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Abstract. We consider a family of Bessel Processes that depend on the starting
point x and dimension ¢, but are driven by the same Brownian motion. Our main
result is that almost surely the first time a process hits 0 is jointly continuous in
x and §, provided § < 0. As an application, we show that the SLE(x) welding
homeomorphism is continuous in k for £ € [0,4]. Our motivation behind this is to
study the well known problem of the continuity of SLE, in x. The main tool in our
proofs is random walks with increments distributed as infinite mean Inverse-Gamma
laws

1. Introduction

In this article we prove the joint continuity of level zero hitting times of Bessel
processes w.r.t. its starting point and its dimension. For a real d, the Bessel process
of dimension ¢ started from = € R\ {0} is defined as the solution to the stochastic
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differential equation (SDE)

dZy = dBy + %Zitdt, Zy =, (1.1)
where B, is a standard Brownian motion. Let (¥ := inf{t > 0/Z;(x) = 0}. Also,
set ¢ = 0. It is well known that (¥ < oo almost surely if and only if § < 2. For a
fixed starting point x, the random variable (§ is very well understood. There is an
extensive literature covering the subject, see e.g. Lawler (2018). We are interested
in ¢ = {¢J}s,s considered as a stochastic process indexed by = and ¢. Our main
result is the following theorem:

Theorem 1.1. The function (x,0) — (5 is almost surely jointly continuous in
z€R and § <O0.

Remark 1.2. The continuity of ¢§ w.r.t. z is not expected to hold for § > 0. For
example, when § = 1, ¢ is a Lévy subordinator process which in particular has
jumps. However, the almost sure continuity of (s at a fixed x follows easily for all
d < 2 using a Laplace transform computation, see Altman (2018, Lemma 5) for
details. The continuity of ¢ for 6 < 0 also implies that = — (§ is a continuous
increasing bijection of [0,00). For § € (0,3/2], this function is injective, but not
surjective (or equivalently continuous). For ¢ € (3/2,2), this will not be injective
with positive probability, see Lawler (2018, Proposition 2.11).

The process ( is very closely related to Schramm-Loewner-Evolutions (SLEs).
We provide an application of Theorem 1.1 to the continuity in « for the welding
homeomorphism of SLE, for x € [0,4]. Let us first recall some definitions and
mention our initial motivation to consider this problem.

Let H = {z + iy |y > 0} be the upper half plane. Given a simple curve
v : [0,T] - HU {0} such that 79 = 0 and , € H for all £ > 0, the welding
homeomorphism associated to v is defined as follows. Let f : H — H \ 4[0, 7] be
the (unique) conformal map such that lim,_,o f(z) = v and f(z) = z + O(1) as
z — 00. The map f extends continuously to H (see Chapter 2 in Pommerenke, 1992).
For some real numbers 27, < 0 < z7, f maps both [a:;, 0] and [O,as}'] to [0, T7.
The intervals (—oo,x;] and [m;,—i—oo) are similarly mapped under f to (—oo,0]
and [0, 00) respectively. The welding homeomorphism ¢ = ¢, : [0,00) — [0,00)
associated to v is defined by the relation f(z)? = f(—¢(z))?, i.e. for z € [0,27],
¢(x) is the unique point such that f(z) = f(—¢(x)), and for z € [z7,00), ¢(z)
is the unique point such that f(—¢(z)) = —f(z). The homeomorphism ¢ contains
information about the curve . For example, when ¢ is quasisymmetric, it uniquely
characterizes ~, see Lehto and Virtanen (1973).

For k € [0,4], it was proven in Rohde and Schramm (2005) that SLE,; is almost
surely a simple curve, call it v*. We will write ¢ for the associated welding home-
omorphism. We ask ourselves whether these homeomorphisms ¢* are continuous
in k. Our motivation to ask this is to study the related problem of continuity
of v* in k. To best of our knowledge it is an open problem for the full range of
k € [0,00) or even for k € [0,4], see Johansson Viklund et al. (2014) for a result
for k € [0,8(2 — v/3)) U (8(2 + V/3),00) and Friz et al. (2019) for a recent progress
for k < 8/3. Our approach to this problem is based on the following heuristic
argument.

It follows from the results of Rohde and Schramm (2005) and Jones and Smirnov
(2000) that SLE,, for k € [0,4), are almost surely conformally removable. This
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implies that ¢ almost surely characterize the curve v uniquely. In other words, the
homeomorphism ¢* contain all the information about the curve . Heuristically
speaking, this suggests that the continuity of ¢* in x should imply the continuity
of ¥* in k for k < 4. Note however that this roadmap is as of now incomplete.
This is because ¢ are not quasisymmetric (otherwise this would imply that ~*
is a quasislit, and then a result of Marshall and Rohde (2005) would imply that
Loewner driving function of 4*, which is VB, is 1 /2-Holder). It is interesting to
ask for fine properties of ¢" which are satisfied uniformly in x and which recovers
~% uniquely. We plan to address this in our future projects. For the purpose of
present article we only prove the continuity of ¢* in &.

Asking for the continuity of ¢ in  is not yet well posed if we work with the above
definition of ¢*. This is because it is a priori not known whether 4" are curves (let
alone simple curves) simultaneously for all x € [0,4] (we will often say that that a
collection of events {A,}, occur simultaneously in « if P[Nq Ay = 1). This indeed
is itself very closely related to the continuity of 4* in x, which is the problem we
want to address in the first place. The correct way to formulate this problem is
to ask for a continuous modification of the stochastic field {¢"(z)},>0,xe[0,4]- Our
following theorem answers it.

Theorem 1.3. There exists a random field ¥(k,x) : [0,4] x [0,00) — [0,00) such
that

(1) Almost surely, ¥ is jointly continuous in (k,z) € [0,4] x [0, 00).

(2) Simultaneously for all k € [0,4],9(k, ) is a homeomorphism of [0, c0).

(3) ]P)[(bn = Y(k, )] =1, Vke [074]'

Remark 1.4. We believe that there is an alternative approach to Theorem 1.3 based
on Sheffield’s Quantum Zipper. It was proven in Sheffield (2016) that welding home-
omorphism can be constructed by identifying points with same quantum length.
This is also a promising approach, but it does require some additional work to give
a rigorous proof. For example, we will need continuity of the quantum measure p”
with respect to the quantum parameter . For v < 2 (corresponds to x < 4), this
was done in Junnila (2020). For k = 4 or v = 2 these measures converge to 0, so
one has to consider an appropriate scaling limit (see Aru et al., 2019). Another
issue is that we need all measures p” to be ‘nice’ simultaneously for all v, so that
we can invert the map x — u?([0,z]) simultaneously for all . All this requires
some additional work. We believe that this could be done, but this approach is
highly technical for proving the above Theorem which is relatively simple. We thus
give a self contained proof of this result using the simpler approach based on Bessel
processes.

The paper is organized as follows. In the Section 2, we recall some basic facts
on Loewner theory and Bessel processes. Some technical lemmas are proved in
Section 3. In the Section 4 we give the construction of function v using an inter-
mediary result Proposition 4.1, and prove Theorem 1.1 and Theorem 1.3. Finally,
we prove the Proposition 4.1 in the Section 5.
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2. Preliminaries

We recall some basic facts from the Loewner theory. Given a curve 7y as described
in the introduction, one can choose a parametrization of v such that V¢ > 0, the half
plane capacity of v[0,¢] is 2¢, i.e. lim, o 2 (g:(2) — 2) = 2t, where g; : H\[0,t] —
H is the unique conformal map such that g,(z)—z — 0, as |z| = co. We will assume
that + is defined for ¢ € [0,1] in this parametrization. The Loewner transform of
7 is the real-valued continuous function U defined by Uy := lim,_,,,.cm [0, 9¢(2)-
For each z € H, ¢;(z) satisfies the ordinary differential equation (ODE) given by

O0rge(2) = ﬁa go(z) = 2. (2.1)

We refer to the equation (2.1) as the Loewner differential equation (LDE).

This process could be reversed. Given a driving function U; one can solve LDE
(2.1). The resulting map g; is a conformal map from the set of points H\ K; where
the solution exists up to time ¢ onto the upper half-plane. It is a standard fact that
for U = \/kW where k € [0,4] and W is a standard Brownian motion, there is a
continuous simple curve v = 4" such that K; = «[0,t]. The curves 4" are known
as SLE,; (curves). From now on we assume that the driving function U; is of this
form.

To recover the curve v (when it exists) from U, it is beneficial to look at the flow
associated to reverse-time LDE as follows. Let Ut = U; — U;_; be the time reversal
of U. For each fixed s € [0,1], t > s and z € H, let h(s,t, z) denote the solution of
the reverse time stochastic LDE given by

2
h(s,t,2)

The map h: {0 < s <t < 1} x H — H is called the flow associated with the
equation (2.2) and it satisfies the so called flow property:

h(s,t,z) = h(u,t, h(s,u, z)), Vs<u<t (2.3)
We will need the following Lemma from Rohde et al. (2018).

dh(s,t,z) = dU, — dt, h(s,s,z)=z¢€H. (2.2)

Lemma 2.1. If z =iy, y > 0, then
|Rh(s,t,2))| <2 sup |U, — Uy,

re(s,t]

Im(h(s,t,2)) < \y?+ 4t —s).

The following lemma is a rewriting of Lemma 2.1 from Shekhar et al. (2019) and
it follows easily from (2.1).

and

Lemma 2.2. If f; : H — H\ 7|0, ] is the conformal map such that lim,_q fi(z) =
v and fi(z) = 24+ O(1) as |z| — oo, then fi(z) = h(1 —t,1,2). In particular
fi(z) = h(0,1,2)

The welding homeomorphism of a simple [0, 1] defined in the Section 1 can
thus be constructed using the continuous extension of h(0,1,-) to H. It is therefore
natural to consider solution h(s,t,z) of (2.2) started from = € R\ {0}. Note
however that in this case the solution might hit zero in finite time and we will
consider h(s,t,z) only up to this hitting time.
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When U = /sW, we will denote the time reverse Brownian motion W by B
and write h"(s,t,z) for the flow obtained when U = \/kB. Note that if Z%(s, t, z)
denote the solution to (1.1) with the initial value Z°(s,s,2) = x, then for x # 0
and § =1 — 2 (§ and « are henceforth always related as such),

h (s, t
h=(s,t, Vk) = Z%(s,t,2). (2.4)
VE
It follows that Ty (s, v/kx) = (s(s, x), where
Ty.(s,z) == inf {t > s|h" (s,t,2) = 0}
Cs(s, @) == inf {t > s|Z% (s, t,x) = 0}.

Also set T,;(s,0) = (5(s,0) = s. To simplify some notations we will use T, (z) and
¢s(x) to denote Ty (0, ) and (5(0,x).

It is a standard fact which is also very easy to verify that coupled Bessel processes
are monotone in their dimension and starting points. Let 0 < k1 < ko and let 0 <
x1 < x2. Let us consider Bessel processes Z% (s,t,x;) of corresponding dimensions
01 < &2 started from x; and x2. We assume that all these processes are coupled
so that they are solutions to the Bessel SDE driven by the same Brownian motion.
Then the monotonicity of the drift in (1.1) immediately implies the following result

Lemma 2.3. Let us consider Bessel processes as above, then
Z%(s,t, 1) < Z°(s,t,x0) V8 >0,
Z%1 (s, t,x) < Z%(s,t,x) V> 0.
In particular, this implies
Tei (8, v/F1) < T, (5, v/ R2t),
To(s,VExy) < Ti(s, Viaa).

The following result in well known, see e.g. Proposition 2.9 and Proposition 2.11
of Lawler (2018). Recall the Inverse-Gamma(c, 8) distribution has a density pro-
portional to t~1=%exp{—p3/t}.

Lemma 2.4. (1) For § <2, the (5(1) has the Inverse-Gamma(l — £, 1) law.
(2) If 6 < 3, then for all 0 < z < y < o0,

Pl¢s(z) < ¢s(y)] = 1.
3. Some Technical Lemmas

In this section we prove some technical lemmas we will need to prove our main
results.

Lemma 3.1 (Gronwall inequality). Let z > 0 and M; and N satisfy
t
A 2
Mt § x + Ut — /O MT

Nt =x+ Ut / —dr.
Then My < Ny (resp. My > N;). In particular, for z=x+1y, x,y >0,
R(h™(0,t,2)) > h™(0,t,2) for all t < Ty(z). (3.1)

dr (respectively >)

and
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Proof: Note that
t2(M, — N,)
M; — Ny < ———=dr,
t t /0 M, N, T
and the claim follows from Gronwall inequality. In particular, if h*(0,¢,2) = X; +

1Ys, then
2X;
dXt - \/EdBt X2 Y2

which implies (3.1). O

t>\det——dt

Lemma 3.2. As k — 0+, \/ESUpthn(x) |Bi| — 0 wuniformly over x in compact
sets.

Proof: Using monotonicity and scaling property of Ty (z) w.r.t.  (see Lemma 2.3),
it suffices to consider x = 1. Note that T, (1) = (s(1/y/k). Let k, = 27" and
Rn41 <k < Rn, then

1 1 1
s\ 7= ) SG |l —— ) <G, < ) .
‘ (ﬁ) ¢ (x//fml) ‘ VEn+1
where d,, is the dimension corresponding to k,. So,
VE sup |By| < Vky sup | By
t<T, (1) t<Cs,, (1/\/Fn1)

Now, using Chebyshev inequality and Burkholder-Davis-Gundy inequality we ob-
tain that

2
Kln]E (Supt§C5n(1/m) |Bt|)

R n

:o<\/@E {c(sﬂ (Jﬂlﬁ)])

Note that (s, (1) ~ Inverse-Gamma (l +1, %), hence
1

P(vVin  sup B>/ <
1< (1/ /R

K
1
2=

E¢, (1] = = O (kn),

INIE

which implies

P vkn sup |By| > kX4 | = O(/Fn).
t<Csp, (1/\/Fon1)

Borel-Cantelli Lemma implies that for n large enough,
VEn sup B < w/Y
t<Cs,, (1/\/Fnr1)
and the conclusion follows. (|

We will also use the following lemma on random walks with Inverse-Gamma(1, %)
increments. Let {7}, },>1 be an i.i.d. sequence of random variables each distributed
as Inverse-Gamma(1,1/2). Note that E[T1] = +oo and the strong law of large
numbers implies that almost surely % — +o0,i.e. Ty +To+---+ T, tends
to infinity faster than linear function. The following lemma gives that the precise
speed of convergence is nlogn. The additional logn factor will be crucial for our
proofs.
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Lemma 3.3. If {S,}n>1 is a sequence of random wvariables such that ¥n > 1,
Sy LTy 4+ -+ T, then
Sn p
—

nlogn

1
5
Proof: We show that the Laplace transforms

it n -~
E {exp < S ﬂ —e7t2, (3.2)
nlogn

as n — oo. Then, the Lévy continuity Theorem implies the claim. To prove (3.2),
note that
—tS, —tT "
E |exp 5 = | E |exp L
nlogn nlogn
2t 2t "
- (Vi (Vi)
nlogn nlogn

where K1 () is the modified Bessel function of the second kind. We have used the
fact that E [e7'"1] = v/2tK,(v/2t). Finally, note that

log (zK1(z)) 1

a0+ 22(logz +1) 2’

(3.3)

and plugging this asymptotics in (3.3) gives (3.2).

4. Construction of the field ¢ (x, z).

In this section we give the construction of ¥(k,z). This will be based on the
following Proposition.

Proposition 4.1. (1) Almost surely for all k € [0,4] simultaneously, the func-

tion © — T, (x) is a strictly increasing continuous bijection [0,00) —

[0,00), and it is a strictly decreasing continuous bijection (—oo, 0] — [0, 00).

(2) Almost surely for all k € [0,4] simultaneously, the function k — T, (-) €
C([0,0),[0,00)) or C((—o0,0],[0,00)] is continuous.

The proof of this proposition is postponed until the next Section.
Proposition 4.1 has a simple corollary. To state it we will need the following
notations. We assume that & € [0,4] and ¢t € [0,1] . For « > 0 we define

[ B0, L), i< Tu(x)
hi (x) = { To(z) —t, it t > Ti()

Similarly, for z < 0 we define

s [ R0t 2), if t < Te(x)
hy (@) _{ t—T.(z), ift > T.(x)

The definition of the Af"* is a bit artificial for ¢ > T,(z), but it will help us
represent the welding homeomorphisms in a neat way. An immediate corollary to
Proposition 4.1 is the following.

Corollary 4.2. (1) Almost surely for all k € [0, 4] simultaneously, maps x —
h'f+(x) and x — h}'" (x) are strictly increasing continuous bijections
[0,00) = [-1,00) and (—o0,0] — (—o0, 1] respectively.
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(2) Furthermore, the functions
k= T e C([0,00), [~1,00)),

K hYT € C((—00,0], (—o0,1])

are continuous.

We now define the continuous field ¢. Set 9 (x,0) = 0. For z € (0,00), let
(K, x) be the unique point such that

W™ (= (k,2)) = —h7" (2).
Note that this definition is designed so that h"(0,t,-) started at = and —¢(k,x)
either hit zero at the same time or h*(0,1,z) = —h* (0,1, —1(k,x)). This is con-
sistent with the definition of ¢ given in the Section 1. The proof of Theorem 1.1
and Theorem 1.3-(a), (b) is immediate from Proposition 4.1.

Proof of Theorem 1.3-(c): To prove ¢* = 1(k,-), using Lemma 2.2, it suffices to
verify that
lim h%(0,1,2)> = lim  h"(0,1,2)% (4.1)

z—x z——r(x)

If T,.(x) > 1, then by definition, T,,(—¢(k,z)) > 1. This implies that
R™(0,1,2)% = h"(0,1,2)% as z — x,

and
R7(0,1,2)% = h5(0,1, —(k,x))? as z — (k,x).
Then, the (4.1) follows by the definition of ¢ (k, x).

IfT,.(z) <1, then T, (—¢(k,x)) = Tx(z) < 1. Let T,.(—tp(k, z)) = T(x) = 1—to,
to > 0. Using the flow property (2.3), h*(0,1, z) = h"(1 —to, 1, h"(0,1 —tp, 2)). We
claim that

h*(0,1 —tg,2) >0 as z — . (4.2)
Then, using Lemma 2.2, it follows that h"(0,1,2z) — v as z — x. Similarly,
h*(0,1,2) = ~f as z — —v(k, x) as well, establishing (4.1).

To prove (4.2), note that as z — x, R(z) is arbitrarily close to z. Then, using
Lemma 3.1 and the continuity of T, (z) in z, it follows that R(h"(0,t, z)) > 0 for all
t < T,(z)—e€(z), where €(z) — 0 as z — x. Then it easily follows that h"(0, T, (z) —
€(2), z)) is arbitrarily small. Finally, the (4.2) follows from the Lemma 2.1.

(]

5. Proof of Proposition 4.1.

Proof of Proposition /.1-(a): We first claim that almost surely simultaneously for
all kK € [0,4] and all s € [0,1] (or equivalently for all s > 0 by a scaling argument),

21?13% T.(s,2) —s=0. (5.1)
When x = 0, it follows from an explicit computation that h°(s,t,z) =
22 — 4(t — s), which implies Ty(s,z) — s = 2 and (5.1) easily follows. For

1
k € (0,4], it suffices to consider x — 0+4. Using (2.4) and monotonicity of Bessel
processes w.r.t. its dimension (see Lemma 2.3), it follows that if 0 < k1 < k2 < 4,
then

Ty (8, vVE12) — 8 < Thoy (8, /K2z) — 8 < Ty(s, 22) — s.
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It suffices to prove that almost surely for all s € [0, 1],

lim T, —s=0.
Jim a(s,2) —s=0

Note that Ty (s, ) is monotonic increasing in = and the limit

Tu(s,04) — s:= lim Ty(s,z) —s
z—04

always exists. We now prove that this limit is zero for all s € [0, 1]. To this end, let

3e—n® 1
Jjn = 673, kn fry eng’ )\71 = —.
n n
. /V\U:L\\&V\\A\
S Sz St ... 51

FIGURE 5.1. Random walk construction of zero-hitting times.

For each n > 1, define a sequence {s} }r>o0 by sg = 0, and s3 | = Tu(s},22,),
see Figure 5.1. Note that by scaling, Strong Markov Property of the Brownian
motion and Lemma 2.4, {s} };>0 is a random walk with the increments distributed
according to #2 x Inverse-Gamma(1,1/2). Then, Lemma 3.3 implies that

n
Sk, p 1

—_—
x2 ky, log ky, 2

Note that 22k, log k,, > 2, and since convergence in probability implies almost sure
convergence along a subsequence, we obtain that, almost surely,

sp, > 1 for infinitely many n. (5.2)
Next, consider the event
kn—1
A, = U {SZ_H — sy > /\n}.
k=0

Then, using independence and the fact that

1 -1
P | Inverse- Lo )<A= =
[ nverse Gamma< ,2) < )\} exp (2)\>7
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we get
—kpx? kpz?
P[A,]=1— )< n.
4] exl’( 2 ) 2

Note that

(o] kn 2

Tn - 00,
n=1 )\n

and the Borel-Cantelli Lemma implies, almost surely, for all n large enough
Spy1— Sk S An, Ve=0,1,.. .k, — L.

Now, for any s € [0,1], using (5.2), we can find infinitely many n such that
for some 0 < k < k, — 1, s € [s}},s,,]. Using the flow property (2.3) and the
monotonicity Lemma 2.3, we obtain that

Tu(s,04) — s < Ty (5,h4 (sﬁ,s,an)) — 5 =Ty(s},2T,) — 5 < Spyq — Sp < A,

which implies that
Ty(s,04) — s =0.

The fact that © — T.(z) on [0,00) is strictly increasing follows easily from
Lemma 2.4-(b). As for its continuity, we first prove the left continuity. For any
z € (0,00), if y T &, let Ty, (z—) := limyp, T (y). If T(z—) < T,;(x), then by taking
the monotonic limit of A*(0,¢,y) as y 1 x, we obtain a solution to the (2.2) starting
from x which hits zero before time T,,(x). Since (2.2) has a unique solution, this
gives a contradiction. Thus, T, (x—) = Tk(z).

For the right-continuity of T, (z), for any 0 < 2 < y < oo, using again the flow
property, we have that that

Tn(y) - Tn(z) = T,{(T,{(IE), h" (Oa Tn(x)v y)) - Trz(‘r)

Also, as y | z, a similar monotonicity argument as above implies that A" (0, T;(z), y)
— 0. Thus, (5.1) implies that lim,_,,4 Ty (y) = T (), finishing the proof.
([l

Proof of Proposition /J.1-(b): We first check the continuity in x at k = kg € (0,4].
Since Ty (z) = (s(x/+/K), it suffices to check the continuity of (5(-) in §. Note that
if 0 < k1 < kg <4, then (s, (z) < (s,(x). If either k | Ko or &k T kg, we will establish
the pointwise convergence (5(z) — (s,(x). Then, by Dini’s Theorem, we obtain the
uniform convergence on compact sets.

For pointwise convergence, let k T kg first. Recall the monotonicity Lemma 2.3.
If limy1s, G5 (%) < s, (), then by taking the limit function lim,4., Z°(0,t,2), one
can construct a solution to (1.1) with § = 1 — Kio started from z which hits zero
before (s, (x), which is a contradiction.

For k | ko, using the flow property (2.3),

G5(x) = Goo(2) = C5(Cau (2), Z° (0, Gy (2), 7)) = G, ().

Again, using a similar argument as before, it is easy to check that Z° (0, (s, (), x)
— 0 as k | ko. Using (5.1) again implies lim, ., {5(x) = s, ().

The continuity in x at x = 0 requires a different argument. Note that for
t <T(x),

t 2 t 2
W0, 8, 2) = Bi— | —ar< B— | —ar
(O.t.2) =2+ Vb, /o o) ST VE swp By /o O

t< Ty ()
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Then, Lemma 3.1 implies that
h™(0,t,x) < \/(x ++vkK sup By)? —4t.

t<Ty (z)
Thus,
T+ +/Ksu - Bi)?
ey < EE VR B
Similarly,
x + /kinf 2 Bi)?
T, (@) > LV n i B
Using Lemma 3.2, we conclude that Ty (z) — % uniformly on compact sets as
k — 0+, completing the proof. (I
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