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Abstract. Quantization provides a very natural way to preserve the convex order when approxi-
mating two ordered probability measures by two finitely supported ones. Indeed, when the convex
order dominating original probability measure is compactly supported, it is smaller than any of its
dual quantizations while the dominated original measure is greater than any of its stationary (and
therefore any of its quadratic optimal) primal quantization. Moreover, the quantization errors then
correspond to martingale couplings between each original probability measure and its quantization.
This permits to prove that any martingale coupling between the original probability measures can
be approximated by a martingale coupling between their quantizations in Wassertein distance with
a rate given by the quantization errors but also in the much finer adapted Wassertein distance. As
a consequence, while the stability of (Weak) Martingale Optimal Transport problems with respect
to the marginal distributions has only been established in dimension 1 so far, their value function
computed numerically for the quantized marginals converges in any dimension to the value for the
original probability measures as the numbers of quantization points go to ∞.

1. Introduction

For d ∈ Z∗+ and µ, ν in the set P(Rd) of probability measures on Rd, we say that µ is smaller
than ν in the convex order and denote µ ≤cvx ν if

∀ϕ : Rd → R convex ,
∫
Rd
ϕ(x)µ(dx) ≤

∫
Rd
ϕ(y)ν(dy), (1.1)

when the integrals make sense (since any real valued convex function is bounded from below by an
affine function

∫
Rd ϕ(x)µ(dx) makes sense in R∪ {+∞} as soon as

∫
Rd |x|µ(dx) < +∞). For p ≥ 1,
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we denote by

Pp(Rd) = {µ∈ P(Rd) :

∫
Rd
|x|pµ(dx) < +∞}

the Wasserstein space with index p over Rd. When µ, ν ∈ P1(Rd), according to the Strassen
theorem Strassen (1965), µ ≤cvx ν if and only if there exists a martingale coupling between µ and ν
that is a probability measure π(dx, dy) on Rd×Rd with marginals

∫
y∈Rd π(dx, dy) and

∫
x∈Rd π(dx, dy)

equal to µ(dx) and ν(dy) respectively such that π(dx, dy) = µ(dx)πx(dy) for some Markov kernel
πx(dy) with the martingale property: ∀x ∈ Rd, πx ∈ P1(Rd) and

∫
Rd yπx(dy) = x. We denote

by P(µ, ν) the set of probability measures on Rd × Rd with respective marginals µ and ν and by
M(µ, ν) the subset of P(µ, ν) consisting of martingale couplings.

Let (µ, ν) belong to the set P≤×Pp(Rd) of couples of elements of Pp(Rd) with the first one smaller
than the second in the convex order. In its simplest form, the Martingale Optimal Transport problem
consists in computing

Vc(µ, ν) = inf
π∈M(µ,ν)

∫
Rd×Rd

c(x, y)π(dx, dy)

and the optimal martingale couplings achieving this infimum for some measurable cost function
c : Rd×Rd → R. When the interest rate is zero, for an exotic option written on d assets with payoff
given by the function c of their prices at successive times s and t, then Vc(µ, ν) (resp. −V−c(µ, ν))
provides a robust lower (resp. upper) price bound when µ and ν are the respective joint laws of
these d assets at times s and t (for instance obtained by calibration of a model to vanilla option
prices). Since its introduction in Beiglböck et al. (2013), this MOT problem has received recently
a great attention in the financial mathematics literature. In particular, the structure of martingale
optimal transport couplings has been investigated by Beiglböck and Juillet (2016); Campi et al.
(2017); De March and Touzi (2019); Ghoussoub et al. (2019); Henry-Labordère and Touzi (2016),
continuous time formulations by Dolinsky and Soner (2014); Galichon et al. (2014); Henry-Labordère
et al. (2016), links with the Skorokhod embedding problem by Beiglböck et al. (2017), numerical
methods by Alfonsi et al. (2020, 2019); De March (2018); Guo et al. (2019); Henry-Labordère (2019)
and stability properties by Backhoff-Veraguas and Pammer (2019); Jourdain and Margheriti (2020);
Wiesel (2012). The MOT problem is a particular instance where the measurable cost function
C : Rd × P1(Rd)→ R is linear in the measure component (C(x, η) =

∫
Rd c(x, y)η(dy)) of the Weak

Martingale Optimal Transport problem

inf
π∈M(µ,ν)

∫
Rd
C(x, πx)µ(dx).

Backhoff-Veraguas and Pammer (2019) introduced this WMOT problem by adding the martingale
constraint to the Weak Optimal Transport problem introduced by Gozlan et al. (2017).

To devise a numerical procedure devoted to the computation of the value and of the optimal
couplings in the MOT and WMOT problems, a first natural step consists in approximating µ
and ν by finitely supported probability measures which are still in the convex order. To our best
knowledge, few studies consider the problem of preserving the convex order while approximating a
sequence of probability measures. Baker (2015) proposes a quantile-based construction in dimension
d = 1. Let for η ∈ P(R) and u ∈ (0, 1), F−1

η (u) = inf{x ∈ R : η((−∞, x]) ≥ u} be the quantile of η
of order u. For (µ, ν) ∈ P≤ × P1(R) and N,K ∈ Z∗+ with N/K ∈ Z∗+, one has

1

N

N∑
i=1

δ
N

∫ i
N
i−1
N

F−1
µ (u)du

≤cvx
1

K

K∑
i=1

δ
K

∫ i
K
i−1
K

F−1
ν (u)du

.

Dual (or Delaunay) quantization introduced by Pagès and Wilbertz (2012a) and further studied
in Pagès and Wilbertz (2012b,c, 2018) yields another way to preserve the convex order in dimension
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d = 1 when using the same grid to quantize both probability measures (see the remark after
Proposition 10 in Pagès and Wilbertz (2012b)).

In two recent papers, Alfonsi et al. (2019, 2020) propose to restore for (µ, ν) ∈ P≤ × P1(Rd)
the convex ordering from any finitely supported approximations µ̃ and ν̃ of µ and ν. In dimension
d = 1, one may define the increasing (resp. decreasing) convex order by adding the constraint
that the test function ϕ is non-decreasing (resp. non-increasing) in (1.1). According to Alfonsi
et al. (2019), the convex order restoration can be achieved by keeping µ̃ (resp. ν̃) and replacing
ν̃ (resp. µ̃) by the supremum (resp. infimum) between µ̃ and ν̃ for the increasing convex order
when

∫
R xν̃(dx) ≤

∫
R xµ̃(dx) and the decreasing convex order when

∫
R xν̃(dx) ≥

∫
R xµ̃(dx). The

convex, increasing convex and decreasing convex orders are nicely characterized in terms of the
potential function that is the anti-derivative of the cumulative distribution function (or of the
quantile function). The supremum and infimum of two probability measures for one of these orders
can be computed using their potential functions. For a general dimension d, Alfonsi et al. (2020)
suggest to keep ν̃ and replace µ̃ by its projection on the set of probability measures dominated by ν̃
for the quadratic Wasserstein distance W2 (see (1.2) below for the definition of this distance). This
projection can be computed by solving a quadratic optimization problem with linear constraints.

In the present paper, when ν is compactly supported, we investigate the combined approxima-
tion of µ by some quadratic-optimal primal quantization and of ν by some dual quantization. By
construction, any quadratic-optimal primal quantization of µ satisfies a stationarity property which
implies that it is smaller than µ in the convex order. On the other hand, any dual quantization
of ν is greater than ν in the convex order. Therefore the convex order between µ and ν is pre-
served by these combined approximations. Notice that, in contrast with the previous approaches, it
cannot be generalized to the convex order preserving approximation of more than two probability
measures. Moreover the dual quantization approximation is only possible for probability measures
with bounded support. In contrast with these restrictions, we will see that the studied approach
proves to provide robust approximations of (Weak) Martingale Optimal Transport problems even
in dimension d ≥ 2.

The first section of the paper is devoted to primal (or Voronoi) quantization. For µ ∈ Pp(Rd)
with p ≥ 1, we show that an element of the set P(Rd, N) of probability measures on Rd whose
support contains at most N points is an Lp-optimal N -quantization of µ iff it is a Wp-projection of
µ on P(Rd, N) where the Wasserstein distance Wp is defined by

Wp(µ, ν)p = inf
π∈P(µ,ν)

∫
Rd×Rd

|x− y|pπ(dx, dy). (1.2)

In the quadratic p = 2 case, any stationary and therefore any optimal N -quantization µ̂N of the
measure µ is smaller than µ in the convex order. Moreover W2(µ̂N , µ) = M2(µ̂N , µ) where

Mp(η, ν) = inf
π∈M(η,ν)

∫
Rd×Rd

|x− y|pπ(dx, dy) for (η, ν) ∈ P≤ × P1(Rd). (1.3)

This enables us to check that any quadratic optimal primal quantizer for µ remains quadratic
optimal for each probability measure smaller than µ and greater than its associated quantization
for the convex order.

The second section deals with the dual quantization of a probability measure µ with bounded
support. The dual quantization is obtained by minimizing Mp(µ, η) over

P≥µ(Rd, N) =
{
η ∈ P(Rd, N) : η ≥cvx µ

}
.

SinceM(µ, η) ⊂ P(µ, η), Mp(µ, η) ≥Wp(µ, η) and, in general, the inequality is strict. It turns out,
that, even in the quadratic p = 2 case, Lp-optimal dual quantizations of µ are not necessarily Wp-
projections of µ on P≥µ(Rd, N). Nevertheless, we check that any quadratic optimal dual quantizer
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of µ remains quadratic optimal for each probability measure greater than µ and smaller than its
associated dual quantization in the convex order.

In the third section, we consider two probability measures µ, ν ∈ P(Rd) such that µ ≤cvx ν
with ν compactly supported. Since the quantization errors between µ and any of its quadratic-
optimal primal N -quantization µ̂N and between ν and any of its Lp-optimal dual K-quantization
ν̌K correspond to martingale couplings, we are able to approximate in Wasserstein distance on
P(Rd×Rd) any martingale coupling π ∈M(µ, ν) by a martingale coupling π̄N,K ∈M(µ̂N , ν̌K) with
a rate given by the quantization errors. We also check that, as N,K →∞, π̄N,K still converges to π
for the much finer adapted Wasserstein distance defined in (1.5) below which captures the temporal
structure of probability distributions with two time marginals. Numerous financial applications
of this adapted Wasserstein distance have been investigated by Backhoff-Veraguas et al. (2020a).
According to Backhoff-Veraguas et al. (2020b), the topology induced by this distance is equal to the
other adapted topologies which had been introduced in particular in view of financial applications.

The adapted Wasserstein is particularly well suited to deal with Weak Martingale Optimal Trans-
port problems. While their stability with respect to the marginal distributions only holds in di-
mension d = 1 (see Beiglböck et al., 2021b for a proof of stability when d = 1 and Brückerhoff and
Juillet, 2021 for a nice counterexample to the stability in dimension d ≥ 2), this enables us to check
in Section 4 that their value function computed numerically for the quantized marginals converge
in any dimension to the value for the original probability measures as the numbers of quantization
points go to ∞.

For the reader’s convenience, we now list the notations and basic properties that have been
introduced in the above text.
Definitions and notations. Let d∈ Z∗+.
• | · | denotes the canonical Euclidean norm on Rd.
• conv(A) denotes the (closed) convex hull of A ⊂ Rd and card(A) its cardinality.
• Let P(Rd) denote the set of probability measures on Rd endowed with its Borel σ-field B(Rd). We
endow P(Rd) with the weak convergence topology.
• For p ≥ 1, let Pp(Rd) = {µ ∈ P(Rd) :

∫
Rd |x|

pµ(dx) <∞}.
• For p ≥ 1, let P≤ × Pp(Rd) = {(µ, ν) ∈ Pp(Rd)× Pp(Rd) : µ ≤cvx ν}.
• For every integer N ≥ 1, we denote by P(Rd, N) the set of distributions on Rd whose support
contains at most N points and for µ ∈ P(Rd), we set

P≤µ(Rd, N) =
{
η ∈ P(Rd, N) : η ≤cvx µ

}
and P≥µ(Rd, N) =

{
η ∈ P(Rd, N) : η ≥cvx µ

}
.

• For µ, ν ∈ P(Rd), let

P(µ, ν) =
{
π ∈ P(Rd × Rd) : ∀A ∈ B(Rd), π(A× Rd) = µ(A) and π(Rd ×A) = ν(A)

}
denote the set of couplings between µ and ν. For π ∈ P(µ, ν), we denote by πx(dy) the (µ(dx) a.e.
unique) Markov kernel such that π(dx, dy) = µ(dx)πx(dy).
• For µ, ν ∈ P1(Rd) with µ ≤cvx ν, let

M(µ, ν) =

{
π ∈ P(µ, ν) : µ(dx) a.e.

∫
Rd
y πx(dy) = x

}
denote the non-empty owing to Strassen’s theorem set of martingale couplings between µ and ν.
• For p ≥ 1 and µ, ν ∈ P(Rd), let

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Rd×Rd

|x− y|pπ(dx, dy)

)1/p

≤ ∞

denote the Wasserstein distance with index p. This is a complete metric on Pp(Rd).
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• For p ≥ 1 and (µ, ν) ∈ P≤ × P1(Rd), let

Mp(µ, ν) = inf
π∈M(µ,ν)

(∫
Rd×Rd

|x− y|pπ(dx, dy)

)1/p

≤ ∞.

SinceM(µ, ν) ⊂ P(µ, ν), we clearly have, Wp(µ, ν) ≤Mp(µ, ν). In the quadratic p = 2 case, when
µ, ν ∈ P2(Rd), then for each π ∈M(µ, ν),∫

Rd×Rd
|y − x|2π(dx, dy) =

∫
Rd
|y|2ν(dy)− 2

∫
Rd
x ·
∫
Rd
yπx(dy)µ(dx) +

∫
Rd
|x|2µ(dx)

=

∫
Rd
|y|2ν(dy)−

∫
Rd
|x|2µ(dx)

so that
M2

2 (µ, ν) =

∫
Rd
|y|2ν(dy)−

∫
Rd
|x|2µ(dx). (1.4)

• For π ∈ P(µ, ν) and π̃ ∈ P(µ̃, ν̃) we consider the adapted Wasserstein distance with index p ≥ 1
between π(dx, dy) = µ(dx)πx(dy) and π̃(dx̃, dỹ) = µ̃(dx̃)π̃x̃(dỹ):

AWp(π, π̃) = inf
m∈P(µ,µ̃)

(∫
Rd×Rd

(|x− x̃|p +W p
p (πx, π̃x̃))m(dx, dx̃)

)1/p

. (1.5)

2. Primal (Voronoi) quantization and Wasserstein projection

In this subsection, we make a connection between primal quantization and various projections
(in the Wasserstein sense), including, in the quadratic case, with the one mentioned above in the
introduction. Let us first recall the following basic facts about the (primal) Voronoi quantization of
µ ∈ Pp(Rd) with p ≥ 1 (see Graf and Luschgy, 2000; Pagès, 2015, 2018 among others):

– Let Γ = {x1, . . . , xN } ⊂ Rd denote a finite subset of size N . The Lp-quantization error modulus
ep(Γ, µ) satisfies

ep(Γ, µ)p =

∫
Rd
|x− ProjΓ(x)|pµ(dx) (2.1)

where ProjΓ denotes a Borel nearest neighbour projection on Γ satisfying |x−ProjΓ(x)| = dist(x,Γ).
If X ∼ µ, the random variable ProjΓ(X) with law µ ◦ Proj−1

Γ is called Γ-quantization of X.
– For any level N ≥ 1, there exists an optimal grid or N -quantizer Γp,N such that

ep,N (µ) := inf
{
ep(Γ, µ) : Γ ⊂ Rd, card(Γ) ≤ N

}
= ep

(
Γp,N , µ

)
.

When card(supp(µ)) ≤ N then Γp,N = supp(µ) and when card(supp(µ)) > N , then Γp,N has
exactly N pairwise distinct elements. Moreover, Theorem 4.2 in Graf and Luschgy (2000) ensures
that

µ
(
{x ∈ Rd : ∃y 6= ỹ ∈ Γp,N , |x− y| = |x− ỹ| = dist(x,Γp,N )}

)
= 0, (2.2)

so that µ◦Proj−1
Γp,N

does not depend on the choice of the Borel nearest neighbour projection ProjΓp,N
on Γp,N . We denote this probability measure by µ̂Γp,N . In the same way, when X ∼ µ, ProjΓp,N (X)

a.s. does not depend on the Borel nearest neighbour projection ProjΓp,N and is denoted X̂Γp,N .
– In the quadratic case (p = 2), any optimal quantization grid Γ2,N (possibly not unique) and its

induced quantization X̂Γ2,N = ProjΓ2,N
(X) with distribution µ̂Γ2,N satisfy a stationarity (or self-

consistency) property (see e.g. Graf and Luschgy, 2000, Pagès, 2015 or Pagès, 2018, Proposition 5.1
among others) that is

E
(
X | X̂Γ2,N

)
= X̂Γ2,N so that µ̂Γ2,N ≤cvx µ. (2.3)
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Indeed, the support of the distribution of E
(
X | X̂Γ2,N

)
is equal to Γ̃2,N := {E(X|X̂Γ2,N = x), x ∈

Γ2,N} (when card(supp(µ)) ≤ N , X̂Γ2,N = X and Γ̃2,N = Γ2,N = supp(µ)), contains at most N
points and e2(Γ̃2,N , µ)2 = E(dist(X, Γ̃2,N )2) ≤ E(|X − E

(
X | X̂Γ2,N

)
|2). As a consequence,

e2,N (µ)2 ≤ e2(Γ̃2,N , µ)2 ≤ E(|X − E
(
X | X̂Γ2,N

)
|2)

= E(|X − X̂Γ2,N |2)− E(|X̂Γ2,N − E
(
X | X̂Γ2,N

)
|2)

= e2,N (µ)2 − E(|X̂Γ2,N − E
(
X | X̂Γ2,N

)
|2),

so that the second term in the right-hand side vanishes. Therefore the distribution of (X̂Γ2,N , X)
belongs toM(µ̂Γ2,N , µ) and

e2,N (µ)2 = E[|X − X̂Γ2,N |2] = E[|X|2]− E[|X̂Γ2,N |2] = M2
2 (µ̂Γ2,N , µ). (2.4)

Proposition 2.1. Let p∈ [1,+∞) and µ∈ Pp(Rd).
(a) Let Γ ⊂ Rd be a finite set and P(Γ) denote the subset of Γ-supported distributions. Then

Wp

(
µ,P(Γ)

)
:= inf

ν∈P(Γ)
Wp(µ, ν) = ep(Γ, µ) :=

∥∥dist(.,Γ)
∥∥
Lp(µ)

and for any Borel nearest neighbour projection ProjΓ on Γ, µ ◦ Proj−1
Γ is a Wp-projection of µ on

P(Γ).
(b) The probability measure ν ∈ P(Rd, N) is a Wp-projection of µ on P(Rd, N) iff ν = µ̂ΓN for some
Lp-optimal N -quantizer ΓN of µ. Moreover, Wp(µ,P(Rd, N)) = ep,N (µ).
(c) Quadratic case (p = 2). A subset Γ of Rd with cardinality at most N is a quadratic optimal
N -quantizer of µ iff there exists a probability measure ν ∈ P≤µ(Rd, N) such that ν(Γ) = 1 and one
of the following equivalent conditions is satisfied

• ν is a W2-projection of µ on P≤µ(Rd, N) i.e.

W2(µ, ν) = W2(µ,P≤µ(Rd, N)) := inf
η∈P≤µ(Rd,N)

W2(µ, η),

•
∫
Rd |x|

2ν(dx) = supη∈P≤µ(Rd,N)

∫
Rd |x|

2η(dx).

Moreover, we then have W2(ν, µ) = M2(ν, µ) and ν = µ̂Γ.

Apart from the interpretation in terms of Wp-projection, the first statement can be found in
Lemma 3.4 p.33 Graf and Luschgy (2000). Before proving the proposition, let us state and check
some easy consequence of the necessary and sufficient condition in (c).

Corollary 2.2. Let Γ2,N be a quadratic optimal N -quantizer of µ ∈ P2(Rd). Then for any probability
measure ν such that µ̂Γ2,N ≤cvx ν ≤cvx µ, Γ2,N is a quadratic optimal N -quantizer of ν and ν̂Γ2,N =

µ̂Γ2,N .

Proof of Corollary 2.2: Since µ̂Γ2,N ∈ P≤ν(Rd, N) ⊂ P≤µ(Rd, N) and∫
Rd
|x|2µ̂Γ2,N (dx) = sup

η∈P≤µ(Rd,N)

∫
Rd
|x|2η(dx)

by the necessary condition in Proposition 2.1(c), one has∫
Rd
|x|2µ̂Γ2,N (dx) = sup

η∈P≤ν(Rd,N)

∫
Rd
|x|2η(dx).

Therefore, by the sufficient condition in Proposition 2.1(c), Γ2,N is a quadratic optimal N -quantizer
of ν and ν̂Γ2,N = µ̂Γ2,N . �
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Proof of Proposition 2.1: (a) Let ν ∈ P(Γ) and π ∈ P(µ, ν). Then µ(dx) a.e., πx(Γ) = 1 so that
πx(dy) a.e. |x− y| ≥ dist(x,Γ). Therefore∫

Rd×Rd
|x− y|pπ(dx, dy) ≥

∫
dist(x,Γ)pµ(dx) = ep(Γ, µ)p.

Taking the infimum over π ∈ P(µ, ν) and ν ∈ P(Γ), we deduce that Wp

(
µ,P(Γ)

)p ≥ ep(Γ, µ)p.
Now let ProjΓ denote a Borel nearest neighbour projection on Γ. Since µ ◦ Proj−1

Γ ∈ P(Γ) and
µ ◦ (Id,ProjΓ)−1 ∈ P(µ, µ ◦ Proj−1

Γ ), we have

W p
p

(
µ,P(Γ)

)
≤W p

p (µ, µ ◦ Proj−1
Γ ) ≤

∫
Rd
|x− ProjΓ(x)|pµ(dx) = ep(Γ, µ)p,

where the equality follows from (2.1). Therefore the inequalities are equalities and µ ◦ Proj−1
Γ is a

Wp-projection of µ on P(Γ).

(b) Let Γp,N be an Lp-optimal N -quantizer of µ. Then, for any subset Γ of Rd with at most N
points, ep(Γp,N , µ) = ep,N (µ) ≤ ep(Γ, µ). With (a), we deduce that

Wp(µ, µ̂
Γp,N ) ≤Wp(µ,P(Γ)).

By taking the infimum over Γ, we deduce that Wp(µ, µ̂
Γp,N ) ≤ Wp(µ,P(Rd, N)) and µ̂Γp,N is a

Wp-projection of µ on P(Rd, N) so that

ep,N (µ) = ep(µ,Γp,N ) = Wp(µ, µ̂
Γp,N ) = Wp(µ,P(Rd, N)).

Conversely, let ν be a projection of µ on P(Rd, N) and let ΓN = {x ∈ Rd : ν({x}) > 0}. The
cardinality of ΓN is at most N . For any subset Γ of Rd with at most N points,

Wp(µ,P(ΓN )) ≤Wp(µ, ν) = Wp(µ,P(Rd, N)) ≤Wp(µ,P(Γ)). (2.5)

Therefore, by (a), ep(ΓN , µ) ≤ ep(Γ, µ) and since Γ is arbitrary, we deduce that ΓN is an Lp-
optimal N -quantizer of µ. Moreover, the choice Γ = ΓN in (2.5) implies that the first inequality
is an equality so that, with (a), W p

p (µ, ν) =
∫
Rd dist(x,ΓN )pµ(dx). Hence, for any Wp-optimal

coupling π ∈ P(µ, ν), ∫
Rd×Rd

(|y − x|p − dist(x,ΓN )p)π(dx, dy) = 0.

Since 1 = ν(ΓN ) =
∫
Rd πx(ΓN )µ(dx), π(dx, dy) a.e., |y − x|p ≥ dist(x,ΓN )p. Therefore, π(dx, dy)

a.e. y ∈ ΓN and |y − x| = dist(x,ΓN ). With (2.2), we conclude that µ(dx) a.e. there is a unique
point x̂ΓN ∈ ΓN such that |x̂ΓN − x| = dist(x,ΓN ) and πx(dy) = δx̂ΓN (dy). Therefore the second
marginal ν of π is equal to µ̂ΓN .

(c) In the quadratic case (p = 2), by (b), (2.3) and (2.4), any W2-projection ν of µ on P(Rd, N)
is characterized by the existence of a quadratic optimal N -quantizer Γ2,N of µ such that ν =

µ̂Γ2,N , belongs to the smaller set P≤µ(Rd, N) and satisfies e2,N (µ)2 = M2
2 (ν, µ). Therefore the W2-

projections of µ on P(Rd, N) and on P≤µ(Rd, N) coincide. To conclude the proof, let us check that
ν is such a projection iff

∫
Rd |x|

2ν(dx) = supη∈P≤µ(Rd,N)

∫
Rd |x|

2η(dx). If η ∈ P≤µ(Rd, N), then, by
the comparison between W2 and M2 given in the introduction and (1.4), one has

W 2
2 (µ, η) ≤M2

2 (η, µ) =

∫
Rd
|y|2µ(dy)−

∫
Rd
|x|2η(dx). (2.6)
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Let ν be a W2-projection of µ on P≤µ(Rd, N). Using (b) for the third equality then (2.6) for the
last inequality and the last equality, we obtain that∫

Rd
|y|2µ(dy)−

∫
Rd
|x|2ν(dx) = M2

2 (ν, µ) = e2,N (µ)2 = W 2
2

(
µ,P(Rd, N)

)
= W 2

2

(
µ,P≤µ(Rd, N)

)
≤ inf

η∈P≤µ(Rd,N)
M2

2 (η, µ)

=

∫
Rd
|y|2µ(dy)− sup

η∈P≤µ(Rd,N)

∫
Rd
|x|2η(dx).

Since ν∈ P≤µ(Rd, N), the two inequalities are equalities. Therefore∫
Rd
|x|2ν(dx) = sup

η∈P≤µ(Rd,N)

∫
Rd
|x|2η(dx)

and since W 2
2 (µ,P(Rd, N)

)
≤ W 2

2 (µ, ν) ≤ M2
2 (ν, µ), these two inequalities are equalities and

W 2
2 (µ, ν) = M2

2 (ν, µ). Moreover,

e2,N (µ)2 = W 2
2

(
µ,P≤µ(Rd, N)

)
=

∫
Rd
|y|2µ(dy)− sup

η∈P≤µ(Rd,N)

∫
Rd
|x|2η(dx).

If ν ∈ P≤µ(Rd, N) is such that
∫
Rd |x|

2ν(dx) = supη∈P≤µ(Rd,N)

∫
Rd |x|

2η(dx), the last equality com-
bined with (2.6) written for η = ν ensures that ν is a W2-projection of µ on P≤µ(Rd, N). �

Remark about uniqueness. As a consequence of Proposition 2.1(b), it turns out that the unique-
ness of Wp-projections of µ on P(Rd, N), that of distributions µ̂N of Lp-optimal N -quantizations
and that of Lp-optimal N -quantizers are equivalent. In dimension d = 1, for p = 2, distributions
with log-concave densities have a unique optimal N -quantizer (see Trushkin, 1982 and also Kief-
fer, 1982) hence this projection is unique. In higher dimension, a general result seems difficult to
reach: indeed, the N (0; Id) distribution, being invariant under the action of O(d,R) (orthogonal
transforms), so are the (hence infinite) sets of its optimal quantizers at levels N ≥ 2.

Let us recall the exact rate of convergence of the Lp-quantization error stated for instance in
Theorem 5.2 Pagès (2018).

Theorem 2.3 (Pierce Lemma for primal quantization). Let p ≥ 1 and η > 0. For every dimension
d ≥ 1, there exists a real constant C̃vord,η,p > 0 such that, for every random vector X : (Ω,A,P)→ Rd,

ep,N (X) ≤ C̃vord,η,pN
− 1
dσp+η(X) (2.7)

where, for every r > 0, σr(X) = infa∈Rd ‖X − a‖r ≤ +∞.

3. Dual (Delaunay) quantization

We assume throughout this section that µ is compactly supported. Let X : (Ω,A,P) → Rd be
a random vector lying in L∞(P) with distribution µ. Optimal dual (or Delaunay) quantization as
introduced in Pagès and Wilbertz (2012b) relies on the best approximation which can be achieved
by a discrete random vector X̌ that satisfies a certain stationarity assumption on the extended
probability space (Ω × [0, 1],A ⊗ B([0, 1]),P ⊗ λ) where B([0, 1]) and λ respectively denote the
Borel σ-field and the Lebesgue measure on the interval [0, 1]. To be more precise, we define, for
p∈ [1,+∞),

dp,N (X) = inf
X̌

{∥∥X − X̌∥∥
p

: X̌ : (Ω× [0, 1],A⊗ B([0, 1]),P⊗ λ)→ Rd,

card
(
X̌(Ω× [0, 1])

)
≤ N and E(X̌|X) = X

}
.
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For every level N ≥ d+1, the set of such X̌ is not empty. Indeed, one may choose d+1 points whose
convex hull has a non-empty interior and includes the support of µ. Then the unique probability
measure supported on these points with the same expectation as µ belongs to the set P≥µ(Rd, d+1)
of distributions dominating µ for the convex order and supported by at most d + 1 elements. By
Lemma 2.22 in Kallenberg (1997), we see that for each ν ∈ P≥µ(Rd, N) and each martingale coupling
π ∈ M(µ, ν), there exists on (Ω× [0, 1],A⊗ B([0, 1]),P⊗ λ) a random vector X̌ such that (X, X̌)
is distributed according to π and therefore satisfies E(X̌|X) = X . Hence

dp,N (X)p = inf
ν∈P≥µ(Rd,N)

inf
π∈M(µ,ν)

∫
Rd×Rd

|y − x|pπ(dx, dy) = inf
ν∈P≥µ(Rd,N)

Mp
p (µ, ν). (3.1)

As a consequence, dp,N (X) only depends on the distribution µ of X and can subsequently also be
denoted dp,N (µ). Next, one easily checks that P≥µ(Rd, N) =

⋃
Γ∈GN P≥µ(Γ) where

GN = {Γ ⊂ Rd with cardinality ≤ N and such that supp(µ) ⊂ conv(Γ)},

and P≥µ(Γ) = {ν ∈ P(Rd) : µ ≤cvx ν and ν(Γ) = 1}.

For Γ ∈ GN , there exists a dual projection ProjdelΓ : conv
(
Γ
)
× [0, 1] → Γ, also called a splitting

operator, which satisfies, beyond measurability, the following stationarity property

∀ y∈ conv
(
Γ
)
,

∫ 1

0
ProjdelΓ (y, u)du = y, (3.2)

from which one derives the dual stationarity property

E
(
ProjdelΓ (X,U)

∣∣X) = X when U ∼ U([0, 1]) is independent of X. (3.3)

The stationarity property remains valid as soon as X is conv(Γ)-valued and implies that the distri-
bution of ProjdelΓ (X,U) belongs to P≥µ(Γ) which is therefore non-empty.

For Γ ∈ GN , let
dp(µ,Γ)p = inf

ν∈P≥µ(Γ)
Mp
p (µ, ν),

so that dp,N (µ)p = infΓ∈GN dp(µ,Γ)p.
In dimension d = 1, when Γ = {x1, x2, . . . , xN} with x1 < x2 < . . . < xN , the probability

measure minimizing ν 7→ Mp
p (µ, ν) over P≥µ(Γ) is the distribution µ̌Γ of ProjdelΓ (X,U) for the

splitting operator

ProjdelΓ (x, u) =

N−1∑
i=1

1[xi,xi+1)(x)

(
1{u≤ xi+1−x

xi+1−xi
}xi + 1{u> xi+1−x

xi+1−xi
}xi+1

)
+ 1{x=xN}xN .

Moreover, the coupling minimizing
∫
R×R |x − y|pπ(dx, dy) over M(µ, µ̌Γ) is the distribution of

(X,ProjdelΓ (X,U)). Last, according to the remark after Proposition 10 in Pagès and Wilbertz
(2012b), when µ ≤cvx η with η compactly supported in [x1, xN ], then µ̌Γ ≤cvx η̌Γ. This can be seen
using the affine interpolation on Γ

ϕ̌Γ(x) := 1(−∞,x1)∪[xN ,+∞)(x)ϕ(x) +
N−1∑
i=1

1[xi,xi+1)(x)

(
xi+1 − x
xi+1 − xi

ϕ(xi) +
x− xi
xi+1 − xi

ϕ(xi+1)

)
of a convex function ϕ : R→ R. Indeed ϕ̌Γ is still convex and one has∫

R
ϕ(x)µ̌Γ(dx) =

∫
R
ϕ̌Γ(x)µ(dx) ≤

∫
R
ϕ̌Γ(x)η(dx) =

∫
R
ϕ(x)η̌Γ(dx).

According to the introduction in Alfonsi et al. (2020), this convex order preservation does not
generalize to higher dimensions where the minimizers are not so easy to express.
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Whatever the dimension d ∈ Z∗+, for every level N ≥ d + 1, there exists an Lp-optimal dual
quantization grid Γdelp,N and a splitting operator Projdel

Γdelp,N
(see Pagès and Wilbertz, 2012b) such that

dp,N (µ) = dp(µ,Γ
del
p,N ) = ‖X − Projdel

Γdelp,N
(X,U)‖p

and Projdel
Γdelp,N

(X,U) takes each value in Γdelp,N with positive probability. For more details on this dual

projection, see Pagès and Wilbertz (2012a,b,c) where this notion has been developed and analyzed.
We will see in the examples that even in dimension one, the convex order is not preserved by optimal
dual quantization.

Notice that by Proposition 2.1(b), the inequality W p
p (µ, ν) ≤Mp

p (µ, ν) valid for ν ∈ P≥µ(Rd, N)
and (3.1),

ep,N (µ) = Wp

(
µ,P(Rd, N)

)
≤Wp

(
µ,P≥µ(Rd, N)

)
≤ inf

ν∈P≥µ(Rd,N)
Mp(ν, µ) = dp,N (µ). (3.4)

We may wonder whether the last inequality is an equality. Combining the tightness of any sequence
of probability measures in P≥µ(Rd, N) minimizing theWp-distance to µ deduced from the inequality

∀ν ∈ P(Rd),
∫
Rd
|x|pν(dx) ≤ 2p−1

(∫
Rd
|x|pµ(dx) +W p

p (µ, ν)

)
,

the closedness of P≥µ(Rd, N) for the weak convergence topology and the lower semi-continuity of
the Wasserstein distance for this topology (see for instance Remark 6.12 p.97 Villani, 2009), we
obtain the existence of a Wp-projection µ̃ of µ on P≥µ(Rd, N). The last inequality in (3.4) is an
equality iff the set {

π ∈ P(µ, µ̃) : W p
p (µ, µ̃) =

∫
Rd×Rd

|y − x|pπ(dx, dy)

}
of Wp-optimal couplings between µ and some Wp-projection µ̃ of µ on P≥µ(Rd, N) intersects
M(µ, µ̃). Moreover, µ̃ is then the distribution of an Lp-optimal dual N -quantization of µ. But
there is no reason why the intersection should be non-empty. We also may wonder whether, by a
somewhat naive symmetry with the situation described in Proposition 2.1(b) for the Voronoi quan-
tization, the distribution of an Lp-optimal dual N -quantization of µ coincides with a Wp-projection
µ̃ of µ on P≥µ(Rd, N). This property holds when µ is the uniform distribution on the interval [0, 1]

(nevertheless Wp(U [0, 1],P≥U [0,1](Rd, N)) < dp,N (U [0, 1])) but is not true in general as proved in
the examples below.

Note that, in the quadratic case p = 2, for ν ∈ P≥µ(Rd, N), since M2
2 (µ, ν) =

∫
Rd |y|

2ν(dy) −∫
Rd |x|

2µ(dx),

d2,N (µ)2 = inf
ν∈P≥µ(Rd,N)

∫
Rd
|y|2ν(dy)−

∫
Rd
|x|2µ(dx). (3.5)

Proposition 3.1. In the quadratic case p = 2, any optimal dual quantization grid Γdel2,N remains
optimal for each probability measure η such that µ ≤cvx η ≤cvx µ̌N where µ̌N denotes the distribution
of Projdel

Γdel2,N
(X,U).

Proof : Let η be such that µ ≤cvx η ≤cvx µ̌N . Since infν∈P≥µ(Rd,N)

∫
Rd |y|

2ν(dy) is attained for
ν = µ̌N , so is infν∈P≥η(Rd,N)

∫
Rd |y|

2ν(dy). Therefore, (3.5) written with η replacing µ implies that

d2,N (η)2 =

∫
Rd
|y|2µ̌N (dy)−

∫
Rd
|x|2η(dx) = M2

2 (η, µ̌N ).

With the definition of d2(η,Γdel2,N ), we deduce that d2,N (η)2 ≥ d2(η,Γdel2,N )2. Therefore Γdel2,N is an
optimal dual quadratic quantization grid for η. �
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In the next examples, after revisiting the optimal primal and dual quantizers of the uniform law
on the interval [0, 1] in terms of Wasserstein projections, we check that, in dimension d = 1, optimal
dual quantization of two distributions does not necessarily preserve the convex order whereas dual
quantizations using a common grid does. We last illustrate that the distribution of an Lp-optimal
dual N -quantization of µ and its Wp-projection on P≥µ(Rd, N) may differ.

Examples. (a) Projections of µ = U [0, 1]. For two real numbers a < b, let U [a, b] denote
the uniform distribution on [a, b] with density 1[a,b](x)

b−a with respect to the Lebesgue measure. We
consider the approximation of µ by distributions in P(R, N). A generic element of P(R, N) writes

νN =
N∑
k=1

pkδxk

with x1 ≤ x2 ≤ . . . ≤ xN and (p1, . . . , pN ) ∈ [0, 1]N satisfying
∑N

k=1 pk = 1. We will consider
the particular choices µ̂N = 1

N

∑N
k=1 δ 2k−1

2N
and µ̌N = 1

2(N−1)δ0 + 1
N−1

∑N−1
k=2 δ k−1

N−1
+ 1

2(N−1)δ1 of
the respective distributions of the optimal primal and dual quantizations of µ on N points. For
p ≥ 1, let us give a direct proof that µ̂N is the Wp-projection of U [0, 1] on P(R, N) (consequence of
Proposition 2.1(b)) and check that µ̌N is the Wp-projection of U [0, 1] on P≥U [0,1](R, N). The image
of µ by (0, 1) 3 u 7→ F−1

νN
(u)− u is equal to

ηN := p1U [x1 − p1, x1] + p2U [x2 − (p1 + p2), x2 − p1] + . . .+ pNU [xN − 1, xN − (p1 + . . .+ pN−1)].

If νN = µ̂N (resp. νN = µ̌N ) then ηN = η̂N := U [− 1
2N ,

1
2N ] (resp. ηN = η̌N := U [− 1

2(N−1) ,
1

2(N−1) ]).
Since η̂N = N1[− 1

2N
, 1
2N

](x)dx and ηN has a density with respect to the Lebesgue measure with values

in {0, 1, 2, . . . , N}, (ηN − η̂N )+ is supported on the complement of [−1
2N ,

1
2N ] where (η̂N − ηN )+ is

supported. Since both measures share the same mass, we deduce that for p ≥ 1,∫
R
|x|p (ηN − η̂N )+ (dx) ≥

∫
R
|x|p (η̂N − ηN )+ (dx) i.e.

∫
R
|x|pηN (dx) ≥

∫
R
|x|pη̂N (dx).

Using that in dimension d = 1, the comonotonous coupling is Wp-optimal, we conclude that

∀νN ∈ P(R, N), W p
p (U [0, 1], νN ) =

∫
R
|x|pηN (dx) ≥

∫
R
|x|pη̂N (dx) = W p

p (U [0, 1], ν̂N ),

with strict inequality unless ηN = η̂N . When ηN is supported on [− 1
2N ,

1
2N ] (which is clearly

equivalent to ηN = η̂N ), then for each k ∈ {1, . . . , N}, −1
2N ≤ xk− (p1 + . . .+pk) and xk− (p1 + . . .+

pk−1) ≤ 1
2N so that pk ≤ 1

N . With the normalisation, we deduce that p` = 1
N for each ` ∈ {1, . . . , N},

which plugged in the two last inequalities implies that xk = 2k−1
2N for each k ∈ {1, . . . , N} so that

νN = µ̂N . Therefore, for all p ≥ 1, µ̂N is the Wp-projection of U [0, 1] on P(R, N) and

Wp(U [0, 1],P(R, N)) = Wp(U [0, 1], µ̂N ) =

(∫
R
|x|pη̂N (dx)

)1/p

=
1

2(p+ 1)1/pN
.

If νN ≥cvx U [0, 1], then x1 ≤ 0 and xN ≥ 1 so that [x1−p1, x1]∩ [xN−1, xN−(p1 + . . .+pN−1)] ⊂
{0} and ηN has a density with respect to the Lebesgue measure with values in {0, 1, . . . , N − 1}.
By repeating the previous argument with η̂N replaced by η̌N , we obtain that

∀νN ∈ P≥U [0,1](R, N), W p
p (U [0, 1], νN ) =

∫
R
|x|pηN (dx) ≥

∫
R
|x|pη̌N (dx) = W p

p (U [0, 1], µ̌N ),

with strict inequality unless ηN = η̌N .
When νN ≥cvx U [0, 1] and ηN is supported on [− 1

2(N−1) ,
1

2(N−1) ] (which is clearly equivalent to
ηN = η̌N ), then for each k ∈ {1, . . . , N}, −1

2(N−1) ≤ xk − (p1 + . . .+ pk) and xk − (p1 + . . .+ pk−1) ≤
1

2(N−1) so that pk ≤ 1
N−1 and with the reinforced inequalities x1 ≤ 0 and xN ≥ 1 due to the convex
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order, p1 ≤ 1
2(N−1) and pN ≤ 1

2(N−1) . With the normalisation, we deduce that p1 = pN = 1
2(N−1)

and p` = 1
N−1 for each ` ∈ {2, . . . , N−1}, which plugged in the two (reinforced) inequalities implies

that x1 = 0, xk = k−1
N−1 for each k ∈ {2, . . . , N − 1} and x1 = 1 so that νN = µ̌N . Therefore, for all

p ≥ 1, µ̌N is the Wp-projection of U [0, 1] on P≥U [0,1](R, N) and

Wp(U [0, 1],P≥U [0,1](R, N)) = Wp(U [0, 1], µ̌N ) =

(∫
R
|x|pη̌N (dx)

)1/p

=
1

2(p+ 1)1/p(N − 1)

<

(
2

(p+ 1)(p+ 2)

)1/p 1

N − 1
= dp,N (U [0, 1]).

Notice that when νN ≥cvx U [0, 1], then the measures (ηN − η̌N )+ supported on [− 1
2(N−1) ,

1
2(N−1) ]c

and (η̌N − ηN )+ supported on [− 1
2(N−1) ,

1
2(N−1) ] share the same mass and barycenter so that for

each convex function ϕ : R→ R,
∫
R ϕ(x)(ηN− η̌N )+(dx) ≥

∫
R ϕ(x)(η̌N−ηN )+(dx) and ηN ≥cvx η̌N .

(b) Optimal dual quantization does not preserve the convex order. The probability
distribution U [0, 1] is smaller in the convex order than its dual quantization µ6 := 1

5δ0+ 7
30δ 2

5
+ 1

15δ 7
15

+
1
15δ 8

15
+ 7

30δ 3
5

+ 1
5δ1 on the grid

{
0, 2

5 ,
7
15 ,

8
15 ,

3
5 , 1
}
. Note that µ6 is not comparable for the convex

order with the projection µ̌6 = 1
10δ0 + 1

5

(
δ 1

5
+ δ 2

5
+ δ 3

5
+ δ 4

5

)
+ 1

10δ1 of U [0, 1] on P≥U [0,1](R, 6).
Indeed, one checks that

µ6 =
2

5

(
1

2
δ0 +

1

2
δ 2

5

)
+

1

5

(
1

6
δ 2

5
+

1

3
δ 7

15
+

1

3
δ 8

15
+

1

6
δ 3

5

)
+

2

5

(
1

2
δ 3

5
+

1

2
δ1

)
µ̌6 =

2

5

(
1

4
δ0 +

1

2
δ 1

5
+

1

4
δ 2

5

)
+

1

5

(
1

2
δ 2

5
+

1

2
δ 3

5

)
+

2

5

(
1

4
δ 3

5
+

1

2
δ 4

5
+

1

4
δ1

)
with

1

2
δ0 +

1

2
δ 2

5
≥cvx

1

4
δ0 +

1

2
δ 1

5
+

1

4
δ 2

5
and

1

2
δ 3

5
+

1

2
δ1 ≥cvx

1

4
δ 3

5
+

1

2
δ 4

5
+

1

4
δ1

whereas
1

6
δ 2

5
+

1

3
δ 7

15
+

1

3
δ 8

15
+

1

6
δ 3

5
≤cvx

1

2
δ 2

5
+

1

2
δ 3

5
.

Hence
∫
R ϕ(x)µ6(dx) >

∫
R ϕ(x)µ̌6(dx) (resp.

∫
R ϕ(x)µ6(dx) <

∫
R ϕ(x)µ̌6(dx)) when the convex

function ϕ : R → R is strictly convex on [0, 2
5 ] and affine on [2

5 , 1] (resp. affine on [0, 2
5 ], strictly

convex on [2
5 ,

3
5 ] and affine on [3

5 , 1]). Since µ6 is clearly equal to its Lp-optimal dual 6-quantization,
this shows that the convex order is not preserved by optimal dual quantization.

(c) Optimal dual quantization does not coincide with W2-projection. Let us finally check
on the example µ(dx) = 2x1[0,1](x)dx that the optimal quadratic dual quantization of µ on N = 3

points does not coincide with the W2-projection µ̃ of µ on P≥µ(Rd, 3). We look for ν ∈ P≥µ(R, 3)
minimizing either

∫
R y

2ν(dy) to compute the law of the optimal quadratic dual quantization or
W 2

2 (µ, ν) to compute µ̃. Since d = 1, W 2
2 (µ, ν) is equal to the integral

∫ 1
0 (F−1

µ (u) − F−1
ν (u))2du

of the squared difference between the quantile functions of µ and ν. For the first criterion, we are
going to check that it is equivalent to minimize over the following parametric subset of P≥µ(R, 3)

{
νu(dy) =

u

3
δ0(dy) +

1 +
√
u

3
δ√u(dy) +

2−
√
u− u

3
δ1(dy) : u ∈ (0, 1)

}
.
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One has
∫
y2νu(dy) = 2+u3/2−

√
u

3 and the infimum is attained for u = 1/3 so that Γdel2,3 = {0, 1√
3
, 1},

d2,3(µ)2 = d2(µ,Γdel2,3)2 =
∫
y2ν1/3(dy)−

∫
x2µ(dx) = 1

6 −
2

35/2 . On the other hand,

W 2
2 (µ, νu) =

∫ u/3

0
(0−

√
v)2dv +

∫ (1+
√
u+u)/3

u/3
(
√
u−
√
v)2dv +

∫ 1

(1+
√
u+u)/3

(1−
√
v)2dv

= −1

6
+
u3/2 −

√
u

3
+ 4

(1−
√
u)(1 +

√
u+ u)3/2 + u2

35/2
.

One easily checks that d
duW

2
2 (µ, νu)|u=1/3 > 0 and that W 2

2 (µ, νu) is minimal for u ' 0.326 so that
µ̃ 6= ν1/3. Moreover, since P≥µ(Γdel2,3) = {vν1/3 + (1− v)ν0 : v ∈ [0, 1]} contains ν1/3,

W 2
2 (µ,P≥µ(Γdel2,3)) ≤W 2

2 (µ, ν1/3) ' 0.0199758 < 0.0383666 ' d2(µ,Γdel2,3)2.

Let us finally check that infν∈P≥µ(R,3)

∫
R y

2ν(dy) ≥ infu∈(0,1)

∫
R y

2νu(dy) and that νu ∈ P≥µ(R, 3)

for each u ∈ (0, 1). First note that for each u ∈ (0, 1), the mean 2/3 of νu is equal to the one of
µ. According to the characterization of the convex order in terms of potential functions, we have
ν ≥cvx µ iff

∫
R xν(dx) = 2

3 and

∀x ∈ R, ϕν(x) :=

∫ x

−∞
ν((−∞, y])dy ≥ ϕµ(x) = 1[0,1](x)

x3

3
+ 1{x>1}

(
x− 2

3

)
. (3.6)

If ν weights at most three points, then the convex function ϕν is piecewise affine with at most three
changes of slope, the left-most slope being equal to 0 and the right-most equal to 1. Therefore if
ν ∈ P≥µ(R, 3) then ν({a}) > 0 for some a ≤ 0 and ν({b}) > 0 for some b ≥ 1. If, moreover,
ν({
√
u}) > 0 for some u ∈ (0, 1), then since the slope of ϕν is constant on (0,

√
u) and on (

√
u, 1),

for all x ∈ R,

ϕν(x) ≥ 1(0,
√
u](x)

u3/2

3
× x√

u
+ 1(

√
u,1](x)

(
u3/2

3
× 1− x

1−
√
u

+
1

3
× x−

√
u

1−
√
u

)
+ 1{x>1}

(
x− 2

3

)
= ϕνu(x),

so that, by convexity of the square function,
∫
R y

2ν(dy) ≥
∫
R y

2νu(dy). If, on the other hand,
ν((0, 1)) = 0, then ϕν has a constant slope on (0, 1) and we even have∫

R
y2ν(dy) ≥ sup

u∈(0,1)

∫
R
y2νu(dy).

Therefore infν∈P≥µ(R,3)

∫
R y

2ν(dy) ≥ infu∈(0,1)

∫
R y

2νu(dy). To conclude that this inequality is an
equality, it is enough to check that νu ∈ P≥µ(R, 3) for each u ∈ (0, 1). This follows from the
inequality ϕνu(x) ≥ ϕµ(x) valid for all x ∈ R and all u ∈ [0, 1] since the graph of the convex
function ϕµ is under its chords.

We finally recall the main result established by Pagès and Wilbertz (2018) on the convergence
rate of dual quantization for bounded random vectors.

Theorem 3.2 (Pierce Lemma for dual quantization). Let p ≥ 1 and η > 0. For every dimension
d ≥ 1, there exists a real constant C̃deld,η,p > 0 such that, for every random vector X : (Ω,A,P)→ Rd,
L∞(P)-bounded,

dp,N (X) ≤ C̃deld,η,pN
− 1
dσp+η(X) (3.7)

where, for every r > 0, σr(X) = infa∈Rd ‖X − a‖r < +∞.

Remark. Note that this claim and the one in Theorem 2.3 remain true if the support of PX does
not span Rd as an affine space, but Aµ with dimension d′ < d. However, if such is the case, then
(2.7) and (3.7) hold with factor N−1/d′ so that N−1/d is suboptimal.
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4. Quantized approximations of martingale couplings

Let ν ∈ P(Rd) be compactly supported and µ ∈ P2(Rd). For K,N ≥ 1, let ν̌K be an Lp-optimal
dual K-quantization of ν with grid Γdelp,K and let µ̂N be a quadratic optimal primal N -quantization of
µ with grid Γ2,N . The two quantization errors correspond to martingale quasi-metrics (in comparison
to Wasserstein metrics (1.2), only martingale couplings are considered in the minimization defining
(1.3)) between ν (resp. µ̂N ) and ν̌K (resp. µ):

dpp,K(ν) = Mp
p (ν, ν̌K) and e2

2,N (µ) = M2
2 (µ̂N , µ). (4.1)

In contrast with dual quantization where the martingale quasi-metric appears from the very be-
ginning of the construction, the optimization in primal quantization relies on Wasserstein metrics.
But in the quadratic p = 2 case, the stationarity property (2.3) satisfied at optimality implies that
W2(µ̂N , µ) = M2(µ̂N , µ).

Let U ∼ U [0, 1] and qy(dy̌) denote the law of Projdel
Γdelp,K

(y, U) when y ∈ Conv(Γdelp,K) and δy(dy̌)

otherwise. When µ ≤cvx ν, we are now going to exploit (4.1) to approximate any π ∈M(µ, ν) by

π̄N,K(dx̂, dy̌) =

∫
(x,y)∈Rd×Rd

δProjΓ2,N
(x)(dx̂)π(dx, dy)qy(dy̌). (4.2)

For (X,Y ) ∼ π independent from the random variable U uniformly distributed on [0, 1], the random
vector (ProjΓ2,N

(X), X, Y,Projdel
Γdelp,K

(Y,U)) is distributed according to δProjΓ2,N
(x)(dx̂)π(dx, dy)qy(dy̌)

and therefore (ProjΓ2,N
(X),Projdel

Γdelp,K
(Y,U)) is distributed according to π̄N,K . Therefore, the first

marginal of π̄N,K is the distribution µ̂N of ProjΓ2,N
(X) and its second marginal is the law ν̌K of

Projdel
Γdelp,K

(Y, U). Moreover, using that U is independent from (X,Y ) and (3.2) for the second equal-

ity, then that π is a martingale coupling for the fourth equality and the stationarity property (2.3)
for the last one, we obtain

E[Projdel
Γdelp,K

(Y, U))|ProjΓ2,N
(X)] = E[E[Projdel

Γdelp,K
(Y, U))|(X,Y )]|ProjΓ2,N

(X)] = E[Y |ProjΓ2,N
(X)]

= E[E[Y |X]|ProjΓ2,N
(X)] = E[X|ProjΓ2,N

(X)] = ProjΓ2,N
(X)

so that π̄N,K ∈M(µ̂N , ν̌K).

Theorem 4.1 (Convergence rate for martingale couplings). Let p ≥ 1, µ, ν ∈ P(Rd) be such that
µ ≤cvx ν with ν compactly supported and for N,K ≥ 1, µ̂N be a quadratic optimal primal N -
quantization of µ and ν̌K an Lp-optimal dual K-quantization of ν. Then, for each π ∈ M(µ, ν),
the couplings π̄N,K ∈M(µ̂N , ν̌K) defined in (4.2) are such that

W p
p (π̄N,K , π) ≤

{
ep2,N (µ) + dpp,K(ν) if p ≤ 2

CN−p/d + 2
(p−2)

2 dpp,K(ν) for C <∞ not depending on N,K if 2 < p < 2 + d
.

Moreover, when p ≥ 2,

W 2
2 (π̄N,K , π) ≤ e2

2,N (µ) + d2
p,K(ν).

Last, for any p ≥ 1,

lim sup
N→∞

AWp(π̄
N,K , π) ≤ dp,K(ν).

According to Theorems 2.3 and 3.2, supN≥1N
1/de2,N (µ) <∞ and supK≥1K

1/ddp,K(ν) <∞.
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Proof : We have

W p
p (π̄N,K , π) ≤

∫
Rd×Rd×Rd×Rd

(
|x̂− x|2 + |y − y̌|2

)p/2
δProjΓ2,N

(x)(dx̂)π(dx, dy)qy(dy̌)

≤ 2
(p−2)+

2

∫
Rd×Rd×Rd×Rd

(|x̂− x|p + |y − y̌|p) δProjΓ2,N
(x)(dx̂)π(dx, dy)qy(dy̌)

= 2
(p−2)+

2

∫
Rd
|ProjΓ2,N

(x)− x|pµ(dx) + 2
(p−2)+

2 E
[∣∣∣Y − Projdel

Γdelp,K
(Y,U)

∣∣∣p]
= 2

(p−2)+

2

∫
Rd
|ProjΓ2,N

(x)− x|pµ(dx) + 2
(p−2)+

2 dpp,K(ν).

When p ≤ 2,
∫
Rd |ProjΓ2,N

(x) − x|pµ(dx) ≤
(∫

Rd |ProjΓ2,N
(x)− x|2µ(dx)

)p/2
= ep2,N (µ). On the

other hand, when 2 < p < 2+d, since µ is compactly supported, we may apply the L2−Lp- distortion
mismatch Theorem 4.3 in Pagès and Sagna (2018) to obtain that supN≥1N

p/d
∫
Rd |ProjΓ2,N

(x) −
x|pµ(dx) <∞, which completes the proof of the first inequality. In a similar way, when p ≥ 2

W 2
2 (π̄N,K , π) ≤

∫
Rd×Rd×Rd×Rd

(
|x̂− x|2 + |y − y̌|2

)
δProjΓ2,N

(x)(dx̂)µ(dx)πx(dy)qy(dy̌)

= e2
2,N (µ) + E

[∣∣∣Y − Projdel
Γdelp,K

(Y, U)
∣∣∣2] ≤ e2

2,N (µ) + E
[∣∣∣Y − Projdel

Γdelp,K
(Y, U)

∣∣∣p]2/p

= e2
2,N (µ) + d2

p,N (ν).

Now, let

π̌K(dx, dy̌) =

∫
y∈Rd

π(dx, dy)qy(dy̌) =

∫
y∈Rd

µ(dx)πx(dy)qy(dy̌).

We have π̌K ∈M(µ, ν̌K). Using the identity coupling µ(dx)δx(dx̃) between µ and µ in the definition
of the adapted Wasserstein distance then the coupling πx(dy)qy(dy̌) between π̌Kx (dy̌) and πx(dy) in
the definition of the usual Wasserstein distance, we obtain that

AW p
p (π̌K , π) ≤

∫
Rd
W p
p (π̌Kx , πx)µ(dx) ≤

∫
Rd

∫
Rd

∫ 1

0
|Projdel

Γdelp,K
(y, u)− y|pduπx(dy)µ(dx)

≤
∫
Rd

∫ 1

0
|y − Projdel

Γdelp,K
(y, u)|pduν(dy) = E|Y − Projdel

Γdelp,K
(Y,U)|p = dpp,K(ν).

With the triangle inequality, we deduce that to check the last statement in the theorem, it is enough
to prove that limN AWp(π̄

N,K , π̌K) = 0.
To do so, we denote by (xi)1≤i≤γ2,N the points in the grid Γ2,N with cardinality γ2,N ≤ N and

by (yj)1≤j≤γdelp,K
the points in the grid Γdelp,K with cardinality γdelp,K ≤ K (as soon as the support of

µ (resp. ν) is not restricted to less than N (resp. K) points, γ2,N = N (resp. γdelp,K = K)). Let
Ci = {x ∈ Rd : |x−xi| < min1≤k≤γ2,N ,k 6=i |x−xk|}, i ∈ {1, . . . , γ2,N}, denote the open Voronoi cells
induced by Γ2,N . Using (2.2) for the equality, we have

AW p
p (π̄N,K , π̌K) ≤

∫
Rd×Rd

(|x̂− x|p +W p
p (π̄N,Kx̂ , π̌Kx ))δProjΓ2,N

(x)(dx̂)µ(dx)

=

γ2,N∑
i=1

∫
Ci

(|xi − x|p +W p
p (π̄N,Kxi , π̌Kx ))µ(dx). (4.3)
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Since ν̌K(Γdelp,K) = 1, µ(dx) a.e. π̌Kx (dy̌) =
∑γdelp,K

j=1 qj(x)δyj (dy̌) for some measurable functions qj with

values in [0, 1] and such that
∑γdelp,K

j=1 qj = 1. Moreover, for i ∈ {1, . . . , γ2,N},

π̄N,Kxi (dy̌) =
1

µ(Ci)

γdelp,K∑
j=1

∫
Ci

qj(ξ)µ(dξ)δyj (dy̌).

As a consequence, we have

TV(π̄N,Kxi , π̌Kx ) =

γdelp,K∑
j=1

∣∣∣∣qj(x)− 1

µ(Ci)

∫
Ci

qj(ξ)µ(dξ)

∣∣∣∣ .
With Theorem 6.15 p.103 Villani (2009), we deduce that

W p
p (π̄N,Kxi , π̌Kx ) = 2p−1 max

1≤j≤γdelp,K

|yj |pTV(π̂N,Kxi , π̂Kx )

≤ 2p−1 max
1≤j≤γdelp,K

|yj |p
γdelp,K∑
j=1

∣∣∣∣qj(x)− 1

µ(Ci)

∫
Ci

qj(ξ)µ(dξ)

∣∣∣∣ .
Plugging this inequality in (4.3), we deduce that

AW p
p (π̄N,K , π̌K) ≤

γ2,N∑
i=1

∫
Ci

|xi − x|pµ(dx)

+ 2p−1 max
1≤j≤γdelp,K

|yj |p
γdelp,K∑
j=1

γ2,N∑
i=1

∫
Ci

∣∣∣∣qj(x)− 1

µ(Ci)

∫
Ci

qj(ξ)µ(dξ)

∣∣∣∣µ(dx). (4.4)

Using Jensen’s inequality in the case p ∈ [1, 2], the L2−Lp- distortion mismatch Theorem 4.3 Pagès
and Sagna (2018) when 2 < p < 2 + d and Hölder’s inequality when p ≥ 2 + d, we get

γ2,N∑
i=1

∫
Ci

|xi−x|pµ(dx)=

∫
Rd
|ProjΓ2,N

(x)−x|pµ(dx) ≤


ep2,N (µ) if p ∈ [1, 2]

CN−p/d if 2 < p < 2 + d

2(p−3)∨0 max
1≤j≤γdelp,K

|yj |p−2e2
2,N (µ) if p ≥ 2 + d

,

where the constant C does not depend on N . With Theorem 2.3, we deduce that the first term in
the right-hand side of (4.4) goes to 0 as N →∞. Since

∫
Rd |qj(x)|µ(dx) ≤ 1, by Theorem 3.14 p.69

Rudin (1987), there exists a sequence (qnj )n∈Z+ of continuous and compactly supported functions
on Rd such that limn

∫
Rd |q

n
j (x)− qj(x)|µ(dx) = 0. Since qj takes its values in the interval [0, 1], we

suppose that so do the functions qnj up to replacing them by 0 ∨ qnj ∧ 1 which affects neither the
continuity and compact support property nor the convergence. We have∣∣∣∣ γ2,N∑

i=1

∫
Ci

∣∣∣∣qj(x)− 1

µ(Ci)

∫
Ci

qj(ξ)µ(dξ)

∣∣∣∣µ(dx)−
γ2,N∑
i=1

∫
Ci

∣∣∣∣qnj (x)− 1

µ(Ci)

∫
Ci

qnj (ξ)µ(dξ)

∣∣∣∣µ(dx)

∣∣∣∣
≤

γ2,N∑
i=1

∫
Ci

∣∣∣∣qj(x)− qnj (x)− 1

µ(Ci)

∫
Ci

(qj(ξ)− qnj (ξ))µ(dξ)

∣∣∣∣µ(dx)

≤
γ2,N∑
i=1

∫
Ci

|qj(x)− qnj (x)|µ(dx) +

γ2,N∑
i=1

∣∣∣∣∫
Ci

(qj(ξ)− qnj (ξ))µ(dξ)

∣∣∣∣ ≤ 2

∫
Rd
|qj(x)− qnj (x)|µ(dx),
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where the right-hand side goes to 0 as n → +∞. We deduce that to prove that the second
term in the right-hand side of (4.4) goes to 0 as N → +∞, it is enough to check that so does∑γ2,N

i=1

∫
Ci

∣∣∣qj(x)− 1
µ(Ci)

∫
Ci
qnj (ξ)µ(dξ)

∣∣∣µ(dx) for any fixed n ∈ Z+. For X ∼ µ and X̂N =

ProjΓ2,N
(X),

γ2,N∑
i=1

∫
Ci

∣∣∣∣qnj (x)− 1

µ(Ci)

∫
Ci

qnj (ξ)µ(dξ)

∣∣∣∣µ(dx) = E
∣∣∣qnj (X)− E[qnj (X)|X̂N ]

∣∣∣
≤ E1/2

[(
qnj (X)− E[qnj (X)|X̂N ]

)2
]
≤ E1/2

[(
qnj (X)− qnj (X̂N )

)2
]

where, for the last inequality, we used that the conditional expectation given X̂N is the best qua-
dratic approximation of a random variable by a measurable function of X̂N . Let ε > 0. Since
qnj is continuous and compactly supported, this function is uniformly continuous. Since it takes
its values in the interval [0, 1], we deduce that there exists η > 0 such that for all x, y ∈ Rd,
|qnj (x)− qnj (y)| ≤ ε1{|x−y|≤η} + 1{|x−y|>η}. Therefore

E
[(
qnj (X)− qnj (X̂N )

)2
]
≤ ε2 + P(|X − X̂N | ≥ η) ≤ ε2 +

E[|X − X̂N |2]

η2
= ε2 +

e2(µ,N)2

η2
.

With Theorem 2.3, we deduce that the left-hand side goes to 0 as N → +∞ and conclude that so
does AWp(π̄

N,K , π̌K). �

5. Application to weak martingale optimal transport problems

We endow P≤ × P1(Rd) =
{

(µ, ν) : µ, ν ∈ P1(Rd) and µ ≤cvx ν
}

with the metric W1(µ, µ̃) +

W1(ν, ν̃) between (µ, ν) and (µ̃, ν̃) and Rd × P1(Rd) with the metric obtained as the sum of the
Euclidean distance on Rd and the Wasserstein distance W1 on P1(Rd). For a cost function C :
Rd × P1(Rd)→ R Borel measurable, the Weak Martingale Optimal Transport problem introduced
in Backhoff-Veraguas and Pammer (2019) consists in computing for (µ, ν) ∈ P≤ × P1(Rd)

V (µ, ν) = inf
π∈M(µ,ν)

∫
Rd
C(x, πx)µ(dx) (5.1)

and the minimal couplings π ∈M(µ, ν). For the choice

C̃(x, η) =

{
C(x, η) if

∫
Rd yη(dy) = x

+∞ otherwise
, (5.2)

it can be seen as a particular case of the Weak Optimal Transport problem

Ṽ (µ, ν) = inf
π∈P(µ,ν)

∫
Rd
C̃(x, πx)µ(dx) for (µ, ν) ∈ P1(Rd)× P1(Rd) (5.3)

introduced by Gozlan et al. (2017) and studied by Backhoff-Veraguas et al. (2019). Indeed, when
(µ, ν) ∈ P≤ × P1(Rd) then for each π ∈ P(µ, ν) \M(µ, ν),

∫
Rd C̃(x, πx)µ(dx) = +∞ and for each

π ∈M(µ, ν),
∫
Rd C̃(x, πx)µ(dx) =

∫
Rd C(x, πx)µ(dx), which implies that Ṽ (µ, ν) = V (µ, ν).

The martingale optimal transport problem corresponds to the particular case of the WMOT
problem when the cost function is linear in the measure component : C(x, η) =

∫
Rd c(x, y)η(dy) for

a Borel measurable function c : Rd×Rd → R with at most linear growth in its second variable. We
will make the following assumption on the cost function C:
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(C)The cost function C : Rd × P1(Rd) → R is lower semi-continuous, convex in the measure
argument (for all x ∈ Rd, P1(Rd) 3 η 7→ C(x, η) is convex) and such that

sup
(x,η)∈Rd×P1(Rd)

|C(x, η)|
1 + |x|+

∫
Rd |y|η(dy)

< +∞.

The existence of minimal couplings in the WMOT problem (5.1) and the lower semi-continuity
of the value function V are deduced from Theorem 2.6 and Proposition A.12(b) Beiglböck et al.
(2021b). Theorem 2.6 Beiglböck et al. (2021b) also ensures convergence of the optimal couplings
under convergence of the value function, a property which holds in dimension d = 1 when C is
continuous.

Proposition 5.1. Assume (C).
(i): For each (µ, ν) ∈ P≤×P1(Rd), there exists π? ∈M(µ, ν), unique if C is strictly convex in

the measure argument, such that V (µ, ν) =
∫
Rd C(x, π?x)µ(dx) and (µ, ν) 7→ V (µ, ν) is lower

semi-continuous on P≤ × P1(Rd).
Let ((µk, νk))k∈Z+ be a P≤ × P1(Rd)-valued sequence converging to (µ, ν) in this space.

(ii): Let for each k ∈ Z+, π?k be an optimal coupling for V (µk, νk). If V (µ, ν) = limk V (µk, νk),
then all the accumulation points of (π?k)k∈Z+ for the weak convergence topology are minimiz-
ers for V (µ, ν). If C is moreover strictly convex in the measure argument, then the sequence
(π?k)k∈Z+ converges in AW1 to the unique optimal coupling π? between µ and ν.

(iii): If d = 1 and either C is continuous or C is continuous in its second argument and for
each Borel subset A of Rd, (µk(A))k∈Z+ converges to µ(A) as k → +∞, then V (µ, ν) =
limk V (µk, νk).

When (µk, νk) = (µ̂Nk , ν̌Kk) with µ̂Nk a quadratic optimal primal Nk-quantization of µ and
ν̌Kk an Lp-optimal dual Kk-quantization of ν, then Theorem 4.1 ensures that it is possible to
approximate in AW1 distance any optimal martingale coupling π? between µ and ν by martingale
couplings between µ̂Nk and ν̌Kk and we deduce the upper-semicontinuity of the value function along
this sequence, whatever the dimension d.

Lemma 5.2. Let p ≥ 1, µ, ν ∈ P(Rd) be such that µ ≤cvx ν with ν compactly supported and
for N,K ≥ 1, µ̂N be a quadratic optimal primal N -quantization of µ and ν̌K an Lp-optimal dual
K-quantization of ν. If C : Rd × P1(Rd) → R is continuous, then V (µ, ν) is finite. If moreover,
x 7→ supη∈P1(Rd)

|C(x,η)|
1+

∫
Rd |y|η(dy)

is locally bounded on Rd, then

lim sup
N,K→∞

V (µ̂N , ν̌K) ≤ V (µ, ν).

If C : Rd × P1(Rd)→ R is Lipschitz continuous with constant Lip(C), then

lim sup
N→∞

V (µ̂N , ν̌K) ≤ V (µ, ν) + Lip(C)dp,K(ν).

With Proposition 5.1, we easily deduce the following corollary.

Corollary 5.3. Assume (C) with the cost function C moreover continuous and let µ, ν, µ̂N , ν̌K be
as in Lemma 5.2. Then

lim
N,K→∞

V (µ̂N , ν̌K) = V (µ, ν).

Moreover, all accumulation points as N,K → ∞ of sequences (π?N,K)N,K of minimizers for
V (µ̂N , ν̌K) are minimizers for V (µ, ν). If C is also strictly convex in the measure argument, then

lim
N,K→∞

AW1(π?N,K , π
?) = 0,

where π? is the unique optimal coupling between µ and ν.
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Proof of Lemma 5.2: We first suppose that C : Rd × P1(Rd) → R is continuous. Let B̄ be some
closed ball centered at the origin with sufficiently large radius so that ν(B̄) = 1 and PB̄(Rd) =
{η ∈ P(Rd) : η(B̄) = 1}. The set PB̄(Rd) is a compact subset of P1(Rd) endowed with the
Wasserstein distance W1 and therefore the continuous cost function C is bounded on the compact
subset B̄ × PB̄(Rd) of Rd × P1(Rd). Since µ̂N ≤cvx µ ≤cvx ν, µ̂N (B̄) = µ(B̄) = 1. Moreover for
π ∈ P(µ, ν),

∫
Rd πx(B̄)µ(dx) = ν(B̄) = 1 so that (x, πx) ∈ B̄ × PB̄(Rd) µ(dx) a.e.. Therefore

inf
(x,η)∈B̄×PB̄(Rd)

C(x, η) ≤ V (µ, ν) ≤ sup
(x,η)∈B̄×PB̄(Rd)

C(x, η)

and V (µ, ν) is finite. Let ε > 0. By the continuity and the growth assumption satisfied by the cost
function C and the compactness of B̄ × PB̄(Rd), there exists α > 0 such that

∀(x, η, x̃, η̃) ∈ B̄ × PB̄(Rd)× Rd × P1(Rd) s.t. |x− x̃|+W1(η, η̃) ≤ α, |C(x, η)− C(x̃, η̃)| ≤ ε

and ∀(x, η, x̃, η̃) ∈ B̄ × PB̄(Rd)× B̄ × P1(Rd), |C(x, η)|+ |C(x̃, η̃)| ≤ 1

α

(
1 +

∫
Rd
|y|η̃(dy)

)
.

Let π ∈M(µ, ν) be such that
∫
Rd C(x, πx)µ(dx) ≤ V (µ, ν)+ε. By Theorem 4.1, there exists π̄N,K ∈

M(µ̂N , ν̌K) such that lim supN→∞AW1(π̄N,K , π) ≤ dp,K(ν) and limN,K→∞AW1(π̄N,K , π) = 0. Let
mN,K ∈ P(µ, µ̂N ) be an optimal coupling for AW1(π, π̄N,K). We have∣∣∣∣∫

Rd
C(x, πx)µ(dx)−

∫
Rd
C(x̃, π̄N,Kx̃ )µ̂N (dx̃)

∣∣∣∣ ≤ ∫
Rd×Rd

∣∣∣C(x, πx)− C(x̃, π̄N,Kx̃ )
∣∣∣mN,K(dx, dx̃)

≤ ε+

∫
Rd×Rd

∣∣∣C(x, πx)− C(x̃, π̄N,Kx̃ )
∣∣∣ 1{|x−x̃|+W1(πx,π̄

N,K
x̃ )≥α}m

N,K(dx, dx̃)

≤ ε+
1

α

∫
Rd×Rd

(
1 +

∫
Rd
|y|π̄N,Kx̃ (dy)

)
1{|x−x̃|+W1(πx,π̄

N,K
x̃ )≥α}m

N,K(dx, dx̃) (5.4)

By the Markov inequality,
∫
Rd×Rd 1{|x−x̃|+W1(πx,π̄

N,K
x̃ )≥α}m

N,K(dx, dx̃) ≤ AW1(π,π̄N,K)
α . Moreover,

since∫
(x,x̃)∈Rd×Rd

π̄N,Kx̃ (dy)mN,K(dx, dx̃) =

∫
x̃∈Rd

π̄N,Kx̃ (dy)µ̂N (dx̃) =

∫
x̃∈Rd

π̄N,K(dx̃, dy) = ν̌K(dy),

there is a Markov kernel qy(dx, dx̃) such that π̄N,Kx̃ (dy)mN,K(dx, dx̃) = ν̌K(dy)qy(dx, dx̃) and∫
Rd×Rd

∫
Rd
|y|π̄N,Kx̃ (dy)1{|x−x̃|+W1(πx,π̄

N,K
x̃ )≥α}m

N,K(dx, dx̃) =

∫
Rd
|y|β(y)ν̌K(dy)

where the function β(y) :=
∫
Rd×Rd 1{|x−x̃|+W1(πx,π̄

N,K
x̃ )≥α}qy(dx, dx̃) is [0, 1]-valued and such that∫

Rd
β(y)ν̌K(dy) =

∫
Rd×Rd

1{|x−x̃|+W1(πx,π̄
N,K
x̃ )≥α}m

N,K(dx, dx̃) ≤ AW1(π, π̄N,K)

α
.

Since limN,K→∞AW1(π, π̄N,K) = 0 = limK→∞W1(ν, ν̌K), with Lemma 3.1 (b) Beiglböck et al.
(2021a), we deduce that the second term in the right-hand side of (5.4) tends to 0 as N,K → ∞.
Hence

lim sup
N,K→∞

V (µ̂N , ν̌K) ≤ lim sup
N,K→∞

∫
Rd
C(x̃, π̄N,Kx̃ )µ̂N (dx̃)

≤
∫
Rd
C(x, πx)µ(dx) + lim sup

N,K→∞

∣∣∣∣∫
Rd
C(x, πx)µ(dx)−

∫
Rd
C(x̃, π̄N,Kx̃ )µ̂N (dx̃)

∣∣∣∣
≤ V (µ, ν) + 2ε.

Since ε is arbitrary, we conclude that lim supN,K→∞ V (µ̂N , ν̌K) ≤ V (µ, ν).
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We now suppose that C : Rd × P1(Rd) → R is Lipschitz continuous with constant Lip(C). We
then have∣∣∣∣∫

Rd
C(x, πx)µ(dx)−

∫
Rd
C(x̃, π̄N,Kx̃ )µ̂N (dx̃)

∣∣∣∣ ≤ ∫
Rd×Rd

∣∣∣C(x, πx)− C(x̃, π̄N,Kx̃ )
∣∣∣mN,K(dx, dx̃)

≤ Lip(C)

∫
Rd×Rd

(
|x− x̃|+W1(πx, π̄

N,K
x̃ )

)
m(dx, dx̃) = Lip(C)AW1(π, π̄N,K).

Therefore

V (µ̂N , ν̌K) ≤
∫
Rd
C(x̃, π̄N,Kx̃ )µ̂N (dx̃) ≤

∫
Rd
C(x, πx)µ(dx) + Lip(C)AW1(π, π̄N,K)

≤ V (µ, ν) + ε+ Lip(C)AW1(π, π̄N,K).

Since ε is arbitrary, we deduce that lim supN→∞ V (µ̂N , ν̌K) ≤ V (µ, ν) + Lip(C)dp,K(ν). �
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