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Abstract. Quantization provides a very natural way to preserve the convex order when approxi-
mating two ordered probability measures by two finitely supported ones. Indeed, when the convex
order dominating original probability measure is compactly supported, it is smaller than any of its
dual quantizations while the dominated original measure is greater than any of its stationary (and
therefore any of its quadratic optimal) primal quantization. Moreover, the quantization errors then
correspond to martingale couplings between each original probability measure and its quantization.
This permits to prove that any martingale coupling between the original probability measures can
be approximated by a martingale coupling between their quantizations in Wassertein distance with
a rate given by the quantization errors but also in the much finer adapted Wassertein distance. As
a consequence, while the stability of (Weak) Martingale Optimal Transport problems with respect
to the marginal distributions has only been established in dimension 1 so far, their value function
computed numerically for the quantized marginals converges in any dimension to the value for the
original probability measures as the numbers of quantization points go to oo.

1. Introduction

For d € Z% and p,v in the set P(R?) of probability measures on RY, we say that u is smaller
than v in the convex order and denote u <y, v if

(@) u(dz) < / o) (dy), (1.1)

Yo : R? — R convex , /
Rd

Rd
when the integrals make sense (since any real valued convex function is bounded from below by an
affine function [p4 ¢(x)p(dz) makes sense in RU {+00} as soon as [pa |z|p(dr) < +00). For p > 1,
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we denote by
Po(®?) = (e PR [ laPu(ds) < +o0)
Rd

the Wasserstein space with index p over R%. When p,v € Pi(R?), according to the Strassen
theorem Strassen (1965), u <e v if and only if there exists a martingale coupling between p and v
that is a probability measure 7(dz, dy) on R?xR? with marginals Jyera ™(dz, dy) and [, po 7(dz, dy)
equal to p(dz) and v(dy) respectively such that w(dz,dy) = p(dz)m,(dy) for some Markov kernel
m;(dy) with the martingale property: Vz € RY, 1, € Pi(R?) and [p,yme(dy) = z. We denote
by P(u,v) the set of probability measures on R? x R? with respective marginals p and v and by
M (i, v) the subset of P(u,v) consisting of martingale couplings.

Let (p1, v) belong to the set P< x P,(R?) of couples of elements of P,(R?) with the first one smaller
than the second in the convex order. In its simplest form, the Martingale Optimal Transport problem
consists in computing

Viw) = int [ g)n(ds,dy)
TEM(p,v) JRA xRE

and the optimal martingale couplings achieving this infimum for some measurable cost function
c:R4xR% — R. When the interest rate is zero, for an exotic option written on d assets with payoff
given by the function ¢ of their prices at successive times s and ¢, then V,(u,v) (resp. —V_.(u,v))
provides a robust lower (resp. upper) price bound when g and v are the respective joint laws of
these d assets at times s and t (for instance obtained by calibration of a model to vanilla option
prices). Since its introduction in Beiglbock et al. (2013), this MOT problem has received recently
a great attention in the financial mathematics literature. In particular, the structure of martingale
optimal transport couplings has been investigated by Beiglbock and Juillet (2016); Campi et al.
(2017); De March and Touzi (2019); Ghoussoub et al. (2019); Henry-Labordére and Touzi (2016),
continuous time formulations by Dolinsky and Soner (2014); Galichon et al. (2014); Henry-Labordére
et al. (2016), links with the Skorokhod embedding problem by Beiglbock et al. (2017), numerical
methods by Alfonsi et al. (2020, 2019); De March (2018); Guo et al. (2019); Henry-Labordére (2019)
and stability properties by Backhoff-Veraguas and Pammer (2019); Jourdain and Margheriti (2020);
Wiesel (2012). The MOT problem is a particular instance where the measurable cost function
C : R? x Py (R?) — R is linear in the measure component (C(z,1) = [z c(z,y)n(dy)) of the Weak
Martingale Optimal Transport problem

wEJ{/rtl(fu,u) » C(x, mp)p(dz).
Backhoff-Veraguas and Pammer (2019) introduced this WMOT problem by adding the martingale
constraint to the Weak Optimal Transport problem introduced by Gozlan et al. (2017).

To devise a numerical procedure devoted to the computation of the value and of the optimal
couplings in the MOT and WMOT problems, a first natural step consists in approximating u
and v by finitely supported probability measures which are still in the convex order. To our best
knowledge, few studies consider the problem of preserving the convex order while approximating a
sequence of probability measures. Baker (2015) proposes a quantile-based construction in dimension
d=1. Let for n € P(R) and u € (0,1), ;' (u) = inf{x € R : n((—00,z]) > u} be the quantile of 1
of order u. For (u,v) € P< x P1(R) and N, K € Z* with N/K € Z% , one has

1 Y 1 &
— 1 i < — ) i .
N z_: NN o wde ~ 0K Z K [E, F; Y (u)du
=1 ZT =1 =

Dual (or Delaunay) quantization introduced by Pages and Wilbertz (2012a) and further studied
in Pagés and Wilbertz (2012b,¢, 2018) yields another way to preserve the convex order in dimension
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d = 1 when using the same grid to quantize both probability measures (see the remark after
Proposition 10 in Pages and Wilbertz (2012h)).

In two recent papers, Alfonsi et al. (2019, 2020) propose to restore for (u,v) € P< x P1(R%)
the convex ordering from any finitely supported approximations i and o of y and v. In dimension
d = 1, one may define the increasing (resp. decreasing) convex order by adding the constraint
that the test function ¢ is non-decreasing (resp. non-increasing) in (1.1). According to Alfonsi
et al. (2019), the convex order restoration can be achieved by keeping fi (resp. 7) and replacing
U (resp. fi) by the supremum (resp. infimum) between fi and © for the increasing convex order
when [, x0(dx) < [ xfi(dz) and the decreasing convex order when [p zi(dx) > [p xfi(dxr). The
convex, increasing convex and decreasing convex orders are nicely characterized in terms of the
potential function that is the anti-derivative of the cumulative distribution function (or of the
quantile function). The supremum and infimum of two probability measures for one of these orders
can be computed using their potential functions. For a general dimension d, Alfonsi et al. (2020)
suggest to keep U and replace fi by its projection on the set of probability measures dominated by &
for the quadratic Wasserstein distance Wy (see (1.2) below for the definition of this distance). This
projection can be computed by solving a quadratic optimization problem with linear constraints.

In the present paper, when v is compactly supported, we investigate the combined approxima-
tion of p by some quadratic-optimal primal quantization and of v by some dual quantization. By
construction, any quadratic-optimal primal quantization of u satisfies a stationarity property which
implies that it is smaller than g in the convex order. On the other hand, any dual quantization
of v is greater than v in the convex order. Therefore the convex order between p and v is pre-
served by these combined approximations. Notice that, in contrast with the previous approaches, it
cannot be generalized to the convex order preserving approximation of more than two probability
measures. Moreover the dual quantization approximation is only possible for probability measures
with bounded support. In contrast with these restrictions, we will see that the studied approach
proves to provide robust approximations of (Weak) Martingale Optimal Transport problems even
in dimension d > 2.

The first section of the paper is devoted to primal (or Voronoi) quantization. For u € P,(R%)
with p > 1, we show that an element of the set P(R% N) of probability measures on R% whose
support contains at most N points is an L,-optimal N-quantization of p iff it is a W)-projection of
pon P(RY, N) where the Wasserstein distance W), is defined by

Wy(p,v)P = inf / |z — y|Pr(dz, dy). (1.2)
T€P (1) JRIxRA

In the quadratic p = 2 case, any stationary and therefore any optimal N-quantization iV of the

measure g is smaller than g in the convex order. Moreover Wo (i, 1) = Ma(i'Y, 1) where

My(n,v) = inf / |z — y|Pr(dz, dy) for (n,v) € P< x P1(RY). (1.3)
TeM(n,v) JRdxRd
This enables us to check that any quadratic optimal primal quantizer for g remains quadratic
optimal for each probability measure smaller than p and greater than its associated quantization
for the convex order.
The second section deals with the dual quantization of a probability measure p with bounded
support. The dual quantization is obtained by minimizing M (u,n) over

PZM(RdaN) = {77 € P(RdaN) 1N Zeve ,U} .

Since M(p,n) C P(p,n), Mp(p,m) > Wp(p,n) and, in general, the inequality is strict. It turns out,
that, even in the quadratic p = 2 case, L,-optimal dual quantizations of u are not necessarily W,-
projections of u on PZ#(Rd, N). Nevertheless, we check that any quadratic optimal dual quantizer
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of 1 remains quadratic optimal for each probability measure greater than p and smaller than its
associated dual quantization in the convex order.

In the third section, we consider two probability measures u,v € P(R?) such that pu <.pp v
with v compactly supported. Since the quantization errors between u and any of its quadratic-
optimal primal N-quantization 4 and between v and any of its L,-optimal dual K-quantization
v correspond to martingale couplings, we are able to approximate in Wasserstein distance on
P(RY xR%) any martingale coupling 7 € My, v) by a martingale coupling 75 € M (v, »%) with
a rate given by the quantization errors. We also check that, as N, K — oo, #N¥ still converges to 7
for the much finer adapted Wasserstein distance defined in (1.5) below which captures the temporal
structure of probability distributions with two time marginals. Numerous financial applications
of this adapted Wasserstein distance have been investigated by Backhoff-Veraguas et al. (2020a).
According to Backhoff-Veraguas et al. (2020b), the topology induced by this distance is equal to the
other adapted topologies which had been introduced in particular in view of financial applications.

The adapted Wasserstein is particularly well suited to deal with Weak Martingale Optimal Trans-
port problems. While their stability with respect to the marginal distributions only holds in di-
mension d = 1 (see Beiglbock et al.; 2021b for a proof of stability when d = 1 and Briickerhofl and
Juillet, 2021 for a nice counterexample to the stability in dimension d > 2), this enables us to check
in Section 4 that their value function computed numerically for the quantized marginals converge
in any dimension to the value for the original probability measures as the numbers of quantization
points go to oo.

For the reader’s convenience, we now list the notations and basic properties that have been
introduced in the above text.

DEFINITIONS AND NOTATIONS. Let de Z7 .

e | - | denotes the canonical Euclidean norm on R?,

e conv(A) denotes the (closed) convex hull of A C R? and card(A) its cardinality.

e Let P(R?) denote the set of probability measures on R? endowed with its Borel o-field B(R?). We
endow P(R?) with the weak convergence topology.

e For p > 1, let Pp(R?) = {p € P(RY) : [pa|z|Pu(dz) < oo}

e For p > 1, let P< x Pp(RY) = {(11, ) € Pp(RY) x Pp(RY) : pt e v}

e For every integer N > 1, we denote by P(R%, N) the set of distributions on R? whose support
contains at most N points and for p € P(R?), we set

Pgu(Rd,N) = {77 € P(Rd,N) T u} and PZM(Rd,N) = {77 € P(Rd,N) 1N > u} .
e For p,v € P(RY), let
Plu,v) = {w e P(R? x RY) : VA € B(RY), 7(A x RY) = p(A) and m(R? x A) = V(A)}

denote the set of couplings between p and v. For m € P(u,v), we denote by 7, (dy) the (u(dx) a.e.
unique) Markov kernel such that 7(dz, dy) = p(dz)m,(dy).
o For i, v € Py (R?) with p1 <eop v, let

M, v) = {7r € P(uv): plds) ace. /Rd Y ma(dy) = x}

denote the non-empty owing to Strassen’s theorem set of martingale couplings between p and v.
e For p > 1 and pu,v € P(R?), let

1/p
W)= inf ([ fo-yPrdndy)) <o
TEP (V) Rd xR

denote the Wasserstein distance with index p. This is a complete metric on P,(R%).
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e For p > 1 and (u,v) € P< x P1(RY), let

1/p
M, = inf —yPr(dz, d < o0.
)=t ([ eabatinan) <o

Since M(p,v) C P(p,v), we clearly have, Wy (u,v) < My,(p,v). In the quadratic p = 2 case, when
v € Po(RY), then for each 7 € M(u,v),

/Rded ly — z|?n(dz, dy) = /Rd ly|2v(dy) — Q/Rda; . /Rd Yo (dy) p(da) + /Rd |2 u(de)
= [ oty [ lePutas)

M) = [ llPrids) = [ oP (). (1.4

e For m € P(u,v) and 7 € P(fi, ) we consider the adapted Wasserstein distance with index p > 1
between 7(dx, dy) = p(dz)m,(dy) and 7(dz, dy) = a(dz)7z(dy):

so that

1/p
AW, (r,7) = inf / (|2 — 3P + WP(my, 75))m(de, di) ) - (1.5)
mEP (i) \JRIxRI P

2. Primal (Voronoi) quantization and Wasserstein projection

In this subsection, we make a connection between primal quantization and various projections
(in the Wasserstein sense), including, in the quadratic case, with the one mentioned above in the
introduction. Let us first recall the following basic facts about the (primal) Voronoi quantization of
uE Pp(Rd) with p > 1 (see Graf and Luschgy, 2000; Pagés, 2015, 2018 among others):

~LetT' = {x1,...,2,} C R? denote a finite subset of size N. The LP-quantization error modulus
ep(T, p) satisfies

T = [ o= Proip (@) Pudz) (2.1)

where Projp denotes a Borel nearest neighbour projection on I' satisfying |x —Projp(x)| = dist(z, T").
If X ~ p, the random variable Projp(X) with law po Proj;1 is called I'-quantization of X.

— For any level N > 1, there exists an optimal grid or N-quantizer I';, n such that
ep,N(p) := inf {ep(F,,u) T CRY, card(T") < N} = ep(Tp,n, ).

When card(supp(p)) < N then I', y = supp(p) and when card(supp(p)) > N, then I') x has
exactly NV pairwise distinct elements. Moreover, Theorem 4.2 in Graf and Luschgy (2000) ensures
that

u({z e R 3y £ G e Ty, lo—yl = |z — | = dist(z, T\)}) =0, (2.2)
so that ,uoProjI?plN does not depend on the choice of the Borel nearest neighbour projection Projpp N
on I'y y. We denote this probability measure by il»~. In the same way, when X ~ p, Projr (X)
a.s. does not depend on the Borel nearest neighbour projection Projp . and is denoted XTon,

— In the quadratic case (p = 2), any optimal quantization grid Iy ;v (possibly not unique) and its
induced quantization X2V = Projr, (X) with distribution 2N satisfy a stationarity (or self-
consistency) property (see e.g. Graf and Luschgy, 2000, Pages, 2015 or Pages, 2018, Proposition 5.1
among others) that is

E(X | )A(FQvN) = X2 50 that a2V <.pp g (2.3)
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Indeed, the support of the distribution of E(X | )A(FQvN) is equal to Ty := {E(X|XT 2y = 2),2 €
Ty} (when card(supp(u)) < N, X'2¥ = X and Ty n = Doy = supp(p)), contains at most N
points and ex(T'g v, 1) = E(dist(X, o v)?) < E(|X —E(X | XFQvN)|2). As a consequence,
eon(1)? < ea(Ton, p)® S E(IX —E(X [ XT2V)[%)
— B(X - XTav[) - E(XT2 —E(X | XT2N) )
= ean(p)® — E(IX"2V —E(X | XT2V) ),

so that the second term in the right-hand side vanishes. Therefore the distribution of (X Tov | X))
belongs to M (2N, 1) and

ean(0)? = E[|X — X2V ] = E[| X ) - B[ X2V %) = MZ(A™>Y, p). (2.4)

Proposition 2.1. Let p€ [1,+oc) and p€ Py(RY).
(a) Let T' C R? be a finite set and P(I') denote the subset of I'-supported distributions. Then

Wp(p, P(T)) == inf Wy(p,v) =ey(T,p) == Hdist(.,F)HLp
veP(T) (1)

and for any Borel nearest neighbour projection Projp on I', po Projlf1 is a Wp-projection of p on
P(T).

(b) The probability measure v € P(RY, N) is a W,-projection of u on P(R? N) iff v = g~ for some
Ly-optimal N-quantizer T'y of pn. Moreover, Wy,(11, P(R%, N)) = e, n(p).

(¢) Quadratic case (p = 2). A subset T' of R? with cardinality at most N is a quadratic optimal

N -quantizer of u iff there exists a probability measure v € P<,(RY, N) such that v(T) = 1 and one
of the following equivalent conditions is satisfied

e v is a Wa-projection of i on P<,(R% N) i.e.

Wa(u,v) = Wa(p, P<,(RGN)) :=  inf  Wa(p,n),
TIEPSH(Rd,N)

o JpalzPv(de) = supyep_, &a Ny Jpa [2*n(dz).
r

Moreover, we then have Wa(v, ) = Ma(v, p) and v = [i .

Apart from the interpretation in terms of W)-projection, the first statement can be found in
Lemma 3.4 p.33 Graf and Luschgy (2000). Before proving the proposition, let us state and check
some easy consequence of the necessary and sufficient condition in (¢).

Corollary 2.2. LetI'y x be a quadratic optimal N -quantizer of j1 € P (RY). Then for any probability

measure v such that /ZFQ’N Zcvx V Zevx I, T2 N is a quadratic optimal N -quantizer of v and pran =
n2,N
2N

Proof of Corollary 2.2: Since it2~ € P<, (R4 N) C P<,(R?, N) and
[ JaPatsdn) = sup [ fafn(d
R4 n€P<,(RY,N) JRY
by the necessary condition in Proposition 2.1(c), one has
[ JaPats s = swp [ jayda),
R4 n€P<, (RY,N) JRY

Therefore, by the sufficient condition in Proposition 2.1(c), I's x is a quadratic optimal N-quantizer
of v and P2~ = plan, O
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Proof of Proposition 2.1: (a) Let v € P(T') and 7 € P(u,v). Then p(dz) a.e., m,(I') = 1 so that
7 (dy) a.e. |z —y| > dist(z, ). Therefore

L o= yPatdndy) > [ dist(aTputde) = (0.
X

Taking the infimum over 7 € P(u,v) and v € P(T'), we deduce that W), (u, P(I'))” > e, (T, u)?.
Now let Projr denote a Borel nearest neighbour projection on I'. Since p o Projp Le P(I') and
o (Iz,Projp) = € P(, 1 o Projpt), we have

W (1. P(D)) < WEn o Proig!) < | o = Profn(w)lu(da) = ey(T' "

where the equality follows from (2.1). Therefore the inequalities are equalities and p o Projy lisa
Wy-projection of p on P(I).

(b) Let I') v be an LP-optimal N-quantizer of y. Then, for any subset I' of R? with at most N
points, e, (I'p v, 1) = ep N (1) < ep(I', p). With (a), we deduce that

Wy(p, 7)) < Wy (u, P(L)).

By taking the infimum over T', we deduce that W,(u, a'»¥) < W,(u, P(RY, N)) and glrN is a
W-projection of y on P(R%, N) so that

ep,n (1) = (11, Tpv) = Wy(p, f7PN) = Wy (1, P(R?, N)).

Conversely, let v be a projection of u on P(R% N) and let I'y = {z € R? : v({z}) > 0}. The
cardinality of I'y is at most N. For any subset I of R? with at most N points,

Wk, P(IN)) < Wp(p,v) = Wp(u,P(Rd,N)) < Wyp(u, P(I)). (2.5)

Therefore, by (a), ep(I'v, ) < ep(I', ) and since T' is arbitrary, we deduce that I'y is an LP-
optimal N-quantizer of p. Moreover, the choice I' = T'y in (2.5) implies that the first inequality
is an equality so that, with (a), W} (u,v) = [padist(x,Tn)Pu(dz). Hence, for any Wy-optimal

coupling 7 € P(u,v),
/ (ly — z|P — dist(z, T'y)P)7w(dx, dy) = 0.
R4 xR4

Since 1 = v(T'y) = [ga 72 (Tn)p(da), m(dx,dy) a.e., |y — x|P > dist(z, Tx)P. Therefore, 7(dx, dy)
a.e. y € I'y and |y — | = dist(z,'y). With (2.2), we conclude that p(dz) a.e. there is a unique
point 2"~ € I'y such that [#'V — 2| = dist(z,I'x) and 7, (dy) = d,ry (dy). Therefore the second
marginal v of 7 is equal to AV,

(¢) In the quadratic case (p = 2), by (b), (2.3) and (2.4), any Wa-projection v of y on P(R?, N)
is characterized by the existence of a quadratic optimal N-quantizer I'y y of p such that v =
it2~  belongs to the smaller set P<,(R?, N) and satisfies es y(1t)? = MZ(v, ). Therefore the Wo-
projections of 1 on P(R%, N) and on P<p (RY, N) coincide. To conclude the proof, let us check that
v is such a projection iff [ |2z[*v(dz) = SUp,ep_, (R4,N) Jpa |z[2n(dz). If n € P<,(RY, N), then, by
the comparison between Wy and My given in the introduction and (1.4), one has

2 2 = 2 — z>n(dz). .
W3 (1,m) SMz(n,u)—/Rd ly|*nu(dy) /}Rd! “n(dz) (2.6)
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Let v be a Wa-projection of u on P<, (R N). Using (b) for the third equality then (2.6) for the
last inequality and the last equality, we obtain that

/ y[2udy) - / 2Pu(dx) = M2(v, 1) = ean ()2 = W2 (u, P(RY, N))
Rd R4

= W3 (n, P<u(RYL,N)) < inf  M3(n,p)
nEPSH(Rva)

= 2 — su x2 xX).
= [ WPutn~ swp [ jaPatan)

n€P<,(RE,N)

Since v € P<, (R, N), the two inequalities are equalities. Therefore

/|xr2v<dx>= sup /\an(dx)
R4 n€P<,(RE,N) JRY

and since W3 (p, P(RY, N)) < Wi (u,v) < M3(v,p), these two inequalities are equalities and
W2(u,v) = M2(v, 1). Moreover,

ean (1) = W3 (. P<u(RY, N)) = / lyPPp(dy) —  sup / [ (d).
R4 n€P<,(RY,N) JRY
If v € P<,(RY, N) is such that [p, z]?v(dz) = SUDpep_, (RY,N) Jga [z[?n(dz), the last equality com-
bined with (2.6) written for 7 = v ensures that v is a Wa-projection of u on P<,(R%, N). O

Remark about uniqueness. As a consequence of Proposition 2.1(b), it turns out that the unique-
ness of W)y-projections of ;1 on P(R%, N), that of distributions 4V of LP-optimal N-quantizations
and that of LP-optimal N-quantizers are equivalent. In dimension d = 1, for p = 2, distributions
with log-concave densities have a unique optimal N-quantizer (see Trushkin, 1982 and also Kief-
fer, 1982) hence this projection is unique. In higher dimension, a general result seems difficult to
reach: indeed, the N(0;1;) distribution, being invariant under the action of O(d,R) (orthogonal
transforms), so are the (hence infinite) sets of its optimal quantizers at levels N > 2.

Let us recall the exact rate of convergence of the LP-quantization error stated for instance in
Theorem 5.2 Pages (2018).

Theorem 2.3 (Pierce Lemma for primal quantization). Let p > 1 and n > 0. For every dimension
d > 1, there exists a real constant CZl}%Tp > 0 such that, for every random vector X : (2, A,P) — R¢,

~ 1
where, for every r >0, 0,(X) = inf,cga [| X — al|, < 4o00.

3. Dual (Delaunay) quantization

We assume throughout this section that u is compactly supported. Let X : (Q, 4,P) — R? be
a random vector lying in L*°(P) with distribution p. Optimal dual (or Delaunay) quantization as
introduced in Pages and Wilbertz (2012b) relies on the best approximation which can be achieved
by a discrete random vector X that satisfies a certain stationarity assumption on the extended
probability space (2 x [0,1],.4 ® B([0,1]),P ® ) where B([0,1]) and A respectively denote the
Borel o-field and the Lebesgue measure on the interval [0,1]. To be more precise, we define, for
pE [1,+00),

dyn(X) = mf{HX —X|| s X (@ [0,1], A B(0,1]),P® A) = RY,
X

card (X(Q x [0,1])) < N and E(X|X) = X}.
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For every level N > d+1, the set of such X is not empty. Indeed, one may choose d+1 points whose
convex hull has a non-empty interior and includes the support of u. Then the unique probability
measure supported on these points with the same expectation as p belongs to the set P> H(Rd, d+1)
of distributions dominating p for the convex order and supported by at most d + 1 elements. By
Lemma 2.22 in Kallenberg (1997), we see that for each v € P>, (R%, N) and each martingale coupling
7 € M(u,v), there exists on (€ x [0,1], .4 ® B([0,1]),P® A) a random vector X such that (X, X)
is distributed according to m and therefore satisfies E(X|X) = X . Hence

dp N(X)P = inf inf / — zPr(dz, dy) = inf MP(p,v). 3.1

p,N( ) veP>, (R4,N) mEM(p,v) JRA xR ’y ’ ( y) veP>, (R4,N) p(u ) ( )
As a consequence, dp n(X) only depends on the distribution p of X and can subsequently also be
denoted d, n(12). Next, one easily checks that Ps,(R%, N) = Uregy P>u(I) where

Gy = {I' ¢ R? with cardinality < N and such that supp(u) C conv(I')},
and P>, (T) = {v € P(R?) : 4 <ppp v and v(T) = 1}.

For T' € Gy, there exists a dual projection Projd : conv(F) x [0,1] — T, also called a splitting

operator, which satisfies, beyond measurability, the following stationarity property

1
Vyé€ conv(T), / Proj(y, u)du = v, (3.2)
0

from which one derives the dual stationarity property
E (Proj%d(X, U)|X) = X when U ~U([0,1]) is independent of X. (3.3)

The stationarity property remains valid as soon as X is conv(I')-valued and implies that the distri-
bution of Proji® (X, U) belongs to P, (T") which is therefore non-empty.
For I" € Gy, let
dp(p, T = inf  MP(u,v),
p(1,T) et b (1, v)
so that dy, y(p)P = infreg, dp(p, I)P.
In dimension d = 1, when I' = {x1,29,...,2zx} with 1 < 22 < ... < xp, the probability
measure minimizing v + M} (u,v) over Ps,(T) is the distribution i of Projf(X,U) for the
splitting operator

N-1
Proj%el(x’ U) = Z 1[$i,$i+1)($) <1{U<Ii+1_z }$1 + 1{u> Ti41 "% }xi+1) + 1{r:mN}$N‘
i—1 —Tip1—T Ti41—T;
Moreover, the coupling minimizing x — y|Pr(dx,dy) over M(u,i") is the distribution of
RxR Ky 1
(X, Proj¥(X,U)). Last, according to the remark after Proposition 10 in Pages and Wilbertz
2012b), when p <z 1 with n compactly supported in [z1, zy], then @' <., 7'. This can be seen
] n n pactly supp K n
using the affine interpolation on I

Tit1 — X T — X

p(xi) + <P(xz‘+1)>

Tit+1 — X5 Ti41 — T4

N—-1
P () = 1 oeanon o) (@@ + 3 Loy (@) (

i=1

of a convex function ¢ : R — R. Indeed @' is still convex and one has

- = VFx T er xr) = mvr x).
/Rso@m(dm)—/Rso(>u<d>s4¢<>n<d> /R<P()77(d)

According to the introduction in Alfonsi et al. (2020), this convex order preservation does not
generalize to higher dimensions where the minimizers are not so easy to express.
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Whatever the dimension d € Z%, for every level N > d + 1, there exists an LP-optimal dual

quantization grid I‘if and a splitting operator PrOJl‘fﬁlel (see Pages and Wilbertz, 2012b) such that

dp.v (1) = dp(u, Tpn) = | X — PrOJ?‘ffez (XDl

and PrOJlufedlel (X, U) takes each value in Fgf}v with positive probability. For more details on this dual

pIOJectlon, see Pagés and Wilbertz (2012a,b,c) where this notion has been developed and analyzed.
We will see in the examples that even in dimension one, the convex order is not preserved by optimal
dual quantization.
Notice that by Proposition 2.1(b), the inequality W} (u,v) < M} (u,v) valid for v € Ps,(R%, N)
and (3.1),
ep (1) = Wy PRY, N)) < Wy Pon(®EN) < inf  My(vops) = dpn(). (34)
I/E'PZ# (Rd,N)
We may wonder whether the last inequality is an equality. Combining the tightness of any sequence
of probability measures in P> #(Rd, N) minimizing the W)-distance to u deduced from the inequality

Vv € P(RY), /Rd |z|Pr(de) < 2P~1 (/Rd |z|Pu(dx) + Wﬁ(u,”)) ;

the closedness of PZ#(Rd, N) for the weak convergence topology and the lower semi-continuity of
the Wasserstein distance for this topology (see for instance Remark 6.12 p.97 Villani, 2009), we
obtain the existence of a W,-projection fi of u on P>, (R4 N). The last inequality in (3.4) is an
equality iff the set

{rePum switun = [ lv—sPataoan)|

of Wy-optimal couplings between p and some W)-projection fi of p on PZM(Rd,N ) intersects
M(u, ). Moreover, fi is then the distribution of an LP-optimal dual N-quantization of p. But
there is no reason why the intersection should be non-empty. We also may wonder whether, by a
somewhat naive symmetry with the situation described in Proposition 2.1(b) for the Voronoi quan-
tization, the distribution of an LP-optimal dual N-quantization of u comc1des with a W),-projection
fi of won P>, (RY, N). This property holds when p is the uniform distribution on the interval [0, 1]
(nevertheless W,(U[0, 1], P>y4(0,1) (R% N)) < d, n(U[0,1])) but is not true in general as proved in
the examples below.
Note that, in the quadratic case p = 2, for v € P>, (R%, N), since M3 (u,v = Jpu ly|?v

fRd || pu(dx),
dan(? = _inf [ yPuldy) = [ afuld) (3.5)

I/E’PZLL(RCI,N
Proposition 3.1. In the quadratic case p = 2, any optimal dual quantization grid Fge}\, remains
optimal for each probability measure 1 such that p <cpz N <cve tn where fin denotes the distribution

of PI‘OJFdel (X,0).

Proof: Let n be such that p <cyz 1 <cvw fin. Since inf,cp_ (ra Jga lyl?v(dy) is attained for
v =[in, 80 is inf ep_ (ran) Jga [y[?v(dy). Therefore, (3.5) written with 7 replacing p implies that

dan(? = [ Pintdy) = [ laPn(da) = M3 ji).

With the definition of da(n, Fgf]l\,), we deduce that do n(n)? > da(n, FngZ\,)Q. Therefore Fgf}v is an
optimal dual quadratic quantization grid for 7. O
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In the next examples, after revisiting the optimal primal and dual quantizers of the uniform law
on the interval [0, 1] in terms of Wasserstein projections, we check that, in dimension d = 1, optimal
dual quantization of two distributions does not necessarily preserve the convex order whereas dual
quantizations using a common grid does. We last illustrate that the distribution of an LP-optimal
dual N-quantization of u and its Wy-projection on Ps,(R%, N) may differ.

Examples. (a) Projections of u = U[0,1]. For two real numbers a < b, let U[a,b] denote

the uniform distribution on [a, b] with density &() with respect to the Lebesgue measure. We
consider the approximation of u by dlstrlbutlons in ’P(R, N). A generic element of P(R, N) writes

N
VN = Zpkéxk
k=1

with 21 < 2o < ... < ax and (p1,...,pn) € [0,1]V satisfying Z]k,vzlpk = 1. We will consider
. . - _ 1N -1 1 N-1 1
the particular choices iy = + > i—; 521;&1 and iy = 2(N_1)(50 + N1 Dk 51@:11 + mél of

the respective distributions of the optimal primal and dual quantizations of g on N points. For
p > 1, let us give a direct proof that fiy is the Wy-projection of U[0, 1] on P(R, N) (consequence of
Proposition 2.1(b)) and check that jiy is the Wy-projection of U[0, 1] on Pxy(o,1(R, V). The image
of 1 by (0,1) 3 u— F,, Mu) — u is equal to

N = pild[r1 — p1,x1] + palh[z2 — (p1 +p2), 22 — 1] + ... +pnU[zNy — L,zny — (1 + ... + PN—1)]-

If vy = iy (resp. vy = fiy) then ny =y = U[fﬁ, ﬁ] (resp. Ny = NN = U[fm, m])

Since ny = N 1[ ]( x)dx and ny has a density with respect to the Lebesgue measure with values
2N’2N

in {0,1,2,..., N}, (ny —7An) " is supported on the complement of (5% 57] where (fn — nn)t s
supported. Since both measures share the same mass, we deduce that for p > 1,

el o = i) () = [ ol o = ) o) e [ JaPate) > [ JaPiyds).
Using that in dimension d = 1, the comonotonous coupling is W),-optimal, we conclude that

o € PUEN), WU, vw) = [ laPantds) 2 [ [aPiy(de) = W0, 1, 0),
R R

i+ 7] (which is clearly

equivalent to Ny = 1N), then foreach k € {1,...,N}, 5% <z — (p1 +. +pk) and xp — (p1+...+

Pr—1) < 2N so that p,, < . With the normahsatlon we deduce that p, = for eachl e {1,...,N},

which plugged in the two last inequalities implies that z; = 2’“ L for each ke {l,...,N} so that

vy = fin. Therefore, for all p > 1, iy is the W),-projection ofU[O 1] on P(R, N) and

with strict inequality unless ny = 7y. When ny is supported on [—

1/p
W 10,11 PR, N)) = W20, 1) = ([ fePintan) ) = s

If vy >cpe U0, 1], then 21 < 0 and 2y > 1 so that [x1 —p1, z1]N[zy —1, 28y — (p1+.. . +pN-1)] C
{0} and ny has a density with respect to the Lebesgue measure with values in {0,1,..., N — 1}.
By repeating the previous argument with 7 replaced by 77, we obtain that

YN € Poypo, (R, N), WpU[0,1],vn) = / [Py (dx) > / [P (d) = WP U0, 1], fin),
R R

with strict inequality unless ny = 7y.

When vy >0 U[0,1] and ny is supported on [— 5 L

3(N—1)’ 2(N—1)
NN = 7N ), then for eachkre {1,. N} ) <zr—(p1+...+pr) and xp — (p1+ ...+ pr—1) <

| (which is clearly equivalent to

2(N1_ 7y SO that pp < 1 and with the remforced inequalities 1 < 0 and xnx > 1 due to the convex
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order, p1 < ( =) and py < ( —y- With the normalisation, we deduce that p; = py = m
and pp = N—l for each ¢ € {2,..., N — 1}, which plugged in the two (reinforced) inequalities implies
that 1 =0, zp = % for each k: €{2,...,N — 1} and x; = 1 so that vy = finy. Therefore, for all
p > 1, fin is the Wy-projection of U0, 1] on Psy01)(R, V) and

1/p 1
Wy U0, 1], Pyo,0 (R, N)) = Wy (U[0, 1], fiv) = (/R |xpﬁN(dx)) T2+ 1)/P(N - 1)

= <(p+ 1>2<p+2>>1/pN1—1

= d, n(U[0,1]).

Notice that when vy >¢p. U[0,1], then the measures (ny — 7)™ supported on [—m, m]c
and (fy — nn)* supported on [—m, m] share the same mass and barycenter so that for
each convex function ¢ : R = R, [ o(z)(ny —in) 1 (dz) > [ o(@)(n —nn) T (dz) and gy >cve -
(b) Optimal dual quantization does not preserve the convex order. The probability
distribution ¢[0, 1] is smaller in the convex order than its dual quantization pe := léo—}— %52 —i—%(; il +
115(5 8 + 3 (53 + (51 on the grid {0, . 15, 15, . 1} Note that ug is not comparable for the convex

order with the projection fig = 1—050 + 3 (6% + 6% + 6% + 5%> + 1—061 of U[0,1] on Psy01)(R, 6).
Indeed, one checks that

po=3 (25 * i‘;) +3 (é5 R U iﬁ) +3 <§5 + ?)
o= (i% 50+ i5> +3 (35 + §5> +3 Cﬁ +5b1+ 15>
with %50 + %5% > s %50 + %5% + %5% and %5; + %51 > e %5% + %5% + 351
whereas éég + %(5% + %5% + %5% <ecvr %5% + %6%

Hence [ o(x)pe(dz) > [p o(@)fic(dz) (resp. [po(x)pus(dr) < [ e(x)is(dr)) when the convex
function ¢ : R — R is strictly convex on [0, Z] and affine on [2,1] (resp. affine on [0, 2], strictly
convex on [2, 2] and affine on [2,1]). Since yg is clearly equal to its LP-optimal dual 6-quantization,

this shows that the convex order is not preserved by optimal dual quantization.

(c) Optimal dual quantization does not coincide with Ws-projection. Let us finally check
on the example p(dx) = 2r1 ) (7)dz that the optimal quadratic dual quantization of p on N =3
points does not coincide with the Wa-projection i of u on P, (R% 3). We look for v € P>, (R, 3)
minimizing either [ y?v(dy) to compute the law of the optimal quadratic dual quantization or
W2(u,v) to compute fi. Since d = 1, W2(u,v) is equal to the integral fol(Fu_l(u) — F7 Y (u))%du
of the squared difference between the quantile functions of y and v. For the first criterion, we are
going to check that it is equivalent to minimize over the following parametric subset of P, (R, 3)

{vu(dy) = géo(dy) + H?)\/%ﬁ(dy) + 2_\f_uél(dy) u € (0, 1)} -
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3
dos(p)? = dg(,u,Fgé = [yPr3(dy) — [ 2Pp(de) = § — 35/2 On the other hand,

, u/3 ) (14/u+u) /3
wwmm—A m—ﬁ»m+/

u/3
1y ug/g_\/a+4(1_\f)( +\f+U)3/2+u
6 3 35/2
One easily checks that %Wg(u, Vu)lu=1/3 > 0 and that W3 (u,vy) is minimal for u ~ 0.326 so that

fi # vi/3. Moreover, since P>M(Fge§) = {vvi/3 + (1 —v)yo 1 v € [0, 1]} contains vy 3,
W3 (1, P>, (T99)) < W3, v13) = 0.0199758 < 0.0383666 =~ da(p, T5%)°.

Let us finally check that inf,ep_  (r3) [ ¥°7(dy) > infue(o,1) [z ¥*vu(dy) and that v, € P>, (R, 3)
for each u € (0,1). First note that for each u € (0,1), the mean 2/3 of v, is equal to the one of
. According to the characterization of the convex order in terms of potential functions, we have
V Zee o iff [ av(de) = g and

Vr € R, ¢, (x) ::/

—00

One has [ y?v,(dy) = 24082 /u 41 the infimum is attained for u = 1/3 so that Fgfé = {0, %, 1},

1
Vi ordo+ [ (1 — /o) dv
(1+v/utu)/3

T

x3
(=00l = 9,(0) = 1oy @ + 1o (o 3) - G0

If v weights at most three points, then the convex function ¢, is piecewise affine with at most three
changes of slope, the left-most slope being equal to 0 and the right-most equal to 1. Therefore if
v € P>u(R,3) then v({a}) > 0 for some a < 0 and v({b}) > 0 for some b > 1. If, moreover,
v({y/u}) > 0 for some u € (0,1), then since the slope of ¢, is constant on (0,+/u) and on (y/u, 1),
for all z € R,

ud? oz w2 1-z 1 z—\u 2
= Spl/u(m)7

so that, by convexity of the square function, [ y2u(dy) > I y?vu(dy). If, on the other hand,
v((0,1)) = 0, then ¢, has a constant slope on (0,1) and we even have

/y v(dy) > SUP)/Z/ vu(dy).

u€(0,1

Therefore inf,ep_ (v 3) Jz yiu(dy) > infy,e(0,1) fRy vy (dy). To conclude that this inequality is an
equality, it is enough to check that v, € P>,(R,3) for each v € (0,1). This follows from the
inequality ¢, (z) > ¢,(x) valid for all 2z € R and all u € [0,1] since the graph of the convex
function ¢, is under its chords.

We finally recall the main result established by Pages and Wilbertz (2018) on the convergence
rate of dual quantization for bounded random vectors.

Theorem 3.2 (Pierce Lemma for dual quantization). Let p > 1 and n > 0. For every dimension
d > 1, there exists a real constant C’éleép > 0 such that, for every random vector X : (9, A,P) — R¢,
°(P)-bounded,

~ _1
dp,N(X) < Cg,ii,pN i0p4n(X) (3.7)

where, for every r >0, 0,(X) = inf,cpa || X — al|, < +o0.

Remark. Note that this claim and the one in Theorem 2.3 remain true if the support of P, does
not span R? as an affine space, but A, with dimension d’ < d. However, if such is the case, then
(2.7) and (3.7) hold with factor N~%/¢ so that N~/¢ is suboptimal.
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4. Quantized approximations of martingale couplings

Let v € P(R?) be compactly supported and p € P2(R%). For K, N > 1, let #¥ be an LP-optimal
dual K-quantization of v with grid I‘gf}l( and let 4"V be a quadratic optimal primal N-quantization of
p with grid I'y . The two quantization errors correspond to martingale quasi-metrics (in comparison
to Wasserstein metrics (1.2), only martingale couplings are considered in the minimization defining
(1.3)) between v (resp. jiy) and 7% (resp. p):

& o (v) = M(v, 7) and &3 (1) = M3 (3™, o). (4.1)

In contrast with dual quantization where the martingale quasi-metric appears from the very be-
ginning of the construction, the optimization in primal quantization relies on Wasserstein metrics.
But in the quadratic p = 2 case, the stationarity property (2.3) satisfied at optimality implies that
Wa(fin, p) = Ma(fin, 1)

Let U ~ U[0,1] and ¢,(dy) denote the law of Proj?%ﬁ;{ (y,U) when y € Conv(f‘gf}() and 6,(dy)

otherwise. When p <., v, we are now going to exploit ,(4.1) to approximate any m € M(u,v) by

7K (d#, dy) = /

(z,y)ERExRY 5Projf2 N(x)(di.)ﬂ-(dx’ dy)ay(dy).- (4.2)
x,Y)E X s

For (X,Y) ~ 7 independent from the random variable U uniformly distributed on [0, 1], the random
vector (Projp,  (X), XY, Projf‘fffd (Y, U)) is distributed according to (5pr0jr2 L@ (dz)m(dx, dy)qy,(dy)
’ p, K 5
and therefore (Projr, . (X), ProdeZ{e}{(Y, U)) is distributed according to 7#%:X. Therefore, the first
’ P
marginal of 7V is the distribution 4" of Projr, ,(X) and its second marginal is the law 5 of

Projlcf?fel (Y,U). Moreover, using that U is independent from (X,Y) and (3.2) for the second equal-
p, K
ity, then that 7 is a martingale coupling for the fourth equality and the stationarity property (2.3)
for the last one, we obtain
E[Projfﬂ%lelz( (Y, U))[Projp,  (X)] = E[E[Proji'f%le;( Y, U)X, Y)][Projr, \ (X)] = E[Y|Projr, , (X)]

= E[E[Y[X][Projr, , (X)] = E[X[Projr, , (X)] = Projr,  (X)
so that VK € M(aN, o).

Theorem 4.1 (Convergence rate for martingale couplings). Let p > 1, p,v € P(R?) be such that
U <evw v with v compactly supported and for N, K > 1, iV be a quadratic optimal primal N -
quantization of p and P an LP-optimal dual K-quantization of v. Then, for each © € M(u,v),
the couplings 75 € M(aN,0%) defined in (4.2) are such that

(p—2)

CN—P/d 427 dgK(y) for C < oo not depending on N, K if 2 <p<2-+d

Wp(ﬁ'N’K 7'[') < {eg,N(lU’) +d§,K(V) pr < 2
D ) >

Moreover, when p > 2,
W3 (70K ) < e n (i) + 5 e (1)
Last, for any p > 1,

lim sup AW, (75 1) < d, x (v).
N—o0

According to Theorems 2.3 and 3.2, supy>; NYdey n(p) < 0o and SUPfr>1 KYad, ¢ (v) < oo.
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Proof: We have

_ X _12\P/2 A _
Wh(ENE, ) < / (15— 2 + y = 512" broje, (o) (d)7(dr, dy)g, (dg)
R4 xRIxRI x R4 ’

< 2% / <|x—x|p+|y—y|p>6pmjr (o (di)(de, dy)q, (d7)
RIxRIxRI xR

(r=2)" % .
=253 [ [Proir, ,(a) ~aV(do)

(=2t .
3 /Rd ‘PI“O(]FQ’N(.T) —zPu(dz) + 2

HY PrOJFdel (Y, U)‘ }

=2 de( v).

When p < 2, [ [Projp,  (z) = oPu(dz) < (fua [Projr, , (@) —:c|2u<dx>)”/ "= e (). On the
other hand, when 2 < p < 2+4d, since p is compactly supported, we may apply the L?— LP- distortion
mismatch Theorem 4.3 in Pages and Sagna (2018) to obtain that supys NP/ [, [Projp, , (2) —
z|Pu(dx) < oo, which completes the proof of the first inequality. In a similar way, when p > 2

Wi m < [ (1& = 22 +1y = 31°) ey, , (o) (dB)a(d) 2 (dy)a, ()
RdxRd x R4 xR 2N

2
=3 n(u) +E “Y PI"OJ%leez (Y, U)‘ } <esn(p)+ HY Proﬁ%le, (Y,U)

=3 n(p) +dp N (V).

’p] 2/p

Now, let
K (da, dy) = / r(de, dy)q (d7) = / (), (dy)gy (d7).
yeRd yER4

We have 75 € M(u, #%). Using the identity coupling u(dx)d,(d#) between p and p in the definition
of the adapted Wasserstein distance then the coupling 7, (dy)q,(dy) between #X (dy) and m,(dy) in
the definition of the usual Wasserstein distance, we obtain that

AW;(#K, ) < Wp( w(dx) /]Rd /]Rd/ ]PrOJFdel y,u) — y|Pdur, (dy)pu(dx)

/R [ o= Proitt (v () = EIY ~ Projty (v U)F = ).

With the triangle inequality, we deduce that to check the last statement in the theorem, it is enough
to prove that limy AW, (7K #K) = 0.

To do so, we denote by (xz)1SZS727N the points in the grid I's y with cardinality vo v < N and
by (y5)1< j<rel the points in the grid I‘gffl{ with cardinality ygfll{ < K (as soon as the support of
i (resp. v) is not restricted to less than N (resp. K) points, y2 5 = N (resp. 'ygell( = K)). Let

Ci={zeRd: |z—x < MiNy<g<qy v ki [T —Tkl}, 4 € {1,...,72 5}, denote the open Voronoi cells
induced by I'y . Using (2.2) for the equality, we have

AWP(ENE 5K < / (1 = al? + W 75 pregy, (o) (d)p(c)
RI x R4
’YQN

= Z/ (|lws — 2P + WE(FNHK 75 u(da). (4.3)
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el

d
i ' q;(x)dy, (dyj) for some measurable functions ¢; with

Since I?K(Fge[l() =1, p(dz) a.e. 7 (dy) = Zj:

del
values in [0, 1] and such that Zzp:f gj = 1. Moreover, for i € {1,...,v N},

del

1 X
&3 2 [, wOmtaein,

Ty (d) =

Ty

1

As a consequence, we have

del

B R S O
V) = 3l - o [ aomas).

With Theorem 6.15 p.103 Villani (2009), we deduce that

WE(ENE, 7#K) =201 max |y, [PTV (700K, #5)

R

1< <
ok 1
< 2P71 max  |y,|P q-x/ q; (€ dﬁ‘
lgjgvg%’ il ]Z; i () w(Co) Je, 3 (§)p(dE)

Plugging this inequality in (4.3), we deduce that

Y2,N

AWP(ENHE 7Y <y / |z — x|Pp(da)
i=1 /Ci

vﬁfkw,zv
p—1 P ) _; ) d ' d 4.4
2 ey 22/0 (o) - /Ciqg(é)u( &)| ulda).  (4.4)

Using Jensen’s inequality in the case p € [1,2], the L? — LP- distortion mismatch Theorem 4.3 Pagés
and Sagna (2018) when 2 < p < 2 + d and Holder’s inequality when p > 2 + d, we get

Y2,N eg,N(H) if pe[1,2]

> [ lei-aPutds)= [ [Proir, ,(e)-aPu(ds) < { ON 712 <p <2+ |
i=17Ci R ’ 2P=3V0 max |y [P%e3 y(p) if p>2+d
1< <ol ’

where the constant C' does not depend on N. With Theorem 2.3, we deduce that the first term in
the right-hand side of (4.4) goes to 0 as N — oo. Since [ |¢;(x)|n(dz) < 1, by Theorem 3.14 p.69
Rudin (1987), there exists a sequence (q;‘)nez . of continuous and compactly supported functions
on R? such that lim,, [pq ¢} (z) — g;(x)|pu(dx) = 0. Since g; takes its values in the interval [0, 1], we
suppose that so do the functions ¢} up to replacing them by 0V ¢7 A 1 which affects neither the
continuity and compact support property nor the convergence. We have

V2,N 1 Yo.N ) 1 )
;/c o) - M(C)/C Qj(f)“(dg)'“(dx) - ;/C A Rron /C g (f)u(dé)'u(d:p)
V2,N . 1 )
<X [ |- g - [ wo-g ()l )
2N Y2,N

<3 [ ) g + 3| [ 00 -gemue| <2 [ o6 - gk,
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where the right-hand side goes to 0 as n — 400. We deduce that to prove that the second
term in the right—hand side of (4.4) goes to 0 as N — +o0, it is enough to check that so does

WNfC () — (101-) fci q;?(éf)ﬂ(dﬁ)‘u(dx) for any fixed n € Z,. For X ~ p and XV =
PI‘OJFQVN(X)7
Y2,N
: . 1 n B . - i .
> [ @) gy L, d©mde)|tda) = E g0 ~ Elgi 01|

<82 | (00~ Bl o1 | < B (00 - (0]

where, for the last inequality, we used that the conditional expectation given XN is the best qua-
dratic approximation of a random variable by a measurable function of XN Let e > 0. Since
qj is continuous and compactly supported, this function is uniformly continuous. Since it takes
its values in the interval [0,1], we deduce that there exists > 0 such that for all z,y € R
147 (2) = 4§ (W)] < el{jo—yi<n} + Ljo—y|>n)- Therefore

A 2 N E X _ XN 2 N 2
B (400 - g (0")"] <24 p(x - XY 2 g 24 HESEH 2y b0
n n
With Theorem 2.3, we deduce that the left-hand side goes to 0 as N — 400 and conclude that so
does AW, (7N K, K) O

5. Application to weak martingale optimal transport problems

We endow P< x Pi(RY) = {(u,v): p,v € P1(R?) and p <eyp v} with the metric Wi (p, 1) +
Wi (v, 7) between (u,v) and (ji,7) and R? x P;(R?) with the metric obtained as the sum of the
Euclidean distance on R? and the Wasserstein distance W; on Pi(R?). For a cost function C :
R? x Pl(Rd) — R Borel measurable, the Weak Martingale Optimal Transport problem introduced
in Backhoff-Veraguas and Pammer (2019) consists in computing for (u,v) € P< x Py (R?)

V(p,v)= inf C(z, 7y ) p(dx) (5.1)
TEM(p,v) JRA

and the minimal couplings m € M (u,v). For the choice

~ if dy) =
) = {C(fﬂ,n) i f]gd yn(dy) =z 7 (5.2)
~+o0 otherwise
it can be seen as a particular case of the Weak Optimal Transport problem
V(p,v) = inf C(z, 7z )p(dzx) for (u,v) € Pi(RY) x Pi(RY) (5.3)
T€P(p,v) JRA

introduced by Gozlan et al. (2017) and studied by Bmkhoﬂ Veraguas et al. (2019). Indeed, when
(n,v) € 77< X Pl(Rd) then for each S P(,u, V) \ M(p,v), [ga C(x, mz)pu(dz) = +oo and for each
e M(uv), [pa Cla,m)u = [a C(z, 7)) p(dz), Wthh implies that V(u,v) = V (i, v).

The martlngale optimal transport problem corresponds to the particular case of the WMOT
problem when the cost function is linear in the measure component : C(x,n) = [gpa c(z,y)n(dy) for
a Borel measurable function ¢ : R? x R — R with at most linear growth in its second variable. We
will make the following assumption on the cost function C:
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(C)The cost function C' : R x P;(R%) — R is lower semi-continuous, convex in the measure
argument (for all € RY, Py (R?) > 5~ C(x,n) is convex) and such that

5 C(a,m)
b
(e.m)eRdx Py (RY) 1 + || + fRd ly[n(dy)

The existence of minimal couplings in the WMOT problem (5.1) and the lower semi-continuity
of the value function V' are deduced from Theorem 2.6 and Proposition A.12(b) Beiglbock et al.
(2021b). Theorem 2.6 Beiglbock et al. (2021h) also ensures convergence of the optimal couplings
under convergence of the value function, a property which holds in dimension d = 1 when C is
continuous.

< +00.

Proposition 5.1. Assume (C).

(i): For each (u,v) € P< x P1(RY), there em'sts T E ./\/l(,u, v), unique if C is strictly convex in
the measure argument, such that V(p,v) = [pa C( wu(dx) and (p,v) — V(p,v) is lower
semi-continuous on P< x P1(RY).

Let ((prs vk))kez, be a P< x P1(RY)-valued sequence converging to (u,v) in this space.

(ii): Let for each k € Z4, 7 be an optimal coupling for V (g, vi). If V(p,v) = limy V (p, vi),
then all the accumulation points of (7} )rez, for the weak convergence topology are minimiz-
ers for V(u,v). If C is moreover strictly convex in the measure argument, then the sequence
(7} )kez,. converges in AWy to the unique optimal coupling 7 between p and v.

(iii): If d = 1 and either C is continuous or C is continuous in its second argument and for
each Borel subset A of R, (ux(A))kez, converges to p(A) as k — +oo, then V(p,v) =
limg, V' (pu, vi).-

When (pg,vp) = (™%, 05*) with g¥* a quadratic optimal primal Ng-quantization of p and

Kk an LP-optimal dual Kj-quantization of v, then Theorem 4.1 ensures that it is possible to
approximate in AW; distance any optimal martingale coupling 7* between p and v by martingale
couplings between 1+ and 7+ and we deduce the upper-semicontinuity of the value function along
this sequence, whatever the dimension d.

Lemma 5.2. Let p > 1, p,v € P(RY) be such that p <epw v with v compactly supported and
for N, K > 1, iV be a quadratic optimal primal N-quantization of p and v an LP-optimal dual
K -quantization of v. If C' : R? x P1(RY) — R is continuous, then V(u,v) is finite. If moreover,
T > SUP,ep, (RY) % is locally bounded on R?, then

limsup V(2N 7%) < V(p,v).
N,K—0c0

If C : R? x P(R?) — R is Lipschitz continuous with constant Lip(C), then
limsup V (@, ) < V(u, v) + Lip(C)d, x (v).

N—oo

With Proposition 5.1, we easily deduce the following corollary.

Corollary 5.3. Assume (C) with the cost function C moreover continuous and let p,v, i, 0% be
as in Lemma 5.2. Then

1 N K
i Vi ) =V(p,v).

Moreover, all accumulation points as N, K — oo of sequences (mx )N,k of minimizers for

V(N o5 are minimizers for V(u,v). If C is also strictly convex in the measure argument, then

*) —
N%IE AWl(ﬂ-NKa )_07

*

where 7 s the unique optimal coupling between p and v.
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Proof of Lemma 5.2: We first suppose that C' : R? x P;(R?) — R is continuous. Let B be some
closed ball centered at the origin with sufficiently large radius so that v(B) = 1 and Pg(RY) =
{n € PRY) : n(B) = 1}. The set Pz(R?) is a compact subset of P;(R?) endowed with the
Wasserstein distance W; and therefore the continuous cost function C' is bounded on the compact
subset B x Pz(R?) of R? x P (RY). Since oV <evw pt <evw v, N (B) = u(B) = 1. Moreover for
T € P(u,v), [pame(B)u(dz) = v(B) =1 so that (z,7,) € B x Pg(R?) u(dz) a.e.. Therefore

inf Clz,m) <V(pv) < sup C(z,n)

(zm)€BXxPg(RY) (zn)€BxPg(RY)

and V' (u,v) is finite. Let € > 0. By the continuity and the growth assumption satisfied by the cost
function C and the compactness of B x Pg(R%), there exists o > 0 such that

V(z,n,%,7) € B x Pg(RY) x R? x P1(RY) s.t. |v — &+ Wi(n,7) < o, |C(z,n) — C(&,7)| <e
_ _ 1
and V(z,n,Z,7) € B X PB(Rd) x B x 731(Rd)7 |C(z,n)| + |C(z,7)| < o (1 +/ |y[ﬁ(dy)> )
d

Let m € M(u, v) be such that [pq C(z, mp)pu(dx) < V(p,v)+e. By Theorem 1.1, there exists #¥-5 €
M, 75 such that limsupy_, o, AW, (7VE 1) < dp k (V) and impy 00 AW (T NE 1) =0. Let
mMNE € P(u, i™V) be an optimal coupling for AW, (7, 7V-K). We have

Cla,m)u(de) — [ C(a, 725N (dz) </ Clz,my) — C(i,ﬁé\f,l()‘ m™E (dz, di)
Re R R xRd
<e+ /]Rded Clx,my) — C(@,ﬁgvK)‘ 1{|I—i|+W1(7rz,7'r£]’K)2a}m K (d, d7)
N.K -
=€ty /RdXRd ( / |y‘7r~ dy ) {lz— $|+W1(7Fx,7_r]-VK)>a}m (d.’l?,d.’l?) (54)

N,K)

By the Markov inequality, K(dz,dz) < % Moreover,

Jrixra 1{\z—5}\+W1(7TI7T’r;V’K)2a}
since

/ A g (dryd) = [ )i ) = [ A dy) = o (),
(z,7)ERIXRE zeRd zeRd
there is a Markov kernel g, (dz, dZ) such that ﬁg’K(dy)mN’K(dJJ, dz) = % (dy)q,(dz, d¥) and

_N.K N,K o K
Lo L @, i, o v g™ ) = [ 11305 ()

where the function 3(y) := [paypa 1{|a:—az|+W1(m,ﬁé\”K)za}qﬂ(dm’ dz) is [0, 1]-valued and such that

AW, (m, 7K
K _ N,K - (7,
LW dy) = /R%d Lo Wi (0 2oy M (42, d8) S =2 =

Since imy g 00 AW (T, V) = 0 = limg oo Wi(v, ), with Lemma 3.1 (b) Beiglbock et al.
(2021a), we deduce that the second term in the right-hand side of (5.4) tends to 0 as N, K — oc.
Hence

limsup V (i, %) < limsup | C(, ﬁé\f’K)ﬂN(dJE)
N,K—o0 N,K—oo JRA

< C(z, 7y )p(dx) + lim sup
Rd N,K—00

<V(u,v)+ 2e.

Cla, mp)p(de) — [ CO(F,7
Ré Ré

Since ¢ is arbitrary, we conclude that imsupy g, VN, o8 < V(u,v).
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We now suppose that C' : R? x P;(R%) — R is Lipschitz continuous with constant Lip(C). We

then have
Cla, m)p(de) — | C(&, 72N (d)| < / C(x,m5) — C(&, 7 ™) mN* (dw, dit)
R4 R4 Re xRd
< Lip(C)/ (|$ — |+ W (Wx’ﬁév’K)> m(dz, dF) = Lip(C) AW (m, 7K.
Rax R4
Therefore

VN, ") < | 0@ dE) < | Ole,mou(de) + Lip(C)AW, (r, 7K

Rd * ~ JRd

< V(p,v) + & + Lip(C) AW, (7, 7V,

Since ¢ is arbitrary, we deduce that limsupy_,. V (2", 7%) < V (i, v) + Lip(C)dp k (v). O
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