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Abstract. We investigate the simulation methods for a large family of stable ran-
dom fields that appeared in the recent literature, known as the Karlin stable set-
indexed processes. We exploit a new representation and implement the procedure
introduced by Asmussen and Rosiński (2001) by first decomposing the random
fields into large-jump and small-jump parts, and simulating each part separately.
As special cases, simulations for several manifold-indexed processes are considered,
and adjustments are introduced accordingly in order to improve the computational
efficiency.

1. Introduction

This paper is a continuation of our earlier work on Karlin stable set-indexed
processes in Fu and Wang (2020). In the most general framework, a Karlin stable
set-indexed process is associated to a measure space pE, E , µq with a σ-finite measure
µ and an index set A Ă E such that for each A P A, µpAq ă 8. Fix pE, E , µq
and A. Then, the corresponding Karlin stable set-indexed process, denoted by
Yα,β for α P p0, 2s and β P p0, 1q, is defined via the following stochastic-integral
representation (Fu and Wang, 2020, Remark 3.2)

tYα,βpAquAPA
d
“

#

ż

R`ˆΩ1
1trN 1prqpω1qspAq odduMαpdrdω

1q

+

APA

, (1.1)

where pΩ1,F 1,P1q is another probability space, on which N 1prq is a Poisson point
process on pE, Eq with intensity measure rµ, r ą 0, Mα is an SαS random measure
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on R` ˆ Ω1 with control measure cβr´β´1drdP1, and

cβ :“
β21´β

Γp1´ βq
.

We shall refer to a Karlin stable set-indexed process as a Karlin random field
in short from time to time, and its law is throughout understood in their finite-
dimensional distributions (so is the notation ‘ d“’). The constant cβ is chosen so
that E exp piθYα,βpAqq “ exp

`

´µβpAq|θ|α
˘

, α P p0, 2q. Recent developments on
the Karlin random fields include Durieu and Wang (2016); Durieu et al. (2020),
based on the original work of Karlin (1967). The Karlin model is an infinite urn
model that plays a fundamental role in combinatorial stochastic processes (Pitman,
2006; Gnedin et al., 2007).

The abstract representation (1.1) of Karlin random fields provides a stochastic-
integral representation for set-indexed fractional Brownian motions (α “ 2, see
Lemma 2.3 below) (Herbin and Merzbach, 2006) and hence extends set-indexed
fractional Brownian motions to stable cases. It has a few notable manifold-indexed
examples as summarized below. When α “ 2, these are well-investigated centered
Gaussian random fields, with the covariance functions recalled respectively.
(i) Karlin stable processes, with

pE, E , µq “ pR`,BpR`q,Lebq, and tAtutě0 “ tr0, tsutě0.

When α “ 2, these are fractional Brownian motions with Hurst index β{2 P
p0, 1q, with covariance function

1

2

`

sβ ` tβ ´ |s´ t|β
˘

, s, t ě 0. (1.2)

(ii) Multiparameter fractional stable fields, with

pE, E , µq “ pR2
`,BpR2

`q,Lebq, and tAtutPR2
`
“ tr0, tsutPR2

`
.

When α “ 2, these are multiparameter fractional Brownian motions intro-
duced in Herbin and Merzbach (2007), with covariance function

1

2

`

Lebpr0, ssqβ ` Lebpr0, tsqβ ´ Lebpr0, ss∆r0, tsqβ
˘

, s, t ě 0. (1.3)

We write ra, bs “ ra1, b1s ˆ ra2, b2s for a “ pa1, a2q, b “ pb1, b2q P R2
`.

(iii) Fractional Lévy–Chentsov stable fields, with

pE, E , µq “
`

S1 ˆ R`,BpS1 ˆ R`q, dsdr
˘

,

where dsdr is the product measure of the uniform measure ds on S1 and the
Lebesgue measure dr on R`, and

At “
 

ps, rq : s P S1, 0 ă r ă xs, ty
(

, t P R2.

This family and the one in the next examples extend the well-known Lévy–
Chentsov stable fields (Samorodnitsky and Taqqu, 1994; Takenaka, 2010).
With α “ 2, these are the fractional Lévy Brownian fields with Hurst index
β{2 P p0, 1q (Samorodnitsky and Taqqu, 1994), with covariance function

1

2

´

}s}
β
2 ` }t}

β
2 ´ }t´ s}

β
2

¯

, s, t P R2. (1.4)
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(iv) Spherical fractional Lévy–Chenstov stable fields, with

pE, E , µq “ pS2,BpS2q, dsq,

where ds is the Lebesgue measure on the unit sphere S2 in R3, and

Ax “ Hx4Ho,x P S2 with Hx :“
 

y P S2 : xx,yy ą 0
(

,

where o P S2 is an arbitrary fixed point. When α “ 2, these are spherical
fractional Brownian motions with Hurst index β{2 P p0, 1q (Istas, 2005), with
covariance function (dS2 is the geodesic metric on S2)

1

2

´

dβS2po,xq ` dβS2po,yq ´ dβS2px,yq
¯

,x,y P S2.

In this paper we investigate the corresponding simulation methods. Simulation
methods for Gaussian random fields have been extensively studied in theory and
broadly applied in various fields (see e.g. Biermé, 2019; Cohen and Istas, 2013;
Kroese and Botev, 2015 for overviews, and Gelbaum and Titus, 2014; van Wyk
et al., 2015 for some recent attempts for models with more general manifold in-
dex sets). As for stable processes and more generally infinitely-divisible processes,
the foundation of simulation methods has been laid down in the seminal work of
Asmussen and Rosiński (2001). They focused on Lévy processes in the original
paper, but essentially the same idea applies to more general stable processes and
infinitely-divisible processes, carried out in details by Lacaux and coauthors later
(Lacaux, 2004a,b; Cohen et al., 2008). These references served as our starting
point. Namely, it has been well understood since then that in order to simulate
an infinitely-divisible process, in practice one should first decompose the process
into two independent components consisting of large and small jumps respectively,
and then simulate each part separately. We shall follow the same idea here for the
Karlin random fields (see Remark A.3 for subtile differences between our framework
and aforementioned ones), and the two parts are referred to as the large-jump and
small-jump parts, respectively.

The main contribution of this paper is two-folded.

(a) First, we develop a new representation for Karlin random fields, when restricted
to a bounded domain: that is, the index set A0 is such that there exists E0 P E
with µpE0q ă 8 and for all A P A0, A Ă E0 (Theorem 2.1). All the examples
mentioned above, when simulated over a bounded domain, can be reduced to
such a situation and hence the new representation applies. The advantage of
this new representation is that it provides a compound–Poisson representation
for the large-jump part in the Asmussen–Rosiński approach, and hence yields
immediately an exact and straightforward simulation method for this part. This
is in contrast to the developments in Lacaux (2004a,b); Cohen et al. (2008),
where for most interesting examples the simulations for the large-jump part
require approximation methods.

(b) We then apply the new representation to the aforementioned examples, and
propose adjustments accordingly in order to improve computational efficiency.
Most notably, a straightforward implementation of the Asmussen–Rosiński ap-
proach would meet computational issues even in the simplest case of R`-indexed
Karlin stable processes. The issues are due to the fact that the new representa-
tion is essentially based on the so-called odd-occupancy vector, the law of which
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is determined by the β-Sibuya distribution (of which the tail is regularly vary-
ing with index ´β, β P p0, 1q). Sampling directly from the heavy-tailed Sibuya
distribution is very inefficient in practice, and in a couple situations we man-
aged to propose a computational efficient method to sample the odd-occupancy
vector directly without sampling the Sibuya distribution.
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Figure 1.1. Simulations for R2
`-indexed multiparameter frac-

tional stable fields (left), R2-indexed fractional Lévy–Chentsov sta-
ble fields (middle) and S2-indexed fractional Lévy–Chentsov stable
fields (right), with α “ 0.5 (top) α “ 1.2 (second row), α “ 1.8
(third row) and α “ 2 (bottom, Gaussian), and all with β “ 0.8.
The Gaussian cases correspond to multiparameter fractional Brow-
nian motions, fractional Lévy Brownian fields, and spherical frac-
tional Brownian motions, respectively.

In Figure 1.1 we provide a few simulation examples of the processes of our inter-
est. Note that when α ă 2 these are only approximated samplings. Curiously, for
fractional Lévy–Chentsov stable fields, the odd-occupancy vectors are functionals
of models from stochastic geometry (Lantuéjoul, 2002; Schneider and Weil, 2008),
as illustrated in Figures 3.7 and 3.9 later. So fractional Lévy–Chentsov stable fields
can be thought of aggregations of models from stochastic geometry.



Simulations for Karlin random fields 171

The paper is organized as follows. Section 2 introduces a new representation
for the Karlin random fields, and explains the general strategy for simulations.
Section 3 investigates a few examples and explains how improvement can be made
regarding efficiency of the simulations. Appendix A provides a review on the general
framework of Asmussen and Rosiński (2001) applied to stable processes.

2. Karlin stable set-indexed processes

2.1. A new representation. We develop a new representation of Karlin stable set-
indexed processes, when restricted to a bounded domain. More precisely, fix some
E0 P E with µpE0q ă 8 and consider an index set A0 such that A Ă E0 for
all A P A0. We let Qβ be a random variable with the Sibuya distribution with
parameter β P p0, 1q, determined by EzQβ “ 1´ p1´ zqβ for all z P r0, 1s (Sibuya,
1979). Equivalently, Qβ takes values from N with

PpQβ “ kq “
β

Γp1´ βq

Γpk ´ βq

Γpk ` 1q
„

β

Γp1´ βq
k´1´β as k Ñ8,

so it is a heavy-tailed distribution without finite β-th moment. Throughout, the fol-
lowing random closed set Rβ in F0pE0q, the space of non-empty closed subsets of E0

(see Molchanov, 2017 for background on random closed sets), plays a fundamental
role for the Karlin random fields

Rβ :“

Qβ
ď

i“1

tUiu, (2.1)

where tUiuiPN are i.i.d. random elements from E0 with the law µE0
p¨q :“ µp¨ X

E0q{µpE0q independent from Qβ introduced before. So Rβ is a random closed set
taking values in F0pE0q. The new representation is summarized as follows.

Theorem 2.1. Assume E0 and A0 as above. For all α P p0, 2s, β P p0, 1q, the
Karlin set-indexed stable process (1.1) restricted to A0 has the stochastic-integral
representation

tYα,βpAquAPA0

d
“

"
ż

Ω1
1t|R1βpω1qXA| oddu

ĂMαpdω
1q

*

APA0

, (2.2)

where pΩ1,F 1,P1q is another probability space, on which R1βpωq is a random element
in E0 with the same law as Rβ, and ĂMα is an SαS random measure on Ω1 with
control measure 21´βµβpE0q ¨ P1.

Proof : We compute the characteristic function of finite-dimensional distributions.
For d P N, A1, . . . , Ad P A0 and θ1, . . . , θd P R, we have

E exp

˜

i
d
ÿ

j“1

θjYα,βpAjq

¸

“ exp

˜

´

ż

R`ˆΩ1

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

j“1

θj1tN 1prqpAjq oddu

ˇ

ˇ

ˇ

ˇ

ˇ

α

cβr
´β´1dP1

¸

.

Note that by the property of Poisson point processes, there exists a measure rν on
N such that the above is the same as, with tU 1iuiPN as i.i.d. random variables with
law µE0 (defined on some probability space denoted by pΩ1,F 1,P1q without loss of
generality),

exp

˜

´

8
ÿ

k“1

ż

Ω1

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

j“1

θj1t|
Ťk
i“1tU

1
iuXAj| oddu

ˇ

ˇ

ˇ

ˇ

ˇ

α

rνptkuqdP1
¸

. (2.3)
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The values of rν can be computed as

rνptkuq “ cβ

ż 8

0

r´β´1P
´

N prqpE0q “ k
¯

dr “ cβ

ż 8

0

r´β´1 prµpE0qq
k

k!
e´rµpE0qdr

“
β21´β

Γp1´ βq
¨ µβpE0q ¨

Γpk ´ βq

Γpk ` 1q
“ 21´βµβpE0qPpQβ “ kq, for all k P N.

Then, (2.3) becomes, letting Q1β be a β-Sibuya random variable on pΩ1,F 1,P1q,
independent from tU 1iuiPN,

exp

˜

´21´βµβpE0q

ż

Ω1

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

j“1

θj1"ˇˇ
ˇ

ˇ

Ť

Q1
β

i“1tU
1
iuXAj

ˇ

ˇ

ˇ

ˇ

odd

*

ˇ

ˇ

ˇ

ˇ

ˇ

α

dP1
¸

“ exp

˜

´21´βµβpE0q

ż

Ω1

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

j“1

θj1t|R1βXAj| oddu

ˇ

ˇ

ˇ

ˇ

ˇ

α

dP1
¸

.

This completes the proof. �

Remark 2.2. Let PN prq,` denote the induced probability measure of N prq (as a
random closed set) restricted to F0pE0q; in particular PN prq,` is a sub-probability
measure for all r ą 0 (i.e. PN prq,`pF0pE0qq ă 1). Let PRβ denote the induced
probability measure on F0pE0q by Rβ . We have essentially proved

PRβ p¨q “
β

Γp1´ βqµβpE0q

ż 8

0

r´β´1PN prq,`p¨qdr (2.4)

as a probability measure on F0pE0q. The right-hand side, in the language of Radon
point measures instead of random closed sets, appeared in Fu and Wang (2020,
Eq.(3.1)) as µβp¨q{p21´βµβpE0qq and played a central role in the representations of
Karlin random fields therein.

The integral representations (2.2) with α “ 2 correspond to set-indexed fractional
Brownian motions with Hurst index H “ β{2 P p0, 1{2q (Herbin and Merzbach,
2006). These are centered Gaussian processes, denoted by tBβ{2µ pAquAPA0

, with

Cov
´

Bβ{2µ pA1q,Bβ{2µ pA2q

¯

“
1

2

`

µβpA1q ` µ
βpA2q ´ µ

βpA1∆A2q
˘

, A1, A2 P A0.

(2.5)

Lemma 2.3. Let Y2,β be as in (2.2). Then,

tY2,βpAquAPA0

d
“

!

Bβ{2µ pAq
)

APA0

.

A stronger result, including a decomposition of set-indexed fractional Brownian
motions, was already proved in Fu and Wang (2020, Section 3.3). We include a
quick proof for a weaker result here, and we shall need the computation (2.6) below
later.

Remark 2.4. Note that our covariance formula differs from the one in Fu and Wang
(2020, Section 3.3) by a factor of 2. This is because therein for a streamlined
presentation we took the convention that the characteristic function for a stochastic
integral is E exppiθ

ş

S
fdMαq “ exp

`

´|θ|α
ş

S
|f |αdµ

˘

for all α P p0, 2s. With α “ 2
this is different from the common convention (considered above) under which the
characteristic function is exp

`

´p1{2q|θ|2
ş

S
|f |2dµ

˘

instead (e.g. Fu andWang, 2020,
Remark 2.9).
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Proof of Lemma 2.3: We compute

Cov pY2,βpA1q, Y2,βpA2qq “ 21´βµβpE0q ¨ P pRβpA1q odd, RβpA2q oddq .

We shall use the identity (2.4) instead of using the representation (2.1) involving
Qβ . Namely,

P p|Rβ XA1| odd, |Rβ XA2| oddq

“
β

Γp1´ βqµβpE0q

ż 8

0

r´β´1P
´

N prqpA1q odd,N prqpA2q odd
¯

dr. (2.6)

We first compute the probability in the integrand. By discussing the even/odd
cardinalities of A1zA2, A2zA1, A1 XA2, we see that it is the same as

P
´

N prqpA1q odd,N prqpA2q odd
¯

“
1

2

”

P
´

N prqpA1q odd
¯

` P
´

N prqpA2q odd
¯

´ P
´

N prqpA1∆A2q odd
¯ı

.

So (2.6) becomes

β

Γp1´ βqµβpE0q

ż 8

0

r´β´1

4

´

1´ e´2µpA1qr ` 1´ e´2µpA2qr ´ 1` e´2µpA1∆A2qr
¯

dr.

With
ş8

0
βr´β´1p1´ e´arqdr “ aβΓp1´ βq for a ą 0, the above becomes then

P p|Rβ XA1| odd, |Rβ XA2| oddq

“
1

21´βµβpE0q
¨

1

2

`

µβpA1q ` µ
βpA2q ´ µ

βpA1∆A2q
˘

. (2.7)

We now see that Y2,β and Bβ{2µ share the same covariance function. This completes
the proof. �

When restricted to α P p0, 2q the Karlin random field with representation (2.2)
has the following series representation (see Samorodnitsky and Taqqu, 1994, The-
orem 3.10.1),

tYα,βpAquAPA0

d
“

#

ÿ

jPN
ηα,j1t|Rβ,jXA| oddu

+

APA0

, (2.8)

where tηα,jujPN are enumerations of a Poisson point process on Rzt0u with intensity

21´βµβpE0q ¨
αCα

2
|x|´α´1, x ‰ 0,

with

Cα :“

ˆ
ż 8

0

x´α´1 sinxdx

˙´1

, α P p0, 2q,

and tRβ,jujPN are i.i.d. copies of Rβ , independent from tηα,jujPN.
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2.2. A general simulation framework. The framework of Asmussen and Rosiński
(2001) applies to tYα,βpAquAPA0

as follows. Take the random series on the right-
hand side of (2.8) as the definition of Yα,βpAq. Then given ε ą 0, we write

Yα,βpAq “ Y ε,1α,βpAq ` Y
ε,2
α,βpAq

as the sum of the large-jump and the small-jump parts of the original process given
by

Y ε,1α,βpAq :“
ÿ

jPN
ηα,j1t|Rβ,jXA| oddu1tηα,jąεu,

Y ε,2α,βpAq :“
ÿ

jPN
ηα,j1t|Rβ,jXA| oddu1tηα,jďεu, A P A0,

respectively. The large-jump part has a compound-Poisson representation

!

Y ε,1α,βpAq
)

APA0

d
“

#

Nα,ε
ÿ

j“1

Vα,ε,jDj,A

+

APA0

with Dj,A :“ 1t|Rβ,jXA| oddu, A P A0,

(2.9)
where Nα,ε is a Poisson random variable with parameter 21´βµβpE0qCαε

´α and
tVα,ε,jujPN are i.i.d. symmetric random variables with probability density function
εαpα{2q|y|´α´11t|y|ąεu, tRβ,jujPN are i.i.d. copies of Rβ , and all random variables
are independent.

For the small-jump part, one can show the following.

Proposition 2.5. With the notations above,
#

Y ε,2α,βpAq

σαpεq

+

APA0

f.d.d.
ñ

!

Bβ{2µ pAq
)

APA0

,

as ε Ó 0, where tBβ{2µ pAquAPA0
is the set-indexed fractional Brownian motion with

the covariance function (2.5).

Proof : The result follows from Proposition A.2 and Lemma 2.3. �

Now we look into implementation issues. For our examples, we always identify
a set of indices T (a subset of Rd or Sd) to tAtutPT Ă A0, and write simply from
now on

tYα,βptqutPT ” tYα,βpAtqutPT ,

and similarly for the large-jump and small-jump parts. Now the above discussions
suggest that the approximated process (in distribution) in simulation is

Yα,βptq « Y ε,1α,βptq ` σαpεqB
β{2
µ ptq, t P T. (2.10)

While the large-jump part is compound Poisson and the approximated small-jump
part is Gaussian, and both classes of stochastic processes in principle have exact
simulation methods, computational issues arise quickly if one examines more closely.

For the large-jump part, clearly it suffices to sample the odd-occupancy vector

D “ pDt1 , . . . , Dtnq with Dt :“ 1t|RβXAt| oddu,

with a finite index lattice T “ tt1, . . . , tnu in practice. A straightforward algorithm
is the following.
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Algorithm 2.6.
(1) Generate a β-Sibuya random variable Qβ .
(2) Sample Rβ

d
“
ŤQβ
i“1tUiu.

(3) Compute tDtutPT based on the sampling of Rβ .

In order to sample Qβ here, we recall a nice expression due to Sibuya (1979).
Namely, with G1, Gβ and G1´β being three independent standard Gamma random
variables with parameters 1, β and 1´ β, respectively, we have

Qβ
d
“ 1` Poisson

ˆ

G1G1´β

Gβ

˙

, (2.11)

where the second term on the right-hand side is understood as a Poisson random
variable with a random parameter. So in practice we could first sample the random
parameter Λ “ G1G1´β{Gβ and then a Poisson random variable with parameter
Λ, and add one to the sampled value at the end.

However, one should realize quickly that this algorithm is not computationally
efficient, as the β-Sibuya distribution does not have finite β-th moment (e.g. Pit-
man, 2006). This could become quite cumbersome in practice as from time to time
Qβ may be hundreds of thousands, while the resolution n in Tn is at most a few
hundreds. It turns out that for Karlin stable processes and multiparameter frac-
tional stable processes, one can exploit further the structure of A0 and sample D
directly and much more efficiently, without sampling Qβ .

Remark 2.7. In practice one should decide also what value of ε makes a good
approximation in (2.10). One may choose the value according to the Berry–Esseen
bound on the Gaussian approximation (see Remark A.4), which for the marginal
distribution in this case becomes (taking pS,mq “ pΩ1, 21´βµβpE0q¨P1q and ftpω1q “
Dtpω

1q “ 1t|R1βpω1qXAt| oddu as such that with respect to P1 D1t is a copy ofDt before)

CBE
1

p21´βµβpE0qEDtq
1{2

p2´ αq3{2

p3´ αq
?
αCα

εα{2 “ CBE
1

µβ{2pAtq

p2´ αq3{2

p3´ αq
?
αCα

εα{2,

where we used

EDt “ PpRβ XAt oddq “ E

˜

1

2

«

1´

ˆ

1´ 2
µpAtq

µpE0q

˙Qβ
ff¸

“ 2β´1 µ
βpAtq

µβpE0q
. (2.12)

In Figure 2.2, the values of ε “ εα such that

p2´ αq3{2

p3´ αq
?
αCα

εα{2 “ 0.01

is plotted, along with Cα, σεpαq and nα,ε :“ Cαε
´α, for α P p0, 2q. Note that

nα,ε “ ENα,ε{p21´βµβpE0qq and tells roughly (the terms depending on β is dropped
for simple comparison) how many independent copies are needed for the large-jump
part (2.9).

From the plot we see that, first, the small-jump part is far from negligible for
α close to 2. Second, for α ă 1 the gain of approximating small-jump part is
very limited, while the cost of simulating the large-jump part is huge. This is not
surprising as it is well known that when α ă 1 the series representation is absolutely
summable, and the magnitudes of small jumps decay as Opj´1{αq. Therefore, in
practice we choose not to apply the small-jump approximation for α ă 1. See
examples in Figure 1.1 for α “ 0.5, where we set ε “ 10´4.
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Figure 2.2. Comparison of parameters.

Remark 2.8. Another numerical issue that we encountered in implementing Algo-
rithm 2.6 is that, due to the fact that Λ “ G1G1´β{Gβ is heavy-tailed, occasionally
sampling Λ returns a very huge number that forbids the computation to continue
(e.g. in Python on a 64-bit platform, an integer value is no bigger than 263´ 1; the
parameter of Poisson of Λ can easily go beyond this order during say 1000 i.i.d. sam-
pling when β ă 0.2). One way to go around this issue is to set up a threshold, say
λ0, and use PoissonpΛ ^ λ0q instead of PoissonpΛq in Algorithm 2.6. Then, the
probability that the threshold is exceeded at least once (and hence the simulation
is only an approximation) is bounded by Pp

ŤNα,ε
i“1 tΛi ą λ0uq ď ENα,εPpΛ ą λ0q.

For the small-jump part, the by-default method of applying the Cholesky decom-
position to a covariance matrix of size nˆ n is computationally infeasible for high
dimensions (with complexity Opn3q, and R2- or S2-indexed processes a reasonable
resolution requires n to be at least 2002). In a few cases, we are in a fortunate
situation that the set-indexed fractional Brownian motion is known to have a fast
and exact simulation method. The only exception is the case when it is a multi-
parameter fractional Brownian motion, for which we develop a fast approximation
method. The simulation methods are summarized in Table 2.1.

In the next section we provide details for simulations for a few examples. Ta-
ble 2.1 is a summary on where improvement can be made regarding simulation
efficiency.

3. Examples

Recall that we work with Karlin random fields tYα,βpAtqutPT in (2.8), with a
measure space pE, E , µq, E0 P E with µpE0q ă 8, and an index set tAtutPT such
that At Ă E0. The four examples summarized in Table 2.1 are worked out below
one by one.

3.1. Karlin stable processes. This example corresponds to the choice of

pE, E , µq ” pR`,BpR`q,Lebq, E0 “ r0, 1s, and tAtutPr0,1s “ tr0, tsutPr0,1s.
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Table 2.1. Summary of simulation methods for examples in Sec-
tion 3. The column ‘E’ indicates the underlying space pE, Eq. The
column ‘D’ indicates whether the odd-occupancy vector can be
sampled in an efficient way without sampling the entire Rβ . The
last column indicates the set-indexed fractional Brownian motion
that approximates the small-jump part, and the corresponding
simulation method. Acronyms used below are, fLCsf: fractional
Lévy–Chenstov stable field; mfsf: multiparameter fractional stable
field; (m/s)fBm: (multiparameter/spherical) fractional Brownian
motion, fLBf: fractional Lévy–Brownian field, CEM: circulant em-
bedding method; IEM: intrinsic embedding method.

Sec. Example E D set-indexed fBm
3.1 Karlin (R`-indexed fLCsf) R` fast fBm, CEM

(Wood and Chan, 1994
Dietrich and Newsam, 1997)

3.2 mfsf R2
` fast mfBm, Prop. 3.5

3.3 R2-indexed fLCsf Sˆ R` slow fLB, IEM (Stein, 2002)
3.4 S2-indexed fLCsf S2 slow sfBm, CEM

(Cuevas et al., 2020)

The large-jump part. In this case, we introduce an algorithm that improves signifi-
cantly the efficiency of Algorithm 2.6 when simulating the odd-occupancy vectors,
thanks to the structure of tAtutPr0,1s. Note that in simulation we only need to work
with an index set T “ tt1, . . . , tnu with 0 ď t1 ă ¨ ¨ ¨ ă tn ď 1. Let NΛβ be a
Poisson random variable with a random parameter Λβ :“ G1G1´β{Gβ , where G1,
Gβ and G1´β are as in (2.11). We introduce this time

rRβ :“

NΛβ
ď

i“1

tUiu ,

where tUiuiPN are i.i.d. uniform random variables over p0, 1q independent from NΛβ .
Let U be another uniform random variable independent from tUiuiPN. Define

Mi :“
i
ÿ

j“1

Bj ` 1tUPp0,tisu with Bi :“ 1t| rRβXpti´1,tis| oddu, i “ 1, . . . , n. (3.1)

Then, the Sibuya identity (2.11) says that NΛβ ` 1
d
“ Qβ , and hence

tDtiui“1,...,n
d
“ tMi mod 2ui“1,...,n . (3.2)

The advantage of this representation is that the random vectorM “ pM1, . . . ,Mnq,
or essentially B “ pB1, . . . , Bnq, can be simulated as a collection of conditionally
independent Bernoulli random variables, and hence with linear complexity in n
without sampling the heavy-tailed NΛβ (see Remark 3.3 below), thanks to the fol-
lowing simple fact.

Lemma 3.1. With the notations above, given Λβ, tBiui“1,...,n are conditionally
independent Bernoulli random variables with parameters

pipΛβq “
1

2

´

1´ e´2pti´ti´1qΛβ
¯

, i “ 1, . . . , n. (3.3)



178 Zuopeng Fu and Yizao Wang

Proof : Given Λβ , rRβ is the collection of all points of a Poisson point process on
p0, 1q with intensity Λβ . Then by independent scattering, we have that tBiui“1,...,n

are conditionally independent since tpti´1, tisui“1,...,n are disjoint. The correspond-
ing parameter of each follows from the fact that, for a Poisson random variable Z
with parameter λ ą 0, PpZ oddq “ p1´ e´2λq{2. �

Below is a summary of our improved algorithm for simulating D.

Algorithm 3.2.

(1) Sample Λβ
d
“ G1G1´β{Gβ .

(2) Given Λβ , sample independent Bi „ BerppipΛβqq, i “ 1, . . . , n (3.3).
(3) Sample U „ Unifp0, 1q.
(4) Compute M as in (3.1) and D “M mod 2 as in (3.2).

Remark 3.3. Algorithm 2.6 requires Qβ number of exact locations of i.i.d. random
variables tUiuiPN, and this shall be repeated Nα,ε times. The random variable Nα,ε
is Poisson and hence well concentrated at its mean 21´βµβpE0qCαε

´α. ViewingNα,ε
as a fixed number for comparison, we see that this requires

řNα,ε
i“1 Qβ,i ¨ n number

of iterations to sample the large-jump part, with tQβ,iuiPN being i.i.d. copies of Qβ .
By the central limit theorem, we know that N´1{β

α,ε
řNα,ε
i“1 Qβ,i has, for ε ą 0 very

small, approximately the totally skewed β-stable distribution (without finite β-th
moment), say Zβ . So roughly Algorithm 2.6 has a complexity of order Zβ ¨N

1{β
α,ε ¨n.

On the other hand, Algorithm 3.2 has a complexity of order Nα,ε ¨n, which is much
lower.

The small-jump part. In this case, simulating the small-jump part is straightfor-
ward, as the set-indexed fractional Brownian motion is tBβ{2µ pr0, tsqutě0 ”

tBβ{2ptqutě0 the fractional Brownian motion with Hurst index β{2 P p0, 1{2q with
covariance function as in (1.2). It is well known that fractional Brownian mo-
tions can be simulated in an exact and efficient manner by the circulant embedding
method (e.g. Wood and Chan, 1994; Dietrich and Newsam, 1997; Perrin et al.,
2002).

Simulations. In Figure 3.3, we provide a few simulation results for the odd-
occupancy vector. In Figure 3.4, we provide a few simulation results for the Karlin
stable processes. The simulations are over a lattice ti{nui“0,...,n with n “ 1000.

3.2. Multiparameter fractional stable fields. In this case, we take

pE, E , µq “ pR2
`,BpR2

`q,Lebq, E0 “ r0,1s, and tAtutPr0,1s “ tr0, tsutPr0,1s . (3.4)

(In this section, ra, bs “ ra1, b1s ˆ ra2, b2s for a “ pa1, a2q, b “ pb1, b2q P R2
`.)

The large-jump part. Again, tAtutPr0,1s2 has a nice structure that we can exploit to
obtain an efficient algorithm for sampling D as in Algorithm 3.2. We only present
a brief summary below as the proof is the same. This time the index lattice T is
given by

T :“
!´

t
p1q
i , t

p2q
j

¯

: t
prq
i P T prq, r “ 1, 2

)

, with T prq :“
!

t
prq
i

)

i“1,...,n
Ă R`, r “ 1, 2.
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Figure 3.3. Simulations of odd-occupancy vectors with different Λβ .
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Figure 3.4. Simulations of Karlin stable processes.

Again we assume tprqi is increasing in i for r “ 1, 2. This time we want to sample
in law the vector D “ tDi,jui,j“1,...,n with

Di,j ” D
t
p1q
i ,t

p2q
j

:“ 1!ˇ
ˇ

ˇ
RβXr0,t

p1q
i sˆr0,t

p2q
j s

ˇ

ˇ

ˇ
odd

), i, j “ 1, . . . , n.

Let Λβ be as before (see (2.11)). This time introduce tBi,jui,j“1,...,n as conditionally
independent Bernoulli random variables, given Λβ , with parameters

pi,jpΛβq “
1

2

´

1´ e´2pt
p1q
i ´t

p1q
i´1qpt

p2q
j ´t

p2q
j´1qΛβ

¯

, i, j “ 1, . . . , n, (3.5)
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with the convention t
prq
0 “ 0, r “ 1, 2. Let U be another independent uniform

random vector in p0,1q. Then, with

Mi,j :“
i
ÿ

k“1

j
ÿ

`“1

Bk,` ` 1!
UPp0,t

p1q
i sˆp0,t

p2q
j s

), i, j “ 1, . . . , n, (3.6)

by the same argument as in Lemma 3.1 we have that

tDi,jui,j“1,...,n

d
“ tMi,j mod 2ui,j“1,...,n . (3.7)

In summary, we use the following algorithm to sample the odd-occupancy vector
D of the multiparameter fractional stable fields.
Algorithm 3.4.

(1) Sample Λβ
d
“ G1G1´β{Gβ .

(2) Given Λβ , sample independent Bi,j „ Berppi,jpΛβqq, i, j “ 1, . . . , n (3.5).
(3) Sample U „ Unifp0,1q.
(4) Compute M as in (3.6) and D “M as in (3.7).

The small-jump part. It turns out that the set-indexed process tBβ{2µ pr0, tsqutPR2
`
”

tBβ{2ptqutě0 becomes the multiparameter fractional Brownian motion (Herbin and
Merzbach, 2007) with covariance function (1.3). This random field does not have
stationary increments, and we are not aware of any exact sampling method that
works efficiently with this covariance function. Instead, we propose to apply the fol-
lowing aggregation approximation for simulating the small-jump part. The general
idea of aggregation approximation is, instead of applying the deterministic Cholesky
decomposition of the given covariance matrix Σ, to find an easy-to-simulate random
vector (D here) so that Σ “ EpD1tDq (here D1t is the transpose of D1, an inde-
pendent copy of D). Below, recall that in this section we identify A0 “ tAtutPr0,1s.
We also keep the factor µpE0q below, although for set-indexed fractional Brownian
motion (3.4), µpE0q “ 1.

Proposition 3.5. Let tεjujPN be a sequence of i.i.d. standard normal random vari-
ables and tDjujPN be i.i.d. copies as in (2.9). Then we have

p21´βµβpE0qq
1{2 ¨

#

1
?
m

m
ÿ

j“1

εjDj,t

+

tPr0,1s

f.d.d.
ñ

!

Bβ{2ptq
)

tPr0,1s
, (3.8)

as mÑ8, with Bβ{2 determined by (2.5).

Proof : By the multivariate central limit theorem, it suffices to compute to the
asymptotic covariance of the left hand side of (3.8). That is, for s, t P r0,1s,

CovpDs, Dtq “ EpDsDtq “ P p|Rβ XAs| odd, |Rβ XAt| oddq .

We have seen this computation in (2.7). �

Since |Dt| ď 1, we have a Berry–Esseen upper bound as 3.3{
?
m (Chen et al.,

2011, Theorem 3.4). Applying the standard Berry–Esseen bound for the sum of
i.i.d. centered random variables with unit variance (Korolev and Shevtsova, 2012),
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we have (recall (2.12))

CBE
E|Dt|3

pE|Dt|2q3{2
m´1{2 “ CBEPp|Rβ XAt| oddq´1{2m´1{2

“ CBE

ˆ

2β´1 µ
βpAtq

µβpE0q

˙´1{2

m´1{2, (3.9)

as a Berry–Esseen upper bound for the convergence of (3.8).
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Figure 3.5. Simulations for odd-occupancy vectors for multipa-
rameter stable fields with different values of Λβ .

Simulations. Figure 3.5 provides a few simulations of the odd-occupancy vectors.
Figure 3.6 provides a few simulations for the multiparameter fractional stable fields.
The random field is sampled over a 300ˆ 300 lattice. For the small-jump part we
take m “ 2500 in Proposition 3.5 in view of the Berry–Esseen bound (3.9) (so that
m´1{2 “ 2%).

3.3. Fractional Lévy–Chentsov stable fields. In this case, we take

pE, E , µq “
`

S1 ˆ R`,BpS1 ˆ R`q, dsdr
˘

,

where dsdr is the product measure of the uniform measure ds on S1 and the
Lebesgue measure dr on R`, and in practice we may restrict to

E0 “ S1 ˆ r0,
?

2s and tAtutPr0,1s “
 

ps, rq : s P S1, 0 ă r ă xs, ty
(

tPr0,1s
,

with µpE0q “
?

2 ¨2π. (Actually, one could further restrict to pr0, πsYr3π{2, 2πqqˆ
r0, 1s Ă E0 to gain some extra computational efficiency.) In this case,
tBβ{2µ pAtqutPr0,1s ” tBβ{2ptqutPPr0,1s becomes a fractional Lévy Brownian field, a
centered Gaussian random field with covariance function (1.4).

The large-jump part. The nice lattice structure of tAtu in the previous two examples
is lost here, and it seems that we have to rely on Algorithm 2.6 to sample the large-
jump part, which is computationally inefficient.

The small-jump part. It is well known that the intrinsic embedding method by
Stein (2002) can be applied to simulate exactly and efficiently the fractional Lévy
Brownian fields.
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Figure 3.6. Simulations for multiparameter fractional stable
fields. From left to right: the large-jump parts, the small-jump
parts, and the combined fields.

Simulations. Figure 3.7 provides a few simulations for the odd-occupancy vectors
for the fractional Lévy–Chentsov stable fields. Figure 3.8 provides a few simulations
for the fractional Lévy–Chentsov stable fields. The random fields are sampled over
a 300ˆ 300 lattice.
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Figure 3.7. Simulations for odd-occupancy vectors for fractional
Lévy–Chentsov stable fields with different Qβ . The plots in first
row are i.i.d. Qβ hyperplanes (some may not intersect the region
r0, 1s2), and the plots in the second row are the corresponding
odd-occupancy vectors over a 300ˆ 300 lattice.

3.4. Spherical fractional Lévy–Chenstov stable fields. In this case, we take

pE, E , µq “ pS2,BpS2q, dsq, E0 “ E,

where ds is the Lebesgue measure on the unit sphere S2 in R3, and

Ax “ Hx4Ho,x P S2 with Hx :“
 

y P S2 : xx,yy ą 0
(

,

where o P S2 is the fixed north pole, and Hx is the hemisphere of S2 determined by
x. The spherical fractional Lévy–Chentsov stable field, denoted by tYα,βpxquxPS2 ”

tYα,βpAxqutPS2 , can be obtained by

tYα,βpxquxPS2

d
“

!

rYα,βpxq ´ rYα,βpoq
)

xPS2
, with rYα,βpxq :“ rYα,βpHxq,x P S2.

(3.10)
The random field trYα,βpxquxPS2 is again a special case of Karlin random fields. In
addition, it is rotationally stationary (a.k.a. strongly isotropic), and the discussions
below are for rYα,β instead of Yα,β .

The large-jump part. We rely on Algorithm 2.6 to simulate the large-jump part.

The small-jump part. An advantage of working with rYα,β instead of Yα,β is that
now, Proposition 2.5 says that the small-jump part is approximated by a rota-
tionally stationary spherical Gaussian field, denoted by trBβ{2pxquxPS2 . Thanks to
the rotational stationarity, such Gaussian random fields can be simulated fast and
exactly by the circulant embedding method (Cuevas et al., 2020).
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Figure 3.8. Simulations for fractional Lévy–Chentsov stable
fields. From left to right: the large-jump parts, the small-jump
parts, and the combined fields.

It remains to compute the covariance explicitly. In view of Proposition 2.5, rBβ{2
is a set-indexed fractional Brownian motion with the same law as Y2,2HpHxq (see
(2.2)), where Hx is the hemisphere determined by x P S2 and µ the Lebesgue
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measure on S2 so that µpHxq “ 2π and µpHx∆Hyq “ 4dpx,yq. Therefore, we have

Cov
´

rBβ{2pxq, rBβ{2pyq
¯

“ CovpY2,2HpHxq, Y2,2HpHyqq

“
1

2

`

µ2HpHxq ` µ
2HpHyq ´ µ

2HpHx∆Hyq
˘

“ p2πq2H

˜

1´
1

2

ˆ

2

π

˙2H

d2Hpx,yq

¸

.

Q =10 Q =100 Q =200

Figure 3.9. Simulations for odd-occupancy vectors for spherical
fractional Lévy–Chentsov stable fields for different Qβ . The plots
in first row are the great circles corresponding to i.i.d. Qβ points
from the sphere, and the plots in the second row are the corre-
sponding odd-occupancy vectors over a 300 ˆ 150 lattice in polar
coordinates.

Simulations. Figure 3.9 provides a few simulations for the odd-occupancy vectors
for spherical fractional Lévy–Chentsov fields. Figure 3.10 provides a few simulations
for the spherical fractional Lévy–Chentsov fields. The spherical random fields are
sampled over a 300ˆ 150 lattice in the polar coordinates. For simulation examples
of Yα,β , see Figure 1.1, where we sampled the approximated rYα,β first and applied
the pinning-down relation (3.10).
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Figure 3.10. Simulations for rotationally stationary spherical
fractional Lévy–Chentsov stable fields. From left to right: the
large-jump parts, the small-jump parts, and the combined fields.

Appendix A. A general framework for simulating stable processes

The framework here can be read from Cohen et al. (2008) where an essentially
more general one for infinitely-divisible processes is explained in details. We only
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focus on a subclass of SαS processes, of which the task is significantly simplified
(see Remark A.3). Namely, for some measurable space pS,Sq equipped with a
finite measure m and a family of square integrable functions tftutPT on pS,mq, we
are interested in simulating SαS processes defined as

Xptq :“
ÿ

jPN
ηα,jftpWjq, t P T, α P p0, 2q, (A.1)

where
tpηα,j ,WjqujPN „ PPP

ˆ

αCα
2
|y|´α´1dydm

˙

.

Remark A.1. Alternatively, the above can be viewed as a Poisson point process
with i.i.d. marks, with tηα,jujPN „ PPPpp1{2qCαmpSqα|y|

´α´1dyq on Rzt0u and
tWjujPN as i.i.d. random elements in S with law mp¨q{mpSq, two families being
independent. This representation is helpful for some analysis of the stable processes,
but is not needed in our proofs.

The definition (A.1) has the following stochastic-integral representation

tXptqutPT
d
“

"
ż

S

ftpsqMαpdsq

*

tPT

, α P p0, 2q, (A.2)

where Mα is an SαS random measure on pS,Sq with control measure m (Samorod-
nitsky and Taqqu, 1994, Corollary 3.10.4). In general, the representations of stable
processes, in particular the choices of pS,mq, are not unique, and a good choice
may increase significantly the efficiency of simulation method.

It is well known that, when α P p0, 2q, there are no exact simulation methods
for most SαS processes. In the seminal work of Asmussen and Rosiński (2001), it
was pointed out that in simulations, the SαS process should be decomposed into
the large-jump and small-jump parts, and then the two parts could be simulated
independently. Namely, let ε ą 0, in view of (A.1), the process tXptqutPT can be
written as the sum of two independent processes

Xptq “ Xε,1ptq `Xε,2ptq,

with Xε,1 and Xε,2 given by

Xε,1ptq :“
8
ÿ

n“1

ηα,nftpWnq1tηα,něεu, and Xε,2ptq :“
8
ÿ

n“1

ηα,nftpWnq1tηα,năεu.

The two processes are referred as the large-jump and the small-jump parts, re-
spectively from now on. For the large-jump part, thanks to our assumption that
m is finite on pS,Sq, it is immediately seen that Xε,1 has a compound-Poisson
representation as

tXε,1utPT
d
“

#

Nα,ε
ÿ

j“1

Vα,ε,jftpWjq

+

tPT

, (A.3)

where Nε is a Poisson random variable with parameter CαmpSqε´α, Wj are as
before, Vα,ε,j has probability density p1{2qεαα|y|´α´1, |y| ą ε, and all random vari-
ables are independent. An exact simulation of Xε,1 in view of (A.3) is straightfor-
ward.

The small-jump part tXε,2ptqutPT is an infinitely-divisible process that can be
approximated by a Gaussian process, as summarized in the following proposition.
The proof is essentially the same as Asmussen and Rosiński (2001, Theorem 2.1);
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see also Lacaux (2004b, Lemma 4.1) and Cohen et al. (2008, Proposition 5.1). For
the sake of completeness we include a proof here again. Let ναpdxq denote the Lévy
measure for standard SαS distribution

ναpdxq :“
αCα

2
|x|´1´αdx, x ‰ 0.

Introduce

σαpεq :“

ˆ
ż ε

´ε

v2ναpdvq

˙1{2

“

ˆ

αCα

ż ε

0

v1´αdv

˙1{2

“

ˆ

αCα
2´ α

˙1{2

ε1´α{2.

Proposition A.2. Assume that ft P L2pS,mq for all t P T . Then
"

Xε,2ptq

σαpεq

*

tPT

f.d.d.
ñ tGptqutPT ,

as ε Ó 0, where tGptqutPS is a centered Gaussian process with covariance function

CovpGpt1q,Gpt2qq “
ż

S

ft1psqft2psqmpdsq, t1, t2 P T.

The tightness of the sequence tXε,2uεą0 was also established in a few earlier
investigated cases (Asmussen and Rosiński, 2001; Lacaux, 2004b). Note that the
Gaussian process G that arises in the limit shares the same form of integral repre-
sentations as the original SαS process X, with the SαS random measure replaced
by a Gaussian random measure (α “ 2).

Remark A.3. Most examples of interest in Lacaux (2004a,b); Cohen et al. (2008) are
such that S “ Rd equipped with the control measurem being the Lebesgue measure.
Then, the large-jump part does not have compound–Poisson representation; it is
known as a shot-noise model over Rd in the literature (Vervaat, 1979). Simulating
of shot-noise models requires another approximation, with key ideas from Rosiński
(2001). On the other hand, the treatment for approximation the small-jump part
remains the same for different choices of pS,mq. From this point of view, working
with a generic pS,mq instead of pRd,Lebq as in earlier references does not bring
new technical challenges in analysis immediately: choosing m to be finite on S
even simplifies our task.

It is worth noting that the assumption on the finiteness on m is not essential, as
one could also apply a change-of-measure trick to work with a different represen-
tation satisfying this property. The essential constraint here is the L2-integrability
of the functions ft (after change of measure) that is needed for the Gaussian ap-
proximations of the small-jump part (for (A.1) to be a well defined SαS process it
suffices to have ft P Lα in general). Another notable example of SαS processes that
fits into the framework presented here is the one recently introduced in Owada and
Samorodnitsky (2015), where S takes a more abstract space than Rd.

Proof of Proposition A.2: We start by providing some background on infinitely-
divisble processes. As an infinitely-divisible process, by Samorodnitsky (2016, The-
orems 3.3.2 and 3.4.3), (A.2) also can be written as the following integral represen-
tation

tXptqutPT
d
“

"
ż

S

ftpsqM
id
α pdsq

*

tPT

, (A.4)

whereM id
α is an infinitely-divisible random measure on S with control measure dm,

andM id
α is uniquely determined by local characteristics σ2 ” 0, b ” 0, ρps, ¨q “ ναp¨q
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(Samorodnitsky, 2016, P.86). (The infinitely-divisible random variable Xptq has
Lévy measure on R as the push-forward measure

µft :“ pmˆ ναq ˝ T
´1
ft

with Tftps, xq :“ xftpsq, s P S, x P R, (A.5)

see Samorodnitsky, 2016, Theorem 3.3.2, although we do not gain anything in this
proof by using µft .)

We shall understand stochastic-integral representations as in (A.4) via their cor-
responding characteristic functions of finite-dimensional distributions based on local
characteristics, namely with

řd
j“1 θjftj psq ” gpsq,

E exp

˜

i
d
ÿ

j“1

θjXtj

¸

“ exp

ˆ
ż

S

ż

R

´

eigpsqx ´ 1´ igpsq vxw
¯

ναpdxqmpdsq

˙

, (A.6)

where

vxw “

$

’

&

’

%

x |x| ď 1,

´1 x ă 1,

1 x ě 1.

Then, Xε,2 has the similar integral representation as (A.4) with M id
α modified by

replacing the Lévy measure να by the truncated measure 1t|v|ăεuναpdvq. Now we
consider for d P N, t “ pt1, . . . , tdq P T d and θ “ pθ1, . . . , θdq P Rd,

gθ,tpsq :“
d
ÿ

j“1

θjftj psq.

Then the characteristic function of finite-dimensional distribution of Xε,2ptq is given
by (thanks to the symmetry of να, replacying gpsq vxw in (A.6) by gpsqx1t|gpsqx|ď1u)

E exp

˜

i

řd
j“1 θjXε,2ptjq

σαpεq

¸

“ exp

ˆ
ż

S

Iα,εpgθ,tpsqqmpdsq

˙

,

with

Iα,εpyq :“

ż

R

ˆ

exp

ˆ

i
yx

σαpεq

˙

´ 1´ i
y

σαpεq
vxw

˙

1t|x|ďεuναpdxq

“

ż ε

´ε

ˆ

exp

ˆ

i
yx

σαpεq

˙

´ 1´ i
yx

σαpεq

˙

ναpdxq,

where we dropped vxw on the right-hand side of first line above thanks to the
symmetry of να. Now, since σαpεq{εÑ8 as ε Ó 0, we have

Iα,εpyq „

ż ε

´ε

´
y2x2

2σαpεq2
ναpdxq “ ´

y2

2

şε

´ε
x2ναpdxq

σαpεq2
“ ´

y2

2
.

In addition, for all y P R, |Iα,εpyq| ď y2{2 (since |eix ´ 1 ´ ix| ď x2{2). Therefore
by the dominate convergence theorem we have

lim
εÓ0

E exp

˜

i

řd
j“1 θjXε,2ptjq

σαpεq

¸

“ lim
εÓ0

E exp

ˆ
ż

S

Iα,εpgθ,tpsqqmpdsq

˙

“ exp

ˆ

´
1

2

ż

S

|gθ,tpsq|
2
mpdsq

˙

.
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Now, we read the right-hand side as the the characteristic function of
řd
j“1 θjGptjq,

which completes the proof. �

So for the small-jump part, in practice we shall pick a small number ε ą 0 and
apply the approximation

tXε,2ptqutPT « tσαpεqGptqutPT ,

for the corresponding Gaussian process in Proposition A.2. The replacement of
small-jump part by a Gaussian process is crucial in view of numerical analysis. For
example, for Lévy-driven stochastic differential equations, the performance of ap-
proximation schemes is much better with the Gaussian approximation than simply
neglecting all the small jumps. See Fournier (2011) and references therein for a
detailed investigation.

Remark A.4. As in earlier results, one could also have an Berry–Esseen bound
on the pointwise approximation, thanks to Asmussen and Rosiński (2001, Theo-
rem 3.1), Lacaux (2004b, Lemma 4.1): letting

s2
εptq “ EX2

ε,2ptq “

ż

S

|ft|
2dm

ż ε

´ε

x2ναpdxq “ VarpGptqqσ2
αpεq,

we have immediately the following rate for the convergence in Proposition A.2
(recall the Lévy measure in (A.5))

sup
xPR

ˇ

ˇ

ˇ

ˇ

P
ˆ

Xε,2

σαpεq
ď x

˙

´ PpGptq ď xq

ˇ

ˇ

ˇ

ˇ

ď CBE

ş

S
|ft|

3dm
şε

´ε
|x|3ναpdxq

s3
εptq

ď CBE

ş

S
|ft|

3dm

p
ş

S
|ft|2dmq3{2

p2´ αq3{2

p3´ αq
?
αCα

εα{2,

where CBE is the constant in standard Berry–Esseen upper bound for partial sum
of centered i.i.d. random variables with unit variance. The value CBE “ 0.7975 was
used in the aforementioned references, and this value has been improved to 0.4785
in Korolev and Shevtsova (2012).
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