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Abstract. Using coupling techniques based on Stein’s method for probability approximation, we
revisit classical variance bounding inequalities of Chernoff, Cacoullos, Chen and Klaassen. Our
bounds are immediate in any context wherein a Stein identity is available. After providing illus-
trative examples for a Gaussian and a Gumbel target distribution, our main contributions are new
variance bounds in settings where the underlying density function is unknown or intractable. Appli-
cations include bounds for analysis of the posterior in Bayesian statistics, bounds for asymptotically
Gaussian random variables using zero-biased couplings, and bounds for random variables which are
New Better (Worse) than Used in Expectation.

1. Introduction

Poincaré (or isoperimetric) inequalities, giving upper bounds on the variance of a function of a
random variable, have a long and rich history, beginning with the work of Chernoff (1981). Chernoff
proved that if X has a centred Gaussian distribution with variance σ2, then

Var[g(X)] ≤ σ2E[(g′(X))2] , (1.1)

for any absolutely continuous function g : R→ R such that g(X) has finite variance. This inequality
has since been generalized by many authors, including Cacoullos (1982), Chen (1982) and Klaassen
(1985). To accompany these upper variance bounds, many of these authors have also established
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corresponding lower bounds, in the form of generalized Cramér-Rao inequalities. In particular, in
the centred Gaussian case we have

Var[g(X)] ≥ σ2E[g′(X)]2 (1.2)

for all absolutely continuous g such that Var[g(X)] <∞ and E[|g′(X)|] <∞; see Cacoullos (1982,
Proposition 3.1). The above cited works represent early entries in what is now a vast literature; we
refer to Ernst et al. (2020, 2019) for recent overviews of this large body of work.

The purpose of the present article is to revisit these classical variance bounding inequalities
in light of the coupling techniques at the heart of Stein’s method for probability approximation.
We refer the reader unfamiliar with Stein’s method to Chen et al. (2011); Nourdin and Peccati
(2012) and Ley et al. (2017) for recent introductions to this area. Stein’s method is a suite of
techniques which have principally been exploited to derive explicit error bounds for probabilistic
approximations, classically in the Gaussian and Poisson settings and more recently across a wide
variety of univariate, multivariate and process-level limiting objects. One fruitful approach to
applying Stein’s technique involves the construction of couplings closely related to the appropriate
limiting distribution. For example, the zero-biased coupling introduced by Goldstein and Reinert
(1997) has the mean-zero Gaussian distribution as a fixed point and has been used to derive explicit
bounds in Gaussian approximation in a variety of applications; many applications of zero-biased
(and other) couplings in Gaussian approximation using Stein’s method are detailed in Chen et al.
(2011).

By exploiting such coupling constructions, we derive upper and lower variance bounds, including
weighted Poincaré inequalities (see, e.g., the upper bound (1.6) below, which has a weight ωγ ,
compared to the unweighted case (1.1)). These variance bounds may be applied in a wide variety
of settings, including many in which the density of the underlying random variable is unknown or
intractable. Our key coupling identity is (1.3) below, from which our variance bounds will follow.
The identity (1.3) generalises many of the couplings (including zero-biasing) used in Stein’s method,
and therefore allows us to treat a wide variety of applications and examples. Employing the zero-
biased coupling will allow us to establish explicit variance bounds for a range of situations in which
the underlying random variable is known to be asymptotically Gaussian, but we emphasise that
the more general coupling defined in (1.3) will allow us to treat many examples unrelated to the
Gaussian setting.

In Sections 2–4 below we will consider a variety of settings in which variance bounds can be
derived by exploiting our coupling identity (1.3). Before doing so, we use the remainder of this
section to state this identity, and demonstrate how it can be used to establish upper and lower
variance bounds in the spirit of Chernoff, Cacoullos, Chen and Klaassen.

LetW be a real-valued random variable on some fixed probability space and let Lr(W ), r ≥ 1, be
the collection of real-valued functions γ such that E|γ(W )|r <∞. Let γ ∈ L1(W ) with E[γ(W )] = 0.
We say that a pair of random variables (T1, T2) (living on the same probability space as W ) form
a Stein coupling for W with respect to γ if

E [γ(W )φ(W )] = E
[
T1φ

′(T2)
]

(1.3)

for all differentiable test functions φ ∈ C with C ⊂ C1(R) some appropriately chosen class of
functions. Although the choice C = C∞0 (R) is always allowed, it will generally be interesting to
use C as wide as possible – in particular one would wish that polynomials xk belong to C for some
k. In order to keep the text light we will follow the tradition in the literature wherein one rather
makes use of the expression “where C is the class of functions for which expectations exist”. We
note that in using this expression we are also including assumptions (such as differentiability of φ)
necessary for existence of any expressions within the expectations. We also note here that what we
have called a Stein coupling is not the same as the Stein couplings introduced by Chen and Röllin
(2010).
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We begin by showing an elementary argument allowing us to use (1.3) to obtain tight upper
variance bounds. To this end, suppose that γ is a strictly increasing and differentiable function.
Then in particular it is invertible and γ−1(0) is well-defined. Let g be a real-valued differentiable
function such that Var[g(W )] is finite. Following Ley and Swan (2016) we write

Var[g(W )] ≤ E
[(
g(W )− g(γ−1(0))

)2]
= E

(∫ γ(W )

0

g′(γ−1(u))

γ′(γ−1(u))
du

)2


≤ E

[
γ(W )

∫ γ(W )

0

(
g′(γ−1(u))

γ′(γ−1(u))

)2

du

]
,

where the equality follows by differentiability of g and the subsequent inequality via the Cauchy-
Schwarz inequality. Applying (1.3) for differentiating integrals we deduce the general upper variance
bound

Var[g(W )] ≤ E
[

T1

γ′(T2)

(
g′(T2)

)2]
, (1.4)

which holds as soon as the function x 7→
∫ γ(x)

0

(
g′(γ−1(u))/γ′(γ−1(u))

)2
du belongs to the class C

discussed following (1.3). Note that inequality (1.4) also holds if in (1.3) we replace the equality
sign by an increasing inequality.

Identity (1.3) can also readily be combined with the Cauchy-Schwarz inequality to obtain lower
variance bounds. To this end, consider a mean zero function γ, for which we have

(E [γ(W )g(W )])2 = (E [γ(W )(g(W )− E[g(W )])])2 ≤ E
[
γ(W )2

]
Var[g(W )].

Then from (1.3) we deduce

Var[g(W )] ≥ (E [T1g
′(T2)])2

Var [γ(W )]
(1.5)

for all g ∈ C. As above, we note that inequality (1.5) also holds if in (1.3) we replace the equality
sign by a decreasing inequality.

One of the advantages of bounds such as (1.4) and (1.5) is their ease of use, which springs from
the many “Stein identities” (1.3) in the literature. Before tackling more challenging situations in
the coming sections, we demonstrate the bounds we obtain in two specific instances, beginning
with the Gaussian setting. These examples are used primarily as illustrations of the bounds that
can be obtained from (1.4) and (1.5) in some concrete cases, and to draw connections between our
inequalities and others available in the literature.

Example 1.1 (Gaussian upper bounds). Let X ∼ N (0, 1), and define the operator Lf(x) for each
f ∈ L1(X) by Lf(x) = ex

2/2
∫ x
−∞(f(u) − E[f(X)])e−u

2/2du . A simple adaptation of the proof of
Ernst et al. (2020, Proposition 2.29) shows that the operator L satisfies

E [γ(X)φ(X)] = E
[(
− Lγ(X)

)
φ′(X)

]
for all centered monotone γ ∈ L2(X) and all absolutely continuous test functions φ ∈ L2(X) such
that φ′ ∈ L1(γ). We collect all these functions into the class C discussed below (1.3). We can
therefore apply (1.4) with T1 = −Lγ(X) and T2 = X, leading to the (weighted Poincaré) inequality

Var[g(X)] ≤ E
[
−Lγ(X)

γ′(X)
(g′(X))2

]
=: E[ωγ(X)(g′(X))2] (1.6)

which holds for all centred, increasing and differentiable functions γ belonging to L2(X) and all g
satisfying the condition given below (1.4) (it may be of interest to clarify this class using e.g. the
results from Ernst et al., 2020, Section 2.3 but, in the interest of brevity, we simply remark that
all differentiable functions with compact support belong to this class – larger classes of functions
can be attained on a case-by-case basis). Obviously, different choices of γ in (1.6) lead to different
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inequalities. For example, taking γ(x) = x leads to ωγ(x) = 1, reproducing (1.1), as expected,
whereas γ(x) = x3 leads to ωγ(x) = 1

3

(
1 + 2

x2

)
. Following Bonnefont et al. (2016), we can also

consider γ(x) = xebx
2/2, which leads to a weight ωγ(x) = ((b− 1)(1 + bx2))−1, for b < 1. We

refer the interested reader to Section 2.2 of Bonnefont et al. (2016) for a more detailed discussion
of weighted Poincaré inequalities with weights of this form, and in particular for a discussion of
optimality of such weights. See also Saumard (2019) and Ernst et al. (2020) for more detail, as well
as Saumard and Wellner (2018) for other identities such as (1.3). Finally, we mention that lower
bounds can also be readily obtained from (1.5), for instance with the help of the identities available
in Goldstein and Reinert (2005, Section 4.1); we do not detail this here.

Example 1.2 (Gumbel bounds). Let W be a standard Gumbel random variable with CDF P (x) =

e−e
−x and PDF p(x) = e−e

−x−x on R. Then E[(1− e−W )φ(W )] = E [φ′(W )] for all functions φ ∈ C
the collection of differentiable functions such that φ′ ∈ L1(W ); see Ley et al. (2017, Section 6.5).
We can therefore apply (1.4) and (1.5) with T1 = 1, T2 = W and γ(x) = 1 − e−x leading to the
inequalities

E[g′(W )]2 ≤ Var[g(W )] ≤ E
[
eW (g′(W ))2

]
for all appropriate g. An analogous identity holds for the random variable Xn = max(ξ1, . . . , ξn)−
log(n + 1) with (ξi)i≥1 an IID sequence of rate 1 exponential random variables. Indeed, the same
arguments from Ley et al. (2017, Section 6.5) show that E[(1− e−Xn)φ(Xn)] = E[(1− e−Xn

n+1 )φ′(Xn)]

for all appropriate φ, so that we may now apply (1.4) and (1.5) with T1 = e−Xn
n+1 − 1, T2 = Xn and

γ(x) = 1− e−x. Upon noting that Var[e−Xn − 1] = n
n+2 we obtain the bounds

n+ 2

n
E
[(

1− e−Xn

n+ 1

)
g′(Xn)

]2

≤ Var[g(Xn)] ≤ E
[
eXn

(
1− e−Xn

n+ 1

)
(g′(Xn))2

]
.

The similarity between the upper and lower bounds for W and Xn comes as no surprise: it is a
well-known fact that Xn converges in distribution to W .

One could of course obtain many more inequalities from Stein identities; it may also be of interest
to study in more detail the class of functions on which the different inequalities hold. We shall
not do this here and the rest of this paper is devoted to proposing less direct applications. In
Section 2 we use the framework of Stein kernels to express suitable couplings and obtain a family
of inequalities directly inspired by a classical result from Cacoullos (1982). Our main application
is towards densities arising in a Bayesian framework. Section 3 makes use of zero-biased couplings
to derive variance bounds suitable for random variables which are asymptotically Gaussian. Here,
as in the next section, explicit knowledge of the density is not required for bounds to be obtained.
Finally, in Section 4 we consider random variables satisfying certain stochastic or convex ordering
assumptions. Some proofs and additional examples illustrating the results of Section 2 are deferred
to the appendices.

2. The Stein kernel and a bound of Cacoullos

Suppose that the target random variableW has a differentiable density p with connected support
(this excludes examples such as the Laplace distribution) and let P be the corresponding CDF.
Following, for example, Cacoullos et al. (1994) and Ernst et al. (2020), we define the Stein kernel
of W as the function τ satisfying

Cov [W,φ(W )] = E
[
τ(W )φ′(W )

]
(2.1)

for all absolutely continuous functions φ such that either integral is defined; this classical object in
the theory of Stein’s method has been studied in detail in the literature, and we refer to Saumard
(2019); Ernst et al. (2020) for extensive discussions. In the notation of Section 1, equation (2.1)
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implies that we can take γ(x) = x− E[W ], T1 = τ(W ) and T2 = W in (1.3). Note that E[τ(W )] =
Var[W ]. Applying (1.4) and (1.5) we get that

E [τ(W )g′(W )]2

Var [W ]
≤ Var[g(W )] ≤ E

[
τ(W )

(
g′(W )

)2]
, (2.2)

and this can be seen to hold for all absolutely continuous g such that g(X) has finite variance and
|g′(X)| has finite mean (see e.g. Saumard, 2019). This is nothing but a restatement of classical
bounds already available in Cacoullos (1982). Since the Stein kernel is a positive function, we can
re-express (2.2) in the form

Eτ [g′(W )]2

Var [W ]
≤ Var[g(W )] ≤ Eτ

[(
g′(W )

)2]
,

where Eτ is expectation under the new measure τ(·)dP (·).
Of course, for (2.2) to be of use it remains to identify situations in which the Stein kernel has an

agreeable form, hereby resulting in informative bounds. In the following three examples we propose
several such instances.

Example 2.1. Following Nourdin et al. (2014), it is easy to see that if W = n−1/2
∑n

i=1Xi, where
the Xi are centred, independent random variables with Stein kernel τi(·) and common variance σ2,
then τW (w) = 1

n

∑n
i=1 E[τi(Xi) |W = w] is a Stein kernel for W . Specialising to the the IID case,

if the Xi are copies of X1 with kernel τ1(·), (2.2) becomes

E [τ1(X1)g′(W )]2

σ2
≤ Var[g(W )] ≤ E

[
τ1(X1)(g′(W ))2

]
for all absolutely continuous g such that all expectations exist. We now aim to interpret these upper
and lower bounds by comparison with the Gaussian upper and lower bounds from (1.1) and (1.2):
this is natural because, by the CLT, the law ofW is approximately Gaussian for n sufficiently large.

First the upper bound. We recall that E[τ1(X1)] = σ2 and that for a twice differentiable function
g we have ∣∣g′(x+ t)2 − g′(x)2

∣∣ ≤ 2‖g′g′′‖|t| , (2.3)

where ‖·‖ is the supremum norm. We note that g′(W ) = g′(X1 +W (1)) with W (1) = W −n−1/2X1,
so that we can use the independence between X1 and W (1) to deduce the upper bound

Var[g(W )] ≤ σ2E[(g′(W (1)))2] +
CU (g)√

n
,

where CU (g) = 2‖g′g′′‖σ2E[|X1|]. As we might expect from the CLT, we have obtained an upper
bound with a form similar to that of (1.1), though withW replaced byW (1) and an additional term
of order O(n−1/2).

Similar considerations apply for the lower bound. First recall that, if g is twice differentiable,
then g′(x+ t) = g′(x) + tE[g′′(x+ Ut)] with U ∼ Unif[0, 1]. By independence, we can write

E
[
τ1(X1)g′(W )

]
= σ2E[g′(W (1))] + n−1/2E[τ1(X1)X1g

′′(W (1) + n−1/2UX1)],

so that the lower bound becomes

Var[g(W )] ≥ σ2E[g′(W (1))]2 +
CL(g, n)√

n
,

where

CL(g, n) = 2E[g′(W (1))]E[τ1(X1)X1g
′′(W (1) + n−1/2UX1)]

+
n−1/2

σ2
E[τ1(X1)X1g

′′(W (1) + n−1/2UX1)]2 .



1850 Fraser Daly, Fatemeh Ghaderinezhad, Christophe Ley and Yvik Swan

Clearly limn→∞CL(g, n)/
√
n = 0 for all g, and so we have a lower bound similar in form to (1.2),

though again with W (1) replacing W in the main term, and an additional term which goes to zero
as n→∞.

Our second example yields variance bounds for any random variable with finite mean.

Example 2.2 (Smoothing). Let Y be a real-valued random variable with E[Y ] = µ. In order to
allow us to derive variance bounds for Y using our approach, we smooth it by convolving it with
Gaussian noise Z ∼ N (0, ε2), independent of Y , for some small ε > 0. Let ϕε and Φε be the density
and distribution functions of Z, respectively, and define

τε(x) = ε2 +
E
[
(Y ′ − µ)Φ̄ε(x− Y ′)

]
E[ϕε(x− Y ′)]

, (2.4)

where Φ̄ε(y) = 1−Φε(y) and Y ′ is an independent copy of Y . Then τε(x) is a Stein kernel for Y +Z
(see Appendix A) and (2.2) applies to all differentiable functions g : R→ R such that g(Y +Z) has
finite second moment. Moreover, the following hold:

(i). If the mapping x 7→ (g(x)− E[g(Y + Z)])2 is convex, then

Var[g(Y )] ≤ E
[
τε(Y + Z)g′(Y + Z)2

]
.

(ii). If the mapping x 7→ (g(x)− E[g(Y )])2 is concave, then

Var [g(Y )] ≥ E [τε(Y + Z)g′(Y + Z)]2

ε2 + Var[Y ]
.

We defer the proofs of these claims to Appendix A.

In our final set of examples in this section we illustrate how our techniques can be applied to the
rich class of Pearson family distributions, particularly in the setting of Bayesian inference.

Example 2.3 (Pearson family and application to posterior distributions). As is well known, the Pear-
son family has explicit Stein kernels given by Proposition B.1 recalled in the Appendix. Such a result
is particularly useful in the following situation inherited from Bayesian statistics. In a Bayesian set-
ting, the initial distribution of the parameter of interest is some prior distribution with density
π0(θ); upon observing data points x = (x1, . . . , xn) sampled independently with sampling distribu-
tion π(θ,x) we update from the prior to the posterior density given by π2(θ) = κ2(x)π(θ,x)π0(θ),
where κ2(x) is a normalizing constant depending only on the data. We use the notation Θ0 to
indicate the distribution of the parameter under the prior, Θ2 its distribution under the poste-
rior, and X a random variable following the same common distribution of the observations. We
also write Θ1 for the parameter under the sampling distribution π1(θ) = κ1(x)π(θ,x) with κ1(x)
the corresponding normalizing constant, which corresponds to a posterior with flat (uninformative)
prior. A popular choice of prior is that of a conjugate prior as the corresponding posterior follows
the same distribution as the prior; the impact of the data is then visible in the parameters of the
posterior distribution which are updated. Restricting our attention to Pearson distributed families,
we can apply Proposition B.1 and read variance bounds directly from the updated parameters. For
instance:

• Gaussian data, inference on mean, Gaussian prior: If X ∼ N (θ, σ2) with θ ∈ R and fixed
σ > 0, and Θ0 ∼ N (µ, δ2) with µ ∈ R, δ > 0, then Θ2 ∼ N

(
σ2µ+nδ2x̄
nδ2+σ2 , σ2δ2

nδ2+σ2

)
, where

x̄ = 1
n

∑n
i=1 xi. The Stein kernel for this Gaussian distribution is τ(θ) = ( n

σ2 + 1
δ2

)−1.
Consequently,

E
[
g′(Θ2)

]2 ≤ ( n

σ2
+

1

δ2

)
Var[g(Θ2)] ≤ E[g′(Θ2)2]

for all suitable g, all n and all values of the parameters.
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• Gaussian data, inference on variance, Inverse Gamma prior: If X ∼ N (µ, θ) with θ > 0 and
fixed µ ∈ R, and Θ0 ∼ IG(α, β) has an Inverse Gamma distribution with density

θ 7→ βα

Γ(α)
θ−α−1 exp

(
−β
θ

)
, α, β > 0,

then Θ2 ∼ IG
(
n
2 + α, 1

2

∑n
i=1(xi − µ)2 + β

)
. The Stein kernel for this Inverse Gamma

distribution is τ(θ) = θ2
n
2

+α−1 . Consequently, for all suitable g,

(n2 + α− 2)

(1
2

∑n
i=1(xi − µ)2 + β)2

E[Θ2
2g
′(Θ2)]2 ≤ Var[g(Θ2)] ≤ 1

n
2 + α− 1

E[Θ2
2g
′(Θ2)2].

• Binomial data, inference on proportion, Beta prior: If X ∼ Bin(n, θ) with θ ∈ [0, 1], and
Θ0 ∼ Beta(α, β) with density

θ 7→ θα−1(1− θ)β−1

Γ(α)Γ(β)
Γ(α+β)

, α, β > 0,

then Θ2 ∼ Beta (x+ α, n− x+ β), where x denotes the observed number of successes. The
Stein kernel for this Beta distribution is τ(θ) = θ(1−θ)

n+α+β . Consequently, for all suitable g,

(n+ α+ β + 1)

(x+ α)(n− x+ β)
E[Θ2(1−Θ2)g′(Θ2)]2 ≤ Var[g(Θ2)] ≤ E[Θ2(1−Θ2)g′(Θ2)2]

n+ α+ β
.

In each example, we can see how the fixed parameters of the data as well as the fixed prior parameters
interplay with the sample size and the data to yield bounds on the variance. Of course, one can
state these bounds in a more general setting for each distribution for which we know the Stein
kernel, but we choose to use the Bayesian setting since, to the best of our knowledge, these are the
first variance bounds within a Bayesian context. Further examples are provided in Appendix B.

Remark 2.4. A possible research direction springing from this last example, brought to our atten-
tion by the Associate Editor, is in the context of the famous Bernstein-von Mises theorem. More
specifically, the data-dependent variance bounds may be used to provide rates of convergence of the
posterior distribution towards the Gaussian distribution. This is an interesting research question,
which deserves separate treatment.

3. Variance bounds from zero-biased couplings

In this section, we suppose that the target random variable W has mean zero, finite variance σ2,
and can be coupled to some random variable W ? through

E[Wφ(W )] = σ2E[φ′(W ?)] (3.1)

for all differentiable functions φ : R → R such that xφ(x) ∈ L1(W ). Such W ? always exists, and
its law is unique. It has the W -zero-biased distribution; see, e.g., Chen et al. (2011, Section 2.3.3)
and references therein for more details. W ? is a continuous random variable, regardless of whether
W is discrete or continuous. Under (3.1), we immediately obtain

σ2E
[
g′(W ?)

]2 ≤ Var[g(W )] ≤ σ2E
[
g′(W ?)2

]
(3.2)

by using (1.4) and (1.5) with γ(x) = x, T1 = σ2 and T2 = W ? for all appropriate g : R → R.
Obviously it may be of interest to express (3.2) in terms of the original variable. By applying (2.3),
we immediately obtain the following result.
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Proposition 3.1. Let W have mean zero and finite variance σ2, and W ? have the W -zero biased
distribution. Then

Var[g(W )] ≤ σ2E
[
g′(W )2

]
+ 2σ2‖g′g′′‖E|W ? −W | (3.3)

for all twice differentiable functions g : R→ R for which Var[g(W )] exists.

It is classical that the Gaussian distribution is the unique fixed point of the zero-bias transform,
in the sense that W ∼ N (0, σ2) if and only if W = W ?. Hence |W ? −W | gives information on
the distributional proximity between the law L(W ) of W and N (0, σ2). Also, it is classical that
the Gaussian is characterized by the fact that σ2 = supg Var[g(W )]/E[g′(W )2]; see, e.g., Cacoullos
et al. (1994). Inequality (3.3) captures these two essential features of the Gaussian distribution.

We conclude this section with two applications to illustrate the bound (3.3), the first to sums of
independent random variables and the second to a combinatorial central limit theorem.

Example 3.2. Let X1, X2, . . . , Xn be independent mean zero random variables with finite variances
E[X2

i ] = σ2
i , i = 1, . . . , n. Set W = X1 + · · ·+Xn and E[W 2] = σ2 =

∑n
i=1 σ

2
i . Let I be a random

index independent of all else such that P (I = i) = σ2
i /σ

2 and let Wi = W − Xi. Finally let X?
i

be the zero-bias transform of Xi. Then W ? −W = XI −X?
I (see Lemma 2.1(v) of Goldstein and

Reinert, 1997) so that the bound (3.3) becomes

Var[g(W )] ≤ σ2E[g′(W )2] + 2‖g′g′′‖
n∑
i=1

σ2
i E[|Xi −X?

i |].

If, furthermore, we suppose the summands to be independent copies of X such that σ2 = 1 then

Var[g(W )] ≤ E[g′(W )2] + 2‖g′g′′‖E[|X −X?|] .

To see how this plays out in practice, suppose that X = (ξ−p)/√npq with ξ Bernoulli with success
parameter p. Following Chen et al. (2011, Corollary 4.1), we obtain E[|X−X?|] = (p2+q2)/(2

√
npq)

and

Var[g(W )] ≤ σ2E[g′(W )2] + ‖g′g′′‖p
2 + q2

√
npq

.

Many other examples can be explicitly worked out along these lines.

Example 3.3. Let (ai,j)
n
i,j=1 be an array of real numbers and π a uniformly chosen permutation of

{1, . . . , n}. Let W =
∑n

i=1 ai,π(i). We further define

a•• =
1

n2

n∑
i,j=1

ai,j , ai• =
1

n

n∑
j=1

ai,j , and a•j =
1

n

n∑
i=1

ai,j ,

and note that E[W ] = na•• and

Var[W ] = σ2 =
1

n− 1

n∑
i,j=1

(ai,j − ai• − a•j + a••)
2 .

See, for example, Chen et al. (2011, Section 4.4). Letting Z = σ−1(W − na••) and
C = max1≤i,j≤n |ai,j − ai• − a•j + a••|, the proof of Theorem 6.1 of Chen et al. (2011) shows
that E|Z? − Z| ≤ 8Cσ−1, and so we have from (3.3) that

Var[g(Z)] ≤ E
[
g′(Z)2

]
+

16C

σ
‖g′g′′‖ ,

for all appropriate g.
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4. Variance bounds using stochastic ordering

We consider now some further applications in which we do not require explicit knowledge of the
density of W in order to derive bounds on Var[g(W )] using our techniques. Unlike those examples
in Section 3, the bounds we obtain here have the same form as in applications where we employ
the exact expression for the underlying density, without any additional ‘remainder’ terms. We may
obtain such bounds under natural assumptions on the random variable W , which we express in
terms of stochastic orderings; the price we pay is in some restriction on the class of functions g for
which the bounds apply.

We begin by recalling the definitions of the orderings which we will use. For any random variables
X and Y , we will say that X is stochastically smaller than Y (denoted X ≤st Y ) if P(X > t) ≤
P(Y > t) for all t. We will say that X is smaller than Y in the convex order (denoted X ≤cx Y )
if E[φ(X)] ≤ E[φ(Y )] for all convex functions φ for which the expectations exist. See Shaked and
Shanthikumar (2007) for background and many further details.

4.1. Zero-biased couplings and the convex order. LetW be a real-valued random variable with mean
zero and variance σ2. Recall the definition (3.1) of W ?, the zero-biased version of W . We note that,
from Lemma 2.1(ii) of Goldstein and Reinert (1997), W ? is supported on the closed convex hull of
the support of W and has density function given by

p?W (w) =
1

σ2
E[WI(W > w)] . (4.1)

Now, as in Section 3, we apply the upper bound (1.4) with the choices γ(x) = x, T1 = σ2 and
T2 = W ? to obtain Var[g(W )] ≤ σ2E[g′(W ?)2] for all appropriate g. If we assume that W ? ≤cx W
and that g′(x)2 is convex, we can immediately bound E[g′(W ?)2] by E[g′(W )2], and obtain the
following result.

Theorem 4.1. Let W have mean 0 and variance σ2, and assume that W ? ≤cx W . Then

Var[g(W )] ≤ σ2E[g′(W )2] (4.2)

for all differentiable g : R→ R such that Var[g(W )] <∞ and x 7→ g′(x)2 is convex.

The following example illustrates one setting where the ordering W ? ≤cx W holds.

Example 4.2. Let W = X1 + X2 + · · · + Xn, where X1, X2, . . . , Xn are independent, mean-zero
random variables, with Xi supported on the set {−ai, bi} for ai, bi > 0, for each i = 1, . . . , n. That
is, P(Xi = −ai) = pi = 1− P(Xi = bi) for 1 ≤ i ≤ n, where pi = bi/(ai + bi) so that E[Xi] = 0. Let
σ2
i = Var(Xi) and σ2 = σ2

1 + · · ·+ σ2
n.

A straightforward calculation using (4.1) shows that, for each i = 1, . . . , n, X?
i is uniformly

distributed on the interval [−ai, bi]. Hence, Theorem 3.A.44 of Shaked and Shanthikumar (2007)
gives that X?

i ≤cx Xi for each i.
Let I be a random index, chosen independently of all else, with P(I = i) = σ2

i /σ
2, for i =

1, . . . , n. Now, using Lemma 2.1(v) of Goldstein and Reinert (1997), W ? is equal in distribution to
X?
I +
∑

j 6=I Xj , which is smaller thanW in the convex order by (3.A.46) of Shaked and Shanthikumar
(2007). It then follows from Theorem 3.A.12(b) of Shaked and Shanthikumar (2007) that W ? ≤cx
W , and hence our upper bound (4.2) applies.

4.2. Equilibrium couplings. Throughout this section, letW be a non-negative random variable with
mean λ−1. Following, for example, Peköz and Röllin (2011), we say that a random variable W e has
the equilibrium distribution with respect to W if

E[φ(W )]− φ(0) = λ−1E[φ′(W e)] , (4.3)

for all differentiable functions φ : R+ → R.
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Remark 4.3. This definition is motivated by the fact that W is Exponential if and only if W and
W e are equal in distribution. Applying the definition to the function φx(w) = (w−x)I(w ≥ x) and
integrating by parts we obtain that P(W e > x) = λ

∫∞
x P(W > y) dy for all x ≥ 0.

In this section we consider random variables that are new better than used in expectation (NBUE)
and new worse than used in expectation (NWUE). Recall that W is NBUE if∫∞

x P(W > s) ds∫∞
0 P(W > s) ds

= λ

∫ ∞
x

P(W > s) ds ≤ P(W > x) (4.4)

for all x ≥ 0, and that W is NWUE if (4.4) holds with the inequality reversed. These properties are
well-known in reliability theory and are closely connected with many other classes of distributions
frequently used in reliability analysis; see, for example, Shaked and Shanthikumar (2007). We note,
for example, that distributions with increasing hazard rate are NBUE and those with decreasing
hazard rate are NWUE, and so the results of this section may be applied to distributions with
monotone hazard rate. Note also that the definition (4.4) of the NBUE property can be equivalently
expressed as E[W − t|W > t] ≤ E[W ] for all t. Defining the conditional value at risk (CVaR) of W
as E[W |W > QW (u)], where QW (u) = inf{x : P(W > x) ≤ u} is the quantile function of W , the
random variableW is therefore NBUE if its CVaR is bounded above by the CVaR of an exponential
distribution with the same mean. Recent applications of CVaR to stochastic inequalities include
Gaussian approximation results for CVaR of sums of random variables Rio (2017) and exponential
inequalities for suprema of heavy-tailed empirical processes Marchina (2019).

From the definition (4.4) and the remark above it, it is clear that W is NBUE if and only if
W e ≤st W , and that W is NWUE if and only if W ≤st W e. For a random variable W which is
either NBUE or NWUE, we employ this stochastic ordering in a similar way to the convex ordering
we used in Section 4.1 above.

We will seek conditions on the random variable W and the differentiable function φ such that

E[(λW − 1)φ(W )] ≤ E[Wφ′(W )] . (4.5)

This inequality is analogous to the equality (1.3) we used in deriving the upper bound (1.4), with
the choices γ(x) = λx − 1 and T1 = T2 = W . Following the proof of (1.4), we see that such an
inequality is sufficient to establish an upper variance bound; the equality we used in (1.3) is not
necessary. Now, the definition (4.3) of W e gives that

E[Wφ(W )] = λ−1E[φ(W e) +W eφ′(W e)] ,

and hence
E[(λW − 1)φ(W )] + E[φ(W )] = E[W eφ′(W e)] + E[φ(W e)] .

Thus, (4.5) holds if and only if

E[φ(W e) +W eφ′(W e)] ≤ E[φ(W ) +Wφ′(W )] .

Therefore, inequality (4.5) holds if W is NBUE and φ(x) + xφ′(x) is increasing in x. Alternatively,
(4.5) also holds if W is NWUE and φ(x) + xφ′(x) is decreasing in x.

Continuing to follow the proof of the upper bound (1.4), we now apply (4.5) with the choice

φ(x) =

∫ γ(x)

0

(
g′(γ−1(u))

γ′(γ−1(u))

)2

du =
1

λ2

∫ λx−1

0
g′(λ−1(u+ 1))2du ,

so that we may conclude our argument with an upper bound on Var[g(W )] for some differentiable
function g : R+ → R. If g is in fact twice differentiable, we can check, for example, that this choice
of φ gives φ(x) + xφ′(x) increasing if g′(x)[xg′′(x) + g′(x)] ≥ 0 for all x, and decreasing if this
inequality is reversed. We give a precise statement of the resulting upper variance bound in this
setting in Theorem 4.4 below.
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Similarly, we may ask when (4.5) holds with the inequality sign reversed; we can apply this
reversed inequality in place of the equality (1.3) in a proof of a lower variance bound analogous to
(1.5). By the same argument as above, (4.5) holds with the inequality reversed if either (i) W is
NBUE and φ(x)+xφ′(x) is decreasing in x, or (ii)W is NWUE and φ(x)+xφ′(x) is increasing in x.
Following the proof of (1.5) from (1.3), we can obtain a lower bound on Var[g(W )] for appropriate
functions g by applying (4.5) with the inequality sign reversed and with the choice φ = g.

We have thus proved the following, where we have restricted our attention to twice differentiable
functions g for clarity in the stated results.

Theorem 4.4. Let W be a non-negative random variable with mean E[W ] = λ−1. Let g : R+ → R
be a twice differentiable function such that Var[g(W )] exists.

(a) Assume that either
(i) W is NBUE and g′(x)[xg′′(x) + g′(x)] ≥ 0 for all x ≥ 0; or
(ii) W is NWUE and g′(x)[xg′′(x) + g′(x)] ≤ 0 for all x ≥ 0.
Then

Var[g(W )] ≤ 1

λ
E[Wg′(W )2] .

(b) Assume that either
(i) W is NBUE and xg′′(x) + 2g′(x) ≤ 0 for all x ≥ 0; or
(ii) W is NWUE and xg′′(x) + 2g′(x) ≥ 0 for all x ≥ 0.
Then

Var[g(W )] ≥ (E[Wg′(W )])2

λ2Var[W ]
.

We conclude with an example illustrating the application of Theorem 4.4.

Example 4.5. Consider the random sum W =
∑N

i=1Xi, where X,X1, X2, . . . are independent and
identically distributed, continuous, real-valued random variables and N is a random variable sup-
ported on the non-negative integers. Conditions are known under which W is NWUE. For example,
Brown (1990) shows that if N is Geometric, then W is NWUE, regardless of the distribution of X.
More generally, Corollary 2.1 of Willmot et al. (2005) establishes that if N satisfies

∞∑
k=0

P(N > n+ k + 1) ≥ P(N > n)
∞∑
k=0

P(N > k) , (4.6)

for all n = 0, 1, . . ., then W is NWUE. This includes, for example, the case where N is mixed
Poisson with a mixing distribution that is itself NWUE; see Corollary 3.1 of Willmot et al. (2005).
Thus, under the condition (4.6), the bounds of the NWUE cases of Theorem 4.4 apply, with λ−1 =
E[N ]E[X] and Var[W ] = (E[X])2Var[N ] + E[N ]Var[X].
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Appendix A. Example 2.2: Proofs of claims

We begin by showing that τε(x), as defined in (2.4), is the Stein kernel of Y + Z. To see this,
note that P(Y + Z ≤ t) = E[Φε(t − Y )], so that Y + Z has density pε(t) = E[ϕε(t − Y )]. Hence,
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since Y + Z has expectation µ, its Stein kernel is given by

1

pε(x)

∫ ∞
x

(y − µ)pε(y) dy =
1

pε(x)

∫ ∞
x

∫ ∞
−∞

(y − µ)ϕε(y − t) dF (t) dy ,

where F is the distribution function of Y ; see Cacoullos et al. (1994). Applying Fubini’s theorem,
this is equal to

1

pε(x)

∫ ∞
−∞

∫ ∞
x−t

(s+ t− µ)ϕε(s) ds dF (t) =
1

pε(x)
E
[
ε2ϕε(x− Y ) + (Y − µ)Φ̄ε(x− Y )

]
,

since
∫∞
y sϕε(s) ds = ε2ϕε(y). This Stein kernel is easily seen to be equal to τε(x) given in (2.4).

Now, to prove claim (i), we firstly note that Y ≤cx Y + Z (see Theorem 3.A.34 of Shaked and
Shanthikumar, 2007), so that E[φ(Y )] ≤ E[φ(Y + Z)] for any convex function φ. Noting that the
function f(α) = E[(g(Y )− α)2] is minimized at α = E[g(Y )], we have

Var[g(Y )] = E
[
(g(Y )− E[g(Y )])2

]
≤ E

[
(g(Y )− E[g(Y + Z)])2

]
≤ Var[g(Y + Z)] ,

where the final inequality follows from the assumption in (i) that the mapping
x 7→ (g(x)− E[g(Y + Z)])2 is convex. Applying the upper bound from (2.2) completes the proof of
(i).

We use a similar argument for (ii). We have that

Var[g(Y + Z)] ≤ E[(g(Y + Z)− E[g(Y )])2] ≤ E[(g(Y )− E[g(Y )])2] ,

where the final inequality uses the convex ordering between Y and Y +Z (from which E[φ(Y +Z)] ≤
E[φ(Y )] for any concave function φ) and the assumption that the mapping x 7→ (g(x) − E[g(Y )])2

is concave. We now apply the lower bound from (2.2) to complete the proof of (ii).

Appendix B. Example 2.3: Stein kernel and further applications

We start by recalling a result taken from Stein (1986, Equation (40), p. 65), which was used in
Example 2.3.

Proposition B.1 (Pearson distribution). A random variable with mean µ and variance σ2 is of
Pearson type if and only if there exist δ1, δ2, δ3 ∈ R, not all equal to 0, such that

p′(x)

p(x)
= − (2δ1 + 1)(x− µ) + δ2

δ1(x− µ)2 + δ2(x− µ) + δ3
.

In this case, its Stein kernel is τ(x) = δ1(x− µ)2 + δ2(x− µ) + δ3.

To complement Example 2.3 and illustrate the scope of its application, we use the remainder of
this appendix to present further examples along similar lines.

Example B.2 (Negative binomial data, inference on proportion, Beta prior). If X ∼ NB(r, θ)
has a negative binomial distribution with θ ∈ [0, 1] and fixed r ∈ N, and Θ0 ∼ Beta(α, β) with
α, β > 0, then Θ2 ∼ Beta (

∑n
i=1 xi + α, nr + β). The Stein kernel for this Beta distribution is

τ(θ) = θ(1−θ)∑n
i=1 xi+nr+α+β

. Consequently,

(
∑n

i=1 xi + nr + α+ β + 1)

(
∑n

i=1 xi + α)(nr + β)
E[Θ2(1−Θ2)g′(Θ2)]2 ≤ Var[g(Θ2)] ≤ E[Θ2(1−Θ2)g′(Θ2)2]∑n

i=1 xi + nr + α+ β
.

Example B.3 (Weibull data, inference on scale, Inverse Gamma prior). If X ∼ Wei(k, θ) has a
Weibull distribution with θ > 0 and fixed k > 0 (note that here we consider the Weibull density x 7→
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kxk−1

θ exp(−xk/θ), x > 0), and Θ0 ∼ IG(α, β) with α, β > 0, then Θ2 ∼ IG
(
n+ α,

∑n
i=1 x

k
i + β

)
.

The Stein kernel for this Inverse Gamma distribution is τ(θ) = θ2

n+α−1 . Consequently,

n+ α− 2

(
∑n

i=1 x
k
i + β)2

E[Θ2
2g
′(Θ2)]2 ≤ Var[g(Θ2)] ≤ E[Θ2

2g
′(Θ2)2]

n+ α− 1
.

Example B.4 (Gamma data, inference on scale, Gamma prior). If X ∼ Gam(k, θ) has a Gamma dis-
tribution with θ, k > 0, and Θ0 ∼ Gam(α, β) with α, β > 0, then Θ2 ∼ Gam (nk + α,

∑n
i=1 xi + β).

The Stein kernel for this Gamma distribution is τ(θ) = θ∑n
i=1 xi+β

. Consequently,

E[Θ2g
′(Θ2)]2

nk + α
≤ Var[g(Θ2)] ≤ 1∑n

i=1 xi + β
E[Θ2g

′(Θ2)2].

Example B.5 (Laplace data, inference on scale, inverse gamma prior). If X ∼ Lap(µ, θ) has a
Laplace distribution with θ > 0 and fixed µ ∈ R, and Θ0 ∼ IG(α, β) with α, β > 0, then we have
that Θ2 ∼ IG (n+ α,

∑n
i=1 |xi − µ|+ β). The Stein kernel can readily be deduced from previous

examples, and we get
n+ α− 2

(
∑n

i=1 |xi − µ|+ β)2
E
[
Θ2

2g
′(Θ2)

]2 ≤ Var[g(Θ2)] ≤ 1

n+ α− 1
E
[
Θ2

2g
′(Θ2)2

]
.

Example B.6 (Poisson data, inference on mean=scale, Gamma prior). If X ∼ Poi(θ) has a Poisson
distribution with θ > 0, and Θ0 ∼ Gam(α, β) with α, β > 0, then Θ2 ∼ Gam (

∑n
i=1 xi + α, n+ β).

The Stein kernel can readily be deduced from previous examples, and we get
E[Θ2g

′(Θ2)]2∑n
i=1 xi + α

≤ Var[g(Θ2)] ≤ 1

n+ β
E
[
Θ2g

′(Θ2)2
]
.

Example B.7 (Uniform data, inference on interval length, Pareto prior). If X ∼ U(0, θ) has a
Uniform distribution with θ > 0, and Θ0 ∼ Par(α, β) has a Pareto distribution with α, β > 0 (as a
reminder, the density of such a Pareto distribution is θ 7→ αβα

θα+1 I[β ≤ θ] where I[A] is the indicator
function of the event A), then Θ2 ∼ Par (n+ α,max(m(x), β)) with m(x) = max(x1, . . . , xn). The
Stein kernel for this Pareto distribution is τ(θ) = max(m(x),β)−θ

n+α−1 θ. Consequently, we get

(n+ α− 2)

(n+ α)(max(m(x), β))2
E
[
(max(m(x), β)−Θ2)Θ2g

′(Θ2)
]2

≤ Var[g(Θ2)] ≤ 1

n+ α− 1
E
[
(max(m(x), β)−Θ2)Θ2g

′(Θ2)2
]
.
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