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Abstract. We present an alternative proof of the so-called First Visit Time Lemma (FVTL),
originally presented by Cooper and Frieze in its first formulation in Cooper and Frieze (2005),
and then used and refined in a list of papers by Cooper, Frieze and coauthors. We work in the
original setting, considering a growing sequence of irreducible Markov chains on n states. We
assume that the chain is rapidly mixing and with a stationary measure with no entry being either
too small nor too large. Under these assumptions, the FVTL shows the exponential decay of the
distribution of the hitting time of a given state x—for the chain started at stationarity—up to a
small multiplicative correction. While the proof by Cooper and Frieze is based on tools from complex
analysis, and it requires an additional assumption on a generating function, we present a completely
probabilistic proof, relying on the theory of quasi-stationary distributions and on strong-stationary
times arguments. In addition, under the same set of assumptions, we provide some quantitative
control on the Doob’s transform of the chain on the complement of the state x.

1. Introduction

In the early 00’s, Cooper and Frieze started a series of papers on which they compute the first
order asymptotics of the cover time of random walks on different random graphs, see Cooper and
Frieze (2012), Abdullah et al. (2012), Cooper and Frieze (2008), Cooper and Frieze (2007b), Cooper
and Frieze (2007a), Cooper et al. (2013), Cooper et al. (2014). Given an arbitrary (possibly directed)
graph structure, the cover time is the expected time needed by a simple random walk to visit every
vertex of the graph, maximized over all the possible starting positions. One of the key ingredients
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of Cooper and Freze’s analysis is the so called First Visit Time Lemma (FVTL), as named by the
authors in Cooper and Frieze (2005). The same lemma has been of use in proving also different kind
of results, e.g., to estimate expected meeting time of multiple random walks on random graphs, see
Cooper et al. (2009/10). The lemma deals with the tail probability of the stopping time τx, i.e.,
the time of the first visit to the state x. Consider a sequence of Markov chains on a growing state
space of size n. We assume that for every sufficiently large n the chain is irreducible, admitting a
unique invariant measure π = πn. The framework of the lemma is based on two additional crucial
assumptions relating mixing time and spread of the stationary measure, namely, we assume the
existence of a time T = Tn such that

max
x,y

∣∣P T (x, y)− π(y)
∣∣ = O

(
1

n3

)
, (1.1)

and
T max

x
π(x) = o(1), min

x
π(x) = ω(n−2). (1.2)

Under the latter assumptions and adding a technical requirement on the generating function of
the recurrences to a fixed state x, the authors show that starting from any state y and for all t > T :

Py (Xs 6= x, ∀s ∈ [T, t]) ∼
(

1− π(x)

RT (x)

)t
, (1.3)

where (Xs)s≥0 is the trajectory of the random walk and RT (x) ≥ 1 is the expected number of returns
in x within the mixing time T . The proof of the latter results, as well as the underlying technical
assumptions, evolved with their uses since the first formulation in Cooper and Frieze (2005) to
the last (to the best of our knowledge) formulation and proof in Cooper and Frieze (2008). We
remark that the assumptions in (1.1)-(1.2) are typically satisfied by random walks on many models
of random graphs, e.g., Erdős-Renyi graphs or configuration models.

The techniques used in the proof by Cooper and Frieze rely on probability arguments but also on
tools from complex analysis and an analytical expansion of some probability generating functions.
In this paper we aim at finding a probabilistic proof of the FVTL, trying to shed some light on the
underlying phenomenology. On the technical side, the arguments in our proof are elementary and
do not need the additional assumption on the generating function required in the original Cooper
and Frieze’s proof. We refer to Section 2.2 for a direct comparison of our result with the original
one.

Exponential law of hitting times is a classic and widely studied topic in probability. We just
recall here the pioneering book by Keilson (1979), the beautiful book by Aldous (1989) and the
papers Aldous (1982), Aldous and Brown (1992, 1993). In Aldous (1982), the author recognizes two
regimes in which the latter phenomenon takes place:

(1) A single state m is frequently visited before τx. When starting from m, the path to x

consists of a geometric number of excursions (with mean (Pm(τm > τx)−1) from m to m
without touching x, before the final journey to x. The hitting time is dominated by the sum
of many i.i.d. excursion times and therefore it is almost exponential. See Keilson (1979).

(2) When the chain is rapidly mixing, then the distribution at time t is near to the stationary
distribution even when conditioned on τx > t. This case is analyzed in Aldous (1982), where
it is shown that

sup
t≥0

∣∣∣Pπ(τx > t)− e−
t

Eπ [τx]

∣∣∣ ≤ δ, (1.4)

where δ is a function of the mixing time of the chain and of the expectation Eπ[τx]. Aldous
shows that, if the hitting of x is a rare event, i.e., the expectation of τx is much larger than
the mixing time of the chain, then δ is small. Moreover, the heuristic argument developed
in Aldous (1989) suggests that the expected hitting time Eπ[τx] is well approximated by the
ratio between two quantities: the local time spent in x (starting at x) before the process
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is well-mixed, and the stationary distribution at x. As we will see in what follows, this is
exactly what is rigorously stated in the First Visit Time Lemma.

In the early years, these two regimes were considered as complementary. One of the main applica-
tions of the scenario in (1) has been the study of metastability, namely the behavior of processes
that are trapped for a long time in a part of their state space. Before exiting the trap, the process
visits many times a “metastable state”, reaching an apparent, local equilibrium. In such systems the
exit from the trap triggers the relaxation to equilibrium so that relaxation to equilibrium can be
discussed as the first hitting to the complement of the trap. We refer to Olivieri and Vares (2005);
Bovier and den Hollander (2015) for a general introduction to metastability and to Bianchi and
Gaudillière (2016); Bianchi et al. (2020); Fernandez et al. (2015, 2016); Manzo and Scoppola (2019)
for a discussion of the extension of metastability methods to other regimes.

In Aldous (1982), scenario (2) is studied by using the quasi-stationary measure introduced in the
pioneering paper by Darroch and Seneta (1965) (see also Collet et al. (2013), and Pollett (2008)
for a more recent bibliography on the subject). Aldous shows that rapid mixing implies that the
stationary and the quasi-stationary measures are closed to each other in total variation distance if
π(x) is small. By using the fact that the distribution of τx is exactly exponential when starting
from the quasi-stationary measure, the result in (1.4) is proved by a smart sequence of elementary
steps. We have to note that Aldous’ result concerns additive error bounds and therefore it cannot
provide first-order asymptotics of the exponential approximation when t is large, in contrast to the
FVTL where a multiplicative bound is proved.

More recently, these two regimes begin to be understood in a common framework, by generalizing
recurrence ideas to measures instead of recurrence to points. The quasi-stationary measure plays
the role of a recurrent measure before the hitting. The hitting to the measure can be studied
by extending the theory of strong stationary times Aldous and Diaconis (1986, 1987a); Levin and
Peres (2017), to quasi-stationarity, see Diaconis and Miclo (2009); Manzo and Scoppola (2019). In
particular, the notion of conditional strong quasi-stationary time (CSQST) introduced in Manzo
and Scoppola (2019), has shown to be useful in providing exact formulas for the distribution of the
first hitting time τx starting from an arbitrary distribution. An introduction to these tools is given
in the following subsection where a rough estimate on the tail of τx is given, while a more detailed
discussion is provided in Section 5 where we adopt a CSQST perspective, allowing us to consider
general regimes and different starting measures.

Under the hypotheses considered in this paper, in particular (1.2), π and the quasi-stationary
measure are close in a multiplicative sense, so that we can follow a simple line of argument involving
the quasi-stationary measure but not requiring the use of CSQST.

1.1. A first discussion. For any x ∈ X , let τx denote the hitting time of x, namely

τx = inf{t ≥ 0 |Xt = x}. (1.5)

We will call [P ]x the sub-Markovian probability kernel obtained by removing the x-th row and
column by the matrix P . We will assume that [P ]x is a primitive sub-Markovian kernel, i.e., all
entries of ([P ]x)m are positive for some m ∈ N. By the Perron-Froboenius theory (see, e.g., Collet
et al. (2013)) there exists a unique probability distribution µ?x and a real λx < 1

µ?x[P ]x = λxµ
?
x, (1.6)

Moreover, we denote by γx the corresponding right eigenvector, i.e.,

[P ]xγx = λxγx, (1.7)

normalized by 〈γx, µ?x〉 = 1.
The probability distribution µ?x is called quasi-stationary measure and it is strictly related to the

exponential behavior of the tail probability P(τx > t). Indeed, when looking at the evolution of the
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process starting from µ?x, by 1.6 we can compute

Pµ?x(τx > t) =
∑
z

µ?x(z)Pz(τx > t) =
∑
z 6=x

µ?x(z)
∑
y 6=x

(
[P ]x

)t
(z, y) = λtx

∑
y 6=x

µ?x(y) = λtx. (1.8)

For more details see Diaconis and Miclo (2009, 2015); Miclo (2010, 2020), the applications to the
metastability regime are discussed in Fernandez et al. (2015, 2016); Manzo and Scoppola (2019).

The right eigenvector γx defined in 1.7 controls the dependence on the initial distribution of the
probability of the event τx > t. Indeed this eigenvector is related to the asymptotic ratios of the
right tail probabilities, see Collet et al. (2013, Eq. (3.5))

lim
t→∞

Py(τx > t)

Pz(τx > t)
=
γx(y)

γx(z)
y, z 6= x. (1.9)

With this right eigenvector we can construct a Local Chain on X \ {x}, which is usually referred to
as Doob’s transform of X. For any y, z 6= x, define the stochastic matrix

P̃ (z, y) :=
γx(y)

γx(z)

P (z, y)

λx
. (1.10)

More generally

P̃ t(z, y) =
γx(y)

γx(z)

(
[P ]x

)t
(z, y)

λtx
∀t ≥ 0. (1.11)

It is immediate to show that P̃ is a primitive matrix and has invariant measure

ν(y) := γx(y)µ?x(y).

For the chain X̃ we define

s̃z(t, y) := 1− P̃ t(z, y)

ν(y)
(1.12)

and will call separation distance at time t the quantity s̃(t) defined as

s̃(t) := sup
z 6=x

s̃z(t) where s̃z(t) := sup
y 6=x

s̃z(t, y). (1.13)

Note that s̃z(t) ∈ [0, 1] and recall that s̃(t) has the sub-multiplicative property

s̃(t+ u) ≤ s̃(t)s̃(u),

which in particular implies an exponential decay in time of s̃, see Levin and Peres (2017).
Consider any initial measure α on X \ {x} and define the transformation

α̃(y) :=
α(y)γx(y)

〈α, γx〉
, ∀y 6= x. (1.14)

Then, as shown in Manzo and Scoppola (2019),

Pα(τx > t) =
∑
y 6=x

∑
z 6=x

α(z)
(
[P ]x

)t
(z, y) (1.15)

=
∑
y 6=x

∑
z 6=x

α(z)γx(z)λtxµ
?
x(y)

P̃ t(z, y)

ν(y)
(1.16)

=λtx
∑
z 6=x

α(z)γx(z)
∑
y 6=x

µ?x(y)(1− s̃z(t, y)) (1.17)

=λtx 〈α, γx〉
(

1−
∑
y 6=x

µ?x(y)s̃α̃(t, y)
)

(1.18)
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where we call
s̃α̃(t, y) :=

∑
z 6=x

α̃(z)s̃z(t, y) and s̃α̃(t) := sup
y 6=x

s̃α̃(t, y). (1.19)

Moreover, again by Manzo and Scoppola (2019), we know that (1.18) can be estimated from above
and below by

λtx 〈α, γx〉
(

1− s̃α̃(t)
)
≤ Pα(τx > t) ≤ λtx 〈α, γx〉

(
1 + s̃α̃(t)

(
1

miny γx(y)
− 1

))
. (1.20)

(1.20) suggests that, in the regime in which |X | → ∞, the first order geometric approximation of the
tail probability Pα(τx > t) can be obtained. In particular, the exponentiality immediately follows
from (1.20) for all those Markov chains P , target states x, initial distributions α and time t for
which all of the following assumptions hold:

(1) s̃α̃(t) = o(1), i.e., t is sufficiently large to have that the Doob transform starting at α is well
mixed by time t;

(2) 〈α, γx〉 ∼ 1, which occurs in particular if γx approximates the constant vector;
(3) miny γx(y) = Ω(1), which can be thought of as an additional uniformity requirement to the

one in (2).
Despite the intuitions based on (1.20), we are not going to follow exactly the heuristic recipe

explained in the list above. In fact our focus is on the special case in which α = π, which leaded us
through a different path toward proving exponentiality. Nevertheless, as a byproduct of our proof of
the FVTL we provide uniform upper and lower bounds on the right eigenvector γx. We think those
bounds can be of independent interest, since they can be turned into a quantitative information
on the structure of the Doob’s transform of the process X. In particular, for a given model, our
bounds could be useful in verifying the conditions in the list above, and therefore in finding—for
every fixed choice of the initial distribution α—the right first order approximation of the decay of
Pα(τx > t).

2. Notation and results

We start by presenting the notation and briefly recalling the basic quantities introduced in Sec-
tion 1. We consider a sequence of Markov chains on a growing state space. Formally:

• X (n) is a state space of size n.
• (X(n))t≥0 is a discrete time Markov chain on X (n).
• P(n) is the probability law of the Markov chain (X(n))t≥0, and E(n) the corresponding ex-
pectation.
• P (n) is the transition matrix of (X(n))t≥0, which is assumed to be ergodic.
• π(n) is the stationary distribution of P (n).
• For any probability distribution α on X (n) and every integer t ≥ 0, we note by µαt the
probability distribution of the chain X(n) starting at α and evolved for t steps, i.e.,

µαt (y) :=
∑

x∈X (n)

α(x)
(
P (n)

)t
(x, y), ∀y ∈ X (n).

• For all x ∈ X (n), τx represents the hitting time of vertex x, defined as in (1.5).
• For all t ≥ 0 and x ∈ X (n), we let the symbol ζt(x) denote the random time spent by the
process X(n) in the state x within time t, i.e.,

ζt(x) :=
t−1∑
s=0

1
X

(n)
s =x

. (2.1)
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• For all x ∈ X (n) we denote by [P (n)]x the sub-Markovian kernel obtained by removing the
x-th row and column of P (n). The kernel [P (n)]x is assumed to be irreducible.
• For all x ∈ X (n), λx denotes as the leading eigenvalue of [P (n)]x and µ?x as the corresponding
left eigenvector, normalized so that µ?x is a probability distribution over X (n) \ {x}. See
(1.6). We remark that by the definitions follows that

Pµ?x(τx > t) = λtx, ∀t ≥ 0, (2.2)

see (1.8).
• For all x ∈ X (n), γx denotes the right eigenvector of [P (n)]x associated to the eigenvalue λx.
We consider γx to be normalized so that 〈µ?x, γx〉 = 1.

Since we are interested in asymptotic results when n → ∞, the asymptotic notation will refer to
this limit and the explicit dependence on n will be usually dropped.

We will adopt the usual asymptotic notation (o,O,Θ, ω,Ω) and, given two functions f, g : N →
R+, we will use the symbols ∼ and . with the meaning

f(n) ∼ g(n) ⇐⇒ lim
n→∞

f(n)

g(n)
= 1,

and

f(n) . g(n) ⇐⇒ lim sup
n→∞

f(n)

g(n)
≤ 1,

respectively.

2.1. Results. We will work under the following asymptotic assumption for the sequence of Markov
chains: There exist

• A real number c > 2.
• A diverging sequence T = T (n) .

such that
(HP1) Fast mixing:

max
x,y∈X

|µxT (y)− π(y)| = o(n−c).

(HP2) Small πmax:
T max
x∈X

π(x) = o(1).

(HP3) Large πmin:
min
x∈X

π(x) = ω(n−2).

Remark 2.1. It is worth to stress that, under (HP3), the assumption in (HP1) can be read as a L∞
mixing assumption, namely

(HP1bis) Fast L∞ mixing:

max
x∈X
‖µxT ‖π,∞ := max

x,y∈X

∣∣∣∣µxT (y)

π(y)
− 1

∣∣∣∣ = o
(
n−(c−2)

)
.

Fixed any x ∈ X we let RT (x) denote the expected number of returns at x for the Markov chain
starting at x within T . More precisely,

RT (x) =

T∑
t=0

µxt (x) ≥ 1. (2.3)

The precise statement that we prove is the following
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Theorem 2.2 (First Visit Time Lemma). Under the assumptions (HP1), (HP2) and (HP3) for all
x ∈ X , it holds

sup
t≥0

∣∣∣∣Pπ(τx > t)

λtx
− 1

∣∣∣∣ −→ 0, (2.4)

and ∣∣∣∣∣∣ λx(
1− π(x)

RT (x)

) − 1

∣∣∣∣∣∣ −→ 0. (2.5)

We will see in 4 that it follows as an easy consequence of Theorem 2.2 that the right-eigenvector
γx asymptotically has mean 1 with respect to the stationary distribution. In other words, the
following corollary holds.

Corollary 2.3. Under the same assumptions of Theorem 2.2: for all x ∈ X∑
y∈X\{x}

π(y)γx(y)→ 1. (2.6)

Moreover, we provide some entry-wise upper and lower bound for the eigenvector γx.

Theorem 2.4. Under the same set of assumptions, for every x ∈ X :
(1) For all y ∈ X \ {x} it holds

γx(y) . 1.

(2) For all y ∈ X \ {x} it holds
γx(y) &

[
1− Ey [ζT (x)]

]
+
.

Remark 2.5. We remark that the asymptotic lower bound in Theorem 2.4 is in fact not void for
most of the models of random graphs which are known to satisfy the assumptions of the FVTL. As
an example, if X is the simple random walk on a random regular directed graph of in/out-degree r,
then—with high probability with respect to the construction of the environment—for every x ∈ X
the quantity Ey[ζT (x)] is strictly smaller than 1 uniformly in y ∈ X \ {x}; moreover, Ey[ζT (x)] = 0
for most y ∈ X \ {x}. To see the validity of the latter statement, we refer the reader to Caputo and
Quattropani (2020, Propositions 4.3 and 4.4).

2.2. Comparison with Cooper&Frieze’s lemma. In order to facilitate a direct comparison, we write
here—using our notation—the claim proved by Cooper and Frieze, stressing the differences with
Theorem 2.2.

Theorem 2.6 (See Lemma 6 and Corollary 7 in Cooper and Frieze, 2008). Consider a sequence of
Markov chains satisfying the assumptions (HP1), (HP2) and (HP3) with c = 3. Moreover, let

a =
1

KT
for a suitably large constant K. Fix x ∈ X and assume further that the truncated probability
generating function

R(z) =
T−1∑
t=0

P t(x, x)zt, ∀z ∈ C

satisfies
min
|z|≤1+a

|R(z)| ≥ θ (2.7)

for some constant θ > 0. Then, for all y ∈ X and t ≥ 0

PµTy (τx > t) =
(
1 +O(Tπ(x))

)
λ̃tx + o

(
e−at/2

)
, (2.8)



1746 F. Manzo, M. Quattropani and E. Scoppola

where

λ̃x =

(
1 +

π(x)

RT (x)(1 +O (Tπ(x)))

)−1
.

Even at a first sight, there are three main differences between Theorem 2.6 and Theorem 2.2:
(1) First, our proof neglects the technical assumption in (2.7). Indeed, we remark once again

we are not going to use any tool from complex analysis, being our proof elementary and
completely probabilistic in nature.

(2) Second, the estimate in (2.8) concerns the tail probability of the hitting time when the initial
measure is the T -step evolution starting at any fixed vertex y. The latter is in fact a minor
difference. In Lemma 3.3 we will show that our estimate in (2.4) holds even when replacing
π by µTy , for any choice y.

(3) Finally, our result does not take into account the precise magnitude of the second order
corrections. This is because we would like to put the accent of this paper on the underlying
phenomenology, trying to keep the paper as easy and readable as possible. We stress that
more precise bounds could be obtained through the same set of arguments.

2.3. First visit to a set. We now briefly discuss how to extend our result to the more general setting
in which one is interested in the hitting time of a set of states. Fix some target set of states G ⊂ X ,
and consider the hitting time τG. It is natural to ask under which conditions on the chain (X , P )
and on the set G the exponential approximation in (2.3)-(2.4) holds. We stress that the theory
of quasi-stationary distributions has been originally developed for such more general setting. The
standard approach used by Cooper and Frieze in their series of papers is that of collapsing the
states in the set G into a new state, g, in a way to preserve the stationary distribution of the other
vertices. More precisely, consider the Markov chain on X̃ = (X \G) ∪ {g} with transition matrix
P̃ defined as follows

P̃ (x, y) :=


P (x, y) if x, y 6= g∑

z∈G P (x, z) if x 6= g, y = g∑
z∈G

π(z)
π(G)P (z, y) if x = g, y 6= g∑

v∈G
∑

z∈G
π(z)
π(G)P (z, v) if x = y = g

(2.9)

Called

π̃(x) :=

{
π(x) if x 6= g

π(G) if x = g
(2.10)

it is immediate to check that
π̃ = π̃P̃ . (2.11)

In other words, the chain (X̃ , P̃ ) has the same behavior of (X , P ) out of the set G and the stationary
distribution π̃ is simply the projection of π on X̃ . Therefore the first hitting time to the set G under
the original chain (X , P ), starting at π, has the same law of the first hitting time to state g under
the chain (X̃ , P̃ ) starting at π̃. Notice further that [P ]G = [P̃ ]g. Hence, it is enough to check
that the modified Markov chain satisfies assumptions (HP1)-(HP2)-(HP3) and consider x = g in
Theorem 2.2.

Recall that in most of the cases considered by Cooper and Frieze the underlying Markov chain
is the simple random walk on an undirected graph. In order to prove the lower bound on the cover
time, the strategy of the authors requires to control the hitting time of a pair of vertices, which
are assumed to be “far” in the graph. Take G = {x, y} for a pair of vertices x, y ∈ X having
distance at least 2. Notice that, being the underlying graph undirected, the stationary distribution
π is proportional to the degree sequence. Therefore, the associated chain (X̃ , P̃ ) coincides with the
simple random walk on the graph in which the vertices x and y have been collapsed in a single vertex
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g and all of their edges are preserved by g. If the original graph is a sparse connected expander,
then it is not hard to see that (HP1)-(HP2)-(HP3) are satisfied by such modified chain1, and the
required control follows again by Theorem 2.2. More in general, such a “collapsing” strategy can
work only if the set G is not too large, both in the sense of cardinality and in the sense of its
stationary distribution.

2.4. Overview of the paper. Section 3 is devoted to the proof of Theorem 2.2. The proof is divided
into several steps. We start by showing a first order approximation for the expected hitting time
of x starting at stationarity, i.e. Eπ[τx] ∼ RT (x)/π(x). See Proposition 3.1. In order to show
that the latter expectation coincides at first order with Eµ?x [τx] we prove that the tail probability
Pπ(τx > t) is asymptotically larger or equal to the the tail of the same probability starting at any
other measure. This is the content of Proposition 3.4. To conclude the validity of

Eπ[τx] ∼ Eµ? [τx] = (1− λx)−1, (2.12)

we then use a bootstrap argument: we first show in Lemma 3.9 that λTx ∼ 1, then—in Propo-
sition 3.8—we show that the latter bound can be translated in the sharper estimate in (2.12).
Once established (2.12), the exponential approximation can be obtained by using the properties of
quasi-stationary distributions.

In Section 4 we use the understanding developed in Section 3 to show the validity of Corollary 2.3
and Theorem 2.4. Namely, we see how the FVTL reflects on the properties of the first right-
eigenvector γx.

Finally, in Section 5, we aim at framing the FVTL and its setting in the language of conditional
strong quasi-stationary times introduced in Manzo and Scoppola (2019).

3. Proof of the FVTL

As mentioned in Section 2.4, our proof of Theorem 2.2 is divided into several small steps. The first
proposition is devoted to the computation of the average hitting time of x starting at stationarity.
The credits for this result go to Abdullah, who presented it in his PhD thesis, Abdullah (2012,
Lemma 58). We repeat here the proof for the reader’s convenience.

Proposition 3.1 (see Abdullah, 2012). For all x ∈ X

Eπ[τx] ∼ RT (x)

π(x)
. (3.1)

Proof : By Aldous and Fill (2002, Lemma 2.1) we have

Eπ[τx] =
Z(x, x)

π(x)
,

where Z is the so called fundamental matrix, defined by

Z(x, x) :=
∞∑
t=0

µxt (x)− π(x). (3.2)

By the submultiplicativity of the sequence

D(t) := max
x,y
|µxt (y)− π(y)| , (3.3)

i.e.,
D(t+ s) ≤ 2D(t)D(s), ∀t, s > 0, (3.4)

1Using, e.g., T = log3(n).
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and thanks to (HP1), we have

max
x,y
|µxkT (y)− π(y)| ≤

(
2

nc

)k
, ∀k ∈ N. (3.5)

Hence,

Z(x, x) =
∑
t≤T

(
µxT (x)− π(x)

)
+ T

∑
k≥1

(
2

nc

)k
=RT (x) +O(Tπ(x)) +O(Tn−c)

=RT (x)(1 + o(1)),

where in the latter asymptotic equality we used Tn−c ≤ Tπmax, (HP2), and the fact that
RT (x) ≥ 1. �

Remark 3.2. We remark that, by the eigentime identity (see Aldous and Fill, 2002; Pitman and
Tang, 2018; Miclo, 2015) the trace of the fundamental matrix of an irreducible chain coincides
with the sum of the inverse non-null eigenvalues of the generator, which in turn coincide with the
expected hitting time of a state sampled accordingly to the stationary distribution. Namely, for all
y ∈ X , ∑

x∈X
π(x)Eyτx =

∑
x∈X

Z(x, x) =
n∑
i=2

1

1− θi
(3.6)

where
1 = θ1 > <(θ2) ≥ · · · ≥ <(θn) ≥ −1

are the eigenvalues of P . By Proposition 3.1 we get that, for all y ∈ X ,∑
x∈X

Z(x, x) ∼
∑
x∈X

RT (x). (3.7)

In other words, under the assumptions in (HP1), (HP2) and (HP3), the sum of the inverse eigenvalues
of I − P can be well approximated by the sum of the expected returns within the mixing time.

A crucial fact that will be used repeatedly in what follows is that under the assumptions in
Section 2.1, the tails of τx starting at µyT and starting at π coincide at first order.

Lemma 3.3. For all x, y ∈ X and t > 0 it holds

PµyT (τx > t) ∼ Pπ(τx > t). (3.8)

Proof : By the assumptions (see Remark 2.1) we have that

max
x,y∈X

∣∣∣∣µxT (y)

π(y)
− 1

∣∣∣∣ = max
x,y∈X

1

π(y)
|µxT (y)− π(y)| (3.9)

≤ 1

miny∈X π(y)
max
x,y∈X

|µxT (y)− π(y)| (3.10)

By (HP1) =⇒ ≤ n−c

miny∈X π(y)
(3.11)

By (HP3) =⇒ =o(n−c+2), (3.12)

from which the claim follows. In fact,

PµTy (τx > t) =
∑
z

µTy (z)Px(τx > t)

=(1 + o(1))
∑
z

π(z)Px(τx > t)
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=(1 + o(1))Pπ(τx > t). �

The next proposition shows that under the assumptions in Section 2.1 the tail of the hitting time
τx starting at π coincides—asymptotically—with the tail of τx starting at the “furthest” vertex.

Proposition 3.4. For all x ∈ X and for all t > T it holds

max
y∈X

Py(τx > t) ∼ Pπ(τx > t). (3.13)

We start by proving a preliminary version of Proposition 3.4, which is expressed by the following
lemma.

Lemma 3.5. For all x ∈ X and for all t > T it holds

max
y∈X

Py(τx > t) . Pπ(τx > t− T ). (3.14)

Proof : For all x, y ∈ X it holds

Py(τx > t) =
∑
z∈X

Py(XT = z; τx > T )Pz(τx > t− T ) (3.15)

≤
∑
z∈X

Py(XT = z)Pz(τx > t− T ) (3.16)

=(1 + o(1))
∑
z∈X

π(z)Pz(τx > t− T ) (3.17)

∼Pπ(τx > t− T ). �

Roughly, given Lemma 3.5, the proof of Proposition 3.4 follows by showing that the −T term in
the right hand side of (3.14) does not affect the asymptotic relation. This fact is made rigorous by
Lemma 3.6 and the forthcoming Corollary 3.7. The proof of Lemma 3.6 is based on strong stationary
times techniques (see Aldous and Diaconis, 1987b; Diaconis and Fill, 1990; Levin and Peres, 2017)
and it is inspired by the recursion in the proof of Fernandez et al. (2016, Lemma 5.4). Before to
proceed with the proof, we need to recall some definitions and properties of strong stationary times.

A randomized stopping time ταπ is a Strong Stationary Time (SST) for the Markov chain Xt with
starting distribution α and stationary measure π, if for any t ≥ 0 and y ∈ X

Pα (Xt = y, ταπ = t) = π(y)Pα (ταπ = t) ,

which is equivalent to
Pα
(
Xt = y

∣∣ταπ ≤ t) = π(y). (3.18)
If ταπ is a SST then

Pα(ταπ > t) ≥ sep(µαt , π) := max
y∈X

[
1− µαt (y)

π(y)

]
, ∀t ≥ 0, (3.19)

and when 3.19 holds with the equal sign for every t, the SST is minimal. Moreover, a minimal SST
always exists, see Levin and Peres (2017, Prop. 6.14).

Lemma 3.6. For any t > 0 it holds
Pπ(τx > t+ T )

Pπ(τx > t)
≥ 1− o(1). (3.20)

Proof : We first prove the following inequality
Pπ(τx > t+ T )

Pπ(τx > t)
≥ 1− ε · Pπ(τx > t− T )

Pπ(τx > t)
, (3.21)

with ε = o(1). We start by rewriting

Pπ(τx > t+ T ) = Pπ(τx > t)− Pπ(τx ∈ [t, t+ T ]). (3.22)
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Consider τ zπ the minimal SST of the process started at z, so that the last term in (3.22) can be
written as

Pπ(τx ∈ [t, t+ T ]) =
∑
z∈X

Pπ(τx > t− T,Xt−T = z)Pz(τx ∈ [T, 2T ])

≤
∑
z∈X

Pπ(τx > t− T,Xt−T = z)×

×
[
Pz(τx ∈ [T, 2T ], τ zπ ≤ T ) + Pz(τx ≤ 2T, τ zπ > T )

]
≤Pπ(τx > t− T )

[
Pπ(τx ≤ 2T ) + max

z∈X
Pz(τ zπ > T )

]
.

Moreover,

Pπ(τx ≤ 2T ) = Pπ (∃s ≤ 2T s.t. Xs = x) ≤ (2T + 1)π(x) =: ε1 = o(1), (3.23)

where we used the assumption (HP2). On the other hand, thanks to Lemma 3.3, we have

max
z∈X

Pz(τ zπ > T ) = max
z∈X

sep(µzT , π) ≤ max
z∈X

∥∥∥∥µzTπ − 1

∥∥∥∥
∞

=: ε2 = o(1). (3.24)

By plugging (3.23) and (3.24) into (3.22) we get

Pπ(τx > t+ T ) ≥ Pπ(τx > t)− Pπ(τx > t− T )(ε1 + ε2), (3.25)

and so (3.21) follows with ε := ε1 + ε2.
We are now going to exploit (3.21) to prove (3.20). Consider the sequence (yi)i≥1

yi :=
Pπ(τx > (i+ 1)T )

Pπ(τx > iT )
. (3.26)

Thanks to (3.21) we deduce

yi+1 ≥ 1− ε

yi
. (3.27)

Being ε < 1/4, we can define

ε̄ :=
1

2
−
√

1

4
− ε

and get by induction
yi ≥ 1− ε̄, ∀i ≥ 1. (3.28)

Indeed, note that ε = ε̄(1− ε̄) < ε̄

y1 =
Pπ(τx > 2T )

Pπ(τx > T )
= 1− Pπ(τx ∈ [T, 2T ])

Pπ(τx > T )
≥ 1− (T + 1)π(x)

1− (T + 1)π(x)
≥ 1− ε

1− ε
≥ 1− ε̄

and
yi+1 ≥ 1− ε

yi
≥ 1− ε

1− ε̄
≥ 1− ε̄.

The result of the induction in (3.28) can be immediately extended from times iT to general times
t = iT + t0 with t0 < T by noting that again we get

1− (T + t0)π(x)

1− t0π(x)
≥ 1− ε

1− ε
. �

Corollary 3.7. For all x ∈ X and for all t > T it holds

Pπ(τx > t− T ) ∼ Pπ(τx > t). (3.29)
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Proof : Notice that it is sufficient to show that
Pπ(τx > t)

Pπ(τx > t− T )
≥ 1− o(1), (3.30)

which follows immediately by Lemma 3.6. �

Proof of Proposition 3.4: It follows immediately by Lemma 3.5 and Corollary 3.7. �

The next proposition relates the expected hitting time of x starting at stationarity, with the same
expectation but starting at quasi-stationarity.

Proposition 3.8. For all x ∈ X

Eπ[τx] ∼ Eµ?x [τx] =
1

1− λx
.

Hence, by Proposition 3.1,

1− λx ∼
π(x)

RT (x)
.

In order to prove Proposition 3.8, a key ingredient is the following lemma, which states that
1 − λx must be much smaller than T−1. We will later see that such a rough bound is sufficient to
recover the precise first order asymptotic of λx by comparing Eµ?x [τx] to Eπ[τx].

Lemma 3.9. For all x ∈ X , it holds
λTx ∼ 1. (3.31)

Proof : Start by noting that

λ2Tx =Pµ?x(τx > 2T )

=
∑
z 6=x

Pµ?x (XT = z, τx > T )Pz (τx > T )

=
∑
z 6=x

[
Pµ?x (XT = z)− Pµ?x (XT = z, τx ≤ T )

]
Pz (τx > T )

Lemma 3.3 =⇒ ∼Pπ(τx > T )−
∑
z 6=x

Pµ?x (XT = z, τx ≤ T )Pz (τx > T )

≥Pπ(τx > T )−max
z

Pz (τx > T )Pµ?x (τx ≤ T )

Proposition 3.4 =⇒ ∼Pπ(τx > T )
(
1− Pµ?x (τx ≤ T )

)
=Pπ(τx > T )

(
1− (1− λTx )

)
.

Hence

λTx & Pπ(τx > T ) ≥ 1− (T + 1)π(x), (3.32)

so, by (HP2) we can conclude that λTx ∼ 1. �

Proof of Proposition 3.8: We start with the trivial bounds
∞∑
t=T

Pµ?x(τx > t) ≤ Eµ?x [τx] ≤ T +

∞∑
t=T

Pµ?x(τx > t). (3.33)

We further notice that
∞∑
t=T

Pµ?x(τx > t) =
∑
z

Pµ?x(XT = z, τx > T )

∞∑
t=0

Pz(τx > t)
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=
∑
z

[
Pµ?x(XT = z)− Pµ?x(XT = z, τx ≤ T )

] ∞∑
t=0

Pz(τx > t)

=
∑
z

[
π(z)(1 + o(1))− Pµ?x(XT = z, τx ≤ T )

] ∞∑
t=0

Pz(τx > t)

=(1 + o(1))Eπ[τx]−
∑
z

Pµ?x(XT = z, τx ≤ T )
∞∑
t=0

Pz(τx > t). (3.34)

It follows immediately by (3.34) that
∞∑
t=T

Pµ?x(τx > t) ≤ (1 + o(1))Eπ[τx]. (3.35)

On the other hand,∑
z

Pµ?x(XT = z, τx ≤ T )
∞∑
t=0

Pz(τx > t) ≤ Pµ?x(τx ≤ T ) ·
∞∑
t=0

max
z

Pz(τx > t) (3.36)

and thanks to Proposition 3.4 we get
∞∑
t=0

max
z

Pz(τx > t) ≤T +
∞∑
t=T

Pπ(τx > t) = (1 + o(1))Eπ[τx]. (3.37)

At this point, the proof is complete since

Pµ?x(τx ≤ T ) = 1− λTx = o(1), (3.38)

where the latter asymptotics follows from Lemma 3.9. �

We are now in shape to prove the main result.

Proof of Theorem 2.2: We start by bounding each entry of the T -step evolution of the quasi-
stationary measure. From above we have the trivial bound: for all x, y ∈ X

µ
µ?x
T (y) ≥ λTxµ?x(y). (3.39)

The latter immediately implies that for all x ∈ X and t > 0 it holds

Pπ(τx > t) & λt+Tx ∼ λtx. (3.40)

In fact, by Lemma 3.3,

Pπ(τx > t) ∼ P
µ
µ?x
T

(τx > t) ≥ λTxPµ?x(τx > t) = λt+Tx . (3.41)

To conclude the proof, we show a matching upper bound. Component-wise, we can upper bound

µ
µ?x
T (y) =λTxµ

?
x(y) + (1− λx)

T∑
s=1

λsxµ
x
T−s(y) (3.42)

≤λTxµ?x(y) + (1− λx)Ex[ζT (y)], (3.43)

where ζT (y) denotes the local time spent by the chain in the state y within time T , i.e.

ζT (y) :=

T∑
s=1

1Xt=y. (3.44)

Notice that for all x, y ∈ X , holds ∑
y∈X

Ex[ζT (y)] = T. (3.45)
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Hence,

Pπ(τx > t) ∼P
µ
µ?x
T

(τx > t) (3.46)

≤
∑
y∈X

λTxµ
?
x(y)Py(τx > t) + (1− λx)

∑
y∈X

Ex[ζT (y)]Py(τx > t) (3.47)

≤λt+Tx + (1− λx)T max
y

Py(τx > t) (3.48)

=λt+Tx + o (Pπ(τx > t)) (3.49)

where in the latter asymptotic equality we used in Lemma 3.9 and Proposition 3.4. We then conclude
that for all x ∈ X and t > T it holds

Pπ(τx > t) . λtx. �

4. Controlling the Doob’s transform

We start the section by showing that the unique vector γx defined by the requirements

λxγx = [P ]xγx, 〈µ?x, γx〉 = 1, (4.1)

can be equivalently characterized by the limits

γx(y) = lim
t→∞

Py(τx > t)

λtx
, ∀y 6= x. (4.2)

In fact, it is an immediate consequence of (1.9) and |X | < ∞ that for every measure α, α′ on X ,
defining γx(x) = 0 and assuming α 6= δx, holds

〈γx, α′〉
〈γx, α〉

= lim
t→∞

Pα′(τx > t)

Pα(τx > t)
. (4.3)

Hence, choosing α = µ?x and α′ = δy in the latter display we get (4.2). Moreover, choosing α = µ?x
and α′ = π and making use of Theorem 2.2 we get indeed the claim in Corollary 2.3.

We now aim at proving Theorem 2.4. We discuss the upper and the lower bound separately.

Lemma 4.1. For all x ∈ X it holds

max
y∈X\{x}

γx(y) . 1. (4.4)

Proof : Rewrite

max
y∈X\{x}

Py(τx > t) ≤ max
y∈X\{x}

Py (τx > t; τyπ ≤ T ) + max
y∈X\{x}

Py (τx > t; τyπ > T )

≤Pπ (τx > t− T ) + max
y∈X\{x}

Py (τx > t; τyπ > T ) . (4.5)

Hence, it suffices to show that

max
y∈X\{x}

Py (τx > t; τyπ > T ) = o
(
Pπ (τx > t− T )

)
. (4.6)

We decompose the latter by its position at time T , i.e.,

max
y∈X\{x}

Py (τx > t; τyπ > T )

= max
y∈X\{x}

∑
z∈X\{x}

Py (τx > T ; XT = z; τyπ > T ) Pz (τx > t− T ) (4.7)

≤
(

max
z∈X\{x}

Pz (τx > t− T )

)
·
(

max
y∈X\{x}

Py(τyπ > t)

)
∼ Pπ (τx > t− T ) ·max

y∈X
Py(τyπ > t)
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= o
(
Pπ (τx > t− T )

)
.

By inserting the bounds in (4.5) and (4.6) into (4.2) we deduce that

γx(y) = lim
t→∞

Py(τx > t)

λtx
. lim
t→∞

Pπ(τx > t− T )

λtx
= 1 + o(1). �

Lemma 4.2. For all x, y ∈ X with x 6= y it holds

γx(y) & 1− Ey[ζT (x)]. (4.8)

Proof : By the same argument of the proof of Lemma 4.1 it is sufficient to show that for all ε > 0

Py(τx > t) ≥ (1− ε− Ey[ζT (x)])Pπ (τx > t) . (4.9)

Rewrite

Py(τx > t) ≥Py (τx > t; τyπ ≤ T ) (4.10)

=
∑
s≤T

Py (τx > s; τyπ = s)Pπ(τx > t− s) (4.11)

≥Pπ(τx > t)
∑
s≤T

Py (τx > s; τyπ = s) (4.12)

=Pπ(τx > t)Py(τx > τyπ ; τyπ ≤ T ) (4.13)

we are left with showing that

Py(τx > τyπ ; τyπ ≤ T ) ≥Py(τx > T )− Py(τyπ > T ) (4.14)
=1− Py(τx ≤ T )− ε (4.15)

=1− ε−
∑
s≤T

Py(τx = s) (4.16)

≥1− ε−
∑
s≤T

Py(Xs = x) (4.17)

=1− ε− Ey[ζT (x)], (4.18)

which implies the desired result. �

5. A random time perspective on the FVTL

Besides the rough bounds in (1.20) it is possible to have a probabilistic identity that defines the
tail probability of the event τx > t when the Markov chain starts at α. In order to provide such
a representation, it has been introduced in Manzo and Scoppola (2019) the notion of conditional
strong quasi-stationary time as an extension of the idea of strong stationary time introduced in
Aldous and Diaconis (1987b), see also Diaconis and Fill (1990); Levin and Peres (2017). In this last
section, we aim at showing how the assumptions leading to the validity of the FVTL reflect on the
theory of CSQST and on the mixing behavior of the Doob’s transform.

Consider an irreducible Markovian kernel P and a state x ∈ X such that [P ]x is irreducible and
sub-Markovian. A randomized stopping time τα? is a Conditional Strong Quasi Stationary Time
(CSQST) if for any y ∈ X \ {x}, and t ≥ 0

Pα(Xt = y, τα? = t) = µ?x(y)Pα(τα? = t < τx). (5.1)

In other words, τα? is a CSQST if for any y ∈ X \ {x}, and t ≥ 0

Pα (Xα
t = y, τα? = t | t < τx) = µ?x(y)Pα (τα? = t | t < τx) , (5.2)

which is equivalent to
Pα
(
Xτα? = y | τα? < τx

)
= µ?x(y). (5.3)
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By (1.20) we deduce that for any initial distribution α on X \ {x} and for any CSQST τα? we
have for any t ≥ 0:

Pα(τα? ≤ t < τx) =
∑
u≤t

λt−uPα(τα? = u < τx) ≤ λtx 〈α, γx〉 (1− s̃α̃(t)).

This suggests a new notion of minimality: a conditional strong quasi stationary time τα? isminimal
if for any t ≥ 0

Pα(τα? ≤ t < τx) = λtx 〈α, γx〉 (1− s̃α̃(t)).

The existence of minimal CSQSTs is proved in Manzo and Scoppola (2019) where it is shown the
validity of the following representation formula: for any minimal CSQST τα? and for any t ≥ 0:

Pα
(
τx > t

)
= λtx 〈α, γx〉 (1− s̃α̃(t)) + Pα

(
τα?,x > t

)
, (5.4)

where
τα?,x := τx ∧ τα? .

As a byproduct of the FVTL and of (5.4) it is possible to show the following result.

Proposition 5.1. Under the assumptions of the FVTL there exists a minimal CSQST τπ?,x such
that

Pπ(τπ?,x = 0)→ 1. (5.5)

In physical terms, Proposition 5.1 confirms once again the idea that, under the assumptions of
the FVTL, the stationary and the quasi-stationary distributions coincide in the thermodynamic
limit.

Proof : We start by rewriting the representation formula in 5.4 in the case α = π,

Pπ
(
τx > t

)
= λtx 〈π, γx〉 (1− s̃π̃(t)) + Pπ

(
τπ?,x > t

)
. (5.6)

By Theorem 2.2 we know that (5.6) implies that, uniformly in t ≥ 0,

λtx ∼ λtx 〈π, γx〉 (1− s̃π̃(t)) + Pπ
(
τπ?,x > t

)
. (5.7)

Thanks to Corollary 2.3 we can simplify (5.7) and get

sup
t≥0

∣∣∣∣∣∣
Pπ
(
τπ?,x > t

)
λtx

− s̃π̃(t)

∣∣∣∣∣∣ = o(1). (5.8)

We now show that the second term in the left hand side of (5.8) is o(1) uniformly in t ≥ 0, which
implies that the same holds for the first term. In fact, by the monotonicity of the separation
distance, the estimate

sup
t≥0

s̃π̃(t) = o(1), (5.9)

is an immediate consequence of
s̃π̃(0) = o(1). (5.10)

In order to prove (5.10), start by noting that the stationary distribution of the Doob’s transform is
given by

νx(y) = µ?x(y)γx(y), (5.11)
while its starting distribution is, by (1.14),

π̃(y) =
π(y)γx(y)

〈π, γx〉
∼ π(y)γx(y), (5.12)
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where in the latter approximation we used again Corollary 2.3. Hence,

sep(π̃, νx) = max
y∈X\{x}

[
1− π̃(y)

νx(y)

]
∼ max

y∈X\{x}

[
1− π(y)

µ?x(y)

]
. (5.13)

Therefore, to prove (5.10), it suffices to show that

max
y∈X\{x}

[
1− π(y)

µ?x(y)

]
= o(1). (5.14)

Notice that for all y ∈ X \ {x} it holds

µ?x(y) =λ−Tx
∑
z 6=x

µ?x(z)
(
[P ]x

)T
(z, y) (5.15)

≤λ−Tx
∑
z 6=x

µ?x(z)P T (z, y) (5.16)

Lemma 3.3 =⇒ =λ−Tx
∑
z 6=x

µ?x(z)π(y)(1 + o(1)) (5.17)

∼λ−Tx π(y)(1 + o(1)) (5.18)
Lemma 3.9 =⇒ ∼π(y). (5.19)

The latter chain of asymptotic equalities shows that (5.14) holds, which in turn implies (5.9).
Therefore, thanks to (5.8), we conclude that for every minimal CSQST τπ?,x

sup
t≥0

Pπ(τπ?,x > t) = o(1). (5.20)

�
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