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Abstract. We study the simple random walk on the configuration model with given degree sequence
(dn1 , . . . , d

n
n) and investigate the connected components of its vacant set at level u > 0. We show

that the size of the maximal connected component exhibits a phase transition at level u∗ which
can be related with the critical parameter of random interlacements on a certain Galton-Watson
tree. We further show that there is a critical window of size n−1/3 around u∗ in which the largest
connected components of the vacant set have a metric space scaling limit resembling the one of the
critical Erdős-Rényi random graph.

1. Introduction

We consider the vacant set of the random walk on the configuration model and study its per-
colative properties. The main goal is to understand the maximal connected components of this set
in the vicinity of the critical threshold. We will show that the model belongs to the Erdős-Rényi
universality class, that is its behaviour is similar to the classical critical Erdős-Rényi graph. In
particular we show the conjecture of Bhamidi and Sen (2020) about the scaling limit for the metric
space structure of the maximal connected components of the vacant set in the critical regime.

We start with a precise definition of the model. For every n ∈ N, let dn = (dn1 , . . . , d
n
n) be a

degree sequence such that the total degree Ln =
∑

x∈[n] d
n
x is even. We use Gdn to denote the set

of all multigraphs with the vertex set [n] = {1, 2, . . . , n} such that the degree of every x ∈ [n] is
dnx (loops are counted twice), and write Pdn for the law on Gdn of the configuration model with the
degree sequence dn, that is of the random multigraph Gn = ([n], En) obtained by the usual pairing
construction (see Section 2.2 for the details). For an arbitrary finite multigraph G, let λG denote its
spectral gap (see (2.2) for the definition). In addition, let ni(dn) be the number of vertices x ∈ [n]
with dnx = i, i ∈ N. Through the paper we assume that the degree sequence dn has the following
properties:
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Assumption 1.1. There exist finite positive constants ∆ ≥ 3, c, C, ε1, ε2 and l ≥ 0, and a
probability mass function p = (pi)1≤i≤∆ on {1, . . . ,∆} with p1 = p2 = 0 such that the following
three conditions are satisfied:

(a) 1 ≤ dnx ≤ ∆ for all x ∈ [n],
(b)

∣∣ni(dn)− npi
∣∣ ≤ Cn 1

3
−ε1 for all i ∈ {1, 2, . . . ,∆},

(c) Pdn [λGn ≥ c log−l n] ≥ 1− Cn−
2
3
−ε2 .

Given a fixed realisation of Gn ∈ Gd
n , let PGn be the distribution on [n]N of the canonical

lazy discrete-time simple random walk X = (Xk)k≥0 on Gn, which is started from its stationary
distribution πGn , where πGn(x) = dnx/Ln for x ∈ [n]. We endow [n]N with the product σ-algebra
Fn. We further write Pn for the joint distribution of (Gn, X) on Gdn × [n]N given by

Pn[Gn ∈ A,X ∈ B] =

∫
Gn∈A

PGn [X ∈ B]Pdn [dGn] A ⊂ Gdn , B ∈ Fn.

The vacant set of the random walk on Gn at the level u ≥ 0 is the set of vertices not visited by the
simple random walk up to time 2umpn,

VuGn = [n] \ {Xk : 0 ≤ k ≤ 2umpn}, (1.1)

where mp =
∑∆

i=3 ipi is the expectation of p. The scaling factor 2mp is chosen for convenience
to match the critical points of various models appearing below, we refer to Remark 1.7 for more
details.

Our goal is to investigate the connectivity properties of the subgraph of Gn induced by VnGn . To
this end, let Cuj (n) denote the j-th largest connected component of this subgraph and let |Cuj (n)|
be the number of its vertices. Our first main result is the following theorem implying the phase
transition in the behaviour of |Cu1 (n)|.

Theorem 1.2. For every degree sequence dn satisfying Assumption 1.1, there is a constant u∗ ∈
(0,∞), such that the following holds:

(a) (Supercritical regime) For u < u∗, there exists a constant ρ = ρ(u, p) ∈ (0, 1), characterised
in Remark 5.2 below, such that for every ε > 0

lim
n→∞

Pn

[∣∣∣ |Cu1 (n)|
n

− ρ
∣∣∣ ≤ ε] = 1.

(b) (Subcritical regime) For u > u∗, there exists a constant A = A(u,∆), such that

lim
n→∞

Pn

[
|Cu1 (n)| ≤ A log n

]
= 1.

(c) (Critical regime) Let (un)n≥0 be a sequence such that for some η <∞

|n1/3(un − u∗)| ≤ η.
Then for every ε > 0 there exists A = A(η, ε, p) such that for all n large enough

Pn[A−1n
2
3 ≤ |Cun1 (n)| ≤ An

2
3 ] ≥ 1− ε.

(d) The constant u∗ agrees with the critical parameter of random interlacements on the Galton-
Watson tree T ′ with offspring distribution p∗ given by

p∗i = (i+ 1)pi+1m
−1
p , i ∈ {0, 1, . . . ,∆− 1}. (1.2)

(See Section 2.4 for the definition of random interlacements)

Our second main result confirms the conjecture of Bhamidi and Sen (see Bhamidi and Sen,
2020, Conjecture 2.7) about the convergence of the connected components (Cunj (n))j≥1, viewed as
metric-measure spaces, in the critical window.
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Theorem 1.3 (Scaling limit). Let Assumption 1.1 hold and let (un)n≥0 be a sequence such that
there is η ∈ R satisfying

un = u∗ + ηn−1/3 + o(n−1/3) as n→∞.
Endow every component Cunj (n) with its graph distance and the uniform probability measure on its
vertices. Then there exists a sequence Mp(η) = (Mp

1 (η),Mp
2 (η), . . . ) of (random) compact metric-

measure spaces such that under the measure Pn

1

n1/3
(Cun1 (n), Cun2 (n), . . . )

n→∞−−−→Mp(η)

with respect to the product topology induced by the Gromov-Hausdorff-Prokhorov distance on each
coordinate. For a complete description of the limiting spaces we refer to Bhamidi and Sen (2020,
Construction 5.6).

Statements similar to Theorems 1.2, 1.3 are known to hold for several different sequences of
quickly mixing graphs with locally tree-like structure. First, the phase transition for the vacant set
of the random walk was proved for (possibly deterministic) d-regular large girth expanders in Černý
et al. (2011). Later, Cooper and Frieze (2013) made the key observation that randomness of the
graph greatly simplifies studying of the behaviour of the vacant set, and proved the phase transition
for the vacant set of the random walk on connected Erdős-Rényi graphs and on d-regular random
graphs. Their technique was later extended to every supercritical Erdős-Rényi graph in Wassmer
(2015). Moreover, Černý et al. (2011) and Wassmer (2015) show that the critical parameter for the
phase transition coincides with the critical parameter of random interlacements on the corresponding
infinite volume limit, that the d-regular tree or a particular Galton-Watson tree, respectively.

The behaviour of the vacant set in the vicinity of the critical point u∗ has been previously studied
for the d-regular random graphs only. In this case, Černý and Teixeira (2013) showed the existence
of a critical window of width n−1/3 around u∗ where the size of the largest connected component is
of order n2/3. Later, Bhamidi and Sen (2020) described precisely the scaling limit for all connected
components, by combining their results on the behaviour of critical random graphs with a given
degree sequence with the controls of the degree sequence of the vacant set obtained in Černý and
Teixeira (2013). The scaling limit resembles the scaling limit of the components of the critical
Erdős-Rényi graph given in Addario-Berry et al. (2012).

The results of Theorems 1.2 and 1.3 naturally extend Černý and Teixeira (2013) and Bhamidi and
Sen (2020). In particular Theorem 1.3 proves and makes more precise Conjecture 2.7 of Bhamidi
and Sen (2020).

The proofs of the two main theorems broadly follows the strategy of Černý and Teixeira (2013)
and Bhamidi and Sen (2020): We first extend the observation of Cooper and Frieze (2013) to our
case (see Proposition 2.1) which allows us to view the vacant set of the random walk as a random
graph with a random degree sequence dn,u. As a consequence, we can apply the extensive theory
about such random graphs, summarized in Theorem 2.2. The main body of the paper (Sections 3
and 4) then deals with providing sufficiently strong estimates on the distribution of the sequence
dn,u. Here we mainly follow the techniques from Černý and Teixeira (2013): We first investigate
the local behaviour of the random walk, concentrating on how it visits the neighbours of a given
vertex (Proposition 3.1). Then, we construct a suitable coupling of the random walk on Gn with
a random walk on the unimodular Galton-Watson tree (see Lemma 4.1), to estimate the expected
degree distribution of the vacant set VuGn (Theorem 4.4). Finally, we use the mixing properties of
the random walk on Gn to prove a corresponding concentration result for the degree distribution
(Theorem 4.6). The main theorems are then proved in Section 5. The challenge in all these steps
is to obtain sharp enough estimates that are useful also in the critical regime.

Compared to the d-regular random graph case, considered in Černý and Teixeira (2013), we have
to deal with two additional difficulties. First, although the configuration model looks locally like a
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tree, this tree is a Galton-Watson tree, and not a d-regular tree like in Černý and Teixeira (2013),
which considerably complicates the necessary random walk estimates in Section 3. Second, since we
allow the vertices of the graph to have degree 1 or 2, our graphs are not as robust as the d-regular
random graph, d ≥ 3, under deletion of small number of vertices, which requires some additional
arguments (e.g., in Lemmas 3.2, 3.3).

We close this introduction with remarks about the assumptions of our main results, their possible
generalisations and the appearance of the scaling factor in definition (1.1).

Remark 1.4. (a) Assumption 1.1(b) and p1 = p2 = 0 imply that Gn satisfies the assumptions of
Federico and van der Hofstad (2017, Theorem 2.2), and is thus connected Pdn-a.a.s. With more
technical effort it would, in principle, be possible to treat the regime when Gn is disconnected but
has a giant component Pdn-a.a.s., as was done for the vacant set of the random walk on the largest
connected component on the Erdős-Rényi graph in Wassmer (2015).

(b) If the degree sequence is constant, that is dnx = d ≥ 3, for all x ∈ [n], Assumption 1.1 is
always satisfied. Here (c) follows from Friedman (1991, Theorem 1.1) with l = 0. Note that (c) is
not very restrictive. Moreover, results about the mixing time of random walks on random graphs
suggest, that (c) could be proved from assumptions (a) and (b) (see Berestycki et al., 2018). We do
not investigate this issue in detail here.

Remark 1.5. The assumptions of Theorem 1.3 are stronger than the assumptions that appear in
Conjecture 2.7 of Bhamidi and Sen (2020). Besides assuming that the maximal degree of Gn
is bounded (cf. Assumption 1.1(a)), which is purely for technical reasons, we need some control
of the speed of convergence of the degree distribution to the probability mass function p, as in
Assumption 1.1(b). Conjecture 2.7 of Bhamidi and Sen (2020) only requires limn→∞ ni(d

n)/n = pi
for all i. We believe that the conjecture does not hold under this weaker assumption since a slow
convergence of ni(dn)/n to pi can shift the position of the critical window.

Remark 1.6. Instead of the law Pdn (on the set of multigraphs Gdn) of the configuration model, it
would be possible to consider the uniform measure P̄dn on the set of all simple graphs Ḡdn ⊂ Gdn .
Under Assumption 1.1, all statements of Theorem 1.2 continue to hold for this model as well, since
a Pdn distributed multigraph Gn conditioned on being simple has distribution P̄dn (see e.g. van der
Hofstad, 2017a, Proposition 7.15),

Pdn [Gn ∈ · | Gn ∈ Ḡd
n
] = P̄dn [Gn ∈ · ],

and the probability of a multigraph Gn being simple has a positive limit (see e.g. van der Hofstad,
2017a, Theorem 7.12),

lim
n→∞

Pdn [Gn ∈ Ḡd
n
] = c > 0.

Extending Theorem 1.3 to this case is not so straightforward and would require additional argu-
ments.

Remark 1.7. Recall the scaling factor 2mp in the definition (1.1) of the vacant set. The purpose
of this choice is to force the critical values u∗ of Theorem 1.2 and the critical value u∗ of random
interlacements on the unimodular Galton-Watson tree in Proposition 2.3 below to be equal. In fact,
the definition of random interlacements on this tree contains a free scaling parameter, which can
be interpreted as a weight of the edges of the tree. In (2.12) we endow every edge with weight one
(similarly as in Tassy, 2010). We could alternatively define the capacity as

capT (K) =
∑
x∈K

(2mp)
−1dxP

T
x [H̃K =∞],

corresponding to a weighting by (2mp)
−1, which would eliminate the scaling factor 2mp in (1.1).
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2. Definitions and preliminaries

In this section we introduce the notation used through the paper and recall some known results.
We use c, c′, etc. to denote finite positive constants whose value might change during the com-
putations. For every set A, we write |A| for its cardinality, and use the standard o( · ) and O( · )
notation. For a sequence of probability measures Pn and events An, we say An holds Pn-a.a.s, if
limn→∞ Pn[An] = 1.

2.1. Graphs and random walk. Let G = (V,E) be a multigraph. We always endow it with the usual
graph distance distG(·, ·), and denote diam(G) its diameter. The ball in G centred at x ∈ V with
radius r is denoted by B(x, r). If (x, y) is an edge of G, then we write x ∼ y. dx stands for the
degree of x ∈ V in G, that is dx =

∑
y∈V nxy, where nxy is the number of edges connecting x and

y in G (the loops are counted twice in nxx). The set

∂eA = {(x, y) ∈ E : x ∈ A, y ∈ Ac}

is called the edge boundary of the set A. When no confusion can arise, we identify the subset A ⊂ V
with the corresponding induced subgraph of G.

For an arbitrary finite multigraph G = (V,E), we use PGx to denote the distribution on V N of
the canonical lazy discrete-time simple random walk X = (Xk)k≥0 on G started at x ∈ V , that is
of the Markov chain with generator given by

Lf(x) =
∑
y∈V

pxy(f(y)− f(x)), for f : V → R, x ∈ V,

where

pxy =

{
nxy
2dx

, x 6= y,
1
2 +

nxy
2dx

, x = y.
(2.1)

We write EGx for the corresponding expectation. For a measure µ on V , we define

PGµ [ · ] =
∑
x∈G

µ(x)PGx [ · ].

For a set A ⊂ V , we denote by H̃A and HA the respective hitting and entrance time of A,

H̃A = inf{k ≥ 1 : Xk ∈ A} and HA = inf{k ≥ 0 : Xk ∈ A}.

For all real valued functions f, g on V , we define the Dirichlet form

D(f, g) =
1

2

∑
x,y∈V

πG(x)pxy(f(x)− f(y))(g(x)− g(y)),

where πG(x) = dx/
∑

y∈V dy is the stationary distribution of the random walk X. The spectral gap
of X is given by

λG = min{D(f, f) : πG(f2) = 1, πG(f) = 0}. (2.2)

Finally, we define the edge expansion h(G) of G by

h(G) = min
{ Q(A)

πG(A)
: A ⊂ V, πG(A) ≤ 1

2

}
, where Q(A) =

∑
(x,y)∈∂eA

πG(x)pxy. (2.3)

The Cheeger inequality (see Saloff-Coste, 1997, Lemma 3.3.7) relates the spectral gap λG to the
edge expansion h(G). For some c, c′ ∈ (0,∞),

ch(G)2 ≤ λG < c′h(G). (2.4)
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We frequently use the following standard convergence result for reversible Markov chains (see e.g.
Levin et al., 2009, Theorem 12.3). For all k ≥ 0,

sup
x,y∈V

∣∣PGx [Xk = y]− πG(y)
∣∣ ≤ (min

x∈V
πG(x)

)−1
exp(−λGk). (2.5)

2.2. Configuration model and vacant graph. In Cooper and Frieze (2013), the authors make the
important observation that, for the d-regular random graph, the graph induced by the vacant
set of random walk is distributed as a random graph with a (random) degree sequence. This
observation extends straightforwardly to our setting. For readers convenience we provide its proof
in Proposition 2.1 below.

To state this proposition it is suitable to introduce the vacant graph Vn,u. For Gn = ([n], En),
let

Vn,u = ([n], Eu), where Eu = {(x, y) ∈ En : x, y ∈ VuGn},
and let Qun be the distribution on {0, . . . ,∆}n of its degree sequence

dn,u = (dn,u1 , dn,u2 , . . . , dn,un ) (2.6)

under the annealed measure Pn. Note that the non-trivial connected components of the vacant
graph Vn,u (that is those having at least two vertices) coincide with the connected components of
the subgraph of Gn induced by the vacant set VuGn .
Proposition 2.1. For every u ≥ 0, the distribution of the vacant graph Vn,u under Pn satisfies

Pn[Vn,u ∈ · ] =

∫
Pdn,u [Gn ∈ · ]Qun(ddn,u),

where Pdn,u is the distribution of the multigraph with the degree sequence dn,u.

Before proving Proposition 2.1, let us recall in more detail the standard pairing construction
of the multigraph Gn with the degree sequence dn: We associate every vertex x ∈ [n] with dnx
half-edges and denote by

Hn = {(x, i| : x ∈ [n], i ∈ [dnx]} (2.7)
the set of all these half-edges. Note that |Hn| = Ln =

∑
x∈[n] d

n
x. The Pdn-distributed multigraph

Gn is obtained by sampling a random perfect matching M of Hn (that is, a partitioning of Hn

into Ln/2 disjoint pairs) uniformly from the set of all such matchings, and by setting Gn = GMn :=
([n], EM ) ∈ Gdn with

EM =
{

(x, y) : {(x, i|, (y, j|} ∈M for some i ∈ [dnx], j ∈ [dny ]
}
.

It is well known that a uniform random matching M and so the corresponding multigraph GMn
can be constructed sequentially. We start with the empty matchingM = ∅ and repeat the following
steps until we obtain a full matching: Given a partial matchingM ⊂M and the corresponding set of
half-edges HM = {(x, i| : (x, i| is matched in M}, we choose two half-edges (x, i|, (y, j| ∈ Hn \HM ;
the first half-edge (x, i| can be chosen by an arbitrary rule R, the second half-edge (y, j| is chosen
uniformly from the set of all remaining half-edges Hn \ (HM ∪ (x, i|). As last step we match the
half-edges (x, i| and (y, j| and add {(x, i|, (y, j|} to the partial matching M .

It follows that, conditioned on the partial matchingM , M \M is distributed as a uniform perfect
matching of Hn \HM . Therefore, the corresponding multigraphs satisfy

Pdn [GM\Mn ∈ · |M ⊂M ] = Pdn(M)[G ∈ · ], (2.8)

where dnx(M) is the number of half-edges incident to x in Hn that are not yet matched in M , and
G
M\M
n is the graph corresponding to a non-perfect matching M \M .
This sequential construction will also be applied later to construct a local coupling of the multi-

graph Gn with an infinite tree. In this case the random walk X will be used to define the rule R.
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Proof of Proposition 2.1: The proof follows the steps of Černý and Teixeira (2013, Proposition 2.1).
Let M be a uniformly distributed matching of Hn and let X be a random walk on Gn = GMn .
Define Mu ⊂M to be the set of all pairs of half-edges incident to a vertex visited by X up to time
2umpn (cf. (1.1)), that is

Mu =
{
{(x, i|, (y, j|} ∈M : x ∈ {Xk : k ≤ 2umpn}, i ∈ [dnx]

}
.

The vacant graph Vn,u then agrees with GM\M
u . In particular, dn,ux (see (2.6)) is the number

of the half-edges incident to x not matched in Mu. Denoting by Fu the σ-algebra generated by
{Mu, Xk, k ≤ 2umpn}, the above implies that dn,u is Fu-measurable. From (2.8) it follows that,
conditionally on Fu, the distribution of GM\Mu only depends on the half-edges not matched inMu,
and is given by Pdn,u . More precisely,

Pn[Vn,u ∈ · | Fu] = Pn[GM\M
u ∈ · | dn,u] = Pdn,u [G ∈ · ].

Integrating this equality and using the definition of Qun then implies

Pn[Vn,u ∈ · ] = Pn

[
Pn[Vn,u ∈ · | Fu]

]
= Pn

[
Pdn,u [G ∈ · ]

]
=

∫
Pdn,u [Gn ∈ · ]Qun(ddn,u),

which completes the proof. �

2.3. Configuration model and its connected components. In this section we summarize known results
from the theory of the configuration model with the given degree sequence dn = (dn1 , . . . , d

n
n). It

turns out that their connectivity behaviour essentially depends only on one parameter

Q(dn) =

∑
(x,i|∈Hn dnx

Ln
=

∑
x∈[n](d

n
x)2∑

x∈[n] d
n
x

. (2.9)

In the following theorem we use Cj(Gn) to denote the j-th largest connected component of the
multigraph Gn. We also recall that ni(dn) = |{x ∈ [n] : dnx = i}|, as in Section 1.

Theorem 2.2. Let (dn)n≥1 be a sequence of degree sequences, such that max1≤x≤n{dnx} ≤ ∆ <∞
for all n ∈ N, n1(dn) ≥ ζn for some ζ > 0, and for some probability mass function p = (pi)0≤i≤∆

lim
n→∞

ni(d
n)

n
= pi, for all 0 ≤ i ≤ ∆. (2.10)

(a) (Supercritical regime) Let limn→∞Q(dn) = Q∞ > 2. Denote g(x) =
∑∆

i=0 pix
i the generat-

ing function of p. Then,

|C1(Gn)|
n

Pdn

−−−→
n→∞

ρ, where ρ = 1− g(ξ),

and ξ is the unique solution in (0, 1) to g′(ξ) = ξ
∑∆

i=0 ipi.
(b) (Subcritical regime) Let limn→∞Q(dn) = Q∞ < 2. Then there exists a constant A(∆, Q∞),

such that
|C1(Gn)| ≤ A log n, Pdn-a.a.s.

(c) (Critical regime) Let |Q(dn)− 2| ≤ λn−
1
3 for all n ≥ 1. Then for every ε ≥ 0 there exists

A = A(ζ, λ, ε,∆) such that for all n large enough

Pdn [A−1n
2
3 ≤ |C1(Gn)| ≤ An

2
3 ] ≥ 1− ε.
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(d) (Scaling limit) Let Q(dn) = 2 + λn−
1
3 + o(n−

1
3 ) as n → ∞. Endow Cj(Gn) with the graph

distance and the uniform probability measure on its vertices. Then there exists a sequence
M̃p(λ) = (M̃p

1 (λ), M̃p
2 (λ), . . . ) of (random) compact metric measure spaces such that

1

n1/3
(C1(Gn), C2(Gn), . . . )→ M̃p(λ)

in distribution with respect to the product topology induced by Gromov-Hausdorff-Prokhorov
distance on each coordinate.

Proof : (a), (b), (c), (d) follow directly from Janson and Luczak (2009, Theorem 2.3), Molloy and
Reed (1995, Theorem 1), Hatami and Molloy (2012, Theorem 1.1), Bhamidi and Sen (2020, Theo-
rem 2.4), respectively.

Note that Janson and Luczak (2009, Theorem 2.3) and Hatami and Molloy (2012, Theorem 1.1)
consider only degree sequences with n0(dn) = 0. However, it is clear that if n0(dn) ≤ ζ ′n for some
ζ ′ < 1, the zero-degree vertices have no influence on Q(dn) and they just change the constant A
in (c). The same holds for the constant ξ in (a). �

2.4. Random interlacements on the Galton-Watson tree. In this section we consider random inter-
lacements on a particular Galton-Watson tree. These random interlacements will provide a good
local description of the vacant set of the configuration model. It will also allow us to specify the
distribution of the random degree sequence dn,u of the vacant graph, and the critical parameter u∗
of Theorem4. For a comprehensive introduction to random interlacements on transient weighted
graphs we refer to Teixeira (2009).

The configuration model with a degree sequence satisfying Assumption 1.1 has a locally tree-
like nature. More precisely, let p = (pi)1≤i≤∆ be a probability mass function as in Assumption 1.1.
Consider a rooted random tree T , whose root∅ has offspring distribution p and all remaining vertices
have offspring distribution p∗ = (p∗i )0≤i≤∆−1 defined in (1.2). By Assumption 1.1 and (1.2), p∗0 =
p∗1 = 0 and thus, a.s., T is infinite and the random walk on T is transient. In van der Hofstad (2017b,
Section 2.1) such random tree is called unimodular Galton-Watson tree with offspring distribution
p∗. We write PT for its law and ET for the corresponding expectation. It is well known that the
configuration model satisfying Assumption 1.1 converges locally to the unimodular Galton-Watson
tree T , see e.g. van der Hofstad (2017b, Theorem 2.11).

We now introduce random interlacements on T . Given a realization of T , let Ȳ = (Ȳk)k≥0 be
the usual (i.e. not lazy) discrete-time simple random walk on T started at x ∈ T and P̄ Tx its law.
Random interlacements on T at level u ≥ 0 is defined as a probability distribution PuT on the space
{0, 1}T which samples a random subset VT of T , called the vacant set of random interlacements at
level u, characterized by

PuT [K ⊂ VT ] = exp
(
− u capT (K)

)
, for every finite K ⊂ T , (2.11)

where the capacity is given by

capT (K) =
∑
x∈K

dxP̄
T
x [H̃ Ȳ

K =∞], (2.12)

dx stands for the degree of x in T , and where H̃ Ȳ
K = inf{k ≥ 1 : Ȳk ∈ K} denotes the hitting time

of K by the random walk Ȳ . Let C∅ be the connected component of the root ∅ in VT . The critical
parameter u∗T of random interlacements on T is defined as

u∗T = inf
{
u ≥ 0 : PuT

[
|C∅| =∞

]
= 0
}
.

Since T is a random tree, u∗T is, in principle, random. Proposition 2.3 below will show that it is
a.s. constant. To state the proposition we need one more definition. Let T ′ be the usual Galton-
Watson tree with offspring distribution p∗ (including the root vertex ∅′ of T ′). Consider another
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tree T̃ obtained from T ′ by adding an additional vertex ∅̃ connected to ∅′. Let

φ(u) = ET̃
[

exp
(
− uP̄ T̃∅′ [H Ȳ

∅̃ =∞]
)]
, (2.13)

where, similarly as above, P̄ T̃∅′ denotes the law of the simple random walk Ȳ on T̃ started from ∅′,
and ET̃ is the expectation over the law of T̃ .

Proposition 2.3. Let T be the unimodular Galton-Watson tree with offspring distribution p∗. Then
there exists a constant u∗ ∈ (0,∞) such that

u∗T = u∗, PT -a.s., (2.14)

and u∗ is the unique solution in (0,∞) of the equation

mp =

∆∑
i=1

pii(i− 1)φ(u)i−2. (2.15)

Proof : The proof uses the results of Tassy (2010, Theorem 1), where random interlacements on the
(usual) Galton Watson tree were studied in detail.

Let T ′ be the usual Galton-Watson tree with offspring distribution p∗, as above. We denote by Tx
the subtree of T containing the vertex x ∈ T and all its descendants. Observe that Tx has the same
law as T ′ for every x ∼ ∅. Let PuTx be the law of random interlacements at level u on Tx defined
analogically to (2.11), and let Cx be the connected component of the vacant set containing x. Using
Tassy (2010, Theorem 1) we deduce the existence of a constant u∗ ∈ (0,∞) such that a.s.

u∗ = inf{u ≥ 0 : PuT ′ [|C∅′ | =∞] = 0} = inf{u ≥ 0 : PuTx [|Cx| =∞] = 0}. (2.16)

We now show (2.14). Since PuT [∅ ∈ VT ] = e−u capT (∅) > 0 for every u ≥ 0, PT -a.s., we see that

PuT
[
|C∅| =∞

]
= 0 iff PuT

[
|C∅| =∞

∣∣∅ ∈ VT ] = 0, PT -a.s. (2.17)

On the other hand, since the events {|C∅ ∩Tx| =∞} are conditionally independent under PuT given
∅ ∈ VT , as can be deduced e.g. from Teixeira (2009, Theorem 5.1),

PuT
[
|C∅| =∞

∣∣∅ ∈ VT ] = PuT
[
∃x ∼ ∅ : |C∅ ∩ Tx| =∞

∣∣∅ ∈ VT ]
= 1−

∏
x∼∅

(
1− PuT

[
|C∅ ∩ Tx| =∞

∣∣∅ ∈ VT ])
= 1−

∏
x∼∅

(
1− PuT

[
|C∅ ∩ Tx| =∞

∣∣∅, x ∈ VT ]PuT [x ∈ VT ∣∣∅ ∈ VT ]).
By Tassy (2010, (3.8),(3.9)),

PuT
[
|C∅ ∩ Tx| =∞

∣∣∅, x ∈ VT ] = PuTx
[
|Cx| =∞

∣∣x ∈ VTx]. (2.18)

Finally, since PuT
[
x ∈ VT

∣∣∅ ∈ VT ] > 0 a.s., we deduce from (2.17)–(2.18) that a.s.

u∗T = inf
{
u ≥ 0 : PuT

[
|C∅| =∞

]
= 0
}

= inf
{
u ≥ 0 : PuTx [|Cx| =∞] = 0

}
= u∗,

by (2.16), proving (2.14).
To show (2.15), note that by Tassy (2010, Theorem 1), u∗ is the unique solution of the equation(

f−1
)′

(ET
′
[exp(−u capT ′(∅′))]) = 1, (2.19)

where f is the probability generating function of p∗. Let x be an arbitrary neighbour of the root ∅′.
By (2.12) and the Markov property,
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ET
′
[exp(−u capT ′(∅′))] = ET

′
[
ET
′[

exp(−ud∅′
∑
y∼∅′

1

d∅′
P̄ T

′
y [H̃ Ȳ

∅′ =∞])
∣∣ d∅′]]

= ET
′
[ ∏
y∼∅′

ET
′[

exp(−uP̄ T ′y [H̃ Ȳ
∅′ =∞])

∣∣ d∅′]]
= ET

′
[
φ(u)d∅′

]
= f

(
φ(u)

)
,

(2.20)

where, in the second equality we used that P̄ T ′y [H̃ Ȳ
∅′ = ∞] for y ∼ ∅′ are i.i.d. under PT ′ [ · | d∅′ ],

and in the third equality we used the equality

ET
′[

exp(−uP̄ T ′y [H̃ Ȳ
∅′ =∞])

∣∣ d∅′] = φ(u),

which follows from the fact that the probability on the left-hand side depends only on the shape
of Ty ∪ {∅′}, which has the same law as the shape of the tree T̃ introduced above (2.13). Using
(f−1)′ = 1/(f ′ ◦ f−1) and (2.20), shows that (2.19) is equivalent with f ′(φ(u)) = 1. Together with
definition (1.2) of p∗, this finishes the proof of (2.15). �

3. Random walk estimates

The aim of this section is to estimate the probability that the random walk X does not visit
certain subsets of B(x, 1) before time 2umpn (see Proposition 3.1). Those estimates will later be
used to describe the distribution of dn,u, the random degree sequence of the vacant graph.

For a vertex x ∈ [n], we use xi ∼ x, i ∈ [dnx], to denote its neighbours listed in the increasing
order. For any A ⊂ [dnx], let

Bx,A = {x} ∪ {xi : i ∈ A}. (3.1)

Observe that if B(x, 1) ⊂ Gn is a tree, then

PGn [dn,ux = i] =
∑

C⊂[dnx ]
|C|=i

PGn [VuGn ∩B(x, 1) = Bx,C ]

=
∑

C⊂[dnx ]
|C|=i

PGn
[
{HBx,C > 2umpn} \

( ⋃
y∈B(x,1)\Bx,C

{Hy > 2umpn}
)]

=
∑

C⊂[dnx ]
|C|=i

(
PGn

[
HBx,C > 2umpn

]
− PGn

[ ⋃
y∈B(x,1)\Bx,C

{HBx,C∪{y} > 2umpn}
])

=
∑

C⊂[dnx ]
|C|=i

∑
A⊂[dnx ]
A⊃C

(−1)|A|−|C|PGn [HBx,A > 2umpn],

(3.2)

where for the last identity we used the inclusion-exclusion formula. Thus, estimates on the proba-
bility on the right-hand side of (3.2) enable us to control the distribution of the degree of x in the
vacant graph.

These estimates are shown for deterministic graphs that are “typical” under Assumption 1.1, that
is on the set

Gdntyp = {Gn ∈ Gd
n

: λGn ≥ c log−l n},

where c > 0 and l ≥ 0 are as in Assumption 1.1. In particular, every Gn ∈ Gd
n

typ is connected. We
recall that we always assume that dn satisfies Assumption 1.1.
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Proposition 3.1. For every κ > 0 there is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n],
A ⊂ [dnx], with tn = log3l+3 n,∣∣∣PGn [HBx,A > κn]− exp

(
− κn

Ln

∑
y∈Bx,A

dnyP
Gn
y [H̃Bx,A > tn]

)∣∣∣ ≤ ctn
n
.

To prove Proposition 3.1 we need several preparatory lemmas. To simplify the notation, we set
B = Bx,A, define C1(Gn\B) to be the largest connected component of Gn\B, and S = B∪C1(Gn\B)
(which, according to our convention, we identify with the corresponding induced subgraph of Gn).
The reason to introduce this subgraph is that in order to understand the behaviour of HB under
PGn , we need to study the random walk on Gn \ B which might not be connected, unlike S. The
two next lemmas show that replacing Gn \B by S does not make much difference.

We denote PS the law of the lazy discrete time random walk X on S, started from its (unique)
stationary distribution πS , and write ES for the corresponding expectation.

Lemma 3.2. There are c, c′ ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n], and every B
such that x ∈ B ⊂ B(x, 1), ∣∣Sc| ≤ c logl n, where Sc = Gn \ S, (3.3)

sup
y∈Sc

EGny [HB] ≤ c log3l n, (3.4)

ES [HB] ≥ c′n. (3.5)

Proof : We start with the proof of (3.3). Let h(Gn) be the isoperimetric constant of Gn defined in
(2.3). By Assumption 1.1, we know that

1

∆n
≤ πGn(x) ≤ ∆

n
. (3.6)

The Cheeger inequality (2.4) then implies that

λGn ≤ ch(Gn) = c min
A⊂[n],πGn (A)≤ 1

2

{ Q(A)

πGn(A)

}
≤ c∆2

2
min

A⊂[n],πGn (A)≤ 1
2

{ |∂eA|
|A|

}
. (3.7)

Since Gn ∈ Gd
n

typ is connected, the graph Gn \ B has at most |∂eB| ≤ ∆2 components and at least
n− |B| ≥ n− (∆ + 1) vertices. Therefore

|C1(Gn \B)| ≥ n− (∆ + 1)

∆2
.

If, in addition, we assume that πGn(C1(G \B)) ≤ 1
2 , then by (3.7), since ∂eC1(Gn \B) ⊂ ∂eB,

λGn ≤
c∆2

2

∂eC1(Gn \B)|
C1(Gn \B)

≤ c∆6

2(n− (∆ + 1))
,

which is a contradiction with Gn ∈ Gd
n

typ. Therefore, πGn(Sc) ≤ 1 − πGn(C1(G \ B)) < 1
2 . Using

∂eS
c ⊂ ∂eB and (3.7), we obtain

λGn ≤
c∆2

2

|∂eSc|
|Sc|

≤ c∆4

2|Sc|
,

and (3.3) follows, since Gn ∈ Gd
n

typ.
To show (3.4), first note that the expected cover time CG of any connected graph Gn = (V,E) is

bounded by c|V |3 for some universal constant c (see e.g. Aldous and Fill, 2002, Theorem 6.1). For
any x ∈ Sc, let Scx be the connected component of Sc containing x. By (3.3),

sup
x∈Sc

EGnx [HB] ≤ sup
x∈Sc

CScx∪B ≤ c|S
c ∪B|3 ≤ c log3l n.



242 Jiří Černý and Thomas Hayder

For the proof of (3.5), note that by Aldous and Brown (1992, Lemma 2), EGn [HB] ≥ c′′n, for
some c′′ > 0. In addition, the stationary measure πS on S satisfies πGn(x) ≤ πS(x) for every
x ∈ S \B, since the degrees of x in Gn and in S are the same but S ⊂ Gn. Hence, using (3.4), we
get

c′′n ≤ EGn [HB] =
∑
x∈S

πGn(x)EGnx [HB] +
∑
x∈Sc

πGn(x)EGnx [HB]

≤ ES [HB] +
∆ log4l n

n
,

and (3.5) follows. �

Lemma 3.3. There is c <∞ such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n], and every B such that
x ∈ B ⊂ B(x, 1),

diam(S \B) ≤ c logl+1 n.

Proof : It is well known (see e.g. Levin et al., 2009, Theorem 12.3 and (7.3)), that one can use the
spectral gap to bound the diameter of connected graphs. Using in addition that Gn ∈ Gd

n

typ, we have

diam(Gn) ≤ 2 log
( 4

minx∈[n] πGn(x)

)
λ−1
Gn
≤ c logl+1 n.

We now claim that
diam(S) ≤ diam(Gn). (3.8)

Indeed, let γGn(x, y) be a geodesic path between x ∈ [n] and y ∈ [n] in Gn (that is a path whose
length is distGn(x, y)). Let x, y ∈ S. If γGn(x, y) ∩ Sc = ∅, then distS(x, y) = distGn(x, y). On the
other hand, if γGn(x, y) intersects Sc, then it must pass through at least two different edges whose
one vertex is in B and one in Sc. Since diam(B) ≤ 2, we can connect the endpoints in B of those
two edges by a path of length at most two lying in B, and construct a path γ̃Gn(x, y) ⊂ S of length
at most distGn(x, y) connecting x, y. Hence, distGn(x, y) = distS(x, y) again and (3.8) follows.

Finally, we claim that
diam(S \B) ≤ 4∆2 diam(Gn). (3.9)

Assume by contradiction that (3.9) does not hold. Then there are x, y ∈ S \B with distS\B(x, y) >

4∆2 diam(Gn). Let γ = (x = z0, z1, . . . , zM = y) be a geodesic in S \ B linking those two points,
M > 4∆2 diam(Gn). Set m = 3 diam(Gn) and ` = M/m ≥ 4∆2/3. Since γ is a geodesic path
in S \B,

distS\B(zim, zjm) = 3|i− j|diam(Gn), for every 0 ≤ i, j ≤ `. (3.10)

On the other hand, by (3.8), distS(z(i−1)m, zim) ≤ diam(Gn) for 1 ≤ i ≤ `. Therefore, there is a
geodesic path γi in S linking z(i−1)m, zim of length at most diam(Gn). Every γi has to intersect B,
due to (3.10). Let ai be the first point on γi contained in ∂SB = {y ∈ S : distGn(y,B) = 1}. Since
` ≥ 4∆2/3 and |∂SB| ≤ ∆2 , by Assumption 1.1, there exist 1 ≤ i < j ≤ ` such that ai = aj . By
considering the part of γi between zi and ai and the part of γj between zj and aj = ai, we see that
there is a path in S \ B linking zi and zj of length at most 2 diam(Gn), leading to contradiction
with (3.10), and proving (3.9). �

For the next lemma, let σB be the quasi-stationary distribution of the random walk on S condi-
tioned on not hitting B, uniquely determined by (recall that S \B = C1(Gn \B) is connected)

PSσB [X1 = y | HB > 1] = σB(y).

We need the following estimate on the convergence rate of the conditioned random walk on S
towards σB.
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Lemma 3.4. There is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n] and every B such
that x ∈ B ⊂ B(x, 1), with t′n ≥ log2l+2 n,

sup
z,y∈S\B

∣∣∣PSz [Xt′n = y | HB > t′n]− σB(y)
∣∣∣ ≤ c exp

(
− ct′n

logl n

)
.

Proof : Let 0 < λB1 < λB2 ≤ · · · ≤ λB|S\B| be the eigenvalues of the generator of the random walk on
S killed on hitting B. By Černý and Teixeira (2013, Lemma A.2), the claim of the lemma follows,
if we can show that

e−t
′
n(λB2 −λB1 )|S \B|

(
sup
x∈S\B

σB(x)

πS(x)
1
2

)2(
inf

x∈S\B

σB(x)

πS(x)
1
2

)−1
≤ c exp

(
− ct′n

logl n

)
. (3.11)

Hence, we need to provide lower bounds for λB2 − λB1 and infx∈S\B σB(x).
We start with λB2 − λB1 . By the eigenvalue interlacing inequality (see e.g. Haemers, 1995, Corol-

lary 2.2) we have λB2 ≥ λGn . On the other hand, by Aldous and Brown (1992, Lemma 2 and the
paragraph following equation (12)), λB1 = ESσB [HB]−1 ≤ ES [HB]−1. Since Gn ∈ Gd

n

typ, by (3.5),

λ2
B − λ1

B ≥ λGn −
1

ES [HB]
≥ c

logl n
. (3.12)

We now estimate infx∈S\B σB(x). Let x ∈ S \B and PSx be the law of the random walk X on S
started in x. By reversibility, for all x′ ∈ S \B and k ≥ 0,

πGn(x′)PSx′ [Xk = x | HB > k] = πGn(x)PSx [Xk = x′ | HB > k]
PSx [HB > k]

PSx′ [HB > k]
. (3.13)

In order to bound the above ratio, note that

PSx [HB > k] ≥ PSx [Hx′ < HB, HB > k] ≥ PSx [Hx′ < HB]PSx′ [HB > k]. (3.14)

Further, by Lemma 3.3, diam(S \ B) ≤ c logl+1 n. Thus we can find a path of length at most
c logl+1 n, connecting x and x′ and not passing through B. By letting the random walk to follow
this path, using pxy ≥ 1/(2∆) if x ∼ y by (2.1), this yields

PSx [Hx′ < HB] ≥ (2∆)−c logl+1 n. (3.15)

Finally, by standard properties of the quasi-stationary distribution (see e.g. Černý and Teixeira,
2013, Lemma A.2.), limk→∞ P

S
x [Xk = x′ | HB > k] = σB(x′) uniformly for all x, x′ ∈ S \ B.

Therefore, taking the limit k →∞ in (3.13), using (3.6), (3.14) and (3.15), for some c, c′ ∈ (0,∞),

σB(x) ≥ c′σB(x′)∆−c logl+1 n, for all x, x′ ∈ S \B.

Summing this inequality over all x′ ∈ S\B, using the fact that σB is a probability measure supported
on S \B, we obtain

σB(x) ≥ |S \B|−1∆−c logl+1 n ≥ exp(−c′ logl+1 n), for all x ∈ S \B. (3.16)

After inserting (3.6), (3.12) and (3.16) into the left-hand side of (3.11), using t′n ≥ log2l+2 n, we
obtain

e−t
′
n(λ2B−λ

1
B)|S \B|

(
sup
x∈S\B

σB(x)

πS(x)
1
2

)2(
inf

x∈S\B

σB(x)

πS(x)
1
2

)−1

≤ cn
3
2 exp

(
− c′t′n

logl n
+ c′′ logl+1 n

)
≤ c exp

(
− c′t′n

logl n

)
.

This shows (3.11) and completes the proof. �
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Lemma 3.5. For every κ > 0 there is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n],
and every B such that x ∈ B ⊂ B(x, 1), with tn = log3l+3 n,∣∣∣PGn [HB > κn]− exp

(
− κn

ESσB [HB]

)∣∣∣ ≤ ctn
n
.

Proof : Recall that πS denotes the stationary measure of the random walk on S. Then by Lemma
3.2, for x ∈ S \B, since dnx agrees with the degree dSx of x in S,

πGn(x) ≤ πS(x) =
dnx∑
y∈S d

S
y

≤ dnx∑
y∈[n] d

n
y − c logl n

≤ πGn(x)
(

1 +
c logl n

n

)
.

Using the estimate (3.3) on the size of Sc and the fact that πGn(x) ≤ cn−1, we obtain

PGn [HB > κn] =
∑
x∈S

πGn(x)PGnx [HB > κn] +
∑
x∈Sc

πGn(x)PGnx [HB > κn]

= PS [HB > κn] +O
( logl n

n

)
.

(3.17)

Using the Markov property and Lemma 3.4, for Gn ∈ Gd
n

typ and some c > 0,∣∣∣PS [HB > κn]− exp
(
− κn

ESσB [HB]

)∣∣∣
=
∣∣∣PS [HB > tn]ES

[
PSXtn [HB > κn− tn]

∣∣HB > tn
]
− exp

(
− κn

ESσB [HB]

)∣∣∣
≤
∣∣∣PS [HB > tn]PSσB [HB > κn− tn]− exp

(
− κn

ESσB [HB]

)∣∣∣+ c exp
(−c′tn

logl n

)
.

(3.18)

By, e.g., Aldous and Fill (2002, (3.82) and below), the hitting time HB under PSσB has geometric
distribution with mean ESσB [HB]. Moreover, by the same arguments as above (3.12) and by (3.5),
ESσB [HB] ≥ ES [HB] ≥ cn. Thus,

PSσB [HB > κn− tn] =
(

1− 1

ESσB [HB]

)κn−tn
= exp

(
− κn

ESσB [HB]

)
+O

( tn
n

)
.

(3.19)

Applying Aldous and Brown (1992, Theorem 3),

PS [HB ≤ tn] ≤ 1−
(

1− 1

λSESσB [HB]

)
exp

(
− tn
ESσB [HB]

)
≤ ctn

n
. (3.20)

Combining (3.19) and (3.20), one shows easily that the right-hand side of (3.18) is bounded by
ctn/n. Together with (3.17) this then yields the claim of the lemma. �

The final ingredient for the proof of Proposition 3.1 is the next estimate on ESσB [HB].

Lemma 3.6. There is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n] and x ∈ B ⊂ B(x, 1),
with tn = log3l+3 n, ∣∣∣ 1

ESσB [HB]
−
∑
y∈Bx

dny
Ln

PGny [H̃B > tn]
∣∣∣ ≤ ctn

n2
. (3.21)

Proof : Let dnB =
∑

x∈B d
n
x and πB(x) = dnx

dnB
for x ∈ B, and πB(x) = 0 otherwise. We first claim

that
1 = πGn(B)EGnπB [H̃B]. (3.22)
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Recall that PGn is the law of the stationary lazy random walk on Gn. Therefore,

PGn [H̃B = k] = PGn [H̃B ≥ k]− PGn [H̃B ≥ k + 1]

= PGn [H̃B ≥ k]− PGn [HB ≥ k]

= πGn(B)PGnπB [H̃B ≥ k].

Summing over k ≥ 1 proves (3.22).
Observe that by (3.5), EGnπB [H̃B1{X1∈Sc}] ≤ supx∈Sc E

Gn
x [HB] ≤ c log3l n. Using this in the third

step, we obtain
1

πGn(B)
= EGnπB [H̃B]

= EGnπB [H̃B1{X1∈Sc}] + EGnπB [H̃B1{X1∈S∩H̃B≤tn}] + EGnπB [H̃B1{X1∈S∩H̃B>tn}]

= O(tn) + PGnπB [H̃B > tn]PGnπB [X1 ∈ S | H̃B > tn]EGnπB [H̃B | X1 ∈ S, H̃B ≥ tn].

(3.23)

For Sc 6= ∅, by the Markov inequality and (3.4),

PGnπB [H̃B > log3l+1 n | X1 ∈ Sc] ≤ sup
x∈Sc

PGn [HB > log3l+1 n] ≤ log−1 n.

By iterating this log2 n times, and using that the walk does not leave Sc, we obtain PGnπB [H̃B >

log3l+3 n | X1 ∈ Sc] ≤ exp(− log2 n). Therefore,

PGnπB [X1 ∈ S | H̃B > tn] = 1−
PGnπB [X1 ∈ Sc]
PGnπB [H̃B > tn]

PGnπB [H̃B > tn | X1 ∈ Sc]

≥ 1−
PGnπB [X1 ∈ Sc]
PGnπB [H̃B > tn]

exp(− log2 n).

(3.24)

By Lemma 3.4 and (3.24), equation (3.23) reduces to
1

πGn(B)
= O(tn) +

(
PGnπB [H̃B > tn]−O(e− log2 n)

)(
ESσB [HB] +O(e−c log2 n)

)
= O(tn) +

∑
y∈B

dny
dnB
PGny [H̃B > tn]ESσB [HB].

(3.25)

Rearranging of (3.25) yields

1

ESσB [HB]
=
πGn(B)O(tn)

ESσB [HB]
+
∑
y∈B

dnyπ
Gn(B)

dnB
PGny [H̃B > tn]

= O
( tn
n2

)
+
∑
y∈B

dny
Ln

PGny [H̃B > tn],

(3.26)

where in the last equality we used πGn(B) =
∑

y∈B d
n
y/Ln = O(n−1) and ESσB [HB] ≥ ES [HB] ≥ c′n

by (3.5). Claim (3.21) then follows from (3.26). �

Proof of Proposition 3.1: Proposition 3.1 follows directly from Lemmas 3.5 and 3.6. �

4. Degree sequence of the vacant set

The goal of this section is to control the degree sequence dn,u of the vacant graph Vn,u. We
proceed in two steps. First, in Theorem 4.4, we approximate EGn [ni(d

n,u)], the expected number
of vertices with degree i ∈ {0, 1, . . . ,∆} in Vn,u. Second, in Theorem 4.7, we give a corresponding
concentration result.
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4.1. Local coupling with unimodular Galton-Watson tree. Recall from Section 2.4 that T denotes the
unimodular Galton-Watson tree. We write P Tx for the law of the lazy discrete-time simple random
walk Y = (Yk)k≥0 on T started from x ∈ T (cf. with the non-lazy random walk Ȳ of Section 2.4).

The main ingredient of the proof of Theorem 4.4 is a local coupling of the random multigraph
Gn and the random walk X with the unimodular Galton-Watson tree T and the random walk Y .
In its construction we use the following notation. Given the multigraph Gn, a random walk X on
Gn, and some x ∈ [n], we define for t ∈ N,

GX,t = B(x, 1) ∪
⋃

0≤k≤t
B(Xk, 1),

and identify it, as usual, with the corresponding induced subgraph of Gn. Analogously we define

T Y,t = BT (∅, 1) ∪
⋃

0≤k≤t
BT (Yk, 1),

where BT (x, r) denotes the ball of radius r around x in the tree T . Recall also that tn = log3l+3 n.

Lemma 4.1. For every x ∈ [n] there exists a probability space (Ωx,Fx,Qx), where one can construct
a random graph Gn together with a process X on Gn started at y ∈ [n], and a random tree T together
with a process Y on T started at y′ ∈ T , such that

(a) Gn is Pdn distributed,
(b) X has the law PGny , where y is a uniformly chosen neighbour of x in Gn,
(c) T is distributed like a unimodular Galton-Watson tree with offspring distribution p∗ condi-

tioned on {deg(∅) = dnx},
(d) Y has the law P Ty′ , where y

′ is a uniformly chosen neighbour of ∅,
and the event

Gtn =

{
There exists a graph isomorphism φ of GX,tn and T Y,tn such
that φ(x) = ∅, φ(y) = y′, and Yk = φ(Xk) for all 0 ≤ k ≤ tn

}
satisfies, for some c ∈ (0,∞) and large enough n,

Qx[Gtn ] ≥ 1− cn−
2
3
− ε1

2 , (4.1)

where ε1 is as in Assumption 1.1(b).

Proof : We will construct the coupling on (Ωx,Fx,Qx) by sequentially exploring the graph Gn
along the trajectory of the random walk (Xk)0≤k≤tn . The following algorithm, which provides the
construction of Gn and X, and which has four phases, describes this exploration process. In phase 1,
we construct the graph induced by B(x, 1) for a given x ∈ [n]. In phase 2 and 3 we use the random
walk until time tn to continue the construction. In phase 4 we complete Gn by the usual pairing
construction (see Section 2.2). During the run of the algorithm we distinguish between paired and
unpaired half-edges. Note that all random variables in the algorithm are defined on (Ωx,Fx,Qx).
We also recall that Hn denotes the set of half-edges corresponding to dn (see (2.7)).

Algorithm 4.2. At the start, all half-edges in Hn are set unpaired and Gn = ([n], ∅).
1. For all unpaired half-edges (x, i| of the given vertex x:

(i) Choose one half-edge (y′, i′| from all unpaired half-edges except (x, i| uniformly.
(ii) Pair the half-edges (x, i| and (y′, i′|, and add the edge (x, y′) into Gn.
(iii) If all half-edges incident to x are paired, go to phase 2.

2. (i) If B(x, 1) \ {x} is empty, set X0 = x.
(ii) Otherwise, choose one vertex y uniformly in B(x, 1) \ {x}, and set X0 = y.

3. For 0 ≤ k ≤ tn:
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(i) For all unpaired half-edges (Xk, i| of the vertex Xk, sequentially: Choose one half-edge
(y′, i′| from all unpaired half-edges except (Xk, i| uniformly, pair the half-edges (Xk, i| and
(y′, i′|, and add the edge (Xk, y

′) into Gn.
(ii) If all half-edges of Xk are paired, sample Xk+1 using the lazy random walk step distribution

started from Xk.
(iii) If k = tn, go to step 4.

4. Complete Gn by the usual pairing construction on still non-paired half-edges, and continue the
lazy random walk Xk for k > tn + 1 according to its law.

Obviously, Gn and X constructed on (Ωx,Fx,Qx) with the help of this algorithm have properties
(a)–(b) claimed in the lemma.

We continue with an estimate of the degree distribution for all vertices discovered in phases 1
and 3. Let

p∗n(i− 1) =
ini(d

n)∑
1≤i≤∆ ini(d

n)

be the distribution of the ‘degree minus one’ of the vertex corresponding to a uniformly chosen
half-edge in Hn. By Assumption 1.1(b),

p∗n(i− 1) =
ipi +O(n−

2
3
−ε1)∑

1≤i≤∆ ipi +O(n−
2
3
−ε1)

= p∗i−1 +O(n−
2
3
−ε1), (4.2)

where p∗ is given by definition (1.2). Note that Hn
tn , the set of paired half-edges until time tn,

satisfies
|Hn

tn | ≤ 2∆ + 2tn∆,

where the two terms correspond to the number of half-edges paired in Step 1(ii) and Step 3(i)
respectively. Thus, for all half-edges (y′, i′| chosen in Step 1(i) and Step 3(i), it holds that

|Qx[deg(y′) = i]− p∗n(i− 1)| ≤ 2∆ + 2tn∆

|Hn \Hn
tn |
≤ ctn

n
, 1 ≤ i ≤ ∆.

Therefore, by (4.2),
|Qx[deg(y′) = i]− p∗i−1| ≤ cn−

2
3
−ε1 . (4.3)

We will now construct the tree T together with the process Y and the (partial) graph isomor-
phism φ. We first deal with the case when the coupling succeeds, that is Gtn occurs, and deal with
the remaining cases later.

At the beginning of the construction, T is the graph containing only one vertex, the root ∅, and
we define φ(x) = ∅. Then, we add the vertices z1, . . . , zdnx into T and connect them to ∅. If B(x, 1)
is a tree, we define

φ(y) = zi, if (y, j) is paired with (x, i) for some j ∈ [dny ].

We then proceed iteratively along the trajectory of X up to time t∗ given by

t∗ = sup{t ≤ tn : GX,t
∗
is a tree}.

At every time k ≤ t∗, such that Xk visits a vertex for the first time, we abbreviate z = φ(Xk) (which
is always defined at this step, by construction), and let Zz be a p∗ distributed random variable. Due
to (4.3), Zz can be coupled with deg(Xk)− 1, so that

Qx[Zz = deg(Xk)− 1] ≥ 1− cn−
2
3
−ε1 ,

and we thus do so. We then add Zz new vertices into T and connect all of them to z. If Zz =
deg(Xk) − 1, we extend φ by a bijection of the neighbours of Xk and of z, which is possible since
the degrees agree. Finally, we set Yk = φ(Xk) = z.
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If k > t∗, or if the coupling fails, that is there exists a k ≤ t∗, such that Zφ(Xk) 6= deg(Xk) − 1,
we continue the construction of T and the random walk Y independently of the construction of Gn
and X in Algorithm4.2. If the coupling succeeds for all k ≤ t∗ and t∗ = tn, Gn, X, T , Y satisfy the
properties (a)–(d) in Lemma 4.1 and Gtn occurs, by construction.

We thus need to estimate the probability of the event {the coupling succeeds} ∩ {t∗ = tn}. The
event {t∗ = tn} does not occur only if we choose a half-edge of an already discovered vertex in
Steps 1(i) or 3(i). This probability is in every step bounded by 2∆tn/|Hn \Hn

tn | and thus

Qx[t∗ 6= tn] ≤ 2∆t2n
n

. (4.4)

In addition, by (4.3),

Qx[{∃z ∈ T Y,t∗ : Zz 6= deg(φ−1(z))− 1}] ≤
∑

z∈T Y,t∗
Qx[Zz 6= deg(φ−1(z))− 1]

≤ ctnn−
2
3
−ε1 ≤ c′′n−

2
3
− ε1

2 .

These two estimates imply (4.1), which completes the proof. �

Later, for a second moment estimate, we need to couple Gn and two random walks started at
different vertices x1, x2 ∈ Gn with two independent unimodular Galton-Watson trees and random
walks on them.

Lemma 4.3. For every x = (x1, x2), x1 6= x2 ∈ [n], there exists a probability space (Ωx,Fx,Qx),
where one can construct a random graph Gn, together with two processes Xi on Gn started at
yi ∈ [n], for i ∈ {1, 2}, and two independent random trees T i with roots ∅i, together with two
processes Y i on T i started at y′i ∈ [n], for i ∈ {1, 2}, such that,

(a) Gn is Pdn distributed,
(b) for i ∈ {1, 2}, Xi has the law PGnyi , where yi is a uniformly chosen neighbour of xi,
(c) for i ∈ {1, 2}, T i is the unimodular Galton-Watson tree with offspring distribution p∗, con-

ditioned on {deg(∅i) = dnxi},
(d) for i ∈ {1, 2}, Y i has the law P Ty′i

, where y′i is a uniformly chosen neighbour of ∅i,

and the events

Gtni =

{
There exists a graph isomorphism φi of GXi,tn and T Y i,tn such
that φi(xi) = ∅i, φ(yi) = y′i, and Y

i
k = φ(Xi

k), for 0 ≤ k ≤ tn

}
,

satisfy, for some c ∈ (0,∞) and large enough n,

Qx[G1
tn ∩ Gtn2 ] ≥ 1− cn−

2
3
− ε1

2 .

Proof : The proof is similar to the proof of Lemma 4.1, so we only sketch the differences. Note, that
for fixed x1 6= x2, we can run phases 1–3 of Algorithm 4.2 twice to construct two subgraphs GX

1,tn
n

and GX
2,tn

n .
The number of paired half-edges in these steps is bounded by 4(∆ + tn∆), that is, similarly as

in (4.3), for 1 ≤ i ≤ ∆ and y′ ∈ GX
1,tn

n ∪GX
2,tn

n

|Qx[deg(y′) = i]− p∗i−1| ≤ cn−
2
3
−ε1 .

If GX
1,tn

n , GX
2,tn

n are disjoint trees, then we can construct two independent trees T 1, T 2, together
with two random walks Y 1, Y 2, similarly to the proof of Lemma 4.1. If GX

1,tn
n , GX

2,tn
n are not

disjoint, we construct T 1, T 2, Y 1, Y 2 independently. Since, by the same arguments as in (4.4),

Qx[GX
1,tn

n , GX
2,tn

n are disjoint trees] ≥ 1− ct2n
n
,
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this completes the proof of the lemma. �

4.2. Expected degree sequence of the vacant graph. We now use the coupling from Section 4.1 together
with Proposition 3.1, in Theorem 4.4 below, to provide a good approximation for the expectation
EGn [ni(d

n,u)].
For the rooted tree T and A ⊂ [d∅], we denote by y1, . . . , yd∅ the neighbours of the root ∅ and

for A ⊂ [d∅] we define, analogously to (3.1), the set

BT∅,A = {∅} ∪ {yi : i ∈ A} ⊂ BT (∅, 1). (4.5)

We further set
pui (T ) =

∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− u capT (BT∅,A)

)
, (4.6)

where the capacity is defined in (2.12).

Theorem 4.4. Let ε1 be as in Assumption 1.1(b). Then for δ ∈ (0, ε1/4),∣∣∣EGn [ni(d
n,u)]− nET [pui (T )]

]∣∣∣ ≤ cn 2
3
−δ Pdn-a.a.s. (4.7)

Proof : We start by estimating Edn
[
EGn [ni(d

n,u)]
]
first. Note that

EGn [ni(d
n,u)] =

∑
x∈[n]

PGn [dn,ux = i].

Moreover, by (3.2), if B(x, 1) is a tree, then

PGn [dn,ux = i] =
∑

C⊂[dnx ]
|C|=i

∑
A⊂[dnx ]
A⊃C

(−1)|A|−|C|PGn [HBx,A > 2umpn]. (4.8)

We thus control the probability on the right-hand side of (4.8) first. By Assumption 1.1(b),

Ln =
∑
x∈[n]

dnx =
∑

1≤i≤∆

ini(d
n,u) =

∆∑
i=1

i
(
npi +O(n

1
3
−ε1)

)
= nmp +O(n

1
3
−ε1).

By Assumption 1.1(c), Pdn [Gn ∈ Gd
n

typ] ≥ 1 − n−
2
3
−ε2 . Hence, by Proposition 3.1, for x ∈ [n] and

A ⊂ [dnx],

Pdn
[∣∣∣PGn [HBx,A > 2umpn]− exp

(
− 2u

∑
y∈Bx,A

PGny [H̃Bx,A > tn]
)∣∣∣ ≤ cn− 2

3
−ε1
]

≥ 1− n−
2
3
−ε2 ,

(4.9)

where tn = log3l+3 n as in Proposition 3.1. Thus, using the coupling of Lemma 4.1, (4.8), (4.9), and
the fact that B(x, 1) is a tree on Gtn , we have that for every x ∈ [n] and ε3 = min{ε2,

ε1
2 }, with Qx

probability at least 1− c′n−
2
3
−ε3 ,∣∣∣PGn [dn,ux = i]−

∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− 2u

∑
y∈BT∅,A

dnyP
T
y [H̃Y

BT∅,A
> tn]

)∣∣∣
≤ cn−

2
3
−ε1 .

(4.10)

In order to approximate the second term in (4.10) by pui (T ) we need the following claim, whose
proof is postponed to the end of this section. We recall from Section 2.4 that P̄ Ty denotes the law
of non-lazy random walk Ȳ on T .
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Lemma 4.5. For every y ∈ B∅,A, 2P Ty [H̃Y
BT∅,A

=∞] = P̄ Ty [H̃ Ȳ
BT∅,A

=∞], and for some c, c′ ∈ (0,∞),∣∣P Ty [H̃Y
BT∅,A

> tn]− P Ty [H̃Y
BT∅,A

=∞]
∣∣ ≤ c exp(−c′tn).

Applying this lemma, (4.6), and (2.12) in inequality (4.10) yields

Qx
[∣∣PGn [dn,ux = i]− pui (T )

∣∣ ≤ cn− 2
3
−ε1
]
≥ 1− c′n−

2
3
−ε3 . (4.11)

Coming back to (4.6), to finish the approximation of Edn
[
E[ni(d

n,u)]
]
, we need to sum over all

x ∈ [n]. For this we denote by Wx the event in (4.11), that is

Wx =
{∣∣PGn [dn,ux = i]− pui (T )

∣∣ ≤ cn− 2
3
−ε1
}
. (4.12)

By (4.11), for all x ∈ [n],∣∣∣Edn
[
PGn [dn,ux = i]

]
− ET [pui (T )]

∣∣∣ = EQx
[∣∣PGn [dn,ux = i]− pui (T )

∣∣]
≤ EQx

[∣∣PGn [dn,ux = i]− pui (T )
∣∣1{Wx}

]
+Qx[W c

x ]

≤ cn−
2
3
−ε1 + c′n−

2
3
−ε3 ≤ cn−

2
3
−ε3 ,

(4.13)

and thus

Edn
[
EGn [ni(d

n,u)]
]

=
∑
x∈[n]

Edn
[
PGn [dn,ux = i]

]
= nET [pui (T )] +O(n

1
3
−ε3). (4.14)

In order to show (4.7), we need to prove the concentration of EGn [ni(d
n,u)] around its mean. We

first assume that for every two vertices x1 6= x2 ∈ [n]

Edn
[
PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
= Edn

[
PGn [dn,ux1 = i]

]
Edn

[
PGn [dn,ux2 = i]

]
+O

(
n−

2
3
− ε3

2
)
. (4.15)

This implies that

Edn
[
EGn [ni(d

n,u)]2
]

=
∑
x∈[n]

Edn
[
PGn [dn,ux = i]2

]
+
∑
x 6=y

Edn
[
PGn [dn,ux = i]PGn [dn,uy = i]

]
= O(n) +

∑
x 6=y

(
Edn

[
PGn [dn,ux = i]

]
Edn

[
PGn [dn,uy = i]

]
+O

(
n−

2
3
− ε3

2
))

=
( ∑
x∈[n]

Edn
[
PGn [dn,ux = i]

])2
+O(n

4
3
− ε3

2 )

= Edn
[
EGn [ni(d

n,u)]
]2

+O(n
4
3
− ε3

2 ),

for 0 < ε3 <
1
3 . Therefore, by the second moment method, for δ < ε3/4,

Pdn
[∣∣E[ni(d

n,u)]− Edn
[
E[ni(d

n,u)]
]∣∣ > n

2
3
−δ] = o(1). (4.16)

To show (4.15) consider the coupling Qx from Lemma 4.3 for x = (x1, x2) ⊂ [n], x1 6= x2.
Let T 1 and T 2 be two independent unimodular Galton-Watson trees with offspring distribution p∗
constructed during the coupling, and define pui (T 1), pui (T 2) similarly to (4.6), andWx1 ,Wx2 similarly
to (4.12). By Lemma 4.3, for ε3 as above,∣∣∣EQx[PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
− EQx

[
pui (T 1)pui (T 2)

]∣∣∣
≤ EQx

[∣∣PGn [dn,ux1 = i]PGn [dn,ux2 = i]− pui (T 1)pui (T 2)
∣∣1{Wx1∩Wx2}

]
+Qx[(Wx1 ∩Wx2)c]

≤ c′n−
2
3
−ε1 + cn−

2
3
− ε3

2

≤ cn−
2
3
− ε3

2 .
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Using this, the independence of pui (T 1) and pui (T 2), and (4.13) in the last line, implies

Edn
[
PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
= EQx

[
pui (T 1)

]
EQx

[
pui (T 2)

]
+O

(
n−

2
3
− ε3

2
)

= Edn
[
PGn [dn,ux1 = i]

]
Edn

[
PGn [dn,ux2 = i]

]
+O

(
n−

2
3
− ε3

2
)
,

and (4.15) is proved. Thus (4.16) holds, and together with (4.14) this finishes the proof of Theo-
rem 4.4. �

It remains to show Lemma 4.5 which we used in the last proof.

Proof of Lemma 4.5: The first claim of the lemma is a simple comparison of lazy and non-lazy
random walks. For the second claim we note that by the Markov property, for y ∈ BT∅,A,

P Ty [H̃BT∅,A
> tn]− P Ty [H̃BT∅,A

=∞] = P Ty [tn < H̃BT∅,A
<∞]

≤ P Ty
[

dist(y, Ytn) ≤ tn
12

]
+ sup
x:dist(∅,x)> tn

12

P Tx [H̃∅ <∞].

We denote by T 3 the rooted regular tree with deg(x) = 3, for every x ∈ T 3 and root ∅′. Consider
the lazy random walk Y ′ on T 3 started at x ∈ T 3, and its law P T

3

x . Since deg(x) ≥ 3, for all x ∈ T ,
we can couple Y on T with Y ′ on T 3, so that, a.s., dist(∅, Yk) ≥ dist(∅′, Y ′k). Hence,

P Ty

[
dist(∅, Ytn) ≤ tn

12

]
≤ P T 3

y

[
dist(∅′, Y ′tn) ≤ tn

12

]
, (4.17)

sup
x:dist(∅,x)> tn

12

P Tx [H̃∅ <∞] ≤ sup
x:dist(∅,x)> tn

12

P T
3

x [H̃∅ <∞]. (4.18)

Note that dist(∅, Y ′tn) under P T 3

y is a lazy random walk on N with the expected drift given by 1
6 .

Standard large deviation estimates for this walk together with (4.17) and (4.18) then imply the
lemma. �

4.3. Concentration of the degree sequence. In this section we show that ni(dn,u) concentrates around
its mean.

Theorem 4.6. For every u ≥ 0 and ε > 0 there exist c, c′ ∈ (0,∞) such that for every n ≥ 2,
i ∈ {0, . . . ,∆}, ε ∈ (0, 1/2) and Gn ∈ Gd

n

typ,

PGn
[
|ni(dn,u)− EGn

[
ni(d

n,u)
]
| ≥ n

1
2

+ε
]
≤ c′ exp(−cnε/2).

The proof of this theorem uses similar ideas as in Černý et al. (2011) and is based on the following
well known concentration inequality.

Lemma 4.7 (Theorem 3.7 of McDiarmid, 1998). Let W = (W1, . . . ,WM ) be a family of random
variables taking values in some measurable space (S,S), f : SM → R be a bounded function, and let
µ = E[f(W )] be the mean of f(W ). Define

rk(w1, . . . , wk−1)

= sup
y,y′∈S

∣∣E[f(W ) |Wk = y,Wi = wi∀i < k]− E[f(W ) |Wk = y′,Wi = wi∀i < k]
∣∣.

Then, for any t ≥ 0 and R2 = supw1,...,wM−1

∑M
k=1 r

2
k(w1, . . . , wk−1),

P
[
|f(W )− µ| ≥ t

]
≤ 2 exp

(
− t2

R2

)
.
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To apply this inequality we replace the random walk X on Gn by another process obtained by
concatenating random walk bridges of length L = bnδc. Let Gn ∈ Gd

n

typ. For x, z ∈ [n], denote by
PGn,Lx the law of the random walk (Xk)0≤k≤L on Gn started at x, and by PGn,Lx,z = PGn,Lx [ · |XL = z]
the law of the corresponding random walk bridge. Let (Zi)i≥0 be a sequence of πGn-distributed
random variables defined on some auxiliary probability space (Ω̃, Ã, P̃ ). Given (Zi)i≥0, let (X

i
)i≥1

be conditionally independent elements of [n]L+1, defined on the same auxiliary probability space,
such that each (X

i
k)0≤k≤L is distributed according to the random walk bridge measure PGn,L

Zi−1,Zi
.

We define the concatenation of the Xi as

Xk = X
i
k−(i−1)L, for (i− 1)L ≤ k < iL.

For κ ≥ 0, let PGn,κ be the law of (X0, . . . ,Xbκnc) on [n]bκnc+1, and write PGn,κ for the law of the
random walk (X0, . . . , Xbκnc). The next lemma shows that PGn,κ approximates well PGn,κ.

Lemma 4.8. For every κ ≥ 0 and Gn ∈ Gd
n

typ, with L = bnδc, δ > 0, the measures PGn,κ and PGn,κ
are equivalent, and for some c, c′ > 0 independent of n∣∣∣PGn,κ[A]

PGn,κ[A]
− 1
∣∣∣ ≤ c exp(−c′n

δ
2 ), for every A ⊆ [n]bκnc+1. (4.19)

Proof : Let κ′ be the smallest number, such that κ′ ≥ κ and mL = κ′n for some m ∈ N. Since
PGn,κ and PGn,κ are restrictions of PGn,κ′ and PGn,κ′ , it is enough to prove (4.19) for PGn,κ′ and
PGn,κ′ . Let A be an arbitrary subset of [n]bκ

′nc+1. Then, by the Markov property,

PGn,κ
′
[A] =

∑
x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]PGn,κ

′
[XkL = xk, 0 ≤ k ≤ m]

=
∑

x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]πGn(x0)

m∏
i=1

PGnxi−1
[XL = xi].

(4.20)

On the other hand, the construction of PGn,κ implies that

PGn,κ′ [A] =
∑

x0,...,xm∈[n]

PGn,κ′ [A|XkL = xk, 0 ≤ k ≤ m]PGn,κ′ [XkL = xk, 0 ≤ k ≤ m]

=
∑

x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]

m∏
i=0

πGn(xi).

(4.21)

Moreover, by (2.5), since Gn ∈ Gd
n

typ and L = bnδc, for every x, y ∈ [n], for n large enough,∣∣∣PGnx [XL = y]

πGn(y)
− 1
∣∣∣ ≤ cne−λGnL ≤ cne−cL log−l n ≤ cne−cnδ/2 . (4.22)

Combining (4.20)–(4.22) then yields(
1− c′n exp(−cn

δ
2 )
)m
≤ PGn,κ

′
[A]

PGn,κ′ [A]
≤
(

1 + c′n exp(−cn
δ
2 )
)m

,

and (4.19) follows by possibly changing the constants. �

Proof of Theorem 4.6: Set κ = 2ump, m = dκn/Le, and κ′ = mL/n. Denoting by EGn,κ′ the
expectation corresponding to PGn,κ′ , for Gn ∈ Gd

n

typ, by Lemma 4.8 with ε = δ,∣∣EGn [ni(d
n,u)]− EGn,κ′ [ni(dn,u)]

∣∣ ≤ cn exp(−c′n
ε
2 ).
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Therefore, applying once more Lemma 4.8, for n large enough,

PGn
[∣∣ni(dn,u)− EGn [ni(d

n,u)]
∣∣ ≥ n 1

2
+ε
]

≤ PGn,κ′
[∣∣ni(dn,u)− EGn,κ′ [ni(dn,u)]

∣∣ ≥ 2n
1
2

+ε
]

+ c exp(−c′n
ε
2 ).

(4.23)

We now apply Lemma 4.7 with M = m, S = [n]L+1, Wk = X
k and f(W ) = ni(d

n,u). Denoting
by F ji = F ji (wi, . . . , wj) the event {Xk

= wk∀i ≤ k ≤ j}, we claim that for all k = 1, . . . ,m and
w1, . . . , wk−1 ∈ S

rk(w1, . . . , wk−1)

= sup
w,w′∈S

∣∣∣EGn,κ′ [ni(dn,u) | Xk
= w,F k−1

1 ]− EGn,κ′ [ni(dn,u) | Xk
= w′, F k−1

1 ]
∣∣∣

≤ (∆ + 1)L.

(4.24)

Indeed, when conditioning additionally on Fmk+1 = {Xk+1
= wk+1, . . . , X

m
= wm}, since Xk

contains at most L different vertices and thus it can change the degree in the vacant graph of at
most (∆ + 1)L vertices,∣∣∣EGn,κ′ [ni(dn,u)|Xk

= w,F k−1
1 ∩ Fmk+1]− EGn,κ′ [ni(du

′,n)|Xk
= w′, F k−1

1 ∩ Fmk+1]
∣∣∣ ≤ (∆ + 1)L.

Integrating over Xk+1
, . . . , X

m then implies (4.24).
Using (4.24), we can apply Lemma 4.7 with R2 ≤ m(∆ + 1)2L2 ≤ cunL L

2 = cn1+ε to obtain

PGn,κ′
[∣∣ni(du,n)− EGn,κ′ [ni(du,n)]

∣∣ ≥ cn 1
2

+ε
]
≤ 2 exp

(
− cn1+2ε

n1+ε

)
= ce−c

′nε . (4.25)

Combining (4.23) and (4.25) proves Theorem 4.6. �

5. Proofs of Theorem 1.2 and 1.3

In this section we show the main results of this paper, Theorems 1.2 and 1.3. As said in the
introduction, these theorems essentially follow from Proposition 2.1 and Theorem 2.2, if we estimate
the parameter Q(dn,u) sufficiently precisely; here dn,u is the degree sequence of the vacant graph
and Q is as in (2.9).

Observe that

Q(dn,u) =

∑n
x=1(dn,ux )2∑n
x=1 d

n,u
x

=

∑∆
i=0 i

2ni(d
n,u)∑∆

i=0 ini(d
n,u)

. (5.1)

Moreover, by Theorems 4.4, 4.6, there exist c, δ ∈ (0,∞) such that for u > 0 and i ∈ {0, 1, . . . ,∆},∣∣ni(dn,u)− nET [pui (T )]
∣∣ ≤ cn 2

3
−δ, Pn-a.a.s., (5.2)

where pui (T ) is as in (4.6).
To compute the right-hand side of (5.1), we need a last technical lemma which will be shown at

the end of this section. For its statement recall the notation of Section 2.4.

Lemma 5.1. Let u > 0 and φ(u) be as in (2.13). Then

ET [pui (T )] = E

[
φ(u)D

(
D

i

)
E
[
φ(u)D

∗−1
]i(

1− E
[
φ(u)D

∗−1
])D−i]

, (5.3)

where D and D∗ are random variables distributed according to p and p∗, respectively. In particular,∑∆
i=0 i

2ET [pui (T )]∑∆
i=0 iET [pui (T )]

= m−1
p

∆∑
i=3

pii(i− 1)φ(u)i−2 + 1. (5.4)
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From this lemma, (5.1), and (5.2), it follows that for u > 0,∣∣∣Q(dn,u)−
(
m−1
p

∆∑
i=3

pii(i− 1)φ(u)i−2 + 1
)∣∣∣ ≤ cn−1/3−δ, Pn-a.a.s. (5.5)

We can now finally prove our main results.

Proof of Theorem 1.2: We start by proving parts (a) and (b) of the theorem which follow essentially
directly from parts (a) and (b) of Theorem 2.2. By Proposition 2.1, the vacant graph Vn,u is
distributed as the random (multi)graph with the random degree sequence dn,u. Moreover, by (5.2),
the assumptions of Theorem 2.2 are Pn-a.s.s. satisfied for the degree sequence dn,u with pi of (2.10)
being ET (pui (T )). By (5.5), there is a non-random Qu such that Qu = limn→∞Q(dn,u), Pn-a.a.s.
In addition, Qu∗ = 2 iff u∗ is the solution of equation (2.15) and Qu > 2 iff u < u∗. Thus parts (a)
and (b) of Theorem 1.2 follow from (a) and (b) of Theorem 2.2.

We now prove the part (c). Let u∗ be the solution of equation (2.15) and recall that un → u∗

satisfies
n1/3|u∗ − un| ≤ η <∞.

Then, by expanding the exponential exp
(
− uP̄ T̃∅′ [H Ȳ

∅̃ = ∞]
)
appearing in the definition (2.13) of

φ around u∗, and by using (2.15), we find that the first summand on the right-hand side of (5.4)
satisfies

m−1
p

∆∑
i=3

pii(i− 1)φ(un)i−2 = m−1
p

∆∑
i=3

pii(i− 1)ET̃
[

exp
(
− unP̄ T̃∅′ [H Ȳ

∅̃ =∞]
)]i−2

= 1− cp(u∗ − un) +O((u∗ − un)2),

for some constant cp > 0 depending only on the distribution p. With (5.5) this yields

|Q(dun,n)− 2| ≤ 2cpηn
− 1

3 , Pn − a.a.s. (5.6)

Applying Theorem 2.2(c) together with Proposition 2.1 implies the claim (c) of Theorem 1.2.
The claim (d) follows directly from the facts that the critical point of random interlacements on T

agrees with the critical point of random interlacements on T ′ (see the proof of Proposition 2.3), and
both of them, as well as the u∗ of the present theorem, are given as the unique solution of (2.15). �

Remark 5.2. The constant ρ of Theorem 1.2(a) can be identified semi-explicitly using Theorem 2.2
and (5.3). Namely, letting g(x) =

∑∆
i=0 ET [pui (T )]xi to be the generating function of the limiting

distribution of the degree sequence of the vacant graph (see (5.2)), then ρ = 1− g(ξ) with ξ being
the unique solution in (0, 1) of the equation g′(ξ) = ξ

∑∆
i=0 iET [pui (T )].

Proof of Theorem 1.3: The proof follows essentially the same steps as the proof of Theorem 1.2(c),
with the stronger assumption

un = u∗ + ηn−
1
3 + o(n−1/3).

Using the same steps as for (5.6), this assumption implies that

Q(dun,n) = 2 + cpηn
−1/3 + o(n−1/3).

With this at hand, we can apply part (d) of Theorem 2.2 together with Proposition 2.1 to complete
the proof of Theorem 1.3. �

Proof of Lemma 5.1: We write H̃A for H̃ Ȳ
A in this proof and use notation from (4.5). Note that, for

y ∈ BT∅,A \ {∅}, there exists a j ∈ A, such that yj = y. Then, by the Markov property,

d∅P̄
T
∅ [H̃BT∅,A

=∞] =
∑

j∈[d∅]\A

P̄ Tyj [H̃∅ =∞].
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Using this in the second step of the next computation we obtain

capT (BT∅,A) =
∑

y∈BT∅,A

dyP̄
T
y [H̃BT∅,A

=∞]

=
∑
j∈A

dyj P̄
T
yj [H̃{∅,yj} =∞] + d∅P̄

T
∅ [H̃BT∅,A

=∞]

=
∑
j∈A

dyj P̄
T
yj [H̃{∅,yj} =∞] +

∑
j∈[d∅]\A

P̄ Tyj [H̃∅ =∞].

(5.7)

The probability P̄ Tyi [H̃∅ = ∞] only depends on the subtree Tyi ⊂ T , containing the vertex yi ∼ ∅
and all its descendants. Thus P̄ Tyi [H̃∅ = ∞], i = 1, . . . , [d∅], are conditionally i.i.d. given d∅. The
same holds for P̄ Tyi [H̃{∅,yi} =∞]. Thus, inserting (5.7) into (4.6) gives

ET [pui (T )] = ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− u capT (BT∅,A)

)]

= ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET
[

exp
(
− udyj P̄ Tyj [H̃{∅,yj} =∞]

)∣∣d∅]

×
∏

j∈[d∅]\A

ET
[

exp
(
− uP̄ Tyj [H̃∅ =∞]

)∣∣d∅]].
(5.8)

Since T is a unimodular Galton-Watson tree, for every y ∼ ∅, z ∼ y, z 6= ∅, the laws of Ty ∪ {∅}
conditioned on d∅ and of Tz ∪ {y} conditioned on d∅ and dy agree with the law of T̃ introduced
before the definition (2.13) of φ(u). Therefore, for every such y and z,

ET [exp(−uP̄ Ty [H̃∅ =∞])|d∅] = ET [exp(−uP̄ Tz [H̃y =∞])|dy, d∅] = φ(u). (5.9)

Similarly, by the Markov property, the usual independence arguments, and (5.9), for y ∼ ∅

ET [exp(−udyP̄ Ty [H̃{∅,y} =∞])|d∅] = ET
[

exp
(
− u

∑
z∼y,z 6=∅

P̄ Tz [H̃y =∞]
)∣∣∣d∅]

= ET
[
φ(y)dy−1

∣∣d∅] = ET
[
φ(y)dy−1

]
,

(5.10)

since the degree of any y ∼ ∅ is independent of d∅. Using (5.9) and (5.10), and noting that
ET [φ(u)dyi−1] = φ(u)ET [φ(u)dyi−2] since dyi ≥ 2, (5.8) simplifies to

ET [pui (T )] = ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET [φ(u)dyj−1]
∏

j∈[d∅]\A

φ(u)

]

= ET
[ ∏
j∈[d∅]

φ(u)
∑

C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET
[
φ(u)dyj−2]]

= ET
[
φ(u)d∅

(
d∅
i

)
ET
[
φ(u)dy−2

]i(
1− ET

[
φ(u)dy−2

])d∅−i],
where in the last line y is an arbitrary neighbour of ∅. This proves (5.3), since d∅ is p-distributed,
and for y ∼ ∅, dy = 1 + ‘number of offsprings of y’ has the same distribution as 1 + D?, with D?

being p∗-distributed.
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Using (5.3), writing the distribution of D explicitly, recalling that p1 = p2 = 0 by assumption,
the numerator of (5.4) can be written as

∆∑
i=0

i2ET [pui (T )] =
∆∑
k=3

pkφ(u)k
k∑
i=0

i2
(
k

i

)
E
[
φ(u)D

∗−1
]i(

1− E
[
φ(u)D

∗−1
])k−i

=

∆∑
k=3

pkφ(u)kkE
[
φ(u)D

∗−1
](

(k − 1)E
[
φ(u)D

∗−1
]

+ 1
)
,

(5.11)

where for the second equality we used the fact that the inner sum is the second moment of the
binomial distribution with parameters k and E

[
φ(u)D

∗−1
]
. Similarly, the denominator of (5.4) can

be written as
∆∑
i=0

iET [pui (T )] =

∆∑
k=3

pkφ(u)kkE
[
φ(u)D

∗−1
]
. (5.12)

Finally, using the definition (1.2) of the offspring distribution p∗, we obtain

ET
[
φ(u)D

∗−1
]

=
∆∑
k=2

p∗kφ(u)k−1 =
∆∑
k=3

kpkm
−1
p φ(u)k−2. (5.13)

Combining (5.11), (5.12) and (5.13) then yields∑∆
i=0 i

2ET [pui (T )]∑∆
i=0 iET [pui (T )]

=
ET
[
φ(u)D

∗−1
]∑∆

k=3 pkk(k − 1)φ(u)k−2∑∆
k=3 pkkφ(u)k−2

+ 1

= m−1
p

∆∑
k=3

pkk(k − 1)φ(u)k−2 + 1.

This completes the proof of the lemma. �
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