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Abstract. In this paper we consider universal nonparametric estimators for the conditional ex-
pectations of the output of a stationary process at carefully selected time instances (intermittent
estimation). These estimators are based on the information provided by the random outputs at
past times. Pointwise consistency, integrability of various suprema and asymptotic normality will
be established for these nonparametric intermittent estimators.

1. Introduction

The study of statistical estimators has several components. In this paper we would like to present
a few results about consistency, integrability and the asymptotic distribution of the estimators
themselves.

To describe these results let us begin by reviewing the estimation problem. In a short communica-
tion that appeared in the Proceedings of the First International IEEE-USSR Information Workshop
(Cover, 1976), Tom Cover formulated a number of problems that have generated a substantial
literature.

Cover’s first problem was on forward estimation of the conditional probability.

Problem 1 Is there an estimation scheme p̂n for the value P (Xn+1 = 1|X0, . . . , Xn) such that p̂n
depends solely on the data segment (X0, . . . , Xn) and

lim
n→∞

|p̂n(X0, . . . , Xn)− P (Xn+1 = 1|X0, . . . , Xn)| = 0

almost surely for all stationary and ergodic binary time series {Xn}∞n=−∞?
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Notice that in the first problem of Cover the data segment (X0, . . . , Xn) grows in the positive,
forward direction and the goal is to estimate the conditional probability for the next ever changing
random variable Xn+1.

Cover’s second problem was on backward estimation of the conditional probability.

Problem 2 Is there an estimation scheme p̂n for the value P (X1 = 1|X−n, . . . , X0) such that p̂n
depends solely on the observed data segment (X−n, . . . , X0) and

lim
n→∞

|p̂n(X−n, . . . , X0)− P (X1 = 1|X−n, . . . , X0)| = 0

almost surely for all stationary and ergodic binary time series {Xn}∞n=−∞?

Note that in Cover’s second problem the data segment (X−n, . . . , X0) grows in the negative, back-
ward direction and the goal is to estimate the conditional probability for a fix random variable
X1.

Observe that we are dealing with pointwise convergence. In the forward estimation problem
the target itself, P (Xn+1 = 1|X0, . . . , Xn), does not converge in the pointwise sense in general,
while in the backward estimation problem the target P (X1 = 1|X−n, . . . , X0) does converge to
P (X1 = 1| . . . , X−2, X−1, X0) almost surely. It turns out that there is a big difference between these
two problems and the answers to the forward and backward problems are far from being the same.
Ornstein (1978) gave a rather complicated algorithm for the backward prediction problem whereas
Bailey provided a proof for the nonexistence of a universal algorithm guaranteeing almost sure
convergence in the forward estimation problem. To do this, Bailey (1976), assuming the existence
of a universal algorithm, used Ornstein’s technique of cutting and stacking Ornstein (1974) for the
construction of a counterexample process for which the algorithm fails to converge (see Shields, 1991
for more details on this method).

The problem came to life again in the late eighties with the work of B. Ryabko (Ryabko, 1988).
He used a simpler technique, namely - relabelling a countable state Markov chain, in order to
prove the nonexistence of a universal estimator for Cover’s first problem (cf. also Györfi et al.,
1998, Morvai and Weiss, 2005c and Takahashi, 2011). In addition there was a growing interest in
universal algorithms of various kinds in information theory and elsewhere, see Merhav and Feder
(1998) and Morvai and Weiss (2007b) for a survey.

Three approaches evolved in an attempt to obtain positive results for the problem of forward
estimation in the face of Bailey’s theorem.

The first modifies the almost sure convergence to convergence in probability or almost sure
convergence of the Cesaro averages. This was done already by Bailey in his thesis. Cf. Algoet
(1992, 1994, 1999), Morvai et al. (1996, 1997), Nobel (2003), Györfi and Ottucsák (2007), Györfi
et al. (2012) Morvai and Weiss (2011), Morvai and Weiss (2020a), Weiss (2000), Felber et al. (2013),
Jones et al. (2012).

The second gives up on trying to estimate the distribution of the next output at all time mo-
ments n, and concentrates on guaranteeing prediction only at certain stopping times (intermittent
estimation) cf. Morvai (2003), while the third restricts the class of processes for which the scheme
is shown to succeed cf. Schäfer (2002) and Morvai and Weiss (2005a).

One may apply more than one of these restrictions cf. Györfi and Lugosi (2002), Morvai and
Weiss (2004), Morvai and Weiss (2003), Morvai and Weiss (2005b), Morvai and Weiss (2007a),
Morvai and Weiss (2012), Morvai and Weiss (2020b) and Molnár-Sáska and Morvai (2010).

For further reading see Suzuki (2003), D. Ryabko and B. Ryabko (Ryabko and Ryabko, 2015),
B. Ryabko and Monarev (Ryabko and Monarev, 2005), B. Ryabko (Ryabko, 2008), D. Ryabko
(Ryabko, 2019) and Morvai and Weiss (2021).

In this paper, we will follow the second way, we will estimate only on a sequence of stopping
times, i.e. we will estimate in an intermittent way. We will assume that the process is stationary
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but we will not assume ergodicity. Even though the ergodic decomposition guarantees that almost
every sample path will be coming from some ergodic process the probabilities, expectations, et al.
that we will be concerned with involve of course the non-ergodic process itself. This means that
the general case does not simply reduce to the ergodic case as for example in the pointwise ergodic
theorem.

Let X be a finite or countable alphabet. Let {Xn}∞n=0 be a stationary process taking values from
X and let f : X → < denote a function that assigns to any letter x ∈ X a real number. Assume
that E(|f(X1)|) <∞.

In section 2 we will define increasing stopping times 0 ≤ λ0 < λ1 < λ2 < . . . and estimator mn

depending solely on the data segment (X0, . . . , Xλn) for the value E(f(Xλn+1)|X0, . . . , Xλn). It will
be shown (mainly using the ideas and techniques in Morvai et al., 1996, Algoet, 1999, Morvai, 2003
and Morvai and Weiss, 2005b) that the estimator is pointwise consistent along these stopping times.
Thus, though Bailey (1976) proved that one can not estimate for all n in a pointwise consistent
way, at least one can estimate in an intermittent way under very weak conditions. Further assume
that E(|f(X1)| log+(|f(X1)|)) < ∞. We will show that both the supremum of the estimator and
the supremum of the error are integrable. These results give information about the magnitude of
the estimator and the error.

However, our main results will be on limit distributions. Assuming some further conditions we
will prove, among others, that the normalized error has asymptotically normal distribution.

Throughout the paper we will give illuminating examples. We put the proofs of the theorems in
a separate section (section 3) and we put the auxiliary lemmas in an Appendix.

2. Results

Let X be a finite or countably infinite alphabet. Let {Xn}∞n=0 be a stationary process taking
values from X . A one-sided stationary time series {Xn}∞n=0 can always be considered to be a
two-sided stationary time series {Xn}∞n=−∞.

Now we introduce our algorithm. For notational convenience, letXn
m = (Xm, . . . , Xn), wherem ≤ n.

We define the increasing sequence of stopping times {λn}∞n=0 along which we will estimate. (Cf.
Morvai, 2003 and Morvai and Weiss, 2005b.) Set λ0 = 0 and define

λ1 = min{t > 0 : Xt = X0}.
In general, for n ≥ 2 define λn as

λn = min{t > 0 : X
t+λn−1

t = X
λn−1

0 }+ λn−1.

Note that λn is finite with probability one by the Poincaré recurrence theorem for discrete stationary
processes, λn ≥ n by construction and λn is a stopping time on X∞0 .

Remark 2.1. Notice that Xλn+1

λn+1−λn = Xλn
0 . This fact will allow us to construct an auxiliary process

{X̃n}0n=−∞ later in (2.1) which will play a key role in the proofs. This process {X̃n}0n=−∞ will
allow us to use backward going techniques (cf. Algoet, 1999) in our forward intermittent case. (Cf.
Morvai, 2003 and Morvai and Weiss, 2005b also.)

Let f : X → < denote a function that assigns to any letter x ∈ X a real number. Assume that
E(|f(X1)|) <∞. The goal is to estimate E(f(Xλn+1)|Xλn

0 ) from samples Xλn
0 . For n ≥ 1 the n-th

estimate mn is defined as

mn =
1

n

n−1∑
j=0

f(Xλj+1).
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Observe that mn depends solely on Xλn
0 . (The estimator mn depends on the values f(Xλj+1) for

j = 0, . . . , n − 1, but the stopping time λj itself depends on X
λj
0 . We say mn depends solely on

Xλn
0 meaning that we can evaluate mn from the observations Xλn

0 .)

Example 2.2. Let X = {a, b} and let f(a) = 0 and f(b) = 1. Consider

X6
0 = (X0, X1, . . . , X5, X6) = abaabab.

The λ’s are:

λ0 = 0

λ1 = 2

λ2 = 5.

The Xλ+1’s are:

Xλ0+1 = X1 = b

Xλ1+1 = X3 = a

Xλ2+1 = X6 = b.

The f(Xλ+1)’s are:

f(Xλ0+1) = f(X1) = f(b) = 1

f(Xλ1+1) = f(X3) = f(a) = 0

f(Xλ2+1) = f(X6) = f(b) = 1.

The m’s are:

m1 =
1

1

0∑
j=0

f(Xλj+1) =
1

1
= 1

m2 =
1

2

1∑
j=0

f(Xλj+1) =
1 + 0

2
=

1

2

m3 =
1

3

2∑
j=0

f(Xλj+1) =
1 + 0 + 1

3
=

2

3
.

Define the auxiliary time series {X̃n}0n=−∞ as follows. Set X̃0 = X0 and for j = 1, 2, . . . and
λj−1 + 1 ≤ n ≤ λj define

X̃−n = Xλj−n. (2.1)

Since Xλj+1

λj+1−λj = X
λj
0 , the process {X̃n}0n=−∞ is well defined and it is immediate that

X̃−n = Xλj−n for any j ≥ n ≥ 0.

By Lemma 4.3 in the Appendix, the time series {X̃n}0n=−∞ has the same distribution as {Xn}0n=−∞
and {X̃n}0n=−∞ is stationary, since {Xn}0n=−∞ is stationary. Thus the one sided time series
{X̃n}0n=−∞ can be extended to be a two-sided time series {X̃n}∞n=−∞. We use this fact for the
purpose of defining the conditional expectation E(f(X̃1)|X̃0

−∞).
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Example 2.3. Let X = {a, b}. Consider
X6

0 = (X0, X1, . . . , X5, X6) = aabaaaa.

The λ’s are:

λ0 = 0

λ1 = 1

λ2 = 4.

Then

X̃0 = a

X̃−1 = a

X̃−2 = b

X̃−3 = a

X̃−4 = a

that is
X̃0
−4 = X̃−4, . . . , X̃−1, X̃0 = aabaa.

The first theorem is on consistency.

Theorem 2.4. Let X be a finite or countable alphabet, let {Xn}∞n=−∞ be a stationary process taking
values from X and let f : X → < denote a real valued function with E|f(X1)| <∞. Then

lim
n→∞

mn = lim
n→∞

E(f(Xλn+1)|Xλn
0 ) = E(f(X̃1)|X̃0

−∞) (2.2)

almost surely,
lim
n→∞

|mn − E(f(Xλn+1)|Xλn
0 )| = 0 (2.3)

almost surely,

lim
n→∞

1

n

n−1∑
j=0

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
−∞) = E(f(X̃1)|X̃0

−∞) (2.4)

almost surely and

lim
n→∞

∣∣∣∣∣∣mn −

 1

n+ 1

n∑
j=0

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
−∞)

∣∣∣∣∣∣ = 0 almost surely. (2.5)

Moreover if E(|f(X1)| log+(|f(X1)|)) <∞ then

lim
n→∞

1

n

n−1∑
j=0

E(f(Xλj+1)|X
λj
−∞) = E(f(X̃1)|X̃0

−∞) (2.6)

almost surely,

lim
n→∞

∣∣∣∣∣∣mn −

 1

n+ 1

n∑
j=0

E(f(Xλj+1)|X
λj
−∞)

∣∣∣∣∣∣ = 0 (2.7)

almost surely and

lim
n→∞

∣∣∣∣∣∣E(f(Xλn+1)|Xλn
0 )−

 1

n+ 1

n∑
j=0

E(f(Xλj+1)|X
λj
−∞)

∣∣∣∣∣∣ = 0 (2.8)

almost surely.
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Remark 2.5. Note that one can not estimate for all time instances even if it is known that the process
is first order Markov with state space in a countable and bounded subset of the real numbers. More
precisely, consider the countable and bounded alphabet X = {0, 1, 2−s, 1 + 2−s for s = 1, 2, . . . }
in Györfi et al. (1998). Then for any sequence of estimators ên : X n → < there is a stationary and
ergodic first order Markov chain {Xn}∞n=0 taking values in X such that

P (lim sup
n→∞

{|ên(Xn−1
0 )− E(Xn|Xn−1)| ≥ 1/8}) ≥ 1

8
.

Note that |X0| ≤ 2. Intuitively, when a new letter x appears at the first time at time n, one may have
no clue about the value of the conditional expectation E(Xn|Xn−1 = x) from the observations Xn−1

0
(in which the letter x can not be found) and since the alphabet is infinite, this situation happens
infinitely often, cf. B. Ryabko (Ryabko, 1988) and Györfi, Morvai, and Yakowitz (Györfi et al., 1998).
In the intermittent case we may skip these time instances. Of course, for restricted class of processes
one can estimate for all time instances. For example, consider the class of independent identically
distributed zero/one valued random variables. Then the trivial estimator ên = 1

n

∑n−1
j=0 Xj works,

that is, |ên − E(Xn|Xn−1
0 )| → 0 almost surely. But it obviously does not work, not even on our

stopping time sequence, for the periodic binary Markov chain which alternates between zero and
one and yields a stationary and ergodic process. Indeed, if Xλn = 0 then E(Xλn+1|Xλn

0 ) = 1 and if
Xλn = 1 then E(Xλn+1|Xλn

0 ) = 0. But ên → 0.5 almost surely.

Remark 2.6. The key to the proof of Theorem 2.4 is that E(f(Xλn+1)|Xλn
0 ) converges almost surely

as n→∞ as will be proven in (3.4) in the proof of Theorem 2.4.

Remark 2.7. The main arguments and ideas for proving the pointwise consistency of the forward
going intermittent estimator in (2.3) can already be found in the proof of the pointwise consistency
of the backward going estimator in Algoet (1999). (Cf. Morvai et al., 1996 also.) (2.2) and (2.3)
were already proved for binary random variables in Morvai (2003) and for unbounded real valued
random variables with finite second moment in Morvai and Weiss (2005b).

Remark 2.8. Note that these stopping times λn and estimators mn are the special forward going
versions of the backward going stopping times and estimators in Morvai et al. (1996) and Algoet
(1999). (Cf. Morvai, 2003 and Morvai and Weiss, 2005b also.) Note also that while the backward
going estimators in Morvai et al. (1996) and Algoet (1999) work for general real valued stationary
processes (uncountable alphabet), the forward going versions of those estimators do not automat-
ically work in that generality. Morvai et al. (1996) and Algoet (1999) used nested sequence of
partitions {Pk}∞k=0 of the real line in their algorithms. E.g. the following partition was admissible
for the general backward going estimator in Algoet (1999)

Pk = {[i2−k, (i+ 1)2−k) : for i = 0, 1,−1, 2,−2, . . . }.

Let x → [x]k denote a quantizer that assigns to any real number x the unique interval in Pk that
contains x. Let [Xn

m]k = ([Xm]k, . . . , [Xn]k). In the spirit of Algoet (1999) the forward going
stopping times would be as follows. λ0 = 0 and for n = 1, 2, . . .,

λn = min{t > 0 : [X
t+λn−1

t ]n = [X
λn−1

0 ]n}+ λn−1.

Notice that now matching is required only up to the precision of the quantizer (non exact matchings).
Now the n-th estimate mn would be mn = 1

n

∑n−1
j=0 Xλj+1. However, Morvai and Weiss (2005b)
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proved that in this case there is a stationary and ergodic first order Markov chain {Xn}∞n=0 taking
values from a countable subset of the unit interval such that

P

(
lim sup
n→∞

∣∣∣mn − E(Xλn+1|Xλn
0 )
∣∣∣ > 0

)
> 0.

Thus there is some difference between the general backward case (in Morvai et al., 1996 and Algoet
(1999)) and the forward intermittent case. That is, it is very important that no quantizers are
used in our scheme in the forward intermittent case. We insist on exact matchings in defining our
stopping times. For more details cf. Morvai and Weiss (2005b).

Remark 2.9. Note that this stopping time sequence {λn}∞n=0 is the only so far known sequence of
stopping times for which there is a known pointwise consistent estimator in such a generality as
in Theorem 2.4. It is an open problem if there are other stopping time sequences with estimators
which are pointwise consistent under such mild assumptions as in Theorem 2.4.

Remark 2.10. The growth of our stopping time sequence {λn}∞n=0 is faster than exponential, even
in the case of binary alphabet, if the entropy of the process is positive, cf. Morvai (2003). Thus
we can not hope for rates of convergence for this forward going intermittent estimator. The main
value of the construction of these almost sure finite stopping times is not their practicality but their
mere existence, that is, it is possible to estimate in a pointwise sense along these almost surely finite
stopping times in a forward going intermittent way. Now one may try to find better sequence of
stopping times.

Remark 2.11. If we make restrictions on the class of processes then one can construct better sequence
of stopping times. In Morvai and Weiss (2020b) binary renewal processes were considered and
even rates of convergence were proved. In Morvai and Weiss (2004), Morvai and Weiss (2003),
Morvai and Weiss (2005b) and Morvai and Weiss (2012) continuity of the conditional expectation
E(f(X1)|X0

−∞) on a set with probability one was assumed. Particularly, Morvai and Weiss (2012)
considered stopping times as follows. For k ≥ 1, let 1 ≤ lk ≤ k be a nondecreasing unbounded
sequence of integers, that is, 1 = l1 ≤ l2 . . . and limk→∞ lk =∞. Set ζ0 = 0 and for n = 1, 2, . . ., let

ζn = min{t > 0 : X
t+ζn−1

t+ζn−1−(ln−1) = X
ζn−1

ζn−1−(ln−1)}+ ζn−1.

Morvai and Weiss (2012) showed that one can choose ln’s in such a way that the growth of the
stopping times ζn will not be faster than polynomial in n.

Remark 2.12. Note that in (2.7) and (2.8), for i, j ≥ 0 if j 6= i then it is not true generally that

E(f(Xλj+1)|X
λj
−∞) = E(f(Xλi+1)|Xλi

−∞)

almost surely even though the process {Xn}∞n=−∞ is stationary since the conditional expectations
are evaluated at different values.

Remark 2.13. Note that (2.7) holds even though the estimatormn depends solely on (X0, . . . , Xλn−1)
and it will never observe the values (. . . , X−2, X−1).

The second theorem is on integrability of various suprema. These results will give information about
the magnitude of the estimators and the error.
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Theorem 2.14. Let X be a finite or countable alphabet, let {Xn}∞n=−∞ be a stationary process taking
values from X and let f : X → < denote a real valued function with E(|f(X1)| log+(|f(X1)|)) <∞.
Then

E(sup
n≥1
|mn|) <∞, (2.9)

E(sup
n≥1
|E(f(Xλn+1)|Xλn

0 )|) <∞, (2.10)

E(sup
n≥1
|mn − E(f(Xλn+1)|Xλn

0 )|) <∞, (2.11)

E(sup
n≥1
| 1
n

n−1∑
j=0

E(f(Xλj+1)|X
λj
−∞)|) <∞ (2.12)

and

E

sup
n≥1

∣∣∣∣∣∣mn −

 1

n+ 1

n∑
j=0

E(f(Xλj+1)|X
λj
−∞)

∣∣∣∣∣∣
 <∞. (2.13)

Remark 2.15. For the backward estimator pointwise convergence was proved in Algoet (1999) and
integrability of the supremum was proved in Morvai and Weiss (2011, 2020a). These are the con-
ditions of Breiman’s generalized ergodic theorem which is the main tool for proving convergence in
Cesaro mean. For more details cf. Morvai and Weiss (2011, 2020a).

The third and main theorem is on limit distributions.

Theorem 2.16. Let X be a finite or countably infinite alphabet. Let {Xn}∞n=−∞ be a stationary
process taking values from X and let f : X → < denote a real valued function. Assume that for
some α > 0 E

(
|f(X1)|2+2α

)
<∞. Let ε > 0 be arbitrary. Assume that there exist an almost surely

finite real valued function C(X0
−∞) < ∞ and an integer valued function 0 < N(X0

−∞) < ∞ such
that for all n ≥ N(X0

−∞) and m > n, almost surely,

|E(f(X1)|X0
−n)− E(f(X1)|X0

−m)| ≤
C(X0

−∞)

n0.5+ε
. (2.14)

Let
η =

√
(E(f2(X1)|X0

−∞)− E(f(X1)|X0
−∞)2).

Then there is a random variable Z such that for all continuity points t of P (Z < t),

lim
n→∞

P (
√
n(mn − E(Xλn+1|Xλn

0 )) < t) = P (Z < t) (2.15)

where the random variable Z has characteristic function E(e−
1
2
η2t2).

If in addition η > 0 almost surely then for all t, and for all measurable set H ∈ σ(X∞−∞)

P


√
n(mn − E(f(Xλn+1)|Xλn

0 ))√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

< t

⋂H

→ Φ(t)P (X∞−∞ ∈ H).

(2.16)
Particularly, (for H = Ω), for all t,

P

 √
n(mn − E(f(Xλn+1)|Xλn

0 ))√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

< t

→ Φ(t). (2.17)
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Remark 2.17. The key variable η that enters the results in Theorem 2.16 is the conditional variance
of X0 given the past and the condition that it be greater than zero is a natural one in the presence
of positive entropy.

Note that the conditions of Theorem 2.16 do not imply that the process is mixing as the following
example shows.

Example 2.18. Consider the Markov chain with states {0, 1} which alternates between the two
states. This periodic Markov chain yields a stationary and ergodic process {Mn}∞n=−∞ with marginal
distribution uniformly distributed on the two states. Let {Un}∞n=−∞ be a sequence of independent
and identically distributed random variables with P (U0 = −100) = P (U0 = 100) = 0.5 and let the
{Un}∞n=−∞ process be independent of the {Mn}∞n=−∞ process. Now let Xn = Mn + Un. Clearly
{Xn}∞n=−∞ is a stationary and ergodic process which is a first order Markov chain and satisfies (with
the choice of f being the identity function) all the conditions of Theorem 2.16 (even η is positive
almost surely) but it is not mixing.

Note that the conditions of Theorem 2.16 do not imply that the process is ergodic as the following
example shows.

Example 2.19. Consider the Markov chain with four states {−9,−1, 2, 8} and transitions P (M1 =
−1|M0 = −9) = P (M1 = −9|M0 = −1) = P (M1 = 2|M0 = 8) = P (M1 = 8|M0 = 2) = 1.
Choosing the uniform distribution on the four states, we get a stationary but nonergodic process
{Mn}∞n=−∞. Let {Un}∞n=−∞ be a sequence of independent and identically distributed random vari-
ables with P (U0 = −100) = P (U0 = 100) = 0.5 and let the {Un}∞n=−∞ process be independent of
the {Mn}∞n=−∞ process. Now let Xn = Mn +Un. Clearly {Xn}∞n=−∞ is a stationary process which
is a first order Markov chain and satisfies (with the choice of f being the identity function) all the
conditions of Theorem 2.16 (even η is positive almost surely) but it is not ergodic.

Remark 2.20. Note that already |E(f(X1))| <∞ implies that

E(f(X1)|X0
−n)→ E(f(X1)|X0

−∞) almost surely

and so the condition in (2.14) is on the speed of convergence.

Remark 2.21. Note that the condition in (2.14) will be used in the proof of Theorem 2.16 to show
that

n−1∑
j=0

(E(f(Xλj+1)|X
λj
0 )− E(f(Xλn+1)|Xλn

0 ))
√
n

→ 0

almost surely.

Now we will construct a stationary nonergodic binary process {Xn}∞n=−∞ which satisfies all the
conditions in Theorem 2.16 but

E(X1|X0
−∞) 6= E(X1|X0

−n)

almost surely for 0 ≤ n <∞, even though

E(X1|X0
−n)→ E(X1|X0

−∞)

almost surely.
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Example 2.22. Consider two processes A and B. Process A is independent and identically distributed
{0, 1} valued and in process A the probability of one is ß0.9. Process B is independent and identically
distributed {0, 1} valued and in the case of process B the probability of one is 0.1. We choose
process A with probability 0.5 and process B with probability 0.5. So we will observe process A and
process B with equal probabilities. The resulting process {Xn}∞n=−∞ is binary stationary but it is
neither Markov of any order nor ergodic. It has two ergodic modes A and B. Now the infinite past
determines the ergodic mode. Thus E(X1|X0

−∞) = 0.9 if the infinite past X0
−∞ determines process

A and E(X1|X0
−∞) = 0.1 if the infinite past X0

−∞ determines process B. Let r denote the ratio

r =
P (X0

−n = x0−n|A)

P (X0
−n = x0−n|B)

.

Now for almost every X0
−∞ there will be such an N(X0

−∞) so that either for all n ≥ N the average
of X0

−n is greater than 0.8 or for all n ≥ N the average of X0
−n is less than 0.2, by the strong law

of large numbers. Suppose the former case. An easy calculation yields that for all n ≥ N(x0−∞)

r =
P (X0

−n = x0−n|A)

P (X0
−n = x0−n|B)

≥ 90.6n.

Now basic calculation yields that for all n ≥ N(X0
−∞)

0 < P (X1 = 1|A)− P (X1 = 1|X0
−n) = 0.9− P (X1 = 1|X0

−n) ≤ 1

r
≤ 9−0.6n.

Thus the difference tends to zero exponentially fast. The other case goes similarly. It is clear that
η > 0 almost surely. Thus the process {Xn}∞n=−∞ satisfies all the conditions in Theorem 2.16.

Now we will apply Theorem 2.16 in a special case.
Just to remind, Xn

m = (Xm, . . . , Xn), where m ≤ n and if m > n then, by convention, let Xn
m be

the empty word which will be denoted by ∅. Let

X ∗ =
∞⋃
k=0

X k

where X 0 is a set that contains exactly the empty word ∅.

For convenience let p(x0−k+1) and p(y|x0−k+1) denote the distribution P (X0
−k+1 = x0−k+1) and the

conditional distribution P (X1 = y|X0
−k+1 = x0−k+1), respectively. Note that P (Xt

t+1 = ∅) = 1,
P (X1 = y|X0

1 = ∅) = P (X1 = y).

Definition 2.23. For some 0 ≤ k and w0
−k+1 ∈ X k we say that w0

−k+1 is a memory word if
p(w0

−k+1) > 0 and for all i ≥ 1, all y ∈ X , all z−k−k−i+1 ∈ X
i

p(y|w0
−k+1) = p(y|z−k−k−i+1, w

0
−k+1)

provided p(z−k−k−i+1, w
0
−k+1, y) > 0. If no proper suffix of w is a memory word then w is called a

minimal memory word.

Define the set Wk of those memory words w0
−k+1 with length k, that is,

Wk = {w0
−k+1 ∈ X k : w0

−k+1 is a memory word}.
Let

W∗ =
∞⋃
k=0

Wk.
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Example 2.24. Consider an independent and identically distributed process {Xn}∞n=−∞ on a count-
able alphabet. Then the empty word is a memory word and it is the only minimal memory word.

Example 2.25. Consider the Markov chain with state space S = {0, 1, 2} and transition probabilities

P (M2 = 1|M1 = 0) = P (M2 = 2|M1 = 1) = 1,

P (M2 = 0|M1 = 2) = P (M2 = 1|M1 = 2) = 0.5.

This yields a stationary and ergodic process {Mn}∞n=−∞. Define

Zn = I{Mn=1}.

Then {Zn}∞n=−∞ is a stationary and ergodic binary Markov chain with order 2. The minimal
memory words of the process {Zn}∞n=−∞ are the ’1’, the ’10’ and the ’00’.

Example 2.26. Consider the Markov chain with countably infinite state space S = {0, 1, 2, . . . } and
transition probabilities

P (M1 = n+ 1|M0 = n) =

(
1

2

)n+1

,

P (M1 = 0|M0 = n) = 1−
(

1

2

)n+1

where n ∈ S. This yields a stationary and ergodic first order Markov chain {Mn}∞n=−∞. De-
fine Zn = I{Mn 6=0}. Then {Zn}∞n=−∞ is a stationary and ergodic binary renewal process with
renewal state ’0’. The minimal memory words of the process {Zn}∞n=−∞ are ’0’, ’01’, ’011’,
’0111’, ’01111’, . . .

Example 2.27. Consider a stationary and ergodic binary renewal process with renewal state ’0’.
Then any word with positive probability which contains at least one ’0’ is a memory word, though
not necessarily minimal. Any word which contains more than one ’0” can not be a minimal memory
word.

Definition 2.28. For a stationary time series {Xn}∞n=−∞ the (random) length K(X0
−∞) of the

memory of the sample path X0
−∞ is the smallest possible 0 ≤ K < ∞ such that for all i ≥ 1, all

y ∈ X , all z−K−K−i+1 ∈ X i

p(y|X0
−K+1) = p(y|z−K−K−i+1, X

0
−K+1)

provided p(z−K−K−i+1, X
0
−K+1, y) > 0, and K(X0

−∞) =∞ if there is no such K.

Remark 2.29. For stationary time series {Xn}∞n=−∞, K(x0−∞) is the smallest k ≥ 0 such that
x0−k+1 ∈ Wk and K(x0−∞) =∞ if there is no such k.

Example 2.30. Consider an independent and identically distributed process {Xn}∞n=−∞ on a count-
able alphabet.Then

K(X0
−∞) = 0

almost surely.

Example 2.31. Consider a stationary and ergodic first order finite or countably infinite Markov chain
{Xn}∞n=−∞. Then

K(X0
−∞) = 1

almost surely.
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Example 2.32. Consider the stationary and ergodic binary second order Markov chain {Zn}∞n=−∞
in Example 2.25. Then

K(Z0
−∞) =

{
1 if Z0 = 1
2 if Z0 = 0

almost surely.

Example 2.33. Consider a stationary and ergodic second order finite or countably infinite Markov
chain {Xn}∞n=−∞. Then

K(X0
−∞) ≤ 2

almost surely.

Example 2.34. Consider a stationary and ergodic binary renewal process {Xn}∞n=−∞ with renewal
state ’0’. Let τ(X0

−∞) be the smallest t ≥ 0 such that X−t = 0 and Xi = 1 for all −t < i ≤ 0. Then

K(X0
−∞) ≤ τ(X0

−∞) + 1

almost surely. Consider the stationary and ergodic binary renewal process {Zn}∞n=−∞ in Exam-
ple 2.26. Then

K(Z0
−∞) = τ(Z0

−∞) + 1

almost surely.

Definition 2.35. A stationary time series {Xn}∞n=−∞ is called finitarily Markovian if the set of
memory words has probability one, that is,

P

( ∞⋃
n=0

{
X0
−n+1 ∈ Wn

})
= 1.

Remark 2.36. The stationary time series {Xn}∞n=−∞ is finitarily Markovian if and only if K(X0
−∞)

is finite (though not necessarily bounded) almost surely.

This class includes of course all finite order Markov chains but also many other processes such as
the finitarily determined processes of Kalikow, Katznelson and Weiss (Kalikow et al., 1992), which
serve to represent all isomorphism classes of zero entropy processes. For some concrete examples
that are not Markovian consider the following example:

Example 2.37. Let {Mn}∞n=−∞ be any stationary first order Markov chain with finite or countably
infinite state space S. Let s ∈ S be an arbitrary state with P (M1 = s) > 0. Now let Xn =
I{Mn=s}. The binary time series {Xn}∞n=−∞ is stationary also. It is also finitarily Markovian.
Indeed, the conditional probability P (X1 = 1|X0

−∞) does not depend on values beyond the first
(going backwards) occurrence of one in X0

−∞ which identifies the first (going backwards) occurrence
of state s in the Markov chain Mn. The resulting time series {Xn}∞n=−∞ is not a Markov chain
of any order in general. Indeed, consider the Markov chain Mn with state space S = {0, 1, 2}
and transition probabilities P (M2 = 1|M1 = 0) = P (M2 = 2|M1 = 1) = 1, P (M2 = 0|M1 =
2) = P (M2 = 1|M1 = 2) = 0.5. This yields a stationary Markov chain {Mn}∞n=−∞. Clearly, the
resulting time series Xn = I{Mn=0} will not be Markov of any order. The conditional probability
P (X1 = 0|X0

−∞) depends on whether until the first (going backwards) occurrence of one you see
even or odd number of zeros.

We note that Morvai and Weiss (2005d) proved that there is no classification rule for discrimi-
nating the class of finitarily Markovian processes from other stationary processes.

The fourth theorem is on limit distributions for finitarily Markovian processes.
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Theorem 2.38. Let X be a finite or countably infinite alphabet. Let {Xn}∞n=−∞ be a stationary fini-
tarily Markovian (FM) process taking values from X . Assume that for some α > 0 E|f(X1)|2+2α <
∞. Let ε > 0 arbitrary. Let V be the set of minimal memory words. If w0

−k+1 ∈ V then let

η(w) =
√

(E(f2(X1)|X0
−k+1 = w0

−k+1)− E(f(X1)|X0
−k+1 = w0

−k+1)
2).

For all t,
lim
n→∞

P (
√
n(mn − E(f(Xλn+1)|Xλn

0 )) < t) =
∑
w∈V

Fw(t)p(w) (2.18)

where Fw(t) is a distribution function of a normal distribution with zero mean and variance η(w).
That is, the limiting distribution is a mixture of normal distributions. If in addition, for all w ∈ V
η(w) > 0 then for all w ∈ V and t,

P

 √
n(mn − E(f(Xλn+1)|Xλn

λn−k+1 = w0
−k+1))√

(E(f2(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)− E(f(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)
2)
< t

∣∣∣∣Hw

→ Φ(t)

(2.19)
where Hw = {Xλk

λk−k+1 = w0
−k+1}.

Remark 2.39. For a stationary, nonergodic, non finitarily Markovian, binary process satisfying all
the conditions in Theorem 2.16 cf. Example 2.22.

For further reading on memory words see Morvai and Weiss (2007a), Morvai and Weiss (2008) and
Morvai and Weiss (2005e).

3. Proofs

For an arbitrary X -valued stationary time series {Yn}0n=−∞, let λ̂0(Y 0
−∞) = 0 and for n ≥ 1

define
λ̂n(Y 0

−∞) = λ̂n−1(Y
0
−∞)−min{t > 0 : Y −t

λ̂n−1−t
= Y 0

λ̂n−1
}. (3.1)

Let T denote the left shift operator, that is, (Tx∞−∞)i = xi+1. It is easy to see that if λn(x∞−∞) = l

then λ̂n(T lx∞−∞) = −l.

It is immediate that
X̃0
λ̂n

= Xλn
0 for all n ≥ 0

since Xλn+1

λn+1−λn = Xλn
0 .

3.1. Proof of Theorem 2.4. We will use the decomposition and reasoning as in the case of the
backward going estimator in Algoet (1999) (in the proof of Theorem 4 in Algoet (1999)). (Cf.
Morvai et al., 1996 also.) We want to truncate the potentially unbounded function f (as in Algoet,
1999) so that classic convergence theorems can be applied. This involves writing mn as a sum of
three terms (cf. the proof of Theorem 4 in Algoet, 1999). The first term handles the error made
by the truncation. The second term is also negligible by results on the convergence of martingales.
Finally the third term is shown to converge to the desired limit. The technical details are relegated
to the Appendix. Consider
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mn =
1

n

n−1∑
j=0

(
f(Xλj+1)− f(Xλj+1)I{|f(Xλj+1)|≤j}

)

+
1

n

n−1∑
j=0

(
f(Xλj+1)I{|f(Xλj+1)|≤j} − E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X

λj
0 )
)

+
1

n

n−1∑
j=0

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
0 )

= An +Bn + Cn.

By Lemma 4.1 in the Appendix, Xλj+1 has the same distribution as X1 and the finite expectation
of f(X1) implies that

∞∑
j=0

P (|f(Xλj+1)| > j) =

∞∑
j=0

P (|f(X1)| > j) <∞

and by the Borel-Cantelli lemma
I{|f(Xλj+1)|≤j} = 1

eventually almost surely. Thus An → 0 almost surely.
Applying Lemma 4.5 (with Wj+1 = Xλj+1 and Gj = σ(X

λj
0 )) we get Bn → 0 almost surely.

Now we deal with the last term. By Lemma 4.1, Lemma 4.2 and Lemma 4.3 in the Appendix

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
0 ) = E(f(X̃1)I{|f(X̃1)|≤j}|X̃

0
λ̂j(X̃0

−∞)
).

Since
σ(X̃0

λ̂j(X̃0
−∞)

) ↑ σ(X̃0
−∞),

f(X̃1)I{|f(X̃1)|≤j} → f(X̃1) almost surely,

sup
j≥1
|f(X̃1)I{|f(X̃1)|≤j}| ≤ |f(X̃1)|

and
E(|f(X̃1)|) <∞,

by Corollary 1 pp. 237-238 in Chow and Teicher (1978) (Lemma 3 in Algoet Algoet, 1999) we get
that almost surely

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
0 ) = E(f(X̃1)I{|f(X̃1)|≤j}|X̃

0
λ̂j(X̃0

−∞)
)→ E(f(X̃1)|X̃0

−∞). (3.2)

In turn,
lim
n→∞

mn = E(f(X̃1)|X̃0
−∞) (3.3)

almost surely. Similarly,

E(f(Xλj+1)|X
λj
0 ) = E(f(X̃1)|X̃0

λ̂j(X̃0
−∞)

)→ E(f(X̃1)|X̃0
−∞) (3.4)

almost surely. We have proved (2.2) and (2.3).
Now we prove (2.4). Let

Dn =
1

n

n−1∑
j=0

(
f(Xλj+1)I{|f(Xλj+1)|≤j} − E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X

λj
−∞)

)
.
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Applying Lemma 4.5 (with Wj+1 = Xλj+1 and Gj = σ(X
λj
−∞)) we get Dn → 0 almost surely. Since

1

n

n−1∑
j=0

E(f(Xλj+1)I{|f(Xλj+1)|≤j}|X
λj
−∞) = mn −An −Dn

and we have already seen that An → 0, Dn → 0 and mn → E(f(X̃1)|X̃0
−∞) almost surely, we get

(2.4). By (3.3) and (2.4) we get (2.5).
Now we assume E(|f(X1)| log+(|f(X1)|)) < ∞. By Lemma 4.1 in the Appendix, Xλj+1 has the
same distribution as X1 and by applying Lemma 4.6 (with Wj+1 = Xλj+1 and Gj = σ(X

λj
−∞)) we

get mn −
1

n

n−1∑
j=0

E(f(Xλj+1)|X
λj
−∞)

 =
1

n

n−1∑
j=0

(
f(Xλj+1)− E(f(Xλj+1)|X

λj
−∞)

)
→ 0

almost surely. (This also follows from Elton, 1981, since the martingale differences

Zj = f(Xλj+1)− E(f(Xλj+1)|X
λj
−∞)

are identically distributed by Lemma 4.1 in the Appendix.) Now by (3.3) mn converges to
E(f(X̃1)|X̃0

−∞) almost surely, and in turn

1

n

n−1∑
j=0

E(f(Xλj+1)|X
λj
−∞)→ E(f(X̃1)|X̃0

−∞)

almost surely also. We have proved (2.6) and (2.7). By (3.4) we get (2.8). The proof of Theorem 2.4
is complete.

3.2. Proof of Theorem 2.14.
For this theorem we have a stronger assumption on the function f beyond mere integrability. The

stronger assumption on f enables us to use martingale techniques e.g. the classic result of Doob.
Here too the technical details are in the Appendix. For the proof mn will be decomposed into two
terms and dealt with separately. Consider

mn =
1

n

n−1∑
j=0

(
f(Xλj+1)− E(f(Xλj+1)|X

λj
0 )
)

+
1

n

n−1∑
j=0

E(f(Xλj+1)|X
λj
0 )

= An +Bn.

By Lemma 4.1 in the Appendix, Xλj+1 has the same distribution as X1 and by applying Lemma 4.6
(with Wj = Xλj−1+1 and Gj−1 = σ(X

λj−1

0 )) we get that E(supn≥1 |An|) <∞. (Note that this does
not follow from Elton (1981), since the martingale differences

Uj = f(Xλj+1)− E(f(Xλj+1)|X
λj
0 )

are not identically distributed in general.)
By Lemma 4.1, Lemma 4.2 and Lemma 4.3 in the Appendix

E(f(Xλj+1)|X
λj
0 ) = E(f(X̃1)|X̃0

λ̂j(X̃0
−∞)

)
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almost surely and by Doob’s inequality we get (2.10). Now by (2.10), E(supn≥1 |Bn|) <∞ and we
get (2.9). By (2.10) and (2.9) we get (2.11). Now

1

n

n−1∑
j=0

E(f(Xλj+1)|X
λj
−∞) = − 1

n

n−1∑
j=0

(
f(Xλj+1)− E(f(Xλj+1)|X

λj
−∞)

)
+ mn.

By Lemma 4.1 in the Appendix, Xλj+1 has the same distribution as X1 and by applying Lemma 4.6
(with Wj = Xλj−1+1 and Gj−1 = σ(X

λj−1

−∞ )) we get that

E(sup
n≥1
| 1
n

n−1∑
j=0

(
f(Xλj+1)− E(f(Xλj+1)|X

λj
−∞)

)
|) <∞.

(This also follows from Elton Elton (1981), since the martingale differences

Zj = f(Xλj+1)− E(f(Xλj+1)|X
λj
−∞)

are identically distributed by Lemma 4.1 in the Appendix.) Now by (2.9) we get (2.12). By (2.12)
and (2.9) we get (2.13). The proof of Theorem 2.14 is complete.

3.3. Proof of Theorem 2.16. Our proof of this theorem is based on a quite general central limit
theorem for triangular arrays of martingales that can be found in the book of Hall and Heyde (1980).
The bulk of what we do here is to show how to verify the conditions of that theorem. As to be
expected the details are quite technical. First we prove (2.15).

√
n(mn − E(f(Xλn+1)|Xλn

0 ))

=
√
n(

1

n

n−1∑
j=0

f(Xλj+1)− E(f(Xλn+1)|Xλn
0 ))

=
n−1∑
j=0

(f(Xλj+1)− E(f(Xλj+1)|X
λj
0 ))

√
n

+
n−1∑
j=0

(E(f(Xλj+1)|X
λj
0 )− E(f(Xλn+1)|Xλn

0 ))
√
n

= An +Bn.

First we will deal with Bn. Since by definition X̃0
λ̂n

= Xλn
0 for all n ≥ 0 and by Lemma 4.3 in the

Appendix the processes {X̃n} and {Xn} have the same distribution we have that

1√
n

n−1∑
j=0

(E(f(Xλj+1)|X
λj
0 )− E(f(Xλn+1)|Xλn

0 )) =
1√
n

n−1∑
j=0

(E(f(X̃1)|X̃0
λ̂j

)− E(f(X̃1)|X̃0
λ̂n

).

Now by assumption there exists C(X̃0
−∞) and 0 < N(X̃0

−∞) < ∞ such that for all n ≥ N(X̃0
−∞)

and m > n, almost surely,

|E(f(X̃1)|X̃0
−n)− E(f(X̃1)|X̃0

−m)| ≤
C(X̃0

−∞)

n0.5+ε
.

Thus Bn tends to zero almost surely.
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Now we deal with An. For n ≥ 1, 0 ≤ i ≤ n − 1, Wn,i with Zi = f(Xλi+1)− E(f(Xλi+1)|Xλi
0 ),

Wn,i = Zi√
n
is a sequence of martingale arrays and we will verify the conditions in Corollary 3.1 in

Hall and Heyde (1980). First we show that for all ε > 0,

lim
n→∞

n−1∑
i=0

E

(
(
Zi√
n

)2I{| Zi√
n
|>ε}|X

λi
0

)
= 0 (3.5)

in probability. It will be enough to show that

E

(
n−1∑
i=0

E

(
(
Zi√
n

)2I{| Zi√
n
|>ε}|X

λi
0

))
→ 0.

An easy calculation yields that
n−1∑
i=0

E

(
E

(
(
Zi√
n

)2I{| Zi√
n
|>ε}|X

λi
0

))

= n−1−α
n−1∑
i=0

E

(
(Zi)

2nαI
{ |Zi|

2α

ε2α
>nα}

)

≤ n−1−α
n−1∑
i=0

E

(
|Zi|2

|Zi|2α

ε2α

)

= n−α

(
ε−2α

1

n

n−1∑
i=0

E
(
|f(Xλi+1)− E(f(Xλi+1)|Xλi

0 )|2+2α
))

≤ n−α

(
ε−2α

1

n

n−1∑
i=0

E
(
|2f(Xλi+1)|2+2α + |2E(f(Xλi+1)|Xλi

0 )|2+2α
))

.

By Jensen’s inequality and since by Lemma 4.1 in the Appendix, Xλj+1 has the same distribution
as X1 we get

n−α

(
ε−2α

1

n

n−1∑
i=0

E
(
|2f(Xλi+1)|2+2α + |2E(f(Xλi+1)|Xλi

0 )|2+2α
))

≤ n−α

(
ε−2α22+2α 1

n

n−1∑
i=0

E
(
|f(Xλi+1)|2+2α + E(|f(Xλi+1)|2+2α|Xλi

0 )
))

= n−α
(
ε−2α

1

n
n22+2α+1E

(
|f(X1)|2+2α

))
= n−α

(
ε−2α22+2α+1E

(
|f(X1)|2+2α

))
→ 0.

We have proved the first condition in Corollary 3.1 in Hall and Heyde (1980). Now we deal with
the second condition in Corollary 3.1 in Hall and Heyde (1980). It will be enought to prove that

lim
n→∞

√√√√ 1

n

n−1∑
i=0

(E(f2(Xλi+1)|Xλi
0 )− E(f(Xλi+1)|Xλi

0 )2) = η̃ (3.6)

almost surely where

η̃ =
√

(E(f2(X̃1)|X̃0
−∞)− E(f(X̃1)|X̃0

−∞)2).
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By Lemma 4.2, Lemma 4.3 and the martingale convergence theorem for conditional expectations,
almost surely,

lim
n→∞

E(f(Xλn+1)|Xλn
0 ) = lim

n→∞
E(f(X̃1)|X̃0

λ̂n(X̃0
−∞)

) = E(f(X̃1)|X̃0
−∞)

and
lim
n→∞

E(f2(Xλn+1)|Xλn
0 ) = lim

n→∞
E(f2(X̃1)|X̃0

λ̂n(X̃0
−∞)

) = E(f2(X̃1)|X̃0
−∞).

We have proved the second condition in Corollary 3.1 in Hall and Heyde (1980). Since for n ≥ 1,
0 ≤ i ≤ n−1, Wn,i is a sequence of martingale arrays and all the conditions of Corollary 3.1 in Hall
and Heyde (1980) are satisfied and so by Corollary 3.1 in Hall and Heyde (1980) we get

lim
n→∞

P (
√
n(mn − E(Xλn+1|Xλn

0 )) < t) = P (Z < t)

where the random variable Z has characteristic function E(e−
1
2
η̃2t2). Since by Lemma 4.3 the dis-

tributions of {X̃n}∞n=−∞ and {Xn}∞n=−∞ are the same we get (2.15).
Now we prove (2.16).

√
n

mn − E(f(Xλn+1)|Xλn
0 )√

1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

=
√
n

1
n

∑n−1
j=0 f(Xλj+1)− E(f(Xλn+1)|Xλn

0 )√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

=
An√

1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

+
Bn√

1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

= Cn +Dn.

First we deal with Dn. We have already proved that Bn tends to zero almost surely. The denom-
inator tends to an almost surely strictly positive random variable by (3.6), the assumption that
η > 0 almost surely and since η̃ and η has the same distribution. Thus Dn tends to zero almost
surely. Now we deal with Cn. For n ≥ 1, 0 ≤ i ≤ n − 1 with Zi = f(Xλi+1)− E(f(Xλi+1)|Xλi

0 ),
Wn,i = Zi√

n
is a sequence of martingale arrays and since by assumption η > 0 almost surely, by (3.5)

and (3.6) the conditions of Corollary 3.2 in Hall and Heyde (1980) are satisfied and so Cn tends in
distribution to a standard normal distribution. The proof of Theorem 2.16 is complete.

3.4. Proof of Theorem 2.38. Since the distribution function Fw has characteristic function
e−

1
2
η(w)2t2 , the mixture of distribution functions has characteristic function as the mixture of the

characteristic functions we get that the characteristic function of
∑

w∈V Fw(t)p(w) is∑
w∈V

p(w)e−
1
2
η(w)2t2 = E(e−

1
2
η2t2).

Since by Lemma 4.7 in the Appendix condition (2.14) in Theorem 2.16 is satisfied, by (2.15) in
Theorem 2.16, the limit distribution has characteristic function E(e−

1
2
η2t2) this must be the mixture∑

w∈V Fwp(w). (The characteristic function determines the distribution.) We have proven (2.18).
Now we prove (2.19).
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Now on the set Hw, for n > k,
√
n(mn − E(f(Xλn+1)|Xλn

λn−k+1 = w0
−k+1))√

(E(f2(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)− E(f(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)
2)

=

√
n(mn − E(f(Xλn+1)|Xλn

0 ))√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

·

√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)√

(E(f2(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)− E(f(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)
2)

and √
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)√

(E(f2(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)− E(f(Xλn+1)|Xλn
λn−k+1 = w0

−k+1)
2)
→ 1

almost surely on Hw. Now (2.19) follows from (2.16) in Theorem 2.16

lim
n→∞

P

 √
n(mn − E(f(Xλn+1)|Xλn

0 ))√
1
n

∑n−1
i=0 (E(f2(Xλi+1)|Xλi

0 )− E(f(Xλi+1)|Xλi
0 )2)

< t

∣∣∣∣Hw

 = Φ(t).

The proof of Theorem 2.38 is complete.

4. Appendix

It will be useful to define other processes {X̂(k)
n }∞n=−∞ for k ≥ 0 as follows. Let

X̂
(k)
−n = Xλk−n for −∞ < n <∞.

Note that process {X̂(k)
n }∞n=−∞ is just {Xn}∞n=−∞ translated by the random amount of steps λk.

Lemma 4.1. Let X denote a finite or countably infinite alphabet. Let {Xn}∞n=−∞ be a stationary
process taking values from X . Then for arbitrary k ≥ 0, the time series {X̂(k)

n }∞n=−∞ and {Xn}∞n=−∞
have identical distribution.

Proof : It is enough to show that for all k ≥ 0, m ≥ n ≥ 0, and xn0 ∈ X n+1,

P ((X̂
(k)
m−n, . . . , X̂

(k)
m ) = xn0 ) = P (Xm

m−n = xn0 ).

This is immediate by stationarity of {Xn}∞n=−∞ and by the fact that for all k ≥ 0, m ≥ n ≥ 0,
l ≥ 0, xn0 ∈ X n+1,

T l{Xλk+m
λk+m−n = xn0 , λk = l} = {Xm

m−n = xn0 , λ̂k(X
0
−∞) = −l}.

(For the definition of λ̂ cf. (3.1).) The proof of Lemma 4.1 is complete.

In the next lemma we will use λ̂. For the definition of λ̂ cf. (3.1).

Lemma 4.2. Let X denote a finite or countably infinite alphabet. Let {Xn}∞n=0 be a stationary
process taking values from X .Then for k ≥ 0, almost surely,

λ̂k(. . . , X̂
(k)
−1 , X̂

(k)
0 ) = λ̂k(X̃

0
−∞)

and
X̃0
λ̂k(X̃

0
−∞)

= X̂
(k)

λ̂k(...,X̂
(k)
−1 ,X̂

(k)
0 )

, . . . , X̂
(k)
0 .
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Proof : Observe that for any i ≥ 0 and for all j ≥ i, almost surely, X̃−i = X̂
(j)
−i . (Note that

λj(X
∞
0 )− j ≥ 0.) The proof of Lemma 4.2 is complete.

Lemma 4.3. Let X denote a finite or countably infinite alphabet. Let {Xn}∞n=0 be a stationary
process taking values from X . Then the distributions of {X̃n}0n=−∞ and {Xn}0n=−∞ are the same.

Proof : This is immediate from Lemma 4.1 and Lemma 4.2. The proof of Lemma 4.3 is complete.

The main objective of Lemma 4.4 is to prove Lemma 4.5 and Lemma 4.6. (Cf. Elton, 1981 and
Morvai and Weiss, 2011, Morvai and Weiss (2020a) also.)

Lemma 4.4. Let X be a finite or countable alphabet, for n = 0, 1, . . . let Wn be identically dis-
tributed random objects taking values from X and let f : X → < denote a real valued function with
E(|f(W1)|) < ∞. Let Gn be an increasing sequence of σ-algebras such that f(Wn) is measurable
with respect to Gn. Then

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1)
i

∣∣∣∣∣
)
<∞. (4.1)

If in addition

E(|f(W0)| log+(|f(W0)|)) <∞

then

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

f(Wi)− E(f(Wi)|Gi−1)
i

∣∣∣∣∣
)
<∞. (4.2)

Proof : By Davis’ inequality (valid for all martingale differences cf. e.g. Shiryayev, 1984 p. 470),
for some constatnt B > 0 we get

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1)
i

∣∣∣∣∣
)

≤ BE

( ∞∑
i=1

(f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1))2

i2

)0.5


≤ B

[ ∞∑
i=1

E
(
(f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1))2

)
i2

]0.5
where we used Jensen’s inequality. Now

E
(
(f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1))

2
)

= E
(
(f(Wi)I{|f(Wi)|≤i})

2
)

+ E
(
E(f(Wi)I{|f(Wi)|≤i}|Gi−1)

2
)

− 2E
(
f(Wi)I{|f(Wi)|≤i}E(f(Wi)I{|f(Wi)|≤i}|Gi−1)

)
= E

(
(f(Wi)I{|f(Wi)|≤i})

2
)
− E

(
E(f(Wi)I{|f(Wi)|≤i}|Gi−1)

2
)

≤ E
(
(f(Wi)I{|f(Wi)|≤i})

2
)

= E
(
(f(Wi))

2I{|f(Wi)|≤i}
)
.
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Since the Wi’s are identically distributed therefore
∞∑
i=1

1

i2
E
(
(|f(Wi)|)2I{|f(Wi)|≤i}

)
=

∞∑
i=1

1

i2
E
(
|f(W0)|2I{|f(W0)|≤i}

)
=

∞∑
i=1

1

i2

i∑
j=1

E
(
|f(W0)|2I{j−1<|f(W0)|≤j}

)

=

∞∑
i=1

E (|f(W0)|2I{i−1<|f(W0)|≤i}
) ∞∑

j=i

1

j2


≤

∞∑
i=1

(
E
(
|f(W0)|2I{i−1<|f(W0)|≤i}

) 2

i

)

≤ 2
∞∑
i=1

(
E
(
|f(W0)|I{i−1<|f(W0)|≤i}

))
≤ 2E(|f(W0)|)
< ∞

where we used that
∑∞

j=i j
−2 ≤ 2/i. Combining all these we get (4.1), (cf. Theorem 2.19 in Hall

and Heyde, 1980 also).
Now we assume that E(|f(W0)| log+(|f(W0)|)) <∞.

E|f(Wn)I{|f(Wn)|>n} − E(f(Wn)I{|f(Wn)|>n}|Gn−1)| ≤ 2E
(
|f(Wn)|I{|f(Wn)|>n}

)
= 2E

(
|f(W0)|I{|f(W0)|>n}

)
since Wn’s are identically distributed. Thus

E

( ∞∑
n=1

|f(Wn)I{|f(Wn)|>n} − E(f(Wn)I{|f(Wn)|>n}|Gn−1)|
n

)

≤ 2
∞∑
n=1

1

n
E
(
|f(W0)|I{|f(W0)|>n}

)
.

Since E((|f(W0)|) log+(|f(W0)|) <∞, Lemma 2 in Elton (1981) implies that
∞∑
n=1

1

n
E
(
|f(W0)|I{|f(W0)|>n}

)
<∞

and so we get

E

( ∞∑
n=1

|f(Wn)I{|f(Wn)|>n} − E(f(Wn)I{|f(Wn)|>n}|Gn−1)|
n

)
<∞. (4.3)

Since

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

f(Wi)I{|f(Wi)|>i} − E(f(Wi)I{|f(Wi)|>i}|Gi−1)
i

∣∣∣∣∣
)

≤ E
(∑∞

n=1
|f(Wn)I{|f(Wn)|>n}−E(f(Wn)I{|f(Wn)|>n}|Gn−1)|

n

)
, (4.4)

by (4.1), (4.4) and (4.3) we get (4.2). The proof of Lemma 4.4 is complete.
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The next result (with a different proof) can already be found in the proof of Theorem 2.19 in
Hall and Heyde (1980). (Cf. Elton, 1981, Algoet, 1999 and Morvai and Weiss, 2011, Morvai and
Weiss, 2020a also.)

Lemma 4.5. (Cf. Theorem 2.19 in Hall and Heyde, 1980) Let X be a finite or countable alphabet.
For n = 1, 2, . . . let Wn be identically distributed random objects taking values from X and let
f : X → < denote a real valued function with E(|f(W1)|) < ∞. For n = 0, 1, . . . let Gn be an
increasing sequence of σ-algebras. Assume that for n = 1, 2, . . . f(Wn) is measurable with respect
to Gn. Then

lim
n→∞

1

n

n∑
i=1

(
f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1)

)
= 0 (4.5)

almost surely.

Proof : Since by Lemma 4.4

Un =

n∑
i=1

f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1)
i

is a martingale with

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

f(Wi)I{|f(Wi)|≤i} − E(f(Wi)I{|f(Wi)|≤i}|Gi−1)
i

∣∣∣∣∣
)
<∞

by Doob’s convergence theorem Un converges almost surely. Then Kronecker’s lemma (cf. Shiryayev,
1984 p. 365) yields (4.5). The proof of Lemma 4.5 is complete.

The second statement (4.7) in the next lemma (with a different proof) can already be found in
Theorem 2.19 in Hall and Heyde (1980). (Cf. Elton, 1981 and Morvai and Weiss, 2011, Morvai and
Weiss, 2020a also.)

Lemma 4.6. Let X be a finite or countable alphabet. For n = 1, . . . let Wn be identically dis-
tributed random objects taking values from X . Let f : X → < denote a real valued function with
E(|f(W0)| log+(|f(W0)|)) < ∞. For n = 0, 1, . . . let Gn be an increasing sequence of σ-algebras.
For n = 1, 2, . . . assume that f(Wn) is measurable with respect to Gn. Then

E

(
sup
1≤n

∣∣∣∣∣ 1n
n∑
i=1

(f(Wi)− E(f(Wi)|Gi−1))

∣∣∣∣∣
)
<∞ (4.6)

and

lim
n→∞

1

n

n∑
i=1

(f(Wi)− E(f(Wi)|Gi−1)) = 0 (4.7)

almost surely.

Proof : Since by Lemma 4.4

Un =
n∑
i=1

f(Wi)− E(f(Wi)|Gi−1)
i

is a martingale with
E(sup

1≤n
|Un|) <∞

and since for any sequence of real numbers {ai},

sup
1≤n

1

n

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣ ≤ 2

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

1

i
ai

∣∣∣∣∣
)
,



Consistency, integrability and asymptotic normality for some intermittent estimators 1665

(cf. Lemma 7 in Elton, 1981), we get (4.6). By Doob’s convergence theorem Un converges almost
surely. Then Kronecker’s lemma (cf. Shiryayev, 1984, p. 365) yields (4.7). The proof of Lemma 4.6
is complete.

Lemma 4.7. Let X denote a finite or countably infinite alphabet. Let {Xn}∞n=0 be a stationary and
ergodic finitarily Markovian (FM) process taking values from X . Assume that E|f(X1)| <∞. Then
for n,m > K(X0

−∞),
|E(f(X1)|X0

−n)− E(f(X1)|X0
−m)| = 0.

Proof : The statement follows immediately from the definitions. The proof of Lemma 4.7 is complete.
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