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Abstract. We consider a modified version of the biased random walk on a tree constructed from
the set of finite self-avoiding walks on the hexagonal lattice, and use it to construct probability
measures on infinite self-avoiding walk. Under theses probability measures, we prove that the
infinite self-avoiding walks have the Russo-Seymour-Welsh property of the exploration curve of the
critical Bernoulli percolation.

1. Introduction

An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n) in a regular lattice L
(such as the integer lattice Z2, triangular lattice T, hexagonal lattice, etc) is a nearest neighbor path
γ = (γ0, γ1, . . . , γn) that visits no vertex more than once. Self-avoiding walks were first introduced
as a lattice model for polymer chains (see Flory, 1953); while they are very easy to define, they are
extremely difficult to analyze rigorously and there are still many basic open questions about them
(see Madras and Slade, 1993, Chapter 1).

Let cn be the number of SAWs of length n starting at the origin. The connective constant of L,
which we will denote by µ, is defined by

cn = µn+o(n) when n→∞.
The existence of the connective constant is easy to establish from the sub-multiplicativity relation
cn+m ≤ cncm, from which one can also deduce that cn ≥ µn for all n; the existence of µ was
first observed by Hammersley and Morton (1954). Nienhuis (1982) gave a prediction that for all
regular planar lattices, cn = µnnα+o(1) where α = 11

32 , and this prediction is known to hold under
the assumption of the existence of a conformally invariant scaling limit, see e.g. Lawler et al. (2004).

We are interested in defining a natural family of probability measures on the set SAW∞ of infinite
self-avoiding walks. Such a family was constructed in Beffara and Huynh (2017) by using the biased
random walk with one parameter on a particular tree which is called the self-avoiding tree (see
Section 1.1 for the definition). In Beffara and Huynh (2017), the authors proved that under these
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measures, the infinite self-avoiding walks almost surely visit the line Z× {0} infinitely many times.
However we don’t know whether the infinite self-avoiding walks visit the interval [n, 2n]× {0} with
a probability larger than a constant which do not depend on n.

In this paper, we construct a family of probability measures on the set SAW∞ by using a biased
random walk with a reinforcement, which we call the biased random walk with two parameters. We
prove that under these measures, the infinite self-avoiding walks visit the interval [n, 2n]×{0} with
a probability larger than a constant which do not depend on n.

1.1. Background. In this paper, we will focus on the case of hexagonal lattice T∗+ := T∗ ∩ {y ≥ 0}
(see Figure 2.4). Let TT∗

+
be the tree whose vertices are the finite self-avoiding walks in T∗+ starting

at the origin o := (0, 0), where two such vertices are adjacent when one walk is a one-step extension
of the other. We will call this tree the self-avoiding tree on T∗+. Formally, denote by Ωn the set of
self-avoiding walks of length n starting at the origin and V :=

⋃+∞
n=0 Ωn. Two elements x, y ∈ V are

adjacent if one path is an extension by one step of the other. We then define TT∗
+

= (V,E). Denote
by o its root.

Remark 1.1. Note that each infinite branch of TT∗
+
is an infinite self-avoiding walk in the lattice T∗+.

Let T be an infinite, locally finite and rooted tree and denote by o its root. For any vertex ν
of T , denote by ν−1 its parent (we also say that ν is a child of ν−1), i.e. the neighbor of ν with
shortest distance from the root o. Denote by ∂(ν) the number of children of ν. In the case ∂(ν) 6= 0,
denote by ν1, · · · , ν∂(ν) its children. If a vertex has no child, it is called a leaf.
We define an order on V (T ) as follows: if ν, µ ∈ V (T ), we say that ν ≤ µ if the simple path joining
the root o to µ passes through ν. For each ν ∈ V (T ), we define the subtree of T rooted at ν,
denoted by T ν , where V (T ν) := {µ ∈ V (T ) : ν ≤ µ} and E(T ν) = E(T )|V (T ν)×V (T ν). Note that ν
is the root of T ν and T o = T .

1.2. Random walk on trees. Given an infinite, locally finite and rooted tree T with conductances
(i.e positive numbers) assigned to the edges, we consider the random walk starting at the root that
can go from a vertex to its parent or children and whose transition probabilities from a vertex are
proportional to the conductances along the edges to be traversed.

Let λ > 0 and we consider conductances λn on edges at distance n from the root. In this cas,
the random walk is called biased random walk with one parameter λ and denoted by RWλ. Note
that the conductances increase by a factor of λ as the distance increase 1, then the relative weights
at a vertex are as shown in Figure 1.1.

Let λ, η > 0 and we define a modified version of RWλ: if the relative weights at a vertex are as
shown in Figure 1.2, then the random walk is called biased random walk with two parameter (λ, η),
and denoted by RWλ,η.

Let λ, η > 0 and consider the biased random walk RWλ,η on T . For (λ, η) such that the biased
random walk RWλ,η on T is transient, then almost surely, the random walk does not visit Tk1

anymore after a sufficiently large time. We can then define the limit walk, as denoted by ω∞λ,η in the
following way:

ω∞λ,η(i) = xi ⇐⇒
{

xi ∈ Ti
∃n0,∀n > n0 : Xn ∈ T xi

}
.

Remark 1.2. Fix η > 0 and let λ > 0 such that the biased random walk RWλ,η on T is transient
and then ω∞λ,η is well defined. By letting λ goes to infinity, the law of first k-steps (for any k) of

1Denote by Tk the set of vertices of T at distance k from the root.
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Figure 1.1. On the left: the relative weights at a vertex ν other than the root for
the biased random walk with one parameter λ. On the right: the relative weights at
the root for the biased random walk with one parameter λ.
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Figure 1.2. On the left: the relative weights at a vertex ν other than the root for
the biased random walk with parameter (λ, η). On the right: the relative weights at
the root for the biased random walk with parameter (λ, η).

ω∞λ,η converges towards that of a stochastic process X: at each step, X uniformly chooses one of its
children (which can extend to infinity) and never returns to its parent. This stochatic process is
called biased random walk with parameters ∞, and denoted by RW∞.

Denote by Pλ,η the law of ω∞λ,η and we write ω∞∞ for the limit walk of RW∞.

Recall that if T is a tree, we denote by T̃ the subtree obtained from T by recursively erasing all
its leaves; in terms of our dynamical self-avoiding walk model, this corresponds to preventing the
path from entering traps. The reader can easily check that the limit walk is the same on these trees
without leaves as in the original ones, it is sufficient to prove the results in the case of T̃T∗

+
. We

consider the limit walk on T̃T∗
+
instead of TT∗

+
.

1.3. Main results. Consider the self-avoiding tree T̃T∗
+
. We define an order on the children of a

vertex of TT∗
+
as in the following convention.
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Convention: Let ν be a vertex of T̃T∗
+
at distance n from the root (i.e |v| = n) and assume that

∂v = 2. By the construction of T̃T∗
+
, ν is a self-avoiding walk of length n starting at the origin. Let

α (resp. β) be the extension by one step of ν by choosing the left (resp. right) neighbor of ν(n)

(see Figure 1.3). We then define two children of the vertex ν in the tree T̃T∗
+
by letting: ν1 = α and

ν2 = β.

o

ν(n− 1)

ν(n)

β(n+ 1)

α(n+ 1)

ν1 = α
ν2 = β

Figure 1.3. Two extensions α and β of ν

Let λ, η > 0 and consider the biased random walk with parameter (λ, η) on T̃T∗
+
. Note that the

limit walk ω∞λ,η is a (random) infinite self-avoiding walk and Pλ,η is a probability measure on the set
of infinite self-avoiding walks starting at the origin (denoted by SAW∞) in the lattice T∗+. By the
same argument used in (Beffara and Huynh, 2017, Section 6.2) and Remark 1.2, we can see that ω∞∞
(i.e λ =∞) can be interpreted as the exploration curve γ1/2 of the critical Bernoulli percolation on
the hexagonal lattice – see Section 2 for a formal definition of γ1/2. This is very useful because every
feature of the curve γ1/2 is also one for ω∞∞ and can therefore be restated in terms of the biased walk
on the self-avoiding tree. One of these properties is that γ1/2 reaches the interval [n, 2n]×{0} with
a probability larger than a positive constant c1 and smaller than another constant c2 < 1 which do
not depend on n. This property is called RSW-property (see Seymour and Welsh, 1978 and Russo,
1981 for more details) and the constant c1 (resp. c2) is called a lower bound (resp. upper bound) of
the RSW-property.

In this paper, we prove that if η > 2 and λ is large enough, then the limit walk ω∞λ,η has a lower
bound of the RSW-property:

Theorem 1.3. For all η > 2 and for all λ > 2η
η−2 : ∃c ∈]0, 1[,∀n ≥ 1, we have:

Pλ,η(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ c.

1.4. Open question. The main idea of the proof of Theorem 1.3 is a coupling between the limit walk
ω∞λ,η (η > 2) and the exploration curve of the critical Bernoulli percolation. In the case of η ∈ [0, 2],
we hope that there is a coupling between the limit walk ω∞λ,η and the exploration curve γ1/2 of the
critical Bernoulli percolation on the hexagonal lattice. If this coupling exists, we have the following
result:
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Conjecture 1.4. For all η ≥ 0, there exists λ0 > 0, for all λ > λ0: ∃c ∈]0, 1[,∀n ≥ 1, we have:

Pλ,η(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ c.

The upper bound’s existence of RSW has not been studied in this paper, which suggests a
direction for future research.

2. Exploration curve of Bernoulli percolation on the hexagonal lattice

Percolation theory was introduced by Broadbent and Hammersley (1957). For p ∈ [0, 1], a face
of T∗+ is open with probability p or closed with probability 1− p, independently of the others.

Let p ∈ [0, 1] and we define the exploration curve as follows. We divide the hexagonal faces of the
boundary ∂T∗+ into two parts: ∂−(T∗+) involves in the group on the left side of o and ∂+(T∗+) involves
in the group on the right side of o (see Figure 2.4). We color the hexagons of ∂−(T∗+) in black and
those of ∂+(T∗+) in white. Moreover, the colors of the hexagones in T∗+ is chosen at random: black
with probability p and white with probability 1 − p, independently of the others. We define the
exploration curve γp starting at o which separates the black component containing ∂−(T∗+) from the
white component containing ∂+(T∗+). Then the exploration curve γp is a self-avoiding walk using
the vertices and edges of hexagonal lattice T∗+. See Figure 2.4.

We can define this interface γp in an equivalent, dynamical way, informally described as follows.
At each step, γp looks at its three neighbors on the hexagonal lattice, one of which is occupied by
the previous step of γp. For the next step, γp randomly chooses one of these neighbors that has not
yet occupied by γp. If there is just one neighbor that has not yet been occupied, then we choose
this neighbor and if there are two neighbors, then we choose the right neighbor with probability p
and the left neighbor with probability 1− p.

Figure 2.4. The hexagons on the right side of origin (i.e ∂+(T∗+)) are colored in
white and the hexagons on the left side of origin (i.e ∂−(T∗+)) are colored in black.



1512 Cong Bang Huynh

We know that there exists pc = 1/2 such that for p < pc there is almost surely no infinite cluster,
while for p > pc there is almost surely an infinite cluster (Werner, 2009, Theorem 4.9).

Lemma 2.1 (Seymour and Welsh, 1978, Russo, 1981). Let p = 1/2, there exists a constant c ∈]0, 1[
such that for any n ≥ 1:

Pp(γ1/2 ∩ ([n, 2n]× {0}) 6= ∅) ≥ c. (2.1)

3. Proof of Theorem 1.3

Recall that the limit walk on T̃T∗
+
and TT∗

+
have the same law. Then we investigate the limit walk

on T̃T∗
+
instead of TT∗

+
.

3.1. The law of first steps of the limit walk. We consider the biased random walk RWλ,η on T̃T∗
+
.

Recall that ω∞λ,η is the associated limit walk and Pλ,η denotes its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗
+

) such that the path (o, y1, y2, . . . , yk) in T̃T∗
+

is simple. For each λ such that RWλ,η on T̃T∗
+
is transient, the law of first k steps of ω∞λ,η is defined

by:

ϕλ,η,k(y1, y2, . . . , yk) = Pλ,η
(
ω∞λ,η(0) = o, ω∞λ,η(1) = y1, ω

∞
λ,η(2) = y2, . . . , ω

∞
λ,η(k) = yk

)
. (3.1)

Notation. Let ν be a vertex of the tree T̃T∗
+

and let µ be a vertex of (T̃T∗
+

)ν . Denote by
C̃(λ, η, (T̃T∗

+
)ν , µ) for the probability of the event that the random walk RWλ,η on (T̃T∗

+
)ν , started

at the root (i.e X0 = ν), visits µ at its first step (i.e X1 = µ) and never returns to the root. Finally,
denote by C̃(λ, η, (T̃T∗

+
)ν) for the probability of the event that the random walk RWλ,η on (T̃T∗

+
)ν ,

started at the root (i.e X0 = ν) and never returns to the root.

Lemma 3.1 (Beffara and Huynh, 2017, Lemma 64). Let k ∈ N∗ and y1, y2, . . . , yk be k elements of
V (T̃T∗

+
) such that (o, y1, y2, . . . , yk) is a simple path starting at o of T̃T∗

+
. We then have

ϕλ,η,k(y1, y2, . . . , yk) =
C̃(λ, η, T̃T∗

+
, y1)

C̃(λ, η, T̃T∗
+

)
×
C̃(λ, η, (T̃T∗

+
)y1 , y2)

C̃(λ, η, (T̃T∗
+

)y1)
× · · · ×

C̃(λ, η, (T̃T∗
+

)yk−1 , yk)

C̃(λ, η, (T̃T∗
+

)yk−1)
.

Fix η > 2 and λ > 0 such that RWλ,η on T̃T∗
+
is transient. For each finite path ω of T̃T∗

+
starting

at o, such that ω|ω| has two children, we define:

αω := P
(
ω∞λ,η(|ω|+ 1) = (ω|ω|)2

∣∣∣(ω∞λ,η)|[0,|ω|] = ω
)
. (3.2)

By using Lemma 3.1, we obtain:

αω =
C̃(λ, η, (T̃T∗

+
)ω(|ω|), (ω|ω|)2)

C̃(λ, η, (T̃T∗
+

)ω(|ω|))
. (3.3)

Denote by A the set of finite paths ω of T̃T∗
+
such that αω is well defined.

Lemma 3.2. For all η > 2 and for all λ > 2η
η−2 , we have:

min
ω∈A

αω ≥ 1/2. (3.4)
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Proof : Fix η > 2 and λ > 2η
η−2 . Let ω ∈ A and consider (Xn)n≥0 be the random walk RWλ,η on

(T̃T∗
+

)ω(|ω|) started at its root ω(|ω|). We divide (T̃T∗
+

)ω(|ω|) into two sub-trees T1 and T2 presented
in Figure 3.5. We then have:

C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ P
(
X0 = ω|ω|;X1 = (ω|ω|)2) and ∀n ≥ 1 : Xn 6= ω|ω|

)
≥ λ+ η

2λ+ η
C̃(λ, η, T1).

(3.5)

Let N be the regular tree of degree 1 and denote by C̃(λ,N) for the probability of the event that
the random walk RWλ,0 on N, started at the root (i.e X0 = 0) and never returns to the root. By
Rayleigh’s monotonicity principle (see Lyons and Peres, 2016, page 35), we have:

C̃(λ, η, T1) ≥ C̃(λ,N). (3.6)

On the other hand, we have:

C̃(λ,N) =
λ− 1

λ
. (3.7)

Hence by (3.5), (3.6) and (3.7), we obtain:

C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥
λ− 1

λ
× λ+ η

2λ+ η
. (3.8)

Since λ > 2η
η−2 , by an simple computation we obtain:

λ− 1

λ
× λ+ η

2λ+ η
≥ 1/2. (3.9)

By (3.8) and (3.9), we obtain:

C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2. (3.10)

It is clear that C̃(λ, η, (T̃T∗
+

)ω(|ω|)) ≤ 1, hence we obtain:

αω ≥ C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2,

this completes the proof of lemma. �

ω|ω|

(ω|ω|)2(ω|ω|)1

T2T1

Figure 3.5.
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3.2. Proof of Theorem 1.3. Consider the critical Bernoulli percolation on T∗+ with parameter 1/2.
Given a configuration of percolation, we construct a random path γ∞λ,η starting at o = (0, 0) by
the following way. At step n, γ∞λ,η looks at its three neighbors on the hexagonal lattice, one of
which is occupied by the previous step of γ∞λ,η. For the next step, γ∞λ,η randomly chooses one of
these neighbors that has not yet occupied by γ∞λ,η. If there is just one neighbor that has not yet
been occupied, then we choose this neighbor. If there are two neighbors, then we choose the right
neighbor and the left neighbor by the following rule. Let h be the hexagon which contains these
neighbors and let γ be such that (γ∞λ,η)|[0,n] = γ:

• If h is black, we choose the right neighbor;
• If h is white, we have two possibilities:

(1) we choose the right neighbor with probability αγ−1/2
1−1/2 ≥ 0 (by Lemma 3.2);

(2) we choose the left neighbor with probability 1−αγ
1−1/2 .

γ∞
λ,η

γ1/2

Figure 3.6. The exploration curve γ1/2 is the red path and γ∞λ,η is the blue path.
At each step, if γ∞λ,η visits a black hexagon: it always chooses the right neighbor.

Lemma 3.3. (γ∞λ,η) has the same law as (ω∞λ,η).

Proof : First, by the construction of γ∞λ,η and the definition of limit walk, we have:

P(γ∞λ,η(0) = o) = P(ω∞λ,η(0) = o) = 1.

Let n > 0 and denote by A the set of self-avoiding walk of length n starting at o which can
extend to infinity (i.e the set of vertices of T̃T∗

+
at distance n from the root). Assume that for all

γ ∈ A, we have:
P
(
(γ∞λ,η)|[0,n] = γ

)
= P

(
(ω∞λ,η)|[0,n] = γ

)
. (3.11)

Let γ be an element of A. We have two possibilities:
• If there is only one way to extend γ to a self-avoiding walk γ1 of length n+ 1 (i.e the vertex
γ of T̃T∗

+
has only one child γ1), we then have:

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1.
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• If γ has two children γ1 and γ2, by the construction of γ∞λ,η, we have:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= 1/2 + (1− 1/2)
αγ − 1/2

1− 1/2

= αγ .

(3.12)

Hence by (3.3) and (3.12) we obtain:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ2

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= αγ ,

and

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1− αγ .
�

Lemma 3.4. We have the following inequality:

P
(
γ∞λ,η ∩ ([n, 2n]× {0}) 6= ∅

)
≥ P

(
γ1/2 ∩ ([n, 2n]× {0}) 6= ∅

)
.

Proof : This is intuitively clear: informally, by the construction of γ∞λ,η, the path γ∞λ,η always stays
on the right of γ1/2 (see Figure 3.6). A formal proof is easy but tedious to write, and is therefore
omitted here. �

Theorem 1.3 is a straightforward consequence of Lemma 2.1, Lemma 3.3 and Lemma 3.4.
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