the 19th century in order to study the extinc-
tion of family names. Since then they have been widely used to model the dynamics
of populations or the spread of infections for instance Haccou et al. (2007); Allen
(2011). Branching processes in random environment have been first introduced
and studied by Smith and Wilkinson and Athreya and Karlin in the early seven-
ties Smith and Wilkinson (1969); Athreya and Karlin (1971b,a). By introducing
such processes, their aim was to better understand the effect of the environmental
stochasticity on the population dynamics. Initially restricted to environments sat-
isfying strong assumptions or to particular offspring distributions, they have been
later generalised. Their study has known a renewed interest during the last two
decades, with the development of new techniques to investigate them, in particular
by linking events on the trajectory of the population process until a certain genera-
tion n with an other event of its associated random walk until the same time n (see,
for instance, Afanasyev et al., 2005, 2012; Bansaye and Böinghoff, 2013; Vatutin
et al., 2013 for more detail).

A branching process in an independent identically distributed (i.i.d.) random
environment is specified by a sequence of i.i.d. random offspring generating func-
tions

fn(s) :=

∞∑
k=0

fn [k] sk, n ∈ {1, 2, ...} =: N, 0 ≤ s ≤ 1.

Denoting by Zn the number of individuals in the process at time n, we assume
that there is initially one individual in the population (Z0 = 1) and we define the
population size evolution by the relations

E[sZn |f1, . . . , fn;Z0, Z1, . . . , Zn−1] := (fn(s))Zn−1 , n ∈ N.
Let

Xk := log f ′k(1) = logE[Zk|fk, Zk−1 = 1], k ∈ N,
and denote

S0 := 0, Sn := X1 +X2 + . . .+Xn

the auxiliary random walk associated with the quenched expectation of offspring
number. The long time behaviour of the process Z := {Zn, n ≥ 0} is intimately
related to the properties of the random walk S := {Sn, n ≥ 0} (see Geiger and Ker-
sting (2000); Geiger et al. (2003); Afanasyev et al. (2005) for instance). According
to fluctuation theory of random walks (see Feller, 1950), three different cases are
possible: either S drifts to ∞, or S drifts to −∞, or the random walk oscillates:

lim sup
n→∞

Sn = +∞ and lim inf
n→∞

Sn = −∞

with probability 1. Accordingly, the branching process is called supercritical, sub-
critical, or critical Afanasyev et al. (2005). We consider the last possibility. In this
case the stopping time

T− := min{k ≥ 1 : Sk < 0}
is finite with probability 1 and, as a result (see Afanasyev et al., 2005), the extinction
time

T := min{k ≥ 1 : Zk = 0}
of the process Z is finite with probability 1.



Critical BPRE and Cauchy domain of attraction 879

In this work we will be interested in the asymptotic behaviour of the survival
probability P(Zn > 0) of the population at large time and in the growth rate of
the process {Zk, 0 ≤ k ≤ n} given Zn > 0. They are natural problems when
dealing with populations, and they have been answered under various assumptions
in the case of branching processes in random environment (see, for instance, Kozlov
(1976); Geiger and Kersting (2000); Dyakonova et al. (2004); Afanasyev et al. (2005,
2012); Vatutin and Dyakonova (2017); Vatutin and D’yakonova (2019)).

We assume that the random walk S satisfies the Doney-Spitzer condition, which
is a classical condition in fluctuation theory, and writes

lim
n→∞

1

n

n∑
m=1

P (Sm > 0) =: ρ. (1.1)

According to Bertoin and Doney (1997), this condition is equivalent to

lim
n→∞

P (Sn > 0) =: ρ.

The case ρ ∈ (0, 1) has been studied by Afanasyev and his coauthors in Afanasyev
et al. (2005). Under some mild additional assumptions they proved the following
equivalent for the survival probability of the population at large times n,

P(Zn > 0) ∼ l(n)

n1−ρ , (1.2)

where l(·) is a slowly varying function. They also proved that, as n ≥ rn →∞

L
(
Zrn+b(n−rn)tce

−Srn+b(n−rn)tc , 0 ≤ t ≤ 1|Zn > 0
)

=⇒ L (Wt, 0 ≤ t ≤ 1) (1.3)

where Wt = W for all 0 ≤ t ≤ 1 and W is a random variable meeting the condition
P (0 < W <∞) = 1.

Here the symbol =⇒ stands for weak convergence with respect to the Skorokhod
topology in the space D [0, 1] of càdlàg functions on the unit interval.

The aim of the present paper is to complement (1.2) and (1.3) by considering as
n → ∞ the asymptotic behaviour of P(Zn > 0) and proving a Yaglom-type limit
theorem for the scaled population size of {Zk, 0 ≤ k ≤ n} given Zn > 0 in the cases
ρ = 0 and ρ = 1.

Before stating our main results, we need to introduce some notation and a set of
assumptions on the law of the random walk S. The main assumption is that S is in
the domain of attraction of a stable law with parameter 1. It means that there exist
a slowly varying function l(·), and two nonnegative numbers p and q, p + q = 1,
such that

P (X1 > x) ∼ p l(x)

x
and P (X1 < −x) ∼ q l(x)

x
, x→∞. (1.4)

As we will see (Remark 1.1), S will satisfy the Doney-Spitzer condition with
ρ = 0 (resp. ρ = 1) in the case p > q (resp. p < q). To show that we introduce two
scaling sequences which play the main role in the asymptotic behaviour of various
quantities related to the random walk S. The first sequence, {an, n ≥ 1}, satisfies,
as n→∞ the relation

l(an)

an
∼ 1

n
. (1.5)
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Note that the sequence is regularly varying with parameter 1 as n→∞ (see Seneta,
1976). We can thus rewrite it as

an = nl1(n) (1.6)

where l1(.) is a slowly varying function as n → ∞. The second sequence,
{hn, n ∈ N}, is specified by

hn := nµ (an) with µ(x) = E
[
X11{|X1|≤x}

]
, (1.7)

where 1{A} is the indicator of the event A.
In addition, we suppose that the random walk S is oscillating, that is to say,

µ := E [X1] = 0. (1.8)

Let
l∗(z) :=

∫ ∞
z

l (y)

y
dy. (1.9)

Let us make some obsevations on p, q and ρ before going further.

Remark 1.1. Assume that conditions (1.4) and (1.8) hold. Then according to Theo-
rem 2.1, hn → −∞ (resp. +∞) when p > q (resp. p < q). Moreover, from Rogozin
(1976), Sn/hn converges to 1 in probability when n goes to infinity (indeed when
q > p, µ is positive and slowly varying at infinity, and xP(|X1| > x)/µ(x) ∼
l(x)/((q − p)l∗(x)) → 0 at infinity, and symmetric conditions in the case q < p).
We deduce that Sn → −∞ if p > q (hence ρ = 0) and Sn → +∞ if p < q (hence
ρ = 1).

Remark 1.2. In the case p = q, ρ may take different values depending on the
asymptotics of hn/an for large n. More precisely, we may have at least the following
three cases:

• If hn/an → b ∈ R when n→∞,

ρ =
1

2
+

1

π
arctan

(
2b

π

)
∈ (0, 1)

(see (iii) p.35 in Berger (2019)).
• If hn/an → ∞ when n → ∞, then ρ = 1 (see Equation (7.20) in Berger,

2019).
• Symmetrically, if hn/an → −∞ when n→∞, then ρ = 0.

Remark 1.3. There are more exotic cases than (1.4) where ρ = 0 or ρ = 1 under
condition (1.8). We focus on processes satisfying (1.4), as in this case the symmetry
makes our results simpler to express.

As in Afanasyev et al. (2005), we need to impose restrictions on the standardized
truncated second moment of the environment, namely:

ζk(a) :=

∞∑
y=a

y2fk[y]/

( ∞∑
y=0

yfk[y]

)2

, (1.10)

for a, k ∈ N. The moment condition depends on the value of ρ in the Doney-Spitzer
condition (1.1).

Condition A. (ρ = 0↔ p > q) There exist a ∈ N and β > 0 such that

E[ζβ1 (a)] <∞ and E[U(X1)ζβ1 (a)] <∞,



Critical BPRE and Cauchy domain of attraction 881

where U is the renewal function associated with the strict descending ladder epochs
of S,

γ0 := 0, γj+1 := min
(
n > γj : Sn < Sγj

)
, j ∈ N0 := N∪ {0} , (1.11)

and is defined by

U(x) :=

∞∑
j=0

P(Sγj ≥ −x), x > 0, U (0) = 1, U (x) = 0, x < 0. (1.12)

Condition B. (ρ = 1↔ p < q) There exist a ∈ N and β > 0 such that

E
[(

log+ ζ1(a)
)1+β

]
<∞ and E

[
U(X1)

(
log+ ζ1(a)

)1+β
]
<∞.

Recall that the moment condition in Afanasyev et al. (2005) under the Doney-
Spitzer condition (1.1) with ρ ∈ (0, 1) was the existence of a ∈ N and β > 0 such
that:

E
[(

log+ ζ1(a)
)1/ρ+β]

<∞ and E
[
U(X1)

(
log+ ζ1(a)

)1+β
]
<∞.

Our Condition B is thus a natural extension of the moment condition to the case
ρ = 1. In contrast, such a natural extension for ρ = 0 would have provided an
infinite exponent for the logarithm and we could not obtain a moment condition
on the logarithm only. Notice however that we can take β as small as we want in
Condition A. Thus, our moment condition is not very strong.

Last, for technical reasons, we need to add an assumption which will be used for
the case p > q only.

Condition C. There exists a function g(x) = eo(x), x→∞, such that
∞∑
j=1

1/Λ(g(j)) <∞,

where Λ is a slowly varying function (see the proof of Proposition 12 in Kortchemski
and Richier, 2019), defined by

Λ

(
1

1− s

)
:= exp

( ∞∑
k=1

P(Sk ≥ 0)

k
sk

)
, s ∈ [0, 1). (1.13)

This assumption is needed to ensure that the population has a positive probability
to survive in a ’good’ environment, that is to say in an environment conditioned to
stay positive (see Lemma 4.1).

We give now examples of branching processes in random environment satisfying
Conditions A and B. Some of them also meet Conditions C, and some of them
do not, as we will show.

Since U(x), x ≥ 0, is a renewal function, there exists a constant C ∈ (0,∞) such
that U(x) ≤ C (1 + x+). Given condition (1.8) it follows that E [U(X1)] <∞. This
observation shows that Conditions A and B hold true if ζ1(a) is bounded from
above for some a.
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Example 1.4. Assume that the offspring generating functions are geometric with
probability 1:

fn(s) =
1− bn
1− sbn

(1.14)

where 0 < bn < 1 are random and i.i.d. and such that

Xn = log f ′n(1) = log
bn

1− bn
, n ∈ Z+

satisfy (1.4). We can check that if condition (1.14) is valid then ζ1(2) ≤ 4 (see, for
instance, Example 5.2, page 103 in Kersting and Vatutin, 2017). Thus, Conditions
A and B are satisfied.
We will now focus on the case p > q and give two examples of sequences (bn, n ∈ N)
such that (1.14) holds: the first process meets Condition C, the second one does
not.

• Assume first that

P(b1 ∈ [1− y, 1− y + dy]) ∼ pdy

y ln2 y(ln ln 1/y)2
, (y → 0).

Then we get that l(x) = 1/ ln2 x, l∗(x) = 1/ lnx, and an ∼ n/ ln2 n for large
n. From Equation (7.23) in Berger (2019), we know that

∞∑
k=1

P(Sk ≥ 0)

k
sk ∼ − p

p− q
ln l∗(µ1/(1−s)), (s→ 1),

and we also have (see p. 13 in Berger (2019)) that

l∗(µn) ∼ l∗(an), (n→∞).

We deduce from these two asymptotics that when s is close to 1,
∞∑
k=1

P(Sk ≥ 0)

k
sk ∼ − p

p− q
ln l∗(a1/(1−s))

∼ − p

p− q
ln l∗(1/((1− s) ln2(1− s)))

∼ p

p− q
ln ln(1/(1− s)) = ln

(
(− ln(1− s))p/(p−q)

)
.

Hence

ln Λ

(
1

1− s

)
=

∞∑
k=1

P(Sk ≥ 0)

k
sk

= ln
(

(− ln(1− s))p/(p−q)
)

+ ε(1− s) ln ln(1/(1− s))

with ε(y) converging to 0 when y goes to 0. Now, if we replace s by
1 − e−j/ ln j which goes to 1 when j goes to infinity, we get for j large
enough

Λ
(
ej/ ln j

)
=

(
j

ln j

)p/(p−q)+ε(e−j/ ln j)

≥
(

j

ln j

)(p+1)/2p

,

where we used that the function p 7→ p/(2p−1) is decreasing on (1/2, 1) and
that ε(e−j/ ln j) goes to 0 as j goes to ∞. Condition C is thus satisfied.
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• Now assume that

P(b1 ∈ [1− y, 1− y + dy]) ∼ pdy

y(ln ln y)(ln ln ln 1/y)2
, (y → 0).

Then l(x) = 1/(lnx(ln lnx)2), l∗(x) = 1/ ln lnx, and an ∼ n/(lnn(ln lnn)2)
for large n. Similar calculations as in for the previous examples yield that

Λ(x) = (ln lnx)
p/(p−q)+ε(1/x)

,

with ε(.) going to 0 at 0. In particular, if we take a function f such that
for large j, f(j) ≤ ej , we obtain for j large enough

Λ(f(j)) ≤ (ln j)
2p/(p−q)

= o(j).

We deduce that Condition C is not satisfied for this example.

Example 1.5. Assume that the offspring generating functions are Poisson with prob-
ability 1:

fn(s) = eλn(s−1)

where λn, n ∈ Z+ are i.i.d. and X1 = log λ1 satisfies (1.4). Direct calculations show
that ζ1(2) ≤ 2 (see Example 5.2., page 103 in Kersting and Vatutin, 2017). We can
provide examples satisfying or not Condition C similarly as the previous case.

As previously observed under different assumptions on the random environment
(see, for instance, Vatutin et al., 2013 for a comprehensive review on the critical and
subcritical cases (before 2013) or the recent monograph Kersting and Vatutin, 2017)
the survival of a branching process in random environment is essentially determined
by its survival until the moment when the associated random walk S attains its
infimum. The idea is that if we divide the trajectory of the process on the interval
[0, n] into two parts, one before the running infimum of the random environment S,
and one after this running infimum, the process will live in a favorable environment
after the running infimum of the random environment, and will thus survive with
a nonnegligible probability until time n, provided it survived until the time of the
running infimum. This is essentially, in words, the idea of the proof of our main
result (see Theorem 1.6). To state things more rigorously, we introduce the running
infimum of the random walk S:

Ln := min {S0, S1, ..., Sn} , n ∈ N0. (1.15)

Depending on the relative positions of p and q (defined in (1.4)) or equivalently
on the value of ρ (0 or 1) we have the two following possible asymptotics for the
survival probability of the process Z:

Theorem 1.6. Assume that Conditions (1.4) and (1.8) hold.
• If p > q, and Conditions A and C hold then there exists a constant
K1 ∈ (0,∞) such that, as n→∞

P (Zn > 0) ∼ K1P (Ln ≥ 0) ∼ K1
l2(n)

n
, (1.16)

where l2(.) is a function slowly varying at infinity.
• If p < q and Condition B holds then there exists a constant K2 ∈ (0,∞)
such that, as n→∞

P (Zn > 0) ∼ K2P (Ln ≥ 0) ∼ K2l3(n),

where l3(.) is a function slowly varying at infinity.
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Hence, despite the irregular behaviour of the associated random walk S (a null
expectation but a probability converging to 1 to be positive (resp. negative)), the
asymptotic behaviour of the survival probability is, except for the slowly varying
function, the limit of the one obtained in Afanasyev et al. (2005) by taking ρ = 0
or 1 instead of ρ ∈ (0, 1).

Now we investigate the behaviour of the process {Zk, 0 ≤ k ≤ n} given {Zn > 0}.
To this aim, let us introduce the process Xr,n = {Xr,n

t , 0 ≤ t ≤ 1} where
Xr,n
t := Zr+b(n−r)tce

−Sr+b(n−r)tc , 0 ≤ t ≤ 1.

The following Yaglom-type theorem is an analogue of Theorem 1.3 in Afanasyev
et al. (2005).

Theorem 1.7. Assume that Conditions (1.4) and (1.8) hold. Let (rn, n ∈ Z+) be
a sequence of positive integers such that rn ≤ n and rn → ∞ as n → ∞. If p > q
and Conditions A and C hold or p < q and Condition B holds then

L (Xr,n|Zn > 0) =⇒ L (Wt, 0 ≤ t ≤ 1) , (n→∞),

where
P (Wt = W for all t ∈ [0, 1]) = 1

for a random variable W such that P (0 < W <∞) = 1.

We see that similarly to the case ρ ∈ (0, 1) the growth of Z is mainly specified
by the properties of the random walk S.

The rest of the paper is structured as follows. Section 2 is dedicated to the study
of the running extrema of the random walk S. In Section 3, we perform a change
of measure, obtained as a Doob-h transform, where the renewal function U(·) of S
and the indicator of the event {Ln ≥ 0} are involved. Finally, the proofs of the
main results, Theorems 1.6 and 1.7 are completed in Sections 4 and 5.

2. Estimates for the suprema of the associated random walk

The aim of this section is to provide some bounds for the probabilities of the
events related to the running infimum and maximum of the random walk S. We
recall the definition of the running infimum in (1.15), and introduce the running
maximum via

Mn := max {S1, ..., Sn} , n ∈ N.
We first list a number of known results which will be needed in our arguments.

Recall definitions (1.5) and (1.7). The following results have been first derived in
Theorem 3.4 in Berger (2019), and then under weaker conditions in Kortchemski
and Richier (2019) (see Proposition 12 and Remark 13).

Theorem 2.1. Assume that Conditions (1.4) and (1.8) hold. Then when n goes
to infinity,

1) if p > q then hn ∼ − (p− q)nl∗ (an)→ −∞ and

P (Ln ≥ 0) ∼ l (|hn|)
|hn|

Λ(n) =:
l2(n)

n
, (2.1)

for some slowly varying functions l2 (recall that the sowly varying function Λ has
been defined in (1.13)).
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2) if p < q then hn ∼ (q − p)nl∗ (an)→ +∞ and

P (Ln ≥ 0) ∼ 1

Λ̃(n)
=: l3(n), (2.2)

for some slowly varying functions l3. The slowly varying function Λ̃ is defined
as Λ (recall (1.13)) but with −S in place of S, and with strict inequalities (i.e.
P(−Sk > 0) in the sum).

3) if p > q then

P (Mn < 0) ∼ 1

Λ(n)
=: l4(n) (2.3)

4) if p < q then

P (Mn < 0) ∼ l (|hn|)
|hn|

Λ̃(n) =:
l5(n)

n
. (2.4)

Recall the definitions of the strict descending ladder epochs {γj , j ∈ N0} of S
and of their associated renewal function U(·) in (1.11) and (1.12), respectively, and
introduce the strict ascending ladder epochs {Γj , j ∈ N0} of S and their associated
renewal function V (·) via

Γ0 := 0, Γj+1 := min(n > Γj : Sn > SΓj ), j ∈ N0,

and

V (x) := 1 +

∞∑
j=1

P(SΓj < x), x > 0, V (0) = 1, V (x) = 0, x < 0.

For a slowly varying function li(·) let

l̂i(n) :=

∫ n

1

li(x)

x
dx.

The next lemma provides bounds on the probabilities for the running extrema to
be in a certain interval.

Lemma 2.2. Assume that Conditions (1.4) and (1.8) hold. Then there exists a
constant C ∈ (0,∞) such that, for every x ≥ 0 and n ∈ N,

P (Ln ≥ −x) ≤

 CU(x)n−1̂l2 (n) if p > q,

CU(x)l3 (n) if p < q,
(2.5)

and

P (Mn < x) ≤


CV (x)l4 (n) if p > q,

CV (x)n−1̂l5 (n) if p < q.

Proof : We know by a Spitzer identity that, for any λ ≥ 0

∞∑
n=0

snE
[
eλLn

]
= exp

{ ∞∑
n=1

sn

n
E
[
eλmin(0,Sn)

]}

= exp

{ ∞∑
n=1

sn

n
E
[
eλSn ;Sn < 0

]}
exp

{ ∞∑
n=1

sn

n
P (Sn ≥ 0)

}
.
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A Sparre-Anderson identity (see, for instance, Theorem 4.3 in Kersting and Vatutin
(2017)) allows us to rewrite the first term at the right hand side as

exp

{ ∞∑
n=1

sn

n
E
[
eλSn ;Sn < 0

]}
= 1 +

∞∑
n=1

snE
[
eλSn ; Γ′ > n

]
=

∫ +∞

0

e−λxUs(dx),

where
Γ′ := min (n ∈ N, Sn ≥ 0)

and

Us(x) =

∞∑
n=0

snP (Sn ≥ −x; Γ′ > n) , x ≥ 0.

Therefore,
∞∑
n=0

snP (Ln ≥ −x) = Us(x) exp

{ ∞∑
n=1

sn

n
P (Sn ≥ 0)

}

= Us(x)

∞∑
n=1

snP (Ln ≥ 0) (2.6)

for x ≥ 0. Note that by the duality principle for random walks (see, for instance,
Kersting and Vatutin (2017) p. 63),

lim
s↑1

Us(x) =

∞∑
n=0

P (Sn ≥ −x; Γ′ > n)

= 1 +

∞∑
n=1

P (Sn ≥ −x;Si < 0, i = 1, ..., n)

= 1 +

∞∑
n=1

P (Sn ≥ −x;Sn < Sj , j = 0, 1, ..., n− 1)

= 1 +

∞∑
n=1

n∑
r=1

P (Sn ≥ −x; γr = n) (2.7)

= 1 +

∞∑
r=1

∞∑
n=r

P (Sn ≥ −x; γr = n) = 1 +

∞∑
r=1

P (Sγr ≥ −x) = U(x).

On the other hand, if s ↑ 1 then (2.1) and an application of Corollary 1.7.3 in
Bingham et al. (1989) with ρ = 0 give for p > q,

∞∑
n=0

snP (Ln ≥ 0) ∼
∞∑
n=0

sn
l2(n)

n
∼ l̂2

(
1

1− s

)
,

while (2.2) and again an application of Corollary 1.7.3 in Bingham et al. (1989) but
now with ρ = 1 justify, for p < q the asymptotics

∞∑
n=0

snP (Ln ≥ 0) ∼
∞∑
n=0

snl3(n) ∼ l3(1/ (1− s))
1− s

.
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Thus if p > q then, as s ↑ 1
∞∑
n=0

snP (Ln ≥ −x) ∼ U(x)̂l2

(
1

1− s

)
, (2.8)

and if p < q then, as s ↑ 1
∞∑
n=0

snP (Ln ≥ −x) ∼ U(x)
l3(1/ (1− s))

1− s
.

Using (2.6), (2.8) and the monotonicity of Us(x) in s we get, for p > q

∞∑
n=0

snP (Ln ≥ −x) ≤ U(x)

∞∑
n=0

snP (Ln ≥ 0) ∼ U(x)̂l2

(
1

1− s

)
.

Since P (Ln ≥ −x) is nonincreasing with n, we have for p > q

n

2

(
1− 1

n

)n
P (Ln ≥ −x) ≤

∑
n/2≤m≤n

(
1− 1

n

)m
P (Lm ≥ −x)

≤ CU(x)̂l2 (n) ,

and, similarly, for p < q

n

2

(
1− 1

n

)n
P (Ln ≥ −x) ≤ CU(x)nl3 (n) .

As a result

P (Ln ≥ −x) ≤

 CU(x)n−1̂l2 (n) if p > q,

CU(x)l3 (n) if p < q.

By the same arguments and (2.3) we have as s ↑ 1

∞∑
n=1

snP (Mn < 0) ∼
∞∑
n=1

snl4(n) ∼ l4(1/ (1− s))
1− s

for p > q, and by (2.4)
∞∑
n=1

snP (Mn < 0) ∼
∞∑
n=1

sn
l5(n)

n
∼ l̂5

(
1

1− s

)
for p < q. Thus

P (Mn < x) ≤


CV (x)l4 (n) if p > q,

CV (x)n−1̂l5 (n) if p < q.

This ends the proof. �

Remark 2.3. Observe that
∞∑
n=1

snP (Ln ≥ 0)

∞∑
n=1

snP (Mn < 0)

= exp

{ ∞∑
n=1

sn

n
P (Sn ≥ 0)

}
× exp

{ ∞∑
n=1

sn

n
P (Sn < 0)

}
=

1

1− s
.
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Thus, as n→∞
l̂2 (n) l4(n) ∼ 1, l̂5 (n) l3(n) ∼ 1. (2.9)

Set
bn := (nan)

−1
, n ∈ N.

The next statement describes some properties of the running extrema of S.

Lemma 2.4. (compare with Proposition 2.3 in Afanasyev et al. (2012)) Assume
that Conditions (1.4) and (1.8) hold. Then there exists a constant c such that,
uniformly for all x, y ≥ 0 and all n ∈ N

Px (Ln ≥ 0, y − 1 ≤ Sn < y) ≤ c bn U(x)V (y) , (2.10)

and
P−x (Mn < 0,−y ≤ Sn < −y + 1) ≤ c bn V (x)U(y) .

Proof : We prove the latter statement only. Since the density of any α-stable law is
bounded, it follows from Gnedenko and Kolmogorov (1954) and Stone (1965) local
limit theorems that there exists a finite constant C such that for all n ∈ N and all
z,∆ ≥ 0,

P (Sn ∈ [−z,−z + ∆)) ≤ C∆

an
. (2.11)

Let x, y ≥ 0, S ′ be the dual random walk

S′i = Sn − Sn−i
and L′i, i ≤ n, the corresponding minima. Denote

An := {Mbn/3c < x}
A′n := {L′bn/3c ≥ −y} ,
A′′n := {x− y ≤ Sn < x− y + 1}

= {x− y − Tn ≤ Sb2n/3c − Sbn/3c < x− y − Tn + 1} ,
with

Tn := Sbn/3c + Sn − Sb2n/3c.
Let An be the σ–field generated by X1, . . . , Xbn/3c and Xb2n/3c+1, . . . , Xn. Then
Tn is An–measurable, whereas Sb2n/3c−Sbn/3c is independent of An. Consequently
from (2.11) and the fact that {an, n ∈ N} is regularly varying there is a c > 0 such
that

P (A′′n | An) ≤ ca−1
n .

Since An, A′n are An-measurable and independent, it follows that

P (An ∩A′n ∩A′′n) ≤ ca−1
n P (An)P (A′n) .

Moreover, according to Lemma 2.2

P
(
L′bn/3c ≥ −y

)
≤ c1U(y)n−1̂l2 (n) , P(Mbn/3c < x) ≤ c2V (x)l4(n),

if p > q and

P
(
L′bn/3c ≥ −y

)
≤ c1U(y)l3 (n) , P(Mbn/3c < x) ≤ c2V (x)n−1̂l5(n),

if p < q. This and (2.9) give the uniform estimate

P (An ∩A′n ∩A′′n) ≤ cV (x)U(y) bn
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for c sufficiently large. Now notice that

{Mn < x, x− y ≤ Sn < x− y + 1} ⊂ An ∩A′n ∩A′′n .

The fact that the event on the left hand side is included in An ∩ A′′n is straight-
forward. It is also included in A′n due to the following series of inequalities, which
hold for any 0 ≤ i ≤ n on the event {x− y ≤ Sn,Mn < x}:

x− y ≤ Sn − Si + Si ≤ Sn − Si +Mn ≤ Sn − Si + x = S′n−i + x.

This ends the proof. �

We have now all the tools needed to prove the following statement.

Lemma 2.5. Assume that Conditions (1.4) and (1.8) hold. Then for every x ≥ 0
as n→∞

1) if p > q then

P (Ln ≥ −x) ∼ U(x)P (Ln ≥ 0) ∼ U(x)
l2(n)

n
, (2.12)

P (Mn < x) ∼ V (x)P (Mn < 0) ∼ V (x)l4(n);

2) if p < q then

P (Ln ≥ −x) ∼ U(x)P (Ln ≥ 0) ∼ U(x)l3(n), (2.13)

P (Mn < x) ∼ V (x)P (Mn < 0) ∼ V (x)
l5(n)

n
.

Proof : As the derivations of the four equivalents are similar, we only check the first
one. Let

τn := min {j ≤ n : Sj = Ln} . (2.14)

We have

P (Ln ≥ −x) =

n∑
j=0

P (Ln−j ≥ 0)P (Sj ≥ −x; τj = j)

=

n∑
j=0

P (Ln−j ≥ 0)P (Sj ≥ −x;Mj < 0) ,

where we used the duality principle as in (2.7). In view of (2.1), for any ε ∈ (0, 1)
and j ≤ εn,

P (Ln−j ≥ 0) ∼ n

n− j
P (Ln ≥ 0) , n→∞.

Moreover, from (2.7), we have
nε∑
j=0

P (Sj ≥ −x;Mj < 0) =

nε∑
j=0

P (Sj ≥ −x; Γ′ > j) ∼ U(x), n→∞. (2.15)

We deduce that
nε∑
j=0

P (Ln−j ≥ 0)P (Sj ≥ −x;Mj < 0)−P (Ln ≥ 0)U(x) = O(ε)P (Ln ≥ 0)U(x)
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when n is large enough. Further, by (2.10), (2.1) and (1.6), for any δ > 0

n∑
j=nε

P (Ln−j ≥ 0)P (Sj ≥ −x;Mj < 0) ≤ CbnxU(x)

n∑
j=nε

P (Ln−j ≥ 0)

≤ CxU(x)

nan
l̂2(n)

=
CxU(x)

n2

l̂2(n)

l1(n)
= o

(
1

n2−δ

)
= o (P (Ln ≥ 0)) , n→∞, (2.16)

since (̂l2(n)/l1(n))n−δ → 0 as n → ∞ for any δ > 0. Combining (2.15) and (2.16)
and letting ε→ 0 give (2.12). �

The last result of this section is a technical statement which will be needed in
the proof of Theorem 1.6. As Lemma 2.5, it is a consequence of Lemma 2.4 and
can be proven in the same way as Corollary 2.4 in Afanasyev et al. (2012).

Lemma 2.6. Assume that Conditions (1.4) and (1.8) hold. For any θ > 0 there
exists a finite c (depending on θ) such that for all x, y ≥ 0

Ex
[
e−θSn ;Ln ≥ 0, Sn ≥ y

]
≤ c bnV (x)U(y) e−θy

and
E−x

[
eθSn ;Mn < 0, Sn < −y

]
≤ c bnV (y)U(x) eθy .

3. Change of measure

Recall the definition of the renewal function U in (1.12). One of its fundamental
properties is the identity (see, for instance, Kozlov, 1976; Bertoin and Doney, 1994)

E [U(x+X);X + x ≥ 0] = U(x), x ≥ 0.

This property has often been used to construct a change of probability measure
(see for instance Geiger and Kersting, 2000), and we will use such a construction
in our proof.

Denote by F the filtration consisting of the σ−algebras Fn generated by the
random variables S0, ..., Sn and Z0, ..., Zn. Taking into account U(0) = 1 we may
introduce probability measures P+

n on the σ-fields Fn by means of the densities

dP+
n := U(Sn)1{Ln≥0} dP .

Because of the martingale property the measures are consistent, i.e., P+
n+1|Fn =

P+
n . Therefore (choosing a suitable underlying probability space), there exists a

probability measure P+ on the σ-field F∞ :=
∨
n Fn such that

P+|Fn = P+
n , n ≥ 0 . (3.1)

We note that (3.1) can be rewritten as

E+ [Yn] = E[YnU(Sn);Ln ≥ 0] (3.2)

for every Fn–measurable nonnegative random variable Yn. This change of measure
is the well-known Doob h-transform from the theory of Markov processes. In par-
ticular, under P+ the process S becomes a Markov chain with state space R+

0 and
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transition kernel

P+(x; dy) :=
1

U(x)
P (x+X ∈ dy)U(y) , x ≥ 0 .

In our context, we can show that P+ can be realised as the limit of the probability
of the process conditioned to live in a nonnegative environment (in the sense that
the running infimum is null). It is the content of the next lemma, and will allow us
to link the survival probability of the population process to the probability for the
running infimum to be null, in order to prove Theorem 1.6.

Lemma 3.1. (compare with Lemma 2.5 in Afanasyev et al., 2005) Assume that
Conditions (1.4) and (1.8) hold. For k ∈ N let Yk be a bounded real-valued Fk–
measurable random variable. Then, as n→∞,

E[Yk | Ln ≥ 0] → E+ Yk .

More generally, let Y1, Y2, . . . be a uniformly bounded sequence of real-valued random
variables adapted to the filtration F , which converges P+–a.s. to some random
variable Y∞. Then, as n→∞,

E[Yn | Ln ≥ 0] → E+ Y∞ .

Proof : The proof of this lemma in the case p > q coincides with the proof of
Lemma 2.5 in Afanasyev et al. (2005) when taking ρ = 0 and we omit it. In the
case p < q some modifications are needed to check the second claim of the lemma.
Namely, writing

ml(x) := P(Ll ≥ −x) for x ≥ 0, l ∈ N
and using (2.5), (2.13) and (3.2) we deduce for λ > 1, k ≤ n and n large enough,
the existence of a finite C such that∣∣E[Yn − Yk|Lbλnc ≥ 0]

∣∣ =

∣∣∣∣∣E
[

(Yn − Yk)
1{inf0≤k≤b(λ−1)nc Sn+k−Sn≥−Sn}

mbλnc(0)
1{Ln≥0}

]∣∣∣∣∣
≤ E

[
|Yn − Yk|

mb(λ−1)nc(Sn)

mbλnc(0)
1{Ln≥0}

]
≤ CE

[
|Yn − Yk|U(Sn)1{Ln≥0}

]
= CE+ [|Yn − Yk|] ,

where we have used that for any k ≥ 0, Sn+k − Sn is independent of Fn. Letting
sequentially n and k go to infinity and applying the dominated convergence theorem,
we obtain that the right hand side of the previous series of inequalities vanishes.
Applying now the first claim of the lemma and using the fact that n 7→ P(Ln ≥ 0)
is slowly varying we obtain

E[Yn;Lbλnc ≥ 0] =
(
E+[Y∞] + o(1)

)
P(Lbλnc ≥ 0) =

(
E+[Y∞] + o(1)

)
P(Ln ≥ 0)

and
E[Yn;Ln ≥ 0]−E[Yn;Lbλnc ≥ 0] = o (P(Ln ≥ 0)) .

This ends the proof. �

Let ν ≥ 1 be the time of the first prospective minimal value of S, i.e., a minimal
value with respect to the future development of the walk,

ν := min{m ∈ N : Sm+i ≥ Sm for all i ≥ 0}.



892 C. Dong, C. Smadi and V. A. Vatutin

Moreover, let ι ∈ N be the first weak ascending ladder epoch of S,

ι := min{m ∈ N : Sm ≥ 0} .
We denote

f̃n := fν+n and S̃n := Sν+n − Sν , n ∈ N.
The previous result allows us to rigorously express what we mean by living in

a good environment for the population process. The next lemma and its proof are
the same as Lemma 2.6 in Afanasyev et al. (2005) and its proof. We thus do not
provide it and refer the reader to Afanasyev et al. (2005).

Lemma 3.2. (see Lemma 2.6 in Afanasyev et al., 2005) Suppose that ι <∞ P–a.s.
Then ν <∞ P+–a.s. and

(1) (f1, f2, . . .) and (f̃1, f̃2, . . .) are identically distributed with respect to P+;
(2) (ν, f1, . . . , fν) and (f̃1, f̃2, . . .) are independent with respect to P+;
(3) P+{ν = k, Sν ∈ dx} = P{ι = k, Sι ∈ dx} for all k ≥ 1.

4. Proof of Theorem 1.6

Thanks to the results we have collected in the previous sections, we are now
able to prove our first main result. We have already demonstrated (Lemmas 3.1
and 3.2) that we can divide the survival probability of Z until time n into two
parts: the probability for the process to survive until the time when the running
infimum Ln is attained for the first time, and the probability that the process Z
survives in a "good" environment, i.e., in an environment with a running infimum
of L null. We still have to prove that the population indeed has a nonnegligible
probability to survive in this good environment, for large n. It is the content of the
next result.

Let

ηk :=

∞∑
y=0

y(y − 1) fk [y]
/ ( ∞∑

y=0

y fk [y]
)2

, k ∈ N.

Lemma 4.1. Assume that Conditions (1.4) and (1.8) hold. If p > q, and Condi-
tions A and C hold or if p < q and Condition B holds, then

∞∑
k=0

ηk+1e
−Sk < ∞ P+–a.s.

Proof : Let us first assume that p > q, and Conditions A and C hold. Recall
the definition of the standardized truncated second moment of the environment in
(1.10). Following Afanasyev et al. (2005) Equation (2.24) we have the following
bound, for any a ∈ N,

∞∑
k=0

ηk+1e
−Sk ≤ a

∞∑
k=0

e−Sk +

∞∑
k=0

ζk+1(a)e−Sk =: Aa + Ba.

The first step of the proof consists in bounding the two sums by using the times
0 := ν(0) < ν(1) < · · · of prospective minima of S, defined by

ν(j) := min{m > ν(j − 1) : Sm+i ≥ Sm for all i ≥ 0} , j ∈ N.
By definition,

Sk ≥ Sν(j), if k ≥ ν(j).
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Thus, we get

Aa ≤ a
∞∑
j=0

(ν(j + 1)− ν(j))e−Sν(j) ,

and

Ba ≤
∞∑
j=0

 ν(j+1)∑
k=ν(j)+1

ζk(a)

 e−Sν(j) .

Now we aim at bounding the variables ν(j). For the sake of readability, let us
introduce

νj = ν(j)− ν(j − 1), j ∈ N.
By Lemma 3.2.(1) and (2), ν(j) is the sum of j nonnegative i.i.d. random variables,
each having the distribution of ν = ν(1) = ν1. Lemma 3.2.(3) and (2.3) imply for
large k

P+ (ν > k) = P{ι > k} = P{Mk < 0}
≤ 2l4(k) = 2/Λ(k).

These estimates and Condition C imply
∞∑
j=1

P+ (νj > g(j)) ≤ 2

∞∑
j=1

1/Λ(g(j)) <∞.

Hence, by the Borel-Cantelli lemma there will be P+–a.s. only a finite number cases
when νj > g(j). And as g(i) = eo(i), i→∞, for any γ > 0,

j∑
i=0

g(i) = o
(
eγj
)
, j →∞.

Thus, there will be P+–a.s. only a finite number of cases when ν(j) > eγj .
Now we would like to bound the term

ν(j+1)∑
k=ν(j)+1

ζk(a)

in order to show that the random variable Ba is almost surely finite. The first step
to obtain this bound is to use the inequality (2.25) in Afanasyev et al. (2005), that
we now recall: for any x ≥ 0,

P+(ζk(a) > x) ≤ P(ζ1(a) > x) + E[U(X1); ζ1(a) > x]P(Lk−1 ≥ 0).

Applying it with x = kα/γ (with α > 0 to be selected later on) and using the
Markov inequality as well as Condition A yields for any k ∈ N,

P+(ζk(a) > kα/γ) ≤ c

kαβ/γ
+

c

kαβ/γ
P(Lk−1 ≥ 0) ≤ c

kαβ/γ
+

c

kαβ/γ
l̂2(k)

k
,

where we applied (2.5) and the value of c can change from line to line. The constants
α and β are fixed. However, we know that γ can be chosen as small as we want.
In particular, we may select it in such a way that αβ/γ = 2. Applying again the
Borel-Cantelli lemma we deduce that there is P+–a.s. only a finite number of cases
when ζk(a) > kα/γ .
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Combining this fact with the previous results we obtain that for j large enough
and k ∈ [ν(j − 1) + 1, ν(j)], P+–a.s.,

ζk(a) ≤ kα/γ ≤
(
eγj
)α/γ

= eαj and νj ≤ g(j).

Hence for j large enough, P+–a.s.,

ν(j)∑
k=ν(j−1)+1

ζk(a) ≤ eαjνj ≤ eαjg(j).

The last part of the proof consists in estimating the Sν(j) from below. According
to Lemma 3.2 (1) and (2), the random variable Sν(j) is the sum of j non-negative
i.i.d. random variables with positive mean. Thus, there exists a λ > 0 such that

Sν(j) ≥ λj eventually P+–a.s.

Choosing α < λ in the previous inequalities, we obtain

∞∑
k=0

ηk+1e
−Sk ≤ Aa + Ba ≤ c

∞∑
j=0

(a+ eα(j+1))νj+1e
−Sν(j)

≤ c
∞∑
j=0

eα(j+1)g(j + 1)e−λj <∞ P+–a.s.,

where the value of c can change from line to line. It ends the proof for the case
p > q.

The proof for the case p < q is the same as the proof of Lemma 2.7 in Afanasyev
et al. (2005). Indeed, even if the authors of the mentioned paper assume ρ ∈ (0, 1),
their proof remains valid when we take ρ = 1 as it is the case when p < q. �

Introduce iterations of probability generating functions f1(.), f2(.), ... by setting

fk,n(s) := fk+1(fk+2(. . . (fn(s)) . . .))

for 0 ≤ k ≤ n− 1, 0 ≤ s ≤ 1, and letting fn,n(s) := s. By definition,

P (Zn > 0| fk+1, . . . , fn;Zk = 1) = 1− fk,n(0)

and we have (see, for instance, formula (3.4) in Afanasyev et al. (2005))

1− f0,n(0) ≥

(
e−Sn +

n−1∑
k=1

ηk+1e
−Sk

)−1

implying by Lemma 4.1

1− f0,∞(0) := lim
n→∞

(1− f0,n(0)) ≥

( ∞∑
k=1

ηk+1e
−Sk

)−1

> 0 P+ − a.s. (4.1)

We finally provide the proof of the main result of this section.
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Proof of Theorem 1.6: Let us begin with the case p > q. Recall the definition of τn
in (2.14). We write

P (Zn > 0) =

n∑
k=0

P (Zn > 0; τn = k)

=

N∑
k=0

E [1− f0,n(0); τn = k] +

nε∑
k=N+1

E [1− f0,n(0); τn = k]

+

n∑
k=nε+1

E [1− f0,n(0); τn = k] , (4.2)

for some N ∈ N to be precised later on, and a small positive ε. Let us first bound
the second term in the right hand side of (4.2)

nε∑
k=N+1

E [1− f0,n(0); τn = k] ≤
nε∑

k=N+1

E [1− f0,k(0); τn = k]

=

nε∑
k=N+1

E [1− f0,k(0); τk = k]P (Ln−k ≥ 0)

≤
nε∑

k=N+1

E
[
eSk ; τk = k

]
P (Ln−k ≥ 0) .

By the duality principle for random walks and Lemma 2.6, with x = y = 0, we have

E
[
eSk ; τk = k

]
= E

[
eSk ;Mk < 0

]
≤ c bk.

This estimate, the equivalence

bk =
1

kak
∼ 1

k2l1(k)
, (k →∞)

and (2.1) give
nε∑

k=N+1

E [1− f0,n(0); τn = k] ≤ P
(
Ln(1−ε) ≥ 0

) ∞∑
k=N+1

1

k2l1(k)

≤ C
P
(
Ln(1−ε) ≥ 0

)
aN

,

where C is a finite constant. Now we focus on the third part of the right hand side of
(4.2). Similarly as for the second part, we have the following series of inequalities,
where the value of the finite constant C may change from line to line and may
depend on ε:

n∑
k=nε+1

E [1− f0,n(0); τn = k] ≤ C

n∑
k=nε+1

1

k2l1(k)
P (Ln−k ≥ 0)

≤ C
l̂2(n)

n2l1(n)
= o

(
1

n3/2

)
. (4.3)

Finally,
N∑
k=0

E [1− f0,n(0); τn = k] =

N∑
k=0

E
[
1− fZkk,n(0); τk = k, Lk,n ≥ 0

]
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where
Lk,n = min

k≤j≤n
(Sj − Sk) .

Recalling Lemma 3.1 and using the independency and homogeneity of the environ-
mental components we conclude that for k ≤ N ,

E
[
1− fZkk,n(0); τk = k, Lk,n ≥ 0

]
=

∞∑
j=1

P (Zk = j, τk = k)P (Ln−k ≥ 0)E
[
1− f j0,n−k(0)|Ln−k ≥ 0

]
∼ P (Ln ≥ 0)

∞∑
j=1

P (Zk = j, τk = k)E+
[
1− f j0,∞(0)

]
(4.4)

as n→∞. Note that by Lemma 4.1 and (4.1)

E+
[
1− f j0,∞(0)

]
≥ E+ [1− f0,∞(0)] ≥ E+

( ∞∑
k=0

ηk+1e
−Sk

)−1
 > 0.

Thus, letting first n to infinity, then ε to zero and, finally, N to infinity we prove
(1.16), with

K1 =

∞∑
k=0

∞∑
j=1

P (Zk = j, τk = k)E+
[
1− f j0,∞(0)

]
.

If we introduce the event

Au.s. := {Zn > 0 for all n ≥ 0}

we may rewrite K1 as follows:

K1 =

∞∑
k=0

E
[
P+
Zk

(Au.s.), τk = k
]
. (4.5)

The proof for the case q > p is very similar. The only difference is when looking
for an equivalent of Equation (4.3). Applying (2.2) yields

n∑
k=nε+1

E [1− f0,n(0); τn = k] ≤ C

n∑
k=nε+1

1

k2l1(k)
P (Ln−k ≥ 0)

≤ Cε
l3(n)

nl1(n)
= o

(
1

n1/2

)
= o (P (Ln ≥ 0)) .

We end the proof as for (1.16) and K2 has the same expression as K1. �

5. Proof of Theorem 1.7

The proof of Theorem 1.7 is similar to the proof of Theorem 1.3 in Afanasyev
et al. (2005). For this reason we mainly concentrate on the differences with the
proof of the mentioned theorem assuming throughout that the assumptions of The-
orem 1.7 are in force.
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Proof : First we note that the same as in Proposition 3.1 of Afanasyev et al. (2005)
one can show that

P+ (Zn > 0 for all n | f1, f2, ...) > 0 P+–a.s.

In particular,
P+ (Zn > 0 for all n) > 0 .

Moreover, as n→∞,

e−SnZn → W+ P+–a.s. , (5.1)

where the random variable W+ has the property

{W+ > 0} = {Zn > 0 for all n} P+–a.s. (5.2)

Let φ be a bounded continuous function on the space D[0, 1] of càdlàg functions on
the unit interval. For a fixed s ∈ R let W s denote the process with constant paths

W s
t := e−sW+ , 0 ≤ t ≤ 1.

By (5.1) the process e−sXrn,n converges to W s as n ≥ rn →∞ in the Skorokhod-
metric on the space D[0, 1] P+–a.s.

Yn := φ(e−sXrn,n)1{Zn>0} → Y∞ := φ(W s)1{W+>0} P+–a.s. (5.3)

For r ≤ n and z ∈ N0 define

ψ(z, s, r, n) := Ez[φ(e−sXr,n)1{Zn>0};Ln ≥ 0] .

Lemma 3.1 and (5.3) imply as n ≥ rn →∞

ψ(z, s, rn, n) = P (Ln ≥ 0)
(
E+
z [φ(W s)1{W+>0}] + o(1)

)
. (5.4)

Now observe that for k ≤ r ≤ n

E[φ(Xr,n)1{Zn>0}, Lk,n ≥ 0 | Fk] = ψ(Zk, Sk, r − k, n− k) P–a.s.

Hence, using the arguments and conclusions of Theorem 1.6 we see that, for each
fixed N

E[φ(Xrn,n)1{Zn>0}] =

N∑
k=0

E [ψ(Zk, Sk, rn − k, n− k); τk = k] + εN,nP (Ln ≥ 0)

where, for each fixed k

lim
n≥rn→∞

E [ψ(Zk, Sk, rn − k, n− k); τk = k]

P (Ln ≥ 0)

=E
[
E+
Zk

[φ(e−SkW+)1{W+>0}];Zk > 0, τk = k
]

and
lim
N→∞

lim sup
n→∞

εN,n = 0.

Thus,

lim
n≥rn→∞

E[φ(Xrn,n)|Zn > 0] =
1

K

∞∑
k=0

E
[
E+
Zk

[φ(e−SkW+)1{W+>0}];Zk > 0, τk = k
]

=

∫
φ(w)λ(dw) (5.5)
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where (see Theorem 1.6) K = K1 if p > q , K = K2 if p < q and

λ(dw) =
1

K

∞∑
k=0

E [λZk,Sk(dw);Zk > 0, τk = k]

with
λz,s(dw) = P+

z

(
W s ∈ dw,W+ > 0

)
.

Let φ ≡ 1. By (4.5) and a similar expression for K2 the limit in (5.5) is equal 1
in both cases. Thus, λ is a probability measure. Besides, by (5.2) we see that λz,s
puts its entire mass on strictly positive constant functions and hence, so does λ.
This completes the proof of Theorem 1.7. �
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