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Abstract. For a family of multidimensional gambler models we provide formulas for the winning
probabilities in terms of parameters of the system and for the distribution of a game duration in
terms of eigenvalues of underlying one-dimensional games. These formulas were known for the
one-dimensional case – initially proofs were purely analytical, recently probabilistic constructions
have been given. Concerning the game duration, in many cases our approach yields sample-path
constructions. We heavily exploit intertwining between (not necessarily) stochastic matrices (for
game duration results), a notion of Siegmund duality (for winning/ruin probabilities), and a notion
of Kronecker products.

1. Introduction

In the one-dimensional gambler’s ruin problem two players start a game with the total amount of,
say, N dollars and with initial values k and N − k. At each step they flip the coin (not necessarily
unbiased) to decide who wins a dollar. The game is over when one of them goes bankrupt. There
are some fundamental questions related to this process.

Q1 Starting with i dollars, what is the probability of winning?
Q2 Starting with i dollars, what is the distribution (or the structure) of the game duration (i.e.,

the absorption time)? Or, what is the distribution (or the structure) of the game duration
conditioned on winning/losing?

In this paper we will answer above questions for a wide class of multidimensional generalizations of
gambler’s ruin problem. The proofs will be probabilistic in most cases, utilizing either Siegmund
duality or intertwining between chains.

Generalized multidimensional gambler models. In Lorek (2017) we considered the following general-
ization. There is one player (referred to “we”) playing with d ≥ 1 other players. Our initial assets
are (i1, . . . , id) and assets of consecutive players are (N1 − i1, . . . , Nd − id) (Nj ≥ 1 is the total
amount of assets with player j). Then, with probability pj(ij) we win one dollar with player j and
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with probability qj(ij) we lose it. With the remaining probability 1−
∑d

k=1(pk(ij) + qj(ik)) we do
nothing (i.e., ties are also possible). Once we win completely with player j (i.e., ij = Nj) we do not
play with him/her anymore. We lose the whole game if we lose with at least one player, i.e., when
ij = 0 for some j = 1, . . . , d. The game can be described more formally as a Markov chain Z with
two absorbing states. The state space is E = {(i1, . . . , id) : 1 ≤ ij ≤ Nj , 1 ≤ j ≤ d} ∪ {−∞} (where
−∞ means we lose). For a convenience denote pj(Nj) = qj(Nj) = 0, j = 1, . . . , d. Assume that for
all ij ∈ {1, . . . , Nj}, j ∈ {1, . . . , d} we have pj(ij) > 0, qj(ij) > 0 and

∑d
k=1(pk(ik) + qk(ik)) ≤ 1.

With some abuse of notation, we will sometimes write (i′1, . . . , i
′
d) = −∞. The transitions of the

described chain are the following:

PZ((i1, . . . , id), (i
′
1, . . . , i

′
d)) =

pj(ij) if i′j = ij + 1, i′k = ik, k 6= j,

qj(ij) if i′j = ij − 1, i′k = ik, k 6= j,∑
j:ij=1 qj(1) if (i′1, . . . , i

′
d) = −∞,

1−
∑d

k=1(pk(ik) + qk(ik)) if i′j = ij , 1 ≤ j ≤ d,
1 if (i1, . . . , id) = (i′1, . . . , i

′
d) = −∞.

(1.1)

The chain has two absorbing states: (N1, . . . , Nd) (we win) and −∞ (we lose). Let

ρ((i1, . . . , id)) = P (τ(N1,...,Nd) < τ−∞|Z0 = (i1, . . . , id)), (1.2)

where τ(i′1,...,i′d) := inf{n ≥ 0 : Zn = (i′1, . . . , i
′
d)}. Roughly speaking, ρ((i1, . . . , id)) is the probability

of winning starting at (i1, . . . , id). In Lorek (2017) we derived the formula for this probability, namely

ρ((i1, . . . , id)) =

d∏
j=1

 ij∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

)
d∏
j=1

 Nj∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

) . (1.3)

In this paper we consider a much wider class of d-dimensional games - the chain given in (1.1) is
just a special case. For example, within the class we can win/lose in one step with many players.
The multidimensional chain is constructed from a variety of one-dimensional chains using Kronecker
products. For this class:

• We give expressions for the winning probabilities and prove that it is a product of the
winning probabilities corresponding to one-dimensional games. In particular, for a subclass
of multidimensional chains, constructed from one-dimensional birth and death chains, the
winning probabilities are given in (1.3). The main tool for showing winning probabilities is
the Siegmund duality defined for partially ordered state spaces, exploiting the results from
Lorek (2018).
• We give formulas for the distributions of the absorption time. In some cases a probability
generating function is given, in other cases we show that the absorption time is equal, in
distribution, to the absorption time of another chain, which is, in a sense, a multidimensional
pure-birth chain. In many cases, the probabilistic proof is given. To show the absorption
distribution, we exploit the spectral polynomials given in Fill (2009), and their variations
considered in Gong et al. (2012), Mao and Zhang (2017).

To have a feeling on what kind of results related to absorption time we obtain, let us have a look
at Figure 1.1 (note that the caption can be fully understood once further sections are read).
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Figure 1.1. Sample transitions for the example from Section 6.3 with d = 2 and
r = 1: X∗ (left) and X̂ (right). State N = (N1, N2) is the only absorbing one in
both chains. Probabilities of staying are not depicted. If X∗ starts at (1, 1), so does
the X̂ and T ∗(1,1),N = T̂(1,1),N provided qj(1) = 0, j = 1, . . . , d. If, say, ν∗((i1, i2)) = 1

then the pgf of T ∗(i1,i2),N is a mixture of pgfs of T̂(j1,j2),N for j1 ≤ i1, j2 ≤ i2 (shaded
area).

On the left hand side of Fig. 1.1 a chain X∗ constructed from two one-dimensional birth and
death chains is presented (i-th chain has only one absorbing state Ni, i = 1, 2). The chain is
constructed in a specific way which results in the bivariate chain with independent moves (either
up, down, left or right). Its transitions are consistent with transitions of a chain given in (1.1) –
except there is just one absorbing state N = (N1, N2) (i.e., there is no −∞ state). We will show
that the time to absorption of the chain X∗ started at (i1, i2) is a mixture of times to absorption
of a pure-birth chain X̂ starting at states (i′1, i

′
2), where i′1 ≤ i1, i

′
2 ≤ i2 (shaded area on the right

hand side of Fig. 1.1). In particular, if X∗ starts in (1,1), so does the chain X̂. The chain X̂ has
also the only absorbing state N, it is pure-birth in the sense, that only up and right transitions are
allowed. The probabilities of its transitions are related to the eigenvalues of one-dimensional birth
and death chains from which X∗ was constructed.

Remark 1.1. In Lorek (2017) we considered the chain – given in (1.1) – which is constructed from d
one-dimensional birth and death chains in a very specific way. The method from this article is much
more general, we can construct a variety of multidimensional chains from given d one-dimensional
birth and death chains. It is worth mentioning, that even for the case (1.1), the proof is quite
different (from the one in Lorek (2017)).

Several variations (including multidimensional ones) of gambler’s ruin problem have been con-
sidered. Researchers usually study absorption probabilities, absorption time, or both. In Kmet
and Petkovšek (2002) authors consider a two-dimensional model (they consider two currencies) and
study the expected game duration. In Ross (2009) some multidimensional game is considered: at
each step two players are randomly chosen, these players play a regular game, all till one of the
players have all the coins. Author derives the probability that a specific player wins, the expected
number of turns in total and between two given players. In Rocha and Stern (2004) the following
multidimensional game is considered: there are n players, at each step there is one winner who
collects n − 1 coins from other players, whereas all others lose 1 coin. An asymptotic probability
for an individual ruin and dependence of ruin time are studied. In Tzioufas (2019) the multidi-
mensional case is considered, in which with equal probability a unit displacement in any direction
is possible. Moments of leaving some ball are considered. In Champagnat et al. (2018) authors
present a new probabilistic analysis of distributed algorithm re-considering a variation of a banker
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algorithm. Mathematically, it is random walk on a rectangle with specified absorbing states. The
results are generalized to the case with many players and resources.

The absorption probability of a given chain may be related to the stationary distribution of some
ergodic chain. This relation is given using the Siegmund duality, the notion introduced in Siegmund
(1976). This is also the tool we use for showing winning probabilities. Already in Lindley (1952)
similar duality between some random walks on integers was shown. It was also studied in financial
mathematics, where the probability that a dual risk process starting at some level is ruined, is equal
to the probability that the stationary queue length exceeds this level (see Asmussen and Albrecher
(2010), Asmussen and Sigman (1996)). In all these cases the Siegmund duality was defined for the
linear ordering of the state space. The existence of a Siegmund dual for a linearly ordered state
space requires stochastic monotonicity of the chain. Recently, in Lorek (2018) we provided if and
only if conditions for the existence of the Siegmund dual for partially ordered state spaces (roughly
speaking, the Möbius monotonicity is required). In this paper, we exploit this duality defined for a
coordinate-wise partial ordering.

It is worth mentioning that for one-dimensional gambler models there are several approaches
to (each having its advantages and disadvantages) study the winning probability and/or game
duration, including conditioning, difference equations (the most common approach to provide the
formula for the winning probability in the classical – i.e., the one with constant birth and death
rates – gambler’s ruin problem), generating functions and martingale-based methods (e.g., Lengyel
(2011)), path counting (e.g., Lengyel (2009)).

Absorption time. Consider a one-dimensional game corresponding to the gambler’s ruin problem.
Let N be the total amount of money. Being at a state i ∈ {2, . . . , N − 1} we can either win one
dollar with probability p(i) > 0 or lose it with probability q(i) > 0, with the remaining probability
nothing happens. Assuming p(1) > 0 and p(N) = q(N) = p(0) = q(0) = 0 the transitions are
following:

PY (i, i′) =


p(i) if i′ = i+ 1,

q(i) if i′ = i− 1,

1− (p(i) + q(i)) if i′ = i.

(1.4)

States 0 and N are absorbing. Consider two cases:

Case: q(1) = 0. Roughly speaking, if started at i ≥ 1 the chain never reaches 0 and this is actually a
birth and death chain on {1, . . . , N} with N being the only absorbing state. Define Ta,b = inf{n ≥
0 : Yn = b |Y0 = a}. A well known theorem attributed to Keilson (1979) states that the probability
generating function pgf of T1,N is the following:

pgfT1,N (u) := EuT1,N =

N−1∏
k=1

[
(1− λk)u
1− λku

]
, (1.5)

where −1 ≤ λk < 1, k = 1, . . . , N − 1 are N − 1 non-unit eigenvalues of PY . The proof was purely
analytical. Note that (1.5) corresponds to the sum of N geometric random variables, provided that
all eigenvalues are positive (which, in this case, is equivalent to the stochastic monotonicity of the
chain). For this case, Fill (2009) gave a probabilistic proof of (1.5) using strong stationary duality
and intertwinings between chains. Note that in this case (1.5) can be rephrased as:

Theorem 1.2. Let X∗ be an absorbing chain on E = {1, . . . , N} starting at 1 with the transition
matrix PX∗ given in (1.4) having positive eigenvalues λk > 0, k = 1, . . . , N . Then T ∗1,N has the same
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distribution as T̂1,N , the absorption time of X̂ on Ê = E starting at 1 with the transition matrix

PX̂(i, i′) =


1− λi if i′ = i+ 1,

λi if i′ = i,

0 otherwise.

The chain Y on {1, . . . , N} is called pure-birth if PY (i, j) = 0 for j < i. Similarly, a multidi-
mensional chain Y on E = {(i1, . . . , id) : 1 ≤ ij ≤ Nj , 1 ≤ j ≤ d} is said to be pure-birth if the
probability of decreasing any set of coordinates at one step is 0.

Simply noting that for any 1 < s < N we have T1,N = T1,s + Ts,N and that T1,s and Ts,N are
independent (see Cor. 2.1 Gong et al. (2012) for a continuous time version) we have

pgfTs,N (u) := EuTs,N =

N−1∏
k=1

[
(1− λk)u
1− λku

]
s−1∏
k=1

[
(1− λbsck )u

1− λbsck u

] , (1.6)

where λbick are the eigenvalues of the substochastic (s− 1)× (s− 1) matrix

P
bsc
Y (i, i′) =


p(i) if i′ = i+ 1, 1 ≤ i ≤ s− 2,

q(i) if i′ = i− 1, 2 ≤ i ≤ s− 1,

1− (p(i) + q(i)) if i′ = i, 1 ≤ i ≤ s− 1.

Case: q(1) > 0. In this case, authors in Gong et al. (2012) (different proof is given in Mao and
Zhang (2017)) derived formulas for pgf of Ts,N and Ts,0 (more precisely, they derived formulas for
continuous time versions), which, in discrete case, are given by

pgfTs,N (u) = EuTs,N = ρ(s)

N−1∏
k=1

[
(1− λk)u
1− λku

]
s−1∏
k=1

[
(1− λbsck )u

1− λbsck u

] , (1.7)

pgfTs,0(u) = EuTs,0 = (1− ρ(s))

N−1∏
k=1

[
(1− λk)u
1− λku

]
N−s−1∏
k=1

[
(1− λdsek )u

1− λdsek u

] ,

where ρ(s) is the probability of winning (i.e., (1.2) with d = 1, i1 = s) and λdsek are the eigenvalues
of the substochastic matrix (of the size N − s− 1)

P
dse
Y (i, i′) =


p(i) if i′ = i+ 1, s+ 1 ≤ i ≤ N − 2,

q(i) if i′ = i− 1, s+ 2 ≤ i ≤ N − 1

1− (p(i) + q(i)) if i′ = i, s+ 1 ≤ i ≤ N − 1.

In this paper we aim at presenting results similar to Theorem 1.2 and to (1.7) for a wide class of
multidimensional extensions of gambler’s ruin problem.
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2. Kronecker product and main results

To state our main results we need to recall a notion of the Kronecker product. Let A be a matrix
of size n×m. Then, for any matrix B the Kronecker product of the matrices is defined as follows:

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB
. . . . . . . . . . . . . . . . . . . . . . . . .
an1B an2B . . . anmB

 .
For square matrices A and B it is also convenient to define the Kronecker sum as:

A⊕B = A⊗ IB + IA ⊗B,

where IA (IB) is the identity matrix of the same size as A (B).
Both, product and sum, are extended as:

n⊗
i=1

Ai = (. . . ((A1 ⊗A2)⊗A3) . . .)⊗An = A1 ⊗A2 ⊗ . . .⊗An

and
n⊕
i=1

Ai = (. . . ((A1 ⊕A2)⊕A3) . . .)⊕An = A1 ⊕A2 ⊕ . . .⊕An.

Notation. For a convenience, for the given substochastic matrix P′Y on E′ = {e1, . . . , eM} by PY =
Fe0(P′Y ) we denote a stochastic matrix on E = {e0}∪E′ constructed from P′Y in the following way:

PY (ei, ej) =


P′Y (ei, ej) if ei, ej ∈ E,
1−

∑
ek∈E′ P

′
Y (ei, ek) if ei ∈ E′, ej = e0,

1 if ei = ej = e0.

0 if ei = e0, ej ∈ E.

Similarly, for a stochastic matrix PY on E = {e0}∪E′ let P′Y = F−1e0 (PY ) be a substochastic matrix
on E′ resulting from PY by removing the row and the column corresponding to the state e0.

For a Markov chain Y on E = {e1, . . . , eM} we say that A ⊆ E is a communication class if for all
e, e′ ∈ A we have Pn

Y (e, e′) > 0 for some n ≥ 0.

For a given chain Y we define Tν,e′ := inf{n ≥ 0 : Yn = e′|Y0 ∼ ν}. Slightly abusing the notation,
by Te,e′ we mean Tν,e′ with ν = δe. For E = {e1, . . . , eM} and for f : E→ R, we define a row vector
f = (f(e1), . . . , f(eM )). For Nj > 0, j = 1, . . . , d we define N = (N1, . . . , Nd).

2.1. Absorption probabilities. Before stating the result, let us provide some intuition behind it.
Assume we play with d players (i.e., we have d one-dimensional games), the winning probability
playing only with player j is given by ρj(ij), provided we started with ij dollars. Now, if we play
with all the players independently and we define that we win the whole game if we win with all the
players, lose the whole game if we lose with at least one player, then the probability of winning the
whole game is a product of probabilities i.e.,

∏d
j=1 ρj(ij) (the formula is given in (2.3) below).

However, one can ask the following question: Can we combine the games in some other way, so
that the resulting winning probability is still of a product form? For example: can we combine
d = 10 games so that at one step we can play with at most r = 5 other players? Can the rules (for
combining the games) depend on the current fortune? These type of questions (to which the answers
are yes) were the motivation for the next theorem, where a wide class of possible combinations is
allowed. The examples are provided later in Section 6.

Theorem 2.1. Fix integers d ≥ 1,m ≥ 1. For k = 1, . . . ,m let Ak ⊆ {1, . . . , d}. Assume
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• ∀(1 ≤ k ≤ m) P
Z

(k)
j

= F0(P
′
Z

(k)
j

) is a stochastic matrix corresponding to a Markov chain

Z
(k)
j on Ej = {0, 1, . . . , Nj} such that for i ∈ Ej we have

ρ
(k)
j (i) = P (τNj < τ0|Z(k)

j (0) = i) = ρj(i). (2.1)

In other words, Z(k)
j are m (k = 1, . . . ,m) chains having the same winning probability at

every state i.
• Let

R′
Z

(k)
j

=

{
P′
Z

(k)
j

if j ∈ Ak,

Ij if j /∈ Ak,

where Ij is the identity matrix of size Nj ×Nj.

• Let Bi, i = 1, . . . ,m be either
– any real numbers (i.e., Bk ∈ R) such that

∑m
k=1Bk = 1, or

– square matrices of size
∏d
j=1Nj ×

∏d
j=1Nj such that

∑m
k=1Bk = I (identity matrix of

the appropriate size)
• The matrix PZ = F−∞(PZ′) with

P′Z =
m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 (2.2)

is stochastic on E = {−∞} ∪
⊗

j≤d E′j , set E \ {{N} ∪ {−∞}} is a communication class.
Then, the winning probability (i.e., the absorption at N) of the Markov chain Z on E = {−∞} ∪
{1, . . . , N1} × . . .× {1, . . . , Nd} with the transition matrix PZ = F−∞(P′Z) is given by

ρ(i1, . . . , id) =
d∏
j=1

ρj(ij). (2.3)

The proof is postponed to Section 4.2.

Note that P
Z

(k)
j

in Theorem 2.1 are general. If we only know the winning probabilities of P
Z

(k)
j

(they cannot depend on k), then we know the winning probabilities of Z. TakingP
Z

(k)
j

corresponding

to gambler’s ruin game given in (1.4) we have:

Corollary 2.2. Let P
Z

(k)
j

for j = 1, . . . , d be the birth and death chain given in (1.4). Then, the

winning probability of PZ = F−∞(P′Z) is given by (1.3).

Proof : For P
Z

(k)
j

the winning probability is known (shown in (3.5)), it is

ρj(ij) =

ij∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

)
Nj∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

) . (2.4)

Assertion of Theorem 2.1 completes the proof. �

The chain Z can be interpreted as a d-dimensional game, with state (N1, . . . , Nd) corresponding
to winning and state −∞ corresponding to losing.
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Remark 2.3. In Lorek (2017, Theorem 2) we showed that the non-negativity of the resulting P′Z is
not required (for showing a product form formula for the winning probability of the model considered
therein) – it is only required that (in our settings) for all (i′1, . . . , i

′
d) ∈ E we have

lim
n→∞

P
′n
Z ((i′1, . . . , i

′
d), (i1, . . . , id)) = π((i1, . . . , id)),

∑
(i1,...,id)∈E

π((i1, . . . , id)) = 1.

A one-dimensional example was provided in Lorek (2017, Section 4). It is left for a future research
to check if the assertion of Theorem 2.1 holds also without the assumption of the non-negativity of
P′Z (in this paper we focused on stochastic proofs, whenever possible).

2.2. Absorption time. Let us start with some motivation. As recalled in the introduction, we have
some expressions for the absorption time of a one-dimensional birth and death chain X∗ on 1, . . . , N
with one absorbing state N . If we start at state 1, this time is expressed in terms of the eigenval-
ues of the transition matrix (formula (1.5)). Moreover, if the eigenvalues are non-negative (which
corresponds to stochastic monotonicity of the chain), we have a stochastic interpretation: its ab-
sorption time is equal to the absorption time of a pure-birth chain X̂, whose transitions involve the
aforementioned eigenvalues (formula (1.2)).

In case when we start at s > 1, this absorption time of X∗ can be expressed in terms of the
eigenvalues of the transition matrix and of the truncated substochastic transition matrix (formula
(1.6)). Using the duality-based approach given in Fill (2009), it is relatively easy to show that it
can be expressed as a mixture of absorption times of a pure-birth chain starting at s′ ≤ s. To
be more precise, the probability generating function of the absorption time of X∗ is a mixture of
probability generating functions of the absorption time of X̂. Moreover, if the mixture coefficients
are non-negative, we have stochastic interpretation (a sample-path construction) of this absorption
time.

These observations were our motivation for a multidimensional extension. Do similar results
hold then? Can we have a similar stochastic interpretation in some cases? How to construct a
multidimensional chain out of many one-dimensional birth and death chains, so that the absorption
time of the constructed chain can be somehow expressed in terms of pure-birth chains, whose
transitions involve eigenvalues of underlying birth and death chains? In the next theorem we provide
a wide class of multidimensional chains (ways of constructing such a chain from one-dimensional
birth and death chains), for which we are able to express the absorption time in the aforementioned
desired way.

Theorem 2.4. Fix integers d ≥ 1,m ≥ 1. For k = 1, . . . ,m let Ak ⊆ {1, . . . , d}. Let bi ∈ R, i =
1, . . . ,m such that

∑m
k=1 bi = 1. Let, for 1 ≤ j ≤ d, PX∗j

be the stochastic matrix corresponding
to a birth and death chain X∗j on Ej = {0, . . . , Nj} with transitions given in (1.4) with birth rates
pj(i) and death rates qj(i). Let, for 1 ≤ j ≤ d, P′X∗j = F−10 (PX∗j

) be the substochastic matrix on
E′j = {1, . . . , Nj} and

R′
X
∗(k)
j

=

{
P′X∗j

if j ∈ Ak,

Ij if j /∈ Ak,

where Ij is the identity matrix of size Nj × Nj. I.e., R′
X
∗(k)
j

is either matrix P′X∗j
or an identity

matrix. Let λ(j)1 ≤ . . . ≤ λ
(j)
Nj−1 < λ

(j)
Nj

= 1 be the eigenvalues of P′X∗j .
Assume

A1 The chains PX∗j
, j = 1, . . . , d are stochastically monotone.
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A2 The matrix PX∗ = F−∞(P′X∗) with

P′X∗ =
m∑
k=1

bk

⊗
j≤d

R′
X
∗(k)
j

 (2.5)

is a stochastic matrix on E = {−∞}∪
⊗

j≤d E′j , set E \ {{N}∪ {−∞}} is a communication
class, N = (N1, . . . , Nd).

A3 The matrix PX̂ , given below in (2.6), is non-negative.
Let X∗ be a chain with the above transition matrix PX∗. Assume its initial distribution is ν∗. The
state N is the absorbing state, denote its absorption time by T ∗ν∗,N.
Then the time to absorption T ∗ν∗,N has the following pgf

pgfT ∗
ν∗,N

(s) =
∑
ê∈E

ν̂(ê)pgf T̂ê,N(s)

 d∏
j=1

ρj(1)

 ,

where ρj(1) is the winning probability of X∗j starting at 1,

ν̂ = ν∗
⊗
j≤d

Λ−1j ,

Λj are given in (3.8) calculated for P′X∗j
and T̂ê,N is the time to absorption for the chain X̂ ∼

(δê,PX̂) with:

PX̂((i1, . . . , id), (i
′
1, . . . , i

′
d)) =

∏
j∈B

(
1− λ(j)ij

) ∑
k:B⊆Ak

bk ∏
j∈Ak\B

λ
(j)
ij

 if i′j = ij + 1,

j ∈ B ⊆ {1, . . . , d},B 6= ∅,

m∑
k=1

bk
∏
j∈Ak

λ
(j)
ij

if i′j = ijforj = 1, . . . , d,

0 otherwise.

(2.6)

We also have
∀(e ∈ E)ν∗(e) 6= 0 ⇒ ∃(e′ � e)ν̂(e′) > 0 (2.7)

Moreover, the eigenvalues of PX∗ and PX̂ are the diagonal entries of PX̂ .

Note that X̂ is a pure-birth chain. Moreover, at one step it can increase values of coordinates by
+1 on a set B such that B ⊆ Ak, for k = 1, . . . ,m.

Remark 2.5. In case bi ≥ 0, i = 1, . . . ,m (i.e., (b1, . . . , bm) is a distribution on {1, . . . ,m}), the
matrix PX∗ in assumption A2 is stochastic (thus A2 is only about E \ {{N} ∪ {−∞}} being a
communication class) and so is the matrix PX̂ given in (2.6) (i.e., A3 is fulfilled).

Remark 2.6. Note that the formula for the transitions of the resulting multidimensional chain given
in (2.5) is very similar to the formula (2.2), i.e., the one used in Theorem 2.1 (providing results for the
winning probabilities). The main difference is that in (2.2) we have some Bk’s which can be either
numbers summing up to 1 or some matrices summing up to the identity matrix, whereas in (2.5)
they must be numbers summing up to 1. Consequently, the class of the resulting multidimensional
chains constructed in Theorem 2.1 is larger than the class of the chains constructed in Theorem 2.4.



134 Paweł Lorek and Piotr Markowski

Considering initial distribution having whole mass at (1, . . . , 1) and/or all qj(1) = 0, j = 1, . . . , d
we have special cases, which we will formulate as a corollary.

Corollary 2.7. Consider the setup from Theorem 2.4.
a) Moreover, assume that qj(1) = 0 for all j = 1, . . . , d. I.e., each X∗j has actually only

one absorbing state (state 0 is not accessible). Then, N is the only absorbing state of X∗,∑
e∈E ν̂(e)=1, ρj(1) = 1, j = 1, . . . , d and we have

pgfT ∗
ν∗,N

(s) =
∑
ê∈E

ν̂(ê)pgf T̂ê,N(s).

b) Moreover, assume that both qj(1) = 0 for all j = 1, . . . , d and ν∗((1, . . . , 1)) = 1. Then
T ∗(1,...,1),N

d
= T̂(1,...,1),N, where d

= denotes the equality in the distribution.

c) Moreover, assume that ν∗((1, . . . , 1)) = 1. Then assertions of Theorem 2.4 hold with
ν̂((1, . . . , 1)) = 1 and we have

T ∗(1,...,1),N =

 T̂(1,...,1),N with probability
∏d
j=1 ρj(1),

−∞ with probability 1−
∏d
j=1 ρj(1).

Sample-path construction. It turns out that when ν̂ resulting from ν̂ = ν∗Λ−1 is a distribution
(which is always the case in, e.g., Corollary 2.7 b) and c)), we can have a sample-path construction.
I.e., for X∗ we can construct, sample path by sample path, a chain X̂, so that T ∗ν∗,N has the
distribution expressed in terms of T̂ν̂,N as stated in Theorem 2.4. The construction is analogous
to the construction given in Diaconis and Fill (1990) (paragraph 2.4) - note however that the
construction therein was between ergodic chain and its strong stationary dual chain (i.e., the chain
with one absorbing state) and the link Λ was a stochastic matrix (it can be substochastic in our
case). Having observed X∗0 = e∗0 (chosen from the distribution ν∗) we set

X̂0 = ê0 with probability
ν̂(ê0)Λ(ê0, e

∗
0)

ν∗(e∗0)
.

Then, after choosing X∗1 = e∗1, . . . , X
∗
n−1 = e∗n−1 and X̂1 = ê1, . . . , X̂n = ên we set

X̂n = ên with probability
PX̂(ên−1, ên)Λ(ên, e

∗
n)

(PX∗Λ)(ên−1, e∗n)
.

This way we have constructed the chain X̂ so that ΛPX∗ = PX̂Λ and ν∗ = ν̂Λ with the property
that X̂n = êM if and only if X∗n = e∗M .

Theorem 2.4 is actually neither an extension of (1.6) nor (1.7) to the multidimensional case,
since for one-dimensional case the formula for pgf of T ∗s,N has a different form, as examples given
in Section 6 show.

3. Tools: dualities in Markov chains

Siegmund duality and intertwinings between chains are the key ingredients of our main theorems’
proofs.

3.1. Siegmund duality. Let X be an ergodic discrete-time Markov chain with the transition matrix
PX and a finite state space E = {e1, . . . , eM} partially ordered by �. Denote its stationary distri-
bution by π. We assume that there exists a unique minimal state, say e1, and a unique maximal
state, say eM . For A ⊆ E, define PX(e, A) :=

∑
e′∈APX(e, e′) and similarly π(A) :=

∑
e∈A π(e).
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Define also {e}↑ := {e′ ∈ E : e � e′}, {e}↓ := {e′ ∈ E : e′ � e} and δ(e, e′) = 1{e = e′}. We say
that a Markov chain Z with the transition matrix PZ is the Siegmund dual of X if

∀(ei, ej ∈ E) ∀(n ≥ 0) Pn
X(ei, {ej}↓) = Pn

Z(ej , {ei}↑). (3.1)

In all non-degenerated applications, we can find the substochastic matrix P′Z fulfilling (3.1). Then
we add one extra absorbing state, say e0, and define PZ = Fe0(P′Z). Note that then PZ fulfills
(3.1) for all states different from E. This relation also implies that eM is an absorbing state in the
Siegmund dual, thus Z has two absorbing states. Taking the limits as n→∞ on both sides of (3.1),
we have

π({ej}↓) = limn→∞Pn
Z(ej , {ei}↑) = P (τeM < τe0 |Z0 = ej) = ρ(ej). (3.2)

The stationary distribution of X is related in this way to the absorption of its Siegmund dual Z.

It is convenient to define the Siegmund duality in a matrix form. Let C(ei, ej) = 1(ei � ej),
then the equality (3.1) can be expressed as

Pn
XC = C(P′ nZ )T . (3.3)

Relation (3.2) can be rewritten in a matrix form as

ρ = πC.

The inverse C−1 always exists, usually it is denoted by µ and called the Möbius function. To find
a Siegmund dual it is enough to find PZ fulfilling (3.3) with for n = 1.

Let �:=≤ be a total ordering on a finite state space E = {1, . . . ,M}. The chain Y is stochas-
tically monotone w.r.t to the total ordering if ∀i1 ≤ i2 ∀j PY (i2, {j}↓) ≤ PY (i1, {j}↓). We
have

Lemma 3.1 (Siegmund (1976)). Let X be an ergodic Markov chain on E = {1, . . . ,M} with the
transition matrix PX . The Siegmund dual Z (w.r.t. the total ordering) exists if and only if X is
stochastically monotone. In such a case PZ = F(P′Z), where

P′Z(j, i) = PX(i, {j}↓)−PX(i+ 1, {j}↓)

for i, j ∈ E (we mean PX(i+ 1, ·) = 0).

Since the proof is one line long, we present it.

Proof of Lemma 3.1: The main thing is to show that (3.1) holds for n = 1. We have

P′Z(j, i) = P′Z(j, {i}↑)−P′Z(j, {i+ 1}↑) = PX(i, {j}↓)−PX(i+ 1, {j}↓).

The latter is non-negative if and only if X is stochastically monotone. �

Let X be an ergodic birth and death chain on E = {1, . . . ,M} with the transition matrix

PX(i, i′) =


p′(i) if i′ = i+ 1,

q′(i) if i′ = i− 1,

1− (p′(i) + q′(i)) if i′ = i,

(3.4)

where q′(1) = p′(M) = 0 and p′(i) > 0, i = 1, . . . ,M − 1, q′(i) > 0, i = 2, . . . ,M . Assume that
p′(i− 1) + q′(i) ≤ 1, i = 2, . . . ,M (what is equivalent to stochastic monotonicity).

It is easily verifiable that when we rename transition probabilities: p(i) = q′(i), q(i) = p′(i − 1),
then the transitions PY defined in (1.4) are the transitions of the Siegmund dual of PX resulting
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from Lemma 3.1. From the known form of the stationary distribution of an ergodic birth and death
chain, and from relation (3.2), it follows that for PY given in (1.4) we have

ρ(s) =
∑
k≤s

π(s) =

s∑
n=1

n−1∏
r=1

(
q(r)

p(r)

)
M∑
n=1

n−1∏
r=1

(
q(r)

p(r)

) . (3.5)

3.2. Intertwinings between absorbing chains. Let Λ be any nonsingular matrix of size M ×M . We
say that matrices PX∗ and PX̂ of size M ×M are intertwined by a link Λ if

ΛPX∗ = PX̂Λ.

Similarly, we say that vectors ν̂ and ν∗ of lengths M are intertwined if

ν∗ = ν̂Λ. (3.6)

We say that a link Λ is e∗M -isolated if

Λ(ê, e∗M )

{ 6= 0 if ê = êM ,

= 0 otherwise .
(3.7)

Lemma 3.2. Let X∗ and X̂ be Markov chains on E∗ = e∗0 ∪ Ê and Ê with transition matrices PX∗

and PX̂ respectively. Moreover, assume X∗ has the initial distribution ν∗ and two absorbing states:
e∗0 and e∗M , whereas X̂ has one absorbing state êM . Assume that P′X∗ = F−1e∗0

(PX∗) and PX̂ are
intertwined via an e∗M -isolated link Λ. Let ν̂ = ν∗Λ−1. Then we have

pgfT ∗
ν∗,e∗

M

(s) = Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)pgf T̂ê,êM
(s).

Proof :

P (T ∗ν∗,e∗M
≤ t) = P (X∗(t) = e∗M ) =

∑
e∗∈E∗\{e∗0}

ν∗(e∗)Pt
X∗(e

∗, e∗M )

=
∑
ê∈E

∑
e∗∈E∗\{e∗0}

ν̂(ê)Λ(ê, e∗)Pt
X∗(e

∗, e∗M )

=
∑
ê∈E

∑
ê2∈Ê

ν̂(ê)Pt
X̂

(ê, ê2)Λ(ê2, e
∗
M )

= Λ(êM , e
∗
M )
∑
ê∈E

ν̂(ê)Pt
X̂

(ê, êM ).

Now, for pgf we have:
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pgfT ∗
ν∗,e∗

M

(s) =

∞∑
k=0

P (T ∗ν∗,e∗M
= k)sk =

∞∑
k=0

(
P (T ∗ν∗,e∗M

≤ k)− P (T ∗ν∗,e∗M
≤ k − 1)

)
sk

= Λ(êM , e
∗
M )

∞∑
k=0

∑
ê∈Ê

ν̂(ê)Pk
X̂

(ê, êM )−
∑
ê∈Ê

ν̂(ê)Pk−1
X̂

(ê, êM )

 sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)

∞∑
k=0

(
Pk
X̂

(ê, êM )−Pk−1
X̂

(ê, êM )
)
sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)
∞∑
k=0

(
P (T̂ê,êM ≤ k)− P (T̂ê,êM ≤ k − 1)

)
sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)

∞∑
k=0

P (T̂ê,êM = k)sk = Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)pgf T̂ê,êM
(s).

�

Corollary 3.3. Let assumptions of Lemma 3.2 hold and, in addition, let ν̂ be a distribution. Then,
we have

T ∗ν∗,e∗M
= Λ(êM , e

∗
M )T̂ν̂,êM .

From Fill (2009) we can deduce the following lemma.

Lemma 3.4. Let X∗ be a birth and death chain on E∗ = {0, . . . ,M} with the transition matrix PX∗

given in (1.4) with two absorbing states: 0 and M . Let P′X∗ = F−10 (PX∗). Assume the eigenvalues
of P′X∗ are positive, denote them by 0 < λ1 < . . . < λM = 1.
Define Q1 := I and

Qk :=
(P′X∗ − λ1I) · · · (P′X∗ − λk−1I)

(1− λ1) · · · (1− λk−1)
, k = 2, . . . ,M

Let Λ be the lower triangular square matrix of size M ×M defined as

Λ(k, ·) = Qk(1, ·), k = 1, . . . ,M. (3.8)

Then, P′X∗ and PX̂ are intertwined by the link Λ, where

PX̂(i, i′) =

 1− λi if i′ = i+ 1,
λi if i′ = i,
0 otherwise.

(3.9)

is a matrix of size M ×M .

Note that Lemma 3.4 is similar to Theorem 4.2 in Fill (2009), the difference is that therein Λ
is a stochastic matrix, whereas in Lemma 3.4 it can be substochastic (it is strictly substochastic if
q(0) > 0). An almost identical Λ was considered in Gong et al. (2012), their Proposition 3.3 yields:

Lemma 3.5.
• The matrices Qk, 1, . . . ,M are non-negative and substochastic.
• The matrix Λ is non-negative and substochastic, it is lower triangular and

Λ(1, 1) = 1, Λ(M,M) = ρ(1),

thus Λ is nonsingular.
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Remark 3.6. Note that in case X∗ has no transition to 0, i.e., q(1) = 0, it is actually a chain
on {1, . . . ,M} and P′X∗ = F−10 (PX∗) is a stochastic matrix. Then Λ is a stochastic matrix and
Λ(M,M) = 1.

4. Proofs

4.1. Properties of the Kronecker product. In this section we recall some useful properties of the
Kronecker product and formulate a lemma relating eigenvectors and eigenvalues of some combination
of Kronecker products.

We will exploit the following properties
• bilinearity:

A⊗ (B + C) = A⊗B + A⊗C, (P1)
• mixed product:

(A⊗B)(C⊗D) = (AC)⊗ (BD), (P2)
• inverse and transposition:

(A⊗B)−1 = (A)−1 ⊗ (B)−1, (P3)

(A⊗B)T = (A)T ⊗ (B)T . (P4)

• eigenvalue and eigenvector:

having eigenvalues αj with corresponding left eigenvectors aj for each
matrix Aj , j ≤ n,we note that

∑
j≤n αj with

⊗
j≤n aj and

∏
j≤n αj

with
⊗

j≤n aj are the eigenvalue and the left eigenvector of A =
⊕

j≤nAj

and A′ =
⊗

j≤nAj respectively.

(P5)

Last property leads us to the following lemma.

Lemma 4.1. For all 1 ≤ j ≤ n and 1 ≤ i ≤ m, let aj be the left eigenvectors with the corresponding
eigenvalues αj of square matrices A

(i)
j of sizes kj respectively.

Let Bi, i = 1, . . . ,m be square matrices of sizes
∏n
j=1 kj such that

∑m
i=1Bi = I, where I is the iden-

tity matrix of size
∏n
j=1 kj. Then

∏
j≤n αj with

⊗
j≤n aj are the eigenvalue and the left eigenvector

of A =
∑m

i=1(
⊗

j≤nA
(i)
j )Bi.

Similarly, if bi, i = 1, . . . ,m are real numbers such that
∑m

i=1 bi we have that
⊗

j≤n aj is the left

eigenvector with the corresponding eigenvalue
∏
j≤n αj of the matrix A =

∑m
i=1(

⊗
j≤nA

(i)
j )bi.

Proof : We have⊗
j≤n

aj

m∑
i=1

(
⊗
j≤n

A
(i)
j )Bi =

m∑
i=1

⊗
j≤n

aj(
⊗
j≤n

A
(i)
j )Bi =

m∑
i=1

⊗
j≤n

(ajA
(i)
j )Bi

=
m∑
i=1

⊗
j≤n

(ajαj)Bi =

m∑
i=1

∏
j≤n

αj
⊗
j≤n

ajBi

=
∏
j≤n

αj
⊗
j≤n

aj

m∑
i=1

Bi =
∏
j≤n

αj
⊗
j≤n

aj .
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Similarly, ⊗
j≤n

aj

m∑
i=1

(
⊗
j≤n

A
(i)
j )bi =

m∑
i=1

⊗
j≤n

aj(
⊗
j≤n

A
(i)
j )bi =

m∑
i=1

⊗
j≤n

(ajA
(i)
j )bi

=
m∑
i=1

⊗
j≤n

(ajαj)bi =
m∑
i=1

∏
j≤n

αj
⊗
j≤n

ajbi

=
∏
j≤n

αj
⊗
j≤n

aj

m∑
i=1

bi =
∏
j≤n

αj
⊗
j≤n

aj .

�

Substituting stochastic matrices P(i)
j with stationary distributions πj (for all 1 ≤ j ≤ n, 1 ≤ i ≤ m)

to matrices A
(i)
j with left eigenvectors αj (for all 1 ≤ j ≤ n, 1 ≤ i ≤ m) gives us the following

corollary (keeping in mind that 1 is the eigenvalue corresponding to the eigenvector being the
stationary distribution):

Corollary 4.2. Let P(i)
j be a stochastic matrix of size kj with πj being its stationary distribution

for all 1 ≤ j ≤ n, 1 ≤ i ≤ m. Let Bi, 1 ≤ i ≤ m be square matrices of sizes
∏n
j=1 kj such

that
∑m

i=1Bi = I, where I is the identity of size
∏n
j=1 kj. Similarly, if bi, 1 ≤ i ≤ m are real

numbers such that
∑m

i=1 bi = 1, then the stochastic matrices of the form
∑m

i=1(
⊗

j≤nP
(i)
j )Bi or∑m

i=1(
⊗

j≤nP
(i)
j )bi have the stationary distribution of the form

⊗
j≤n πj.

4.2. Proof of Theorem 2.1. We will find an ergodic Markov chain X with the transition matrix PX

and some partial ordering of the state space (expressed by the ordering matrix C) and show that
(3.2) is equivalent to (2.3).

Let P
(k)
Zj

(on Ej = {0, . . . , Nj}) be as in the theorem. Let X(k)
j be the ergodic chain on E′j =

{1, . . . , Nj} with the transition matrix P
(k)
Xj

, such that Z(k)
j is its Siegmund dual w.r.t. the total

ordering. I.e., let Cj(s, t) = 1(s ≤ t), and duality means that

P
(k)
Xj

Cj = Cj(P
(k)
Z′j

)T ,

where P
(k)
Z′j

= F−10 (P
(k)
Zj

). Assumption (2.1) and relation (3.2) imply that for fixed j, the chains

X
(k)
j , k = 1, . . . ,m have the same stationary distribution, denote it by πj . The relation (3.2) means

that ρj = πjCj . On the state space E =
⊗

j≤d Ej let us introduce the ordering expressed by the
matrix C =

⊗
j≤dCj . From (3.3) we can calculate the matrix PX :

PX = CPT
ZC
−1 = (

⊗
j≤d

Cj)

 m∑
k=1

Bk(
⊗
j≤d

R(k)
Z′j

)

T

(
⊗
j≤d

Cj)
−1

(P4),(P3)
= (

⊗
j≤d

Cj)

 m∑
k=1

(
⊗
j≤d

(R(k)
Z′j

)T )BT
k

 (
⊗
j≤d

C−1j )

(P1)
=

m∑
k=1

(
⊗
j≤d

Cj)

⊗
j≤d

(R(k)
Z′j

)T

BT
k (
⊗
j≤d

C−1j )

(P2)
=

m∑
k=1

(
⊗
j≤d

Cj(R
(k)
Z′j

)TC−1j )(
⊗
j≤d

Cj)B
T
k (
⊗
j≤d

C−1j ).
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Let us define

R(k)
Xj

= Cj(R
(k)
Z′j

)TC−1j =

{
P

(k)
Xj

if j ∈ Ak,

Ij if j /∈ Ak.

In the case j ∈ Ak, the distribution πj is the unique stationary distribution. In the case j /∈ Ak,
any distribution is an invariant measure, however, we fix it to be πj . We have

PX =
m∑
k=1

(
⊗
j≤d

R(k)
Xj

)(
⊗
j≤d

Cj)B
T
k (
⊗
j≤d

C−1j ).

From the property (P1) we have that
m∑
k=1

(
⊗
j≤n

Cj)B
T
k (
⊗
j≤n

C−1j ) = (
⊗
j≤n

Cj)
m∑
k=1

BT
k (
⊗
j≤n

C−1j ) = (
⊗
j≤n

Cj)(
⊗
j≤n

C−1j ) = I,

thus Corollary 4.2 implies that π =
⊗

j≤d πj is the stationary distribution of PX , thus ρ = πC,

what is equivalent to (2.3).
�

4.3. Proof of Theorem 2.4. To prove the theorem we will construct an N-isolated link Λ, so that
P′X∗ and PX̂ , given in (2.5) and (2.6) respectively, are intertwined via this link.
Consider the matrix P′X∗j

. Define the stochastic matrix PX̂j
of size Nj ×Nj as:

PX̂j
(i, i′) =


1− λ(j)i if i′ = i+ 1,

λ
(j)
i if i′ = i,

0 otherwise.

Let Λj be the link intertwining matrices P′X∗j and PX̂j
given in (3.8). Define

R
X̂

(k)
j

=

{
PX̂j

if j ∈ Ak,

Ij if j /∈ Ak.

Note that matrices R′X∗j
and R

X̂
(k)
j

are also intertwined via Λj for any j = 1, . . . , d and any k =

1, . . . ,m. Any link intertwines two identity matrices, which is the case for j /∈ Ak. I.e., we have
ΛjR

′
X∗j

= R
X̂

(k)
j

Λj , j = 1, . . . , d. Define

Λ =
⊗
j≤d

Λj .

We have

ΛP′X∗ =
⊗
j≤d

Λj

m∑
k=1

bk

⊗
j≤d

R′
X
∗(k)
j

 =

m∑
k=1

bk

⊗
j≤d

ΛjR′
X
∗(k)
j


=

m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

Λj

 =
m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

⊗
j≤d

Λj

Simple calculations yield that PX̂ given in (2.6) can be written as
m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

. Thus, we

have ΛP′X∗ = PX̂Λ. Now, let us calculate ν̂ = ν∗Λ−1 (note that Λ is nonsingular because of the
property (P3) and the fact that each Λj , j = 1, . . . , d and identity matrices Ij are nonsingular). In
other words, we have ν∗ = ν̂Λ. The equation (2.7) holds, since Λ is lower triangular.
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Moreover, Λ is (N1, . . . , Nd)-isolated, since we have

Λ((i1, . . . , id),N) =
d∏
j=1

Λ(ij , Nj)
(∗)
=


∏d
j=1 ρj(1) if ij = Nj for all j = 1, . . . ,d,

0 otherwise ,

where in
(∗)
= we used Lemma 3.5. Applying Lemma 3.2 completes the proof.

�

5. The outline of an alternative proof of Theorem 2.4: strong stationary duality ap-
proach

In Theorem 2.4 we related the absorption time T ∗ν∗,N of X∗ with the absorption time T̂ν̂,N of X̂.
This was done by finding a specific matrix Λ, such that ΛPX∗ = PX̂Λ, exploiting the existence
of such Λ for X∗ and X̂ being birth and death chains. The exploited Λ is related to spectral
polynomials of the stochastic matrix PX∗ . Such a link appeared first naturally as a link between
an ergodic chain X and an absorbing chain X∗. The proof of Theorem 2.4 in case qj(1) = 0 (i.e.,
Corollary 2.7 a)) can be different, using intermediate ergodic chain. In this section we will describe
its outline.

Strong stationary duality . Let X be an ergodic Markov chain on E = {e1, . . . , eN} with the initial
distribution ν and the transition matrix PX . Let E∗ = {e∗1, . . . , e∗M} be the, possibly different, state
space of the absorbing Markov chain X∗, with the transition matrix PX∗ and the initial distribution
ν∗, whose unique absorbing state is denoted by e∗M . Assume that Λ∗ is a stochastic M ×N matrix
satisfying Λ(e∗M , e) = π(e). We say that X∗ is a strong stationary dual (SSD) of X with link Λ∗ if

ν = ν∗Λ and Λ∗PX = PX∗Λ
∗. (5.1)

Diaconis and Fill (1990) prove that then the absorption time T ∗ of X∗ is the so called strong
stationary time for X. This is a random variable T such that XT has the distribution π and T is
independent of XT . The main application is to study the rate of convergence of an ergodic chain
to its stationary distribution, since for such a random variable we always have dTV (νPk

X , π) ≤
sep(νPk

X , π) ≤ P (T > k), where dTV stands for the total variation distance, and sep stands for
the separation ‘distance’. For details, see Diaconis and Fill (1990). We say that SSD is sharp if
T ∗ corresponds to stochastically the smallest SST, then we have sep(νPk

X , π) = P (T ∗ > k), the
corresponding SST T ∗ is often called the fastest strong stationary time (FSST).
Strong stationary duality for birth and death chain. Let X be an ergodic birth and death chain
on E = {1, . . . ,M}, whose time reversal is stochastically monotone with transitions given in (3.4).
Diaconis and Fill (1990) show that an absorbing birth and death chainX∗ on E∗ = E with transitions
given by

PX∗(i, i− 1) = H(i−1)
H(i) p′(i),

PX∗(i, i+ 1) = H(i+1)
H(i) q′(i+ 1),

PX∗(i, i) = 1− (p′(i) + q′(i+ 1)),

is a sharp SSD for X. Here we have

H(j) =
∑
k≤j

π(k), Λ∗(i, j) = 1{i ≤ j} π(i)

H(j)
. (5.2)

Moreover, starting from an absorbing birth and death chain X∗ on E = {1, . . . ,M}, whose unique
absorbing state is M , Theorem 3.1 in Fill (2009) states that we can find an ergodic chain X (and
some stationary distribution π), such that X∗ is its sharp SSD with the link given in (5.2).
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X∗

X

X̂

Λ∗ Λ̂

Λ = Λ∗Λ̂−1

Figure 5.2. Intertwining between absorbing chains X∗ and X̂ via ergodic chain X.

Spectral pure-birth chain. Again, let X be an ergodic birth and death chain on E = {1, . . . ,M}.
Assume its eigenvalues are non-negative, 0 ≤ λ1 ≤ . . . ≤ λM = 1. Then, the chain X̂ with
transitions given in (3.9) is its sharp SSD with the link Λ̂ given in (3.8).
The outline of an alternative proof . As in Section 4.3, the main idea is to show that two absorbing
birth and death chains X∗j and X̂j (pure-birth) on Ej = {1, . . . , Nj} are intertwined by an Nj-
isolated link Λj . Collecting above findings, we have (skipping conditions on initial distributions):

• Let Xj be an ergodic chain on Ej , whose X∗j is a sharp SSD, i.e., we have Λ∗jPXj = PX∗j
Λ∗j .

• Let X̂j be a pure-birth sharp SSD for Xj , i.e., we have Λ̂jPX = PX̂j
Λ̂j .

It means that absorption times T ∗ and T̂ are equal in distribution (since both X∗ and X̂ are sharp
SSDs of X). Mathematically, we have

ΛjPX∗j
= PX̂j

Λj , where Λj = Λ̂j
(
Λ∗j
)−1

,

i.e., X∗j and X̂j are intertwined by the link Λj , which is Nj-isolated. Intertwining between two
absorbing birth and death chains via an ergodic chain is depicted in Fig. 5. Taking Λ =

⊗
j≤d Λj

and ν̂ = ν∗Λ−1 we proceed with the proof of Theorem 2.4 as in Section 4.3.

6. Examples

In first two subsections 6.1 and 6.2 we will present examples on the absorption time of some one-
dimensional birth and death chains. Although we mainly focus on multidimensional generalizations,
we consider these examples worth presenting. Next two subsections 6.3 and 6.4 contain some non-
trivial multidimensional gambler models, for which we either provide results for both, the winning
probability and the absorption time (Example 6.3) or only for the winning probability (Example
6.4).

6.1. A one-dimensional gambler’s ruin problem with N = 3: calculating T ∗2,3. Here we present a
simple example for calculating T ∗2,3 in a one-dimensional gambler’s ruin problem using Theorem 2.4.
We also check that calculations agree with the formula (1.6).
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Example 6.1. Let d = 1, N1 = 3 and p1(1) = p1(2) = p > 0, q1(1) = q1(2) = q > 0 such that p 6= q
and p+ q +

√
pq < 1. The transition matrix of PX∗1

is following

PX∗1
=


1 0 0 0

q 1− p− q p 0

0 q 1− p− q p

0 0 0 1

 .

Then, the pgf of the time to absorption starting at 2 is given by:

pgfT ∗2,3(s) =
p(q + p+

√
qp)(−q − p+

√
qp)u(1− u(1− q − p))

(p2 + qp+ q2)(1− u(1− q − p−√qp)(−1 + u(1− q − p+
√
qp)

(6.1)

Proof : We have PX∗ = PX∗1
. The eigenvalues of P′X∗ = F−10 (PX∗) are λ1 = 1 − p − q − √pq,

λ2 = 1− p− q +
√
pq, λ3 = 1. The transitions of PX̂ are following

PX̂ =

 λ1 1− λ1 0

0 λ2 1− λ2
0 0 1

 .

Thus,

pgf T̂1,3(s) =
(1− λ1)(1− λ2)s2

(1− λ1s)(1− λ2s)
, pgf T̂2,3(s) =

(1− λ2)s
(1− λ2s)

.

Calculating Λ from (3.8) (for PX∗) we obtain

Λ =

 1 0 0
√
pq

q+p+
√
qp

p
q+p+

√
qp 0

0 0 ρ(1)

 .

Calculations yield (we have ν∗(2) = 1)

ν̂ = ν∗Λ−1 =

(
−
√
q

p
, 1 +

q

p
+

√
q

p

)
.

From (1.6) we have ρ(i) =
1−
(
q
p

)i
1−
(
q
p

)3 , i = 1, 2, 3. Finally,

pgfT ∗2,3(s) = ρ(1)

(
−
√
q

p
pgf T̂1,3(s) +

(
1 +

q

p
+

√
q

p

)
pgf T̂2,3(s)

)
,

what can be written as (6.1). On the other hand, (1.7) states that

pgfT ∗2,3(s) = ρ(2)

(1−λ1)(1−λ2)s2
(1−λ1s)(1−λ2s)

(1−λb2c1 )s

1−λb2c1 s

=
1−

(
q
p

)2
1−

(
q
p

)3 · (1− λ1)(1− λ2)s2(1− λb2c1 s)

(1− λ1s)(1− λ2s)(1− λb2c1 )s
,

where λb2c1 = 1− (p+ q), which, as can be checked, is equivalent to (6.1). �

6.2. A one-dimensional gambler’s ruin problem related to the Ehrenfest model: calculating T ∗m,N .
Here we present a concrete example of a birth and death chain on E = {1, . . . , N} with N being the
only absorbing state, for which we provide pgf of the absorption time provided the chain started at
an arbitrary m ∈ E. We use Lemma 3.2 to calculate the link Λ. As far as we are aware, this pgf
cannot be given using results from Gong et al. (2012) i.e., (1.6). This is because the eigenvalues



144 Paweł Lorek and Piotr Markowski

of the transition matrix PX∗ are known, but the eigenvalues of the truncated matrix P
dme
X∗ are not

known for an arbitrary m ∈ E.

Example 6.2. Let X∗ be a Markov chain on the state space E = {1, . . . , N} with the transition
matrix PX∗ of the form:

PX∗(i, i
′) =



N−i
2N−2

∑i−1
r=0 (N−1

r−1 )∑i
r=0 (N−1

r−1 )
if i′ = i− 1, i < N,

N−2
2N−2 if i′ = i, i < N,

1 if i′ = i = N,

i
2N−2

∑i+1
r=0 (N−1

r−1 )∑i
r=0 (N−1

r−1 )
if i′ = i+ 1,

0 otherwise.

Then the absorption time starting at m ∈ E has the following pgf:

pgfT ∗m,d(s) =
∑
j≤m

ν̂(j)pgf T̂j,d(s), (6.2)

where

ν̂(j) =
2j−1(−1)m+j(m− j + 1)

(
N−1
m

)(
m
j−1
)

(N − j)
∑m−1

k=0

(
N−1
k

) and pgf T̂j,N (s) =

N−1∏
k=j

[
(1− k−1

N−1)s

1− k−1
N−1s

]
. (6.3)

In particular, we have

E(T ∗m,N ) = (N − 1)
∑
j≤m

ν̂(j)
N−1∑
k=j

1

N − k
. (6.4)

Proof : Let

PX̂(i, i′) =


i−1
N−1 if i′ = i,

N−i
N−1 if i′ = i+ 1,

0 otherwise.

To show the result using Lemma 3.2 it is enough to find Λ such that ΛPX∗ = PX̂Λ and ν∗Λ−1 = ν̂,
where ν∗(j) = 1{j = m}.

However, since X∗ has only one absorbing state, we can – and we will – follow the outline of an
alternative proof given in Section 5. I.e., we will indicate intermediate ergodic chain X on E with
the transition matrix PX and find Λ∗ and Λ̂ such that Λ∗PX = PX∗Λ

∗ and Λ̂PX = PX̂Λ̂. Then,
we will automatically have Λ = Λ̂(Λ∗)−1 and we will show that ν∗Λ−1 = ν∗Λ∗Λ̂−1 = ν̂.

Let X be a chain on E with the following transition matrix:

PX(i, i′) =



i−1
2(N−1) if i′ = i− 1,

1
2 if i′ = i,

N−i
2(N−1) if i′ = i+ 1,

0 otherwise,

i.e., X corresponds to the Ehrenfest model of N − 1 particles with an extra probability (half) of
staying (and states are enumerated 1, . . . , N , whereas in the classical Ehrenfest model these are
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0, . . . , N − 1). Its stationary distribution is the binomial distribution π(j) = 1
2N−1

(
N−1
j−1
)
, thus the

classical link (cf. (5.2)) is given by

Λ∗(i, j) =

(
N−1
j−1
)∑i−1

r=0

(
N−1
r

)1{j ≤ i},
i.e., we have Λ∗PX = PX∗Λ (X∗ is a sharp SSD of X). The eigenvalues of X are known, these are
i

N−1 , i = 0, . . . , N − 1, thus X̂ is its pure-birth spectral dual. The link Λ̂ such that Λ̂PX = PX̂Λ̂ is
known (see Eq. (4.6) in Fill (2009)), it is given by

Λ̂(i, j) =

(
i−1
j−1
)

2i−1
.

It can be checked that

Λ̂−1(i, j) = (−1)j−i2j−1
(
i− 1

j − 1

)
.

Note that the i-th row of Λ̂−1 corresponds to the coefficients1 in expansion of (2x− 1)i−1.
Thus, as outlined in Section 5 we have ΛPX∗ = PX̂Λ with Λ = Λ̂(Λ∗)−1. We need only to check
that ν∗Λ−1 = ν∗Λ∗Λ̂−1 is equal to ν̂ given in (6.3). We have

ν̂(j) = (ν∗Λ∗Λ̂−1)(j) =
∑
k

Λ∗(m, k)Λ̂−1(k, j)

=
∑

j≤k≤m

(
N−1
k−1
)∑m−1

r=0

(
N−1
r

)(−1)j−k2j−1
(
k − 1

j − 1

)

=
2j−1∑m−1

r=0

(
N−1
r

) ∑
j≤k≤m

(−1)j−k
(
N − 1

k − 1

)(
k − 1

j − 1

)

(∗)
=

2j−1
(
N−1
j−1
)∑m−1

r=0

(
N−1
r

) ∑
j≤k≤m

(−1)j−k
(
N − j
N − k

)
,

where in
(∗)
= we used the identity

(
N−1
k−1
)(
k−1
j−1
)

=
(
N−1
j−1
)(
N−j
N−k

)
. As for the last sum we have∑

j≤k≤m
(−1)j−k

(
N − j
N − k

)
=

∑
j≤k≤m

(−1)j−k
(
N − j
k − j

)

=

m−j∑
k=0

(−1)k
(
N − j
k

)
(∗∗)
= (−1)m−j

(
N − j − 1

m− j

)
,

where in
(∗∗)
= we used the identity2 ∑M

k=0(−1)k
(
n
k

)
= (−1)M

(
n−1
M

)
. Finally,

ν̂(j) =
2j−1(−1)m−j

(
N−1
j−1
)(
N−j−1
m−j

)∑m−j
r=0

(
N−1
r

) ,

what is equal to (6.3).
Note that the pgf given in (6.3) corresponds to the distribution of

∑N−1
k=j Yk, where Yk is a

geometric random variable with parameter k−1
N−1 and Y1, . . . , YN−1 are independent. We have

EYk = N−1
N−k thus (6.4) follows from (6.2) and (6.3). �

1The on-line encyclopedia of integer sequences, sequence http://oeis.org/A303872.
2See Partial sums at https://en.wikipedia.org/wiki/Binomial_coefficient

http://oeis.org/A303872
https://en.wikipedia.org/wiki/Binomial_coefficient
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Note that calculating ν̂ we have actually calculated the link Λ, which is given by

Λ(i, j) =


2j−1(−1)i+j(i−j+1)(N−1

i )( i
j−1)

(N−j)
∑i−1
k=0 (N−1

k )
if j < N,

0 j = N, i < N,

1 j = N, i = N.

Next two subsections 6.3 and 6.4 contain results for some non-trivial multidimensional gambler
models.

6.3. A multidimensional case, winning probabilities and the absorption time: changing r coordinates
at one step in a d-dimensional game. We will present an example for both Theorems, 2.1 and 2.4.
The chains P

Z
(k)
j

in Theorem 2.1 are quite general, but in this example we consider birth and death

chains i.e., we will use P
Z

(k)
j

= PX∗j
from Theorem 2.4 (birth and death chains given in (1.4)).

Similarly, we have R′
Z

(k)
j

= R′
X
∗(k)
j

and PZ = PX∗ .

Example 6.3. The idea of the example is following. We construct a d-dimensional game from one-
dimensional games, in such a way, that at one step we play with r other players, where r ∈ {1, . . . , d}.
In other words, the multidimensional chain can change at most r coordinates in one step.

Moreover we will take, as Bi := bi real numbers. In both theorems let us take 0 < r < d,
m =

(
d
r

)
+ 1 and bk = 1, k = 1, . . . ,m−1, bm = 1−

(
d
r

)
. Let us enumerate combinations of r positive

numbers no greater than d in some way (see e.g., Mudrov (1965)). Let Ak be k-th combination
from this numbering, for k = 1, . . . ,m− 1 and Am = ∅. Then we have

P′Z =
m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 =

(dr)∑
k=1

⊗
j≤d

R′
Z

(k)
j

− ((d
r

)
− 1

)⊗
j≤d

Ij . (6.5)

We have that R′
Z

(k)
j

= P′Zj if {j} ∈ Ak and R′
Z

(k)
j

= Ij otherwise (for {j} 6∈ Ak), thus P′Z =

∑
1≤i1<i2<...<ir≤d

(
⊗
j<i1

Ij)⊗P′Zi1
⊗ (
⊗

i1<j<i2

Ij)⊗ . . .⊗ (
⊗

ir−1<j<ir

Ij)⊗P′Zir ⊗ (
⊗

ir<j≤d
Ij)−

((
d

r

)
− 1

)⊗
j≤d

Ij .

In other words, we combine d one-dimensional birth and death chains in such a way, that the
resulting d-dimensional chain can change at most r coordinates by ±1 at one step.
We can rewrite this formula for some cases:

• r = d, independent games
P′Z =

⊗
j≤d

P′Zj .

• r = d− 1

P′Z =

d∑
k=1

(
⊗
j<k

P′Zj )⊗ Ik ⊗ (
⊗
j>k

P′Zj )− (d− 1)
⊗
j≥d

Ij .

• r = 2

P′Z =
d∑

k=1

d∑
i=k+1

(
⊗
j<k

Ij)⊗P′Zk ⊗ (
⊗
k<j<i

Ij)⊗P′Zi ⊗ (
⊗
i<j≤d

Ij)−
((

d

2

)
− 1

)⊗
j≥d

Ij .

• r = 1

P′Z =

d∑
k=1

(
⊗
j<k

Ij)⊗P′Zk ⊗ (
⊗
j>k

Ij)− (d− 1)
⊗
j≥d

Ij .
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This can be rewritten as

P′Z =
⊕
j≤d

P′Zj − (d− 1)
⊗
j≤d

Ij .

PZ = F−∞(P′Z) are exactly the transition corresponding to the generalized gambler’s ruin
problem given in (1.1).

In all above cases, the winning probability for the chain PZ is given in (1.3). This is since the
winning probabilities for PZj are given in (2.4), thus using (2.3) the relation is (1.3) proven.

In all above cases, if we replace P′Zj with PX̂j
and P′Z with PX̂ , then we have a special cases

for formula for PX̂ given in (2.6). If, in addition, we assume that ν∗((1, . . . , 1)) = 1, then from
Corollary 2.7 c) we have

T ∗(1,...,1),N =

 T̂(1,...,1),N with probability
∏d
j=1 ρj(1),

+∞ with probability 1−
∏d
j=1 ρj(1).

For example, in case r = 1 (then we have m = d+1 and take bk = 1, k = 1, . . . , d, bd+1 = 1−d,Ak =
{k}, k = 1, . . . , d and Ad+1 = ∅) we have

PX̂((i1, . . . , id), (i
′
1, . . . , i

′
d)) =


1− λ(j)ij if i′j = ij + 1,

1−
∑

j:ij<Nj

(
1− λ(j)ij

)
if i′j = ij , j = 1, . . . , d,

0 otherwise.

Sample transitions for case d = 2, r = 1 are depicted in Fig. 1.1.

In Figure 6.3 the transitions of X̂ are presented for d = 3:

• When r = 1 only transitions along blue dotted arrows ( ) are possible.
• When r = 2 only transitions along blue dotted arrows ( ) and green dashed arrows ( )
are possible.
• When r = 3 all transitions, along blue arrows ( ), green dashed arrows ( ) and red
curly arrow ( ) are possible.
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x

y

z

Figure 6.3. Sample transitions of X̂ for the example from Section 6.3 with d = 3:
transitions for r = 1 (blue ), r = 2 (blue and green ) and r = 3 (blue

, green and red ).

6.4. A multidimensional case, winning probabilities: changing r (dependent on the current fortune)
coordinates at one step in a d-dimensional game.

Now we will make use of the possibility that Bk’s appearing in Theorem 2.1 can be matrices. We
will provide an extension of the previous Example 6.3 – this time we will only provide the result on
the winning probabilities (since the result on the absorption time provided in Theorem 2.4 requires
Bk’s to be numbers).

Example 6.4. Before providing intricate details of the example, let us clarify what we aim to achieve.
In the previous Example 6.3 we showed how one may construct a multidimensional chain, so that
at most r ≤ d coordinates can be changed in one step (in other words, we can play with at most
r ≤ d players in one step). Now we extend this situation: we want r to be state-dependent. To be
more exact: if we are in a state from a set Sr then we may play with at most r players. For example
setting:

Sd = {(i1, . . . , id) :
d∑
j=1

ij ≥ 100}, S2 = {(i1, . . . , id) :
d∑
j=1

ij < 100}

and Sr = ∅ for r /∈ {2, d} models a game in which:
• If we have at least 100 dollars we may play with all the players;
• If we have less than 100 dollars we may play with at most 2 players.

Consider a partition of the state space into disjunctive sets Sr, r = 0, . . . , d, i.e., E =
⋃d
r=0 Sr.

Each Sr is a set of states from which we can change at most r coordinates in one step. Let ISr be
a matrix with ones only on positions (i, i), where i ∈ Sr. Let mr =

(
d
r

)
+ 1 and set Br

i = ISr for

1 ≤ i < mr and Br
mr =

(
1−

(
d
r

))
ISr . Let us enumerate combinations of r positive numbers no

greater than d in some way (again, see e.g., Mudrov (1965)). Let Ar
i be i-th combination from this

numbering, for i = 1, . . . ,mr − 1 and Ar
mr = ∅.
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Now we will renumerate everything to fit to the notation used in Theorem 2.1. For 1 ≤ k ≤ m

there exists 1 ≤ b ≤ d, 1 ≤ i ≤ mb+1 such that k =
(∑b−1

r=1mr

)
+i, we then setBk = B(

∑b−1
r=1mr)+i

=

Bb
i and Ak = A(

∑b−1
r=1mr)+i

= Ab
i . In this notation – using (2.2) – the transition matrix of the

resulting chain is given by:

P′Z =
m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 .

However, we can rewrite it in a more intuitive way, letting kb =
∑b

r=1mr we have:

P′Z =

d∑
b=1

mb∑
i=1

Bkb−1+i

⊗
j≤d

R′
Z

(kb−1+i)

j


=

d∑
b=1


mb∑
i=1

ISb

⊗
j≤d

R′
Z

(kb−1+i)

j

− ISb

((
d

b

)
− 1

)⊗
j≤d

Ij


=

d∑
b=1

ISb


mb∑
i=1

⊗
j≤d

R′
Z

(kb−1+i)

j

− ((d
b

)
− 1

)⊗
j≤d

Ij

 .

Thus, P′Z can be rewritten as P′Z =
d∑
b=1

ISbP
′b
Z , where matrices P

′b
Z correspond to the previous

Example 6.3, cf. (6.5). Concluding, Theorem 2.1 implies that the winning probability of the chain
Z with the transition matrix PZ = F−∞(P′Z) is of the product form provided in (1.3).
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