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Abstract. In this short note, we extend the celebrated results of Tao and Vu, and Krishnapur
on the universality of empirical spectral distributions to a wide class of inhomogeneous complex
random matrices, by showing that a technical and hard-to-verify Fourier domination assumption
may be replaced simply by a natural uniform anti-concentration assumption.

Along the way, we show that inhomogeneous complex random matrices, whose expected squared
Hilbert-Schmidt norm is quadratic in the dimension, and whose entries (after symmetrization) are
uniformly anti-concentrated at 0 and infinity, typically have smallest singular value Ω(n−1/2). The
rate n−1/2 is sharp, and closes a gap in the literature.

Our proofs closely follow recent works of Livshyts, and Livshyts, Tikhomirov, and Vershynin on
inhomogeneous real random matrices. The new ingredient is an anti-concentration inequality for
sums of independent, but not necessarily identically distributed, complex random variables, which
may also be useful in other contexts.

1. Introduction

1.1. The least singular value of inhomogeneous complex random matrices. The (ordered) singular
values of an n × n complex matrix An, denoted by sk(An) for k ∈ [n], are defined to be the

eigenvalues of
√
A†nAn arranged in non-decreasing order. Recall that the extreme singular values

s1(An) and sn(An) admit the following variational characterization:

s1(An) := sup
x∈Sn−1

C

‖Anx‖2, sn(An) := inf
x∈Sn−1

C

‖Anx‖2, (1.1)
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where ‖ · ‖2 denotes the standard Euclidean norm in Cn and Sn−1C denotes standard unit sphere in
Cn. In this short note, we will primarily be concerned with the non-asymptotic study of the smallest
singular value sn(An) (for quite general random matrices An) – a subject which has its origins in
numerical linear algebra, and which has attracted much attention in recent years (see, for instance,
the references in Livshyts et al., 2021).

When the entries of An are i.i.d. complex Gaussians, Edelman (1988) showed that for any ε > 0,

Pr
(
sn(An) ≤ εn−1/2

)
≤ ε2;

in particular, this shows that for any δ > 0, with probability at least 1 − δ, sn(An) = Ωδ(n
−1/2).

In other words, the smallest singular value of a ‘typical realization’ of an i.i.d. complex Gaussian
matrix is at least order n−1/2 (which is known to be optimal).

As our first main result, we establish the optimal order of sn(An) for a typical realization of An
for very general ensembles of random matrices – this is a complex analogue of a recent theorem of
Livshyts (2021+) (see the discussion below).

Theorem 1.1. Let An be an n×n complex random matrix whose entries Ai,j are independent and
satisfy the following two conditions:

•
∑

i,j E|Ai,j |2 ≤ Kn2 for some K > 0, and

• Pr
(
b−1 ≥ |Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1) (here, Ãi,j denotes the difference of two inde-

pendent copies of Ai,j).
Then, for all ε ∈ [0, 1),

Pr

(
sn(An) ≤ ε√

n

)
≤ C

(
ε+ exp(−cε2n)

)
,

where C, c depend only on K and b.

Remark 1.2. Due to the presence of the term exp(−cε2n), we require that ε = Ω(n−1/2) in order to
obtain a non-trivial upper bound on the probability. The presence of this restriction is similar to the
restriction in Rudelson (2008) and stems from the lack of consideration of the arithmetic structure
of random hyperplanes. While it is believed that this term should be replaceable by exp(−cn) (see
Equation (1.4) below), such a result is not even known in the case of i.i.d. complex random variables
with finite non-zero variance (see Jain, 2020, 2019 for the best-known results in this direction).

In particular, Theorem 1.1 implies that for any fixed δ > 0, with probability at least 1 − δ,
sn(An) ≥ Ωδ(n

−1/2). The rate n−1/2 is optimal, and to the best of our knowledge, all previous
works considering general heavy-tailed complex random matrices miss this sharp rate. For instance,
it was shown by Tao and Vu (2010b) that if the entries of Ai,j are dominated (in a technical Fourier
sense) by a complex random variable with κ-controlled second moment (see Tao and Vu, 2010b,
Definition 5.1 for the definition), then for any C,α > 0,

Pr(sn(An) ≤ n−C · n−1/2) .C,α,κ n−C+α+on(1) + Pr(‖An‖ ≥ n1/2). (1.2)

Here, .C,α,κ hides a constant depending on C,α, κ. We also note that for the case when the Ai,j
are i.i.d., Pr

(
|Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1), and E|Ai,j |2 ≤ K for some K > 0, the first author

showed Jain (2020) that for any ε, α > 0,

Pr
(
sn(An) ≤ εn−1/2−α

)
.K,b,α ε+ exp(−cn1/50), (1.3)

where the constant c depends on K and b. Once again, this misses the correct rate.
The technical Fourier-domination condition needed for Equation (1.2) already implies that

Pr(b−1 ≥ |Ãi,j | ≥ b) ≥ b for some b ∈ (0, 1) (see Tao and Vu, 2010b, Corollary 6.3). On the
other hand, there are natural examples of families of random variables which cannot be dominated
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by a random variable with κ-controlled second moment, but which nevertheless satisfy the uni-
form anti-concentration assumption of Theorem 1.1; one such example is provided by the family
{eiθ · ξ}θ∈[0,2π), where ξ is a Rademacher random variable i.e. ξ = ±1 with probability 1/2 each.
Moreover, in order for the term Pr

(
‖An‖ ≥ n1/2

)
to be bounded away from 1, one needs to further

assume that
∑n

i,j=1 E|Ai,j |4 ≤ Kn2 for some K > 0, which is more restrictive than the assumption
in Theorem 1.1.

This somewhat dire situation in the complex case should be contrasted with the real case, where
much more is known. The early breakthrough of Rudelson (2008) established that for an n × n
matrix An whose entries are i.i.d. copies of a real centered sub-Gaussian random variable, and
for any δ > 0, we have with probability at least 1 − δ that sn(An) = Ωδ(n

−1/2). A subsequent
breakthrough of Rudelson and Vershynin (2008) refined this to the near-optimal tail bound

Pr(sn(An) ≤ ε · n−1/2) . ε+ exp(−cn), (1.4)

where the implicit constant in . and the constant c depend on the random variable. Extensions
of the above tail bound to heavy-tailed and inhomogeneous random matrices has attracted much
attention in recent years. Rebrova and Tikhomirov (2018) extended Rudelson and Vershynin’s result
to the case when the sub-Gaussian assumption is replaced by the finiteness of the second moment
(the entries are still assumed to be identically distributed and centered). Livshyts (2021+) showed
that if the entries Ai,j are independent real random variables, Pr

(
|Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1),

and
∑n

i,j=1 E|Ai,j |2 ≤ Kn2 for some K > 0, then

Pr
(
sn(An) ≤ ε · n−1/2

)
.K,b ε+ n−1/2. (1.5)

Finally, Livshyts, Rudelson, and Tikhomirov (Livshyts et al., 2021) obtained the near-optimal tail
estimate Equation (1.4) under these assumptions (here, the implicit constant in . and the constant
c depend only on K and b).

Perhaps unsurprisingly, our proof makes use of tools introduced in Livshyts (2021+); Livshyts
et al. (2021). The key new ingredient is an anti-concentration inequality for sums of independent
complex random variables, which we will discuss in Section 2.

1.2. Universality of ESDs of dense, inhomogeneous random matrices. The empirical spectral distri-
bution (ESD) µn of an n× n complex matrix An is defined on R2 by the expression

µAn(s, t) :=
1

n
· |{k ∈ [n] | <(λk) ≤ s;=(λk) ≤ t}| ,

where λ1, . . . , λn denote the eigenvalues of An. A major highlight of random matrix theory is the
celebrated circular law of Tao and Vu (2010a), which asserts that for any fixed complex random
variable x of mean 0 and variance 1, the ESD of An/

√
n – where An is an n×n random matrix each

of whose entries is an independent copy of x – converges (as n→∞) uniformly to the distribution
of the uniform measure on the unit disc in the complex plane,

µ∞(s, t) :=
1

π
area{x ∈ C | |x| ≤ 1,<(x) ≤ s,=(x) ≤ t}.

More generally, Tao and Vu showed that for any fixed complex random variables x and y of mean 0
and variance 1, and for any sequence of deterministic matricesMn satisfying ‖Mn‖2HS = O(n2) (here,
‖ · ‖HS denotes the Hilbert-Schmidt norm of a matrix), the difference of the ESDs of (Mn+Xn)/

√
n

and (Mn + Yn)/
√
n converges in probability to 0 as n→∞, where Xn is an n× n random matrix

whose entries are i.i.d. copies of x, and Yn is an n× n random matrix whose entries are i.i.d. copies
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of y. These results were extended by Krishnapur (Tao and Vu, 2010a) to independent, but not nec-
essarily identically distributed random matrices, satisfying certain restrictions on the distributions
of the entries.

Here, by using the arguments of Tao, Vu, and Krishnapur in conjunction with Theorem 1.1, we
show the following.

Theorem 1.3. Let Mn = (µ
(n)
i,j )i,j≤n and Cn = (σ

(n)
i,j )i,j≤n be constant (i.e. deterministic) matrices

satisfying
(i) supn n

−2‖Mn‖2HS <∞;
(ii) α ≤ σ(n)i,j ≤ β for all n, i, j, for some 0 < α < β <∞.

Given a matrix X = (xi,j)i,j≤n, set

An(X) = Mn + Cn ·X = (µ
(n)
i,j + σ

(n)
i,j xi,j)i,j≤n,

where "·" denotes the Hadamard product.

(1) Suppose that x(n)i,j are independent complex-valued random variables with E[x
(n)
i,j ] = 0 and

E[|x(n)i,j |2] = 1, and that y(n)i,j are independent complex-valued random variables, also having
zero mean and unit variance.

(2) Assume that there exists some b ∈ (0, 1) such that Pr (|x̃i,j | ≥ b) ≥ b and similarly for yi,j.
(3) Also, assume Pastur’s condition,

1

n2

n∑
i,j=1

E
[
|x(n)i,j |

2
1{|x(n)i,j | ≥ ε

√
n}
]
n→∞−−−→ 0 for all ε > 0,

and the same for Y in place of X.
Then,

µn−1/2·An(X) − µn−1/2·An(Y )
n→∞−−−→ 0

in the sense of probability.

Remark 1.4. In Tao and Vu (2010a), Krishnapur proved a similar result, except that the natural and
mild anti-concentration assumption 2. was replaced by the stronger, technical, and hard-to-verify
condition that xi,j , yi,j have κ-controlled second moment.

Notation: Throughout the paper, we will omit floors and ceilings when they make no essential
difference. We will use Sn−1C to denote the set of unit vectors in Cn, B(x, r) to denote the Euclidean
ball of radius r centered at x, and <(v),=(v) to denote the real and imaginary parts of a complex
vector v ∈ Cn. As is standard, we will use [n] to denote the discrete interval {1, . . . , n}. We will
also use the asymptotic notation .,&,�,� to denote O(·),Ω(·), o(·), ω(·) respectively. For a ma-
trix M , we will use ‖M‖ to denote its standard `2 → `2 operator norm and ‖M‖HS to denote the
Hilbert-Schmidt norm. ? denotes the Schur (entry-wise) product and dist(·, ·) always denotes the
Euclidean distance. All logarithms are natural unless noted otherwise.

2. Anti-concentration for sums of non-identically distributed independent complex ran-
dom variables

The goal of the theory of anti-concentration is to obtain upper bounds on the Lévy concentration
function, which is defined as follows.



Universality of ESDs of inhomogeneous random matrices 1051

Definition 2.1 (Lévy concentration function). Let X := (X1, . . . , Xn) ∈ Cn be a complex random
vector, and let v := (v1, . . . , vn) ∈ Cn. We define the Lévy concentration function of v at radius r
with respect to X by

ρr,X(v) := sup
x∈C

Pr (v1X1 + · · ·+ vnXn ∈ B(x, r)) .

Rudelson and Vershynin (2008) introduced the notion of the essential least common denominator
(LCD) to control the Lévy concentration function. This notion was generalized in Livshyts et al.
(2021) to the randomized least common denominator (RLCD) and used to handle non-i.i.d. real
random variables. We give a generalization of this to non-i.i.d. complex random variables which
will be useful for us.

Definition 2.2 (CRLCD). For a complex random vector X := (X1, . . . , Xn) ∈ Cn, a deterministic
vector v := (v1, . . . , vn) ∈ Cn, and parameters L > 0, u ∈ (0, 1), define

CRLCDX
L,u(v) := inf

θ∈C

{
|θ| > 0 : E[dist2(θv ? X̃, (Z + iZ)n)] < min(u|θ|2‖v‖22, L2)

}
,

where X̃ denotes the symmetrization of X (i.e. X̃ ∼ X ′ −X ′′, where X ′ and X ′′ are independent
copies of X).

Before proceeding to the results of this section, we need a couple of additional definitions.

Definition 2.3 (Tao and Vu, 2008). For a complex random vector

X := (X1, . . . , Xn) ∈ Cn

and a deterministic vector v := (v1, . . . , vn) ∈ Cn, let

PX(v) := E
[
−π|〈X̂, v〉|2

]
.

Here, X̂ := X̃ ?(x1, . . . , xn), where x1, . . . , xn are mutually independent Ber(1/2) random variables,
which are also independent of X̃.

Definition 2.4 (Tao and Vu, 2008). For a complex random variable z ∈ C and a fixed complex
number a ∈ C, let

‖a‖z :=
(
E
[
‖<(a · z̃)‖2R/Z

])1/2
,

where z̃ denotes the symmetrization of z and ‖ · ‖R/Z denotes the distance to the nearest integer.

Lemma 2.5 (Tao and Vu, 2008). For a complex random vector

X := (X1, . . . , Xn) ∈ Cn

with independent coordinates, and deterministic vectors v := (v1, . . . , vn), w := (w1, . . . , wn) ∈ Cn:
(1) ρr,X(v) ≤ exp(πr2) · PX(v).
(2) PX(v)PX(w) ≤ 2PXX(vw). Here, vw ∈ C2n denotes the vector whose first n coordinates

coincide with v and last n coordinates coincide with w, and XX ∈ C2n denotes the complex
random vector whose first n coordinates and last n coordinates are both independent copies
of X.

(3) PX(v) ≤
∫
C exp

(
−
∑n

i=1 ‖ξ · vi‖2Xi
/2
)

exp(−π|ξ|2)dξ.

Proof : 1. follows from Tao and Vu (2008, Lemma 4.3), 2. follows from Tao and Vu (2008, Lemma
4.5(iii)) and 3. follows from Tao and Vu (2008, Lemma 5.2). Actually, in Tao and Vu (2008), these
results are stated only in the case when the coordinates of the random vector X are identically
distributed, but exactly the same proof also works for our more general setting. �
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Next, we need a small modification of a ‘doubling trick’ from the proof of Jain (2020, Theo-
rem 2.11).

Lemma 2.6. Let X := (X1, . . . , Xn) ∈ Cn be a complex random vector with independent coordi-
nates, and let w := (w1, . . . , wn) ∈ Cn be a deterministic vector. Then,

ρr,X(w)2 ≤ 2 exp(2πr2) ·
∫
C

exp

(
−1

2
E
[
dist2

(
ξw ? X̃, (Z + iZ)n

)])
exp(−π|ξ|2)dξ.

Proof : Let wC ∈ C2n denote the vector whose first n coordinates coincide with w and last n
coordinates coincide with i · w. Then, since ρr,X(w) = ρr,X(i · w), we have

ρr,X(w)2 = ρr,X(w)ρr,X(i · w)

≤ exp(2πr2) · PX(w) · PX(i · w)

≤ 2 exp(2πr2) · PXX(wC)

≤ 2 exp(2πr2) ·
∫
C

exp

(
−1

2

n∑
i=1

(
‖ξ · wi‖2Xi

+ ‖iξ · wi‖2Xi

))
e−π|ξ|

2
dξ,

where the second, third and fourth inequalities follow from Lemma 2.5 parts 1, 2, and 3 respectively.
Finally, note that

n∑
i=1

(
‖ξ · wi‖2Xi

+ ‖iξ · wi‖2Xi

)
= E

n∑
i=1

(
‖<(ξwi · X̃i)‖2R/Z + ‖<(iξwi · X̃i)‖2R/Z

)
= E

n∑
i=1

(
‖<(ξwi · X̃i)‖2R/Z + ‖=(ξwi · X̃i)‖2R/Z

)
= E

[
dist2(ξw ? X̃, (Z + iZ)n)

]
. �

The next proposition is the main result of this section.

Proposition 2.7. Let X := (X1, . . . , Xn) ∈ Cn be a complex random vector with independent
coordinates and let v := (v1, . . . , vn) ∈ Cn be such that 1

2 ≤ ‖v‖2 ≤ 2. Then, for all parameters
L > 0, u ∈ (0, 1), and for all ε > 0,

ρε,X(v) ≤ C2.7

(
εu−1/2 + exp

(
−1

4
L2

)
+ exp

(
−π

4
ε2 CRLCDX

L,u(v)2
))

,

where C2.7 is an absolute constant.

Proof : Let w := v/ε ∈ Cn. Then, 2−1ε−1 ≤ ‖w‖2 ≤ 2ε−1 and ρε,X(v) = ρ1,X(w). Moreover,

ρ1,X(w)2 ≤ 2 exp(2π) ·
∫
C

exp

(
−1

2
E
[
dist2

(
ξw ? X̃, (Z + iZ)n

)])
exp(−π|ξ|2)dξ

= 2 exp(2π)ε2 ·
∫
C

exp

(
−1

2
E
[
dist2

(
ηv ? X̃, (Z + iZ)n

)])
e−πε

2|η|2dη

where the first line follows from Lemma 2.6 and the second line follows from the change of variables
ξ = εη.

Let

F (η) = exp

(
−1

2
E
[
dist2

(
ηv ? X̃, (Z + iZ)n

)])
exp(−πε2|η|2).

We break the above integral into two regions, B(0,CRLCDX
L,u(v)) and its complement.
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For the first region, note that by the definition of CRLCD,∫
B(0,CRLCDX

L,u(v))

F (η)dη ≤
∫
B(0,CRLCDX

L,u(v))

exp

(
−1

2
min

(
u|η|2‖v‖22, L2

)
− πε2|η|2

)
dη

≤
∫
C

exp

(
−1

2
min

(
u|η|2‖v‖22, L2

)
− πε2|η|2

)
dη

≤
∫
C

exp

(
−1

2
u|η|2‖v‖22

)
dη +

∫
C

exp

(
−1

2
L2 − πε2|η|2

)
dη

≤ C
(
u−1 + ε−2 · exp

(
−1

2
L2

))
,

for some absolute constant C > 0. For the second region, note that∫
C\B(0,CRLCDX

L,u(v))
F (η)dη ≤

∫
C\B(0,CRLCDX

L,u(v))
exp(−πε2|η|2)dη

= ε−2
∫
C\B(0,εCRLCDX

L,u(v))
exp(−π|ξ|2)dξ

≤ Cε−2 exp
(
−π

2
ε2 CRLCDX

L,u(v)2
)
,

for some absolute constant C > 0. Putting everything together, we see that

ρε,X(v)2 ≤ C
(
ε2u−1 + exp

(
−1

2
L2

)
+ exp

(
−π

2
ε2 CRLCDX

L,u(v)2
))

,

so that

ρε,X(v) ≤ C
(
εu−1/2 + exp

(
−1

4
L2

)
+ exp

(
−π

4
ε2 CRLCDX

L,u(v)2
))

,

as desired. �

We conclude this section with the following lemma, which shows that weighted sums of uniformly
anti-concentrated random variables are not too close to being a constant.

Lemma 2.8. Let X := (X1, . . . , Xn) ∈ Cn be a complex random vector with independent coordinates
such that Pr

(
b−1 ≥ |X̃i| ≥ b

)
≥ b for some b ∈ (0, 1). There exists a constant c2.8 ∈ (0, 1) depending

only on b such that for all unit vectors v := (v1, . . . , vn) ∈ Sn−1C ,

ρc2.8,X(v) ≤ 1− c2.8. (2.1)

Proof : Let M be a sufficiently large constant depending only on b, to be determined during the
course of the proof. We consider two cases, depending on ‖v‖∞.

Case I: ‖v‖∞ ≥ M−1. Without loss of generality, suppose |v1| > M−1. Then, by conditioning
on the variables X2, . . . , Xn, we see that it suffices to prove that ρc,X1(v1) ≤ 1−c, for some constant
c ∈ (0, 1) depending only on b (and M). But this follows immediately since Pr(|X̃1| ≥ b) ≥ b.

Case II: ‖v‖∞ < M−1. In this case, it suffices to show that CRLCDX
L,u(v) ≥Mb, for u = b3 and

all L sufficiently large, for then, Equation (2.1) follows immediately from Proposition 2.7 by taking
M to be sufficiently large depending on b. In order to show this, by definition, it suffices to show
that for all θ ∈ C such that 0 < |θ| < Mb,

E
[
dist2(θv ? X̃, (Z + iZ)n

]
≥ u|θ|2‖v‖22.
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For this, we begin by noting that for any such value of θ,

dist2(θv ? X̃, (Z + iZ)n) ≥
n∑
i=1

|θ|2|vi|2|X̃i|21
[
|θviX̃i| ≤

1

10

]

≥
n∑
i=1

|θ|2|vi|2|X̃i|21
[
|X̃i| ≤ b−1

]
≥

n∑
i=1

|θ|2|vi|2|X̃i|21
[
b ≤ |X̃i| ≤ b−1

]
≥

n∑
i=1

b2|θ|2|vi|21
[
b ≤ |X̃i| ≤ b−1

]
.

Therefore, taking the expectation on both sides, we see that

E
[
dist2(θv ? X̃, (Z + iZ)n)

]
≥

n∑
i=1

b2|θ|2|vi|2E
[
1
[
b ≤ |X̃i| ≤ b−1

]]
≥

n∑
i=1

b2|θ|2|vi|2 · b

= b3|θ|2‖v‖22,

which gives the desired conclusion. �

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 following Livshyts (2021+); Livshyts et al. (2021). The
only new ingredients are Lemma 3.1 and Proposition 3.8.

The first step in the proof of Theorem 1.1 is to decompose the sphere Sn−1C . For some parameters
δ, ρ ∈ (0, 1) to be chosen later, following Rudelson and Vershynin (2008), we define the sets of sparse,
compressible, and incompressible vectors as follows:

Sparse(δ) :=
{
u ∈ Sn−1C : |supp(u)| ≤ δn

}
,

Comp(δ, ρ) :=
{
u ∈ Sn−1C : dist(u,Sparse(δ)) ≤ ρ

}
,

Incomp(δ, ρ) := Sn−1C \ Comp(δ, ρ).

Here, for u = (u1, . . . , un), supp(u) denotes the set of coordinates i ∈ [n] for which ui 6= 0.

This results in
Sn−1C = Comp(δ, ρ) ∪ Incomp(δ, ρ).

By characterization (1.1) and the union bound, we have

Pr(sn(An) ≤ ε · n−1/2) ≤ Pr

(
inf

x∈Comp(δ,ρ)
‖Anx‖2 ≤ ε · n−1/2

)
+

Pr

(
inf

x∈Incomp(δ,ρ)
‖Anx‖2 ≤ ε · n−1/2

)
.

We first deal with the compressible vectors. For this, as is standard, we begin with an estimate
for ‘invertibility with respect to a single vector’, which in our case, follows directly by combining
Lemma 2.8 with the so-called tensorization lemma (Rudelson and Vershynin, 2008, Lemma 2.2).
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Lemma 3.1. Let AN,n be an N ×n complex random matrix whose entries Ai,j are independent and
satisfy Pr

(
b−1 ≥ |Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1) .Then, for any fixed v ∈ Sn−1C ,

Pr
(
‖AN,nv‖2 ≤ c3.1

√
N
)
≤ (1− c3.1)N ,

where c3.1 ∈ (0, 1) is a constant depending only on b.

Next, we need the following crucial theorem guaranteeing the existence of a suitable net on the
sphere.

Theorem 3.2 (Modification of Livshyts, 2021+, Corollary 4). Fix N,n ∈ N and consider any
subset S ⊂ Sn−1C . For any µ ∈ (0, 1), and for every ε ∈ (0, µc0) (for some absolute constant c0 > 0),
let #Nε(S) denote the minimum number of Euclidean balls of radius ε needed to cover S. There
exists a deterministic net N ⊂ Cn, with

|N | ≤ #Nε(S) · (O(ε))µn,

and there exist positive constants C1(µ), C2(µ) such that the following holds. For every random
N×n complex random matrix AN,n with independent columns, with probability at least 1−e−C1(µ)n,
for every x ∈ S, there exists y ∈ N so that

‖AN,n(x− y)‖2 ≤
C2(µ)ε√

n

√
E[‖A‖2HS].

Remark 3.3. In Livshyts (2021+), this theorem is proved for nets of Sn−1R ; however, the same
argument used there also works in the complex case.

Using Theorem 3.2 and the invertibility with respect to a single vector from Lemma 3.1, the
following anti-concentration result for compressible vectors follows identically from Livshyts (2021+,
Lemma 5.3).

Proposition 3.4. Let A be an n×n random matrix whose entries Ai,j are independent and satisfy
E[‖A‖2HS] ≤ Kn2 for some K > 0, and Pr

(
|Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1). Then, there exist

ρ, δ ∈ (0, 1) and C3.4, c3.4 > 0, depending only on K and b, such that

Pr

(
inf

x∈Comp(δ,ρ)
‖Ax‖2 ≤ C3.4

√
n

)
≤ 2e−c3.4n .

For the incompressible vectors, we use an ‘invertibility via distance’ bound similar to Rudelson
and Vershynin (2008). The precise version we use appears in Livshyts et al. (2021).

Lemma 3.5 (Invertibility via distance, Livshyts et al. (2021, Lemma 6.1)). Fix a pair of parameters
δ, ρ ∈ (0, 1/2) and assume that n ≥ 4/δ. Then, for any ε > 0,

Pr

(
inf

x∈Incomp(δ,ρ)
‖Ax‖2 ≤ ε

ρ√
n

)
≤ 4

δn
inf

I⊂[n],|I|=n−bδn/2c

∑
j∈I

Pr (dist(Aj , Hj) ≤ ε) ,

where Aj denotes the jth column of A and Hj denotes the subspace spanned by all the columns of
A except for Aj.

From the previous lemma, in order to control ‖Ax‖2 for incompressible vectors x, it suffices to
understand the anti-concentration of dist(Aj , Hj). For this, we begin by noting that dist(Aj , Hj) ≥
|〈Aj , νj〉|, where νj denotes any unit vector normal to Hj , so that the anti-concentration of
dist(Aj , Hj) reduces to studying the anti-concentration properties of a unit normal to a random
hyperplane.

Before proceeding to the details, we will need the following lemma, which shows that incompress-
ible vectors have sufficiently large CRLCD.
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Lemma 3.6 (Incompressibles have large CRLCD, Livshyts et al., 2021, Lemma 2.10). For any
b, δ, ρ ∈ (0, 1) and c > 0, there are n0 = n0(b, δ, ρ, c), h3.6 = h3.6(b, δ, ρ, c) ∈ (0, 1) and u3.6 =
u3.6(b, δ, ρ, c) ∈ (0, 1/4) with the following property. Let n ≥ n0, let v ∈ Incompn(δ, ρ), and assume
that a random vector X = (X1, . . . , Xn) with independent components satisfies Pr

(
|X̃i| ≥ b

)
≥ b

for all 1 ≤ i ≤ n, and E[‖X‖2] ≤ T , for some T ≥ cn. Then, for any L > 0, we have

CRLCDX
L,u3.6(v) ≥ h3.6 ·

n√
T

Remark 3.7. In Livshyts et al. (2021), the above proposition is proved for the notion of RLCD
defined there, but the same proof goes through for the CRLCD as well.

We can now prove the desired invertibility on incompressible vectors.

Proposition 3.8. Let A be an n×n random matrix whose entries Ai,j are independent and satisfy
E[‖A‖2HS] ≤ Kn2 for some K > 0, and Pr

(
b−1 ≥ |Ãi,j | ≥ b

)
≥ b for some b ∈ (0, 1). Fix a pair of

parameters δ, ρ ∈ (0, 1/2), and assume that n ≥ 4/δ. There exist absolute constants C3.8, c3.8 that
only depend on δ, ρ, b,K such that for any ε ∈ (0, 1),

Pr

(
inf

x∈Incomp(δ,ρ)
‖Ax‖2 ≤ ε

ρ√
n

)
≤ C3.8

(
ε+ exp(−c3.8ε2n)

)
.

Proof : Let δ ∈ (0, 1/2) as in the statement of the proposition and let A1, . . . , An denote the columns
of A. Since E‖A‖2HS ≤ Kn2, there must be at least (1 − δ/4)n columns Ai of A which satisfy
E[‖Ai‖22] ≤ 4Kn/δ. Let I denote the set of the first n − bδn/2c such indices. We will apply
Lemma 3.5 with this choice of I.

For this, fix i ∈ I, and let Hi denote the span of all columns of the matrix except for Ai. Then, an
identical argument to Proposition 3.4 shows that, except with probability at most exp(−c3.4n/2),
any unit vector ν which is orthogonal to Hi must belong to Incomp(δ′, ρ′), where δ′, ρ′, c3.4 depend
only on K, b. Henceforth, we restrict ourselves to this event, and let ν denote a unit normal vector
to the (random) hyperplane Hi.

By Lemma 3.6, it follows that for any L > 0,

CRLCD
Aj

L,u3.6
(ν) ≥ C(b,K, δ)

√
n,

where u3.6 depends on K, b, δ. Therefore, by Proposition 2.7, it follows that

Pr (dist(Aj , Hj) ≤ ε) ≤ ρ2ε,Aj (ν) + exp(−c3.4n/2)

≤ C2.7

(
2εu
−1/2
3.6 + exp

(
−1

4
L2

)
+ exp

(
−C ′(b,K, δ)ε2n

))
+

+ exp(−c3.4n/2).

Finally, taking L > 2
√
C ′(b,K, δ)n and using Lemma 3.5 gives the desired conclusion. �

Proof of Theorem 1.1: The proof of Theorem 1.1 now follows from using characterization (1.1) and
the union bound by combining Proposition 3.4 and Proposition 3.8. �

4. Proof of Theorem 1.3

By means of the so-called replacement principle (Tao and Vu, 2010a, Theorem 2.1), the following
analogue of Tao and Vu (2010a, Proposition 2.2) suffices to prove Theorem 1.3. For a square matrix
M , we denote its determinant by det(M).
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Proposition 4.1. Let An(X) and An(Y ) be as in the statement of Theorem 1.3. Then, for every
fixed z ∈ C,

1

n
log

∣∣∣∣det

(
1√
n
An(X)− zI

)∣∣∣∣− 1

n
log

∣∣∣∣det

(
1√
n
An(Y )− zI

)∣∣∣∣
converges in probability to zero as n→∞.

By using Steps 2,3,4 in the proof of Tao and Vu (2010a, Theorem C.2) verbatim, the proof of
Proposition 4.1 is reduced to proving the following.

Proposition 4.2. Let An(X) and An(Y ) be as in the statement of Theorem 1.3 and let z ∈ C be
fixed. Let X1, . . . , Xn be the rows of An(X)− z

√
nI and, for each 1 ≤ i ≤ n, let Vi be the (i− 1)-

dimensional space generated by X1, . . . , Xi−1. Similarly, let Y1, . . . , Yn be the rows of An(Y )−z
√
nI

and, for each 1 ≤ i ≤ n, let Wi be the (i− 1)-dimensional space generated by Y1, . . . , Yi−1. Then,

1

n

∑
n−n0.99≤i≤n

(
log dist

(
1√
n
Xi, Vi

)
− log dist

(
1√
n
Yi,Wi

))
converges in probability to zero as n→∞.

We can further reduce to proving the following high probability bounds on the extreme singular
values of An(X) and An(Y ).

Proposition 4.3. Let An(X) and An(Y ) be as in the statement of Theorem 1.3 and let z ∈ C be
fixed. Then, there exists an absolute constant C > 0 such that

(1) Pr
(
s1(An(X)− z

√
nI) ≥ nC

)
= on(1),

(2) Pr
(
sn(An(X)− z

√
nI) ≤ n−C

)
= on(1),

and similarly for An(Y ).

Before proving Proposition 4.3, let us show how it implies Proposition 4.2. We will make use of
the following linear algebraic fact.

Lemma 4.4 (Tao and Vu, 2010a, Lemma A.4). Let A be an invertible n× n matrix with singular
values s1(A) ≥ · · · ≥ sn(A) > 0 and rows X1, . . . , Xn ∈ Cn. For each 1 ≤ i ≤ n, let Ui be the
hyperplane generated by the n− 1 rows

X1, . . . , Xi−1, Xi+1, . . . , Xn.

Then,
n∑
j=1

sj(A)−2 =
n∑
j=1

dist(Xj , Uj)
−2.

Proposition 4.3 implies Proposition 4.2: For 1 ≤ i ≤ n, let Ui denote the hyperplane generated by
the n− 1 rows X1, . . . , Xi−1, Xi+1, . . . , Xn of An(X)−

√
nzI. First, note that

1√
n

dist(Xi, Ui) = dist

(
1√
n
Xi, Ui

)
≤ dist

(
1√
n
Xi, Vi

)
≤ 1√

n
‖Xi‖2,

and similarly for An(Y )−
√
nzI. Next, by Lemma 4.4,

dist

(
1√
n
Xi, Vi

)
≥ dist

(
1√
n
Xi, Ui

)
≥ 1

n
sn(An(X)−

√
nzI),

and similarly for An(Y )−
√
nzI.

Therefore, Proposition 4.2 follows if we can show that, except with probability on(1), ‖Xi‖2 ≤
nO(1) (for all 1 ≤ i ≤ n), sn(An(X) − z

√
nI) ≥ n−O(1), and similarly for An(Y ) −

√
nzI. Indeed,
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in this case, except with probability on(1), each summand of the sum appearing in Proposition 4.2
is bounded in absolute value by O(log n), so that the entire sum is bounded in absolute value by

1

n
·O(log n) · n0.99 ≤ O

(
1

n0.001

)
.

Finally, note that for all 1 ≤ i ≤ n, ‖Xi‖2 ≤ s1(An(X)−
√
nzI), so that the desired probability

bounds on ‖Xi‖2 and sn(An(X)) (and similarly for An(Y )) follow from Proposition 4.3. �

Finally, we prove Proposition 4.3.

Proof of Proposition 4.3: Bound on s1: By the triangle inequality for s1(= ‖ · ‖), it suffices to
show that there is an absolute constant C > 0 such that

Pr
(
s1(An(X)) ≥ nC

)
= on(1).

Note that by assumptions (i), (ii) and 1. in the statement of Theorem 1.3, we have E[‖An(X)‖2HS] =

O(nC
′
), so that E[s21(An(X))] = O(nC

′
). The desired conclusion now follows from Markov’s inequal-

ity.

Bound on sn: We begin by verifying that P := An(X) − z
√
nI satisfies the assumptions of

Theorem 1.1. An identical argument works for An(Y )− z
√
nI as well.

Assumptions (i), (ii), and 1. of Theorem 1.3 show that E
∑

i,j |Pi,j |2 ≤ Kn2 for some K > 0.
Moreover, assumptions 1. and 2. of Theorem 1.3 show that there exists some b′ ∈ (0, 1) such

that Pr(b′−1 ≥ |P̃i,j | ≥ b′) ≥ b′ for all i, j – indeed, assumption 2. of Theorem 1.3 shows that
Pr(|P̃i,j | ≥ b/β) ≥ b, and assumption 1. shows that E[|P̃i,j |2] ≤ β2 (therefore, by Markov’s inequality,
Pr(|P̃i,j | ≥ β ·

√
2/b) ≤ b/2) so that we can conclude using the union bound and taking b′ to be

sufficiently small.
Finally, we can apply Theorem 1.1 to P with ε = n−1/4 (say) to obtain the desired conclusion. �
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