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Abstract. In the paper, second-order Chebyshev-Edgeworth expansions are proved for the sample
median when the sample size has negative binomial or discrete Pareto-like distributions. The limit-
ing distributions of the scaled sample median depend not only on the sample size distribution but
also on the chosen scaling factor. The limiting distributions are the generalized Laplace, the nor-
mal and the scaled Student distributions, depending on the random, non-random or mixed scaling
factor. Second order Cornish-Fisher expansions are also derived and the negative moments of the
random sample sizes are calculated.

1. Introduction

In classical statistical inference, the number of observations is normally a known parameter. If
the data are collected in a fixed period, then the number of observations is typically random. For
example, patients with flu within a week, the number of call options not exercised on the expiration
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date, or the number of the « particles detected by a radiation source with a Geiger-Miiller counter
during an hour, such experiments lead to models with random numbers of observations.

A survey of statistical inference with a random number of observations can be found, for example,
in Esquivel et al. (2016) and the references there. In the aforementioned paper, the inference for
the mean and variance in the normal model is investigated. ANOVA models based on samples with
Poisson or binomial distributed number of observations were investigated in Nunes et al. (2019a,b,c)
for the analysis of one-way fixed effects to avoid false rejection.

Denote the real axis, the positive numbers and the indicator function as follows

1, e ACR

R=(- N=1{1,2,... d I4=1 =
(00700)7 {77 }an A A(x) {0’ x%ACR’

respectively. Moreover, if x is a real value, then [z] denotes the greatest integer less than or equal
to x.

It is assumed that all random variables considered in the following are defined on one probability
space (2, A,P). Let X, X7, Xs,... € R be independent identically distributed random variables. In
statistics the random variables X7, Xo, ... are observations.

Consider the statistics T, := T, (X1, ..., X)) of a sample with sample size m. We write T,,, has
asymptotic normality AN (um,02,) where pi,, and o2, > 0 are sequences of constants if

T _
sup‘]P’(m'umgac>—<I>(x) —0 as m— 0.
€T

Om

Here ®(z) is the distribution function with density ¢(x) of the standard normal Y

— _ 1 —z2/2
P(Y <z)=®(z) and ¢(x) W e , x€R. (1.1)
The notation N(u,0?) will be used to denote either the normal distribution with mean p and
variance o2 or a random variable having this distribution. Hence, Y is N'(0,1) in (1.1).

Along with X1, X, ..., consider now a sequence of integer-valued positive random sample sizes
N,, € N such that for each n € N the random variables IV,, are independent of the sample X7, Xo, ...
and that N,, — oo in probability as n — oco. Furthermore, let the existence of a distribution function
H(y) with H(0) = 0 and a sequence 0 < g, T 0o be assumed such that

supy>o [P(Nn/gn <y) — H(y)| =0 as n — oo. (1.2)

Let Ty, := T), (X1,. .., X,n) be some statistic of a sample with non-random sample size m € N.
Define the random variable T}, for every n € N:

TNn(w) = TNn(w) (Xl(w), .. 7XNn(w)) , wE Q)

i.e. T, is some statistic obtained from a random sample X, X»,..., Xn,,.
Many models lead to random sums Sy, and random means T :
Nn " 1 Nn 1

Wald’s identity for random sums E(Sy, ) = E(N,,)E(X1), when N,, and X; have finite expectations,
is a powerful tool in statistical inference, particularly in sequential analysis, see e.g. Wald (19415)
and Kolmogorov and Prokhorov (1949). Robbins (1948) proved that the asymptotic normality of
both the sum S), and the sample size N,, lead to asymptotic normality of the random sum Sy,,.

In Dobler (2015), a basic overview to asymptotic distributions of random sums was given. Using
Stein’s method, quantitative Berry-Esseen bounds of random sums were proved in Chen et al. (2011,
Theorem 10.6), Dobler (2015, Theorems 2.5 and 2.7) and Pike and Ren (2014, Theorem 1.3) in case
of approximation by normal and Laplace distributions. Kalashnikov (1997) studied applications of
geometric random sums when N,, is geometrically distributed.
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The randomness of the sample size may crucially change asymptotic properties of random sums,
see e.g. Gnedenko (1989) or Gnedenko and Korolev (1996). Appropriate scaling factors by random
sums Sy, or random means T}, affect the type of limit distributions.

If the statistic T}, is asymptotically normal, then the limiting laws of appropriate scaled statistics
Ty, are scale mixtures [;° ®(zy?)dH (y) of normal distribution ®(z ") with a real constant v and
the mixture distribution H(y), determined by N, and given in (1.2). Scale mixtures of normal
distributions are often employed as an important class for statistical treatments for symmetric
data, see e.g. Andrews and Mallows (1974) and Fujikoshi et al. (2010, Chapter 13).

Ezample 1.1. Let X1, Xo, ... be independent N(0,1) then T, = (X1 + ... + X,,)/m is N'(0,1/m).
Let T, 4y be random mean given in (1.3) where Np(1) € N be geometrically distributed as special
case of negative binomially distributed N, (r) (see (5.1) below) for r = 1:

P(N,(1) = j) = (;) <1 - ;)j_l, jn=1,2,.. with E(N,(1)) = n.

Assume that for each n € N the random variable N, (1) is independent of the sequence X, X, ....

Then statement (1.2) holds with g, = n and limit exponential distribution H(y) = (1—e™¥) I,>0-
The following conclusions can be drawn:

P («/Nn(l) T 0y < x) = [ ®(2)dH(y) = ®(x) forall n €N,
0

lim P (,/1@:(1\@(1))1’;‘V 0 < x) = [®(zy'?)dH(y) = [ (2+u?) " du,

n—oo n 0 —00

. N, (1) . ) T ~1/2 [ L V2l

lim P| ——2——T <z)=| P dH(y) = —=e “du.

B BN, (1) e =) = AW = ]
Three different limit distributions occur. The scaled random mean T;,n(l) is standard normally
distributed or tends to the Student distribution with 2 degrees of freedom depending on whether the

random scaling factor /Ny, (1) or the non-random scaling factor y/E(N, (1)) were chosen. Moreover,
the Laplace distribution with variance 1 is the limiting distribution when scaling with the mixing
factor N, (1)/+/E(N,(1)).

The first statement above follows from conditioning and stability of the normal law. Student
distribution as a limit for statistics from samples with a random sample size are proved e.g. in
Gnedenko (1989), Bening and Korolev (2004) and Schluter and Trede (2016). The Laplace limit
law follows e.g. from Bening and Korolev (2008) or Schluter and Trede (2016).

—00

Bening et al. (2013) presented a general transfer theorem for asymptotic expansions of the distri-
bution of statistics T}, from samples with non-random sample size m to statistics Ty, from samples
with random sample size N,,. The authors applied corresponding expansions for both the normal-
ized statistic T}, and the appropriate scaled random sample size IV,,. In the aforementioned paper,
first order expansions of the random mean T, are proved if the sample size Ny, is negative binomial
distributed with success probability 1/n or N, is the maximum of n independent identically dis-
tributed discrete Pareto random variables with tail index 1. For the mean T, = (X1 +...+ X,;,)/m,
first order Chebyshev-Edgeworth expansions were applied. For random sample size N,,, the rate of
convergence in (1.2) with Cn= for 0 < b < 1 are used. Therefore, the convergence rates for the
random mean 7% cannot be better than C/n. To improve the convergence rates, in Christoph
et al. (2020, Theorems 1 and 4) second-order asymptotic expansions were proved for suitably nor-
malized sample sizes IV, in cases mentioned above. Moreover, second order Chebyshev-Edgeworth
expansions for T3, were constructed for the first time, with which the relevant results in Bening
et al. (2013) were improved. See also Fujikoshi and Ulyanov (2020, Chapter 9).

Analogous results were obtained in Christoph and Ulyanov (2020, 2021b) for the three most
important geometric statistics of Gaussian vectors with random dimension N,,, the length of a vector,
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the distance between two independent vectors and the angle between these vectors associated with
their sample correlation coefficient. Moreover, Chebyshev-Edgeworth expansions for Ty, based on
random sample size N,, are presented in Christoph and Ulyanov (2021a) when the statistic T}, is
asymptotically chi-squared distributed.

Burnashev (1997) proved second-order Chebyshev-Edgeworth expansions for the median of a
sample {X7,...., X;,} of independent identically distributed random variables with common contin-
uous distribution function Fx(x) and symmetric probability density px(x), where m € N is the
non-random sample size.

Using these results, in present paper we construct second-order Chebyshev-Edgeworth expansions
for the median of a sample with the random sample sizes NV,, mentioned above.

The structure of the paper is the following. Order statistics are considered in Section 2 with
special attention to the median. In Section 3 we clarify the result of Burnashev (1997) in the sense
that the closeness between the sample median M, and the corresponding second order expansion is
estimated by inequalities for any integer m > 1 instead of some O-order as m — co. In Section 4 we
give a transition proposition from non-random to random sample sizes. Sections 5 and 6 consider the
cases of negative binomial and discrete Pareto-like sample sizes N,,. In Section 7 the Cornish-Fisher
expansions for the quantiles of sample medians My, and M, are derived from the corresponding
Chebyshev-Edgeworth-type expansions. Finally, the proofs are collected in Section 8.

2. Elements of Order Statistics

Let { X1, Xo, ..., X;,,} be a sample of independent observations with common distribution function
Fx(x) and the density function px(x). The ordered sample

Xm:l < Xm:2 <..< Xm:m

define the order statistics of the sample. Special cases are sample maximum X,,.,,,, sample minimum
X1 and median M,,, defined by

Mm _ { Xm:(m+1)/2, for odd m,

m € N. 2.1
(Xm:m/Q + Xm;(m+2)/2)/2, for even m, ( )

The distribution function of the kth order statistics X, j is simple to find, but tedious to calculate:

P(Xpp<z)=Y . (m) (F(z))'1—F()™", z€R, 1<k<m.

i=k \ 1
It is easily seen that for the maximum and minimum values X,,.,, and X,,.; one has
P(Xpm <z)=F"(z) and P(Xp1<z)=1-(1-F(z)™.

Extreme value analysis as an important branch of statistics deals with largest and smallest values of
samples. It has its own special asymptotic theory with the three non-degenerate limit distribution
families: Weibull, Gumbel and Fréchet laws, see e.g. FEmbrechts et al. (1997), Nevzorov (2001,
Lectures 10-12), de Haan and Ferreira (2006) and Ahsanullah et al. (2013, Chapter 11).

Many important monographs deal with asymptotic theory for order statistics, see e.g. Serfling
(1980, Chapters 2 and 3), Balakrishnan and Rao (1998b,a), Reiss (1989, Section 4.1), van der Vaart
(1998, Chapter 21), Nevzorov (2001, Lectures 8 and 9), David and Nagaraja (2003, Chapters 10
and 11) and Ahsanullah et al. (2013, Chapter 10).

There are different definitions of single sample quantiles in statistical literature, based on rounding
or on linear interpolation. Let 0 < p < 1. The single sample pth-quantile is defined as X,,.;m 41,
except the median M, if p =1/2, see (2.1). Define

" My, if p= 1/27
Xm:[mp]+17 if p 7é 1/27

m;p

meN, 0<p<l.
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The asymptotic normality of the normalized sample quantiles Xy, ., is well known, see e.g. Cramér
(1946, Chapter 28.5): Let x;, be the pth population quantile, p € (0,1), of the continuous distribution
function Fx(z), i.e. Fx(xp) = p. If the density px(z) is continuous in some neighborhood of = x,,
and px (zp) > 0 then

R, = sup — 0 as m — oo. (2.2)

z€R p(1—p)

In Crameér (1946, Chapter 28.5) it is additionally assumed that the density p,(x) has a continuous
derivative p'y(z) in some neighborhood of = x,. This condition can be omitted as shown e.g.
in Serfling (1980, Section 2.3.3), Reiss (1989, Theorem 4.1.4) and van der Vaart (1998, Section
5.3). Furthermore, an example is presented in Serfling (1980, Section 2.3.3) that the median is not
asymptotically normally distributed if the continuity of px(z) in @ = z;/5 is violated. Based on

Serfling’s example, we study the following

P (W(M:n;p — xp) < 33) — 2(z)

Example 2.1. Consider the distribution F§ (z) with symmetric density p% («) which is discontinuous
at ry/4 and w3,y

x+3/4, x€[-3/4,-1/2), 1, x € [-3/4,-1/2),
Fi(z) =4 (x+1)/2, z€[-1/2,1/2), and px(z)=11/2, z€[-1/2,1/2), (2.3)
w4+ 1/4,  xel1/2,3/4], 1,  zel1/2,3/4].

At the population quantiles z;, , 0 < p < 1, except at the first quartile z; /4 = —1 /2 and third quartile

p(1—p) )
(P (zp))*m/’
e.g. the sample median M}, is AN(0,1/m). At the discontinuous points z = £1/2 of p% (z) both
for p =1/4 and p = 3/4 the sample quartiles Xom, [mp]+1 are not asymptotically normally distributed.
We can nevertheless use Theorem A in Serfling (1980, Section 2.3.3) to approximate the probability
P(ml/Q(va[mp}_H —xp) < t) by the normal distributions N'(0,3/16) if ¢t < 0 and N (0,3/64) if ¢t > 0
for p=1/4 and N (0,3/64) if t < 0 and N(0,3/16) if t > 0 for p = 3/4.

Theorem C in Serfling (1980, Section 2.3.3) gives a convergence rate R, = O(m~/?) for (2.2)
if in the neighborhood of x,, Fx(x) possesses a positive continuous density py(z) and a bounded
second derivative F¥ (x).

More general expansions of distributions for central order statistics X, , were established in Reiss
(1989, Section 4.2) which differ from the classical Chebyshev-Edgeworth expansions since the higher
order terms are given by integrals of polynomials with respect to the normal distribution depending
in a non-trivial way on sample size m and on the index % of the order statistic X,, ;. As special
cases expansions of the distributions for the order statistics from uniform and exponential random
variables are given.

The remainder sup, R}, (x) in approximations of normalized order statistics by asymptotic ex-
pansions usually meets order condition sup, R, (z) = O(m */2) as m — oo for some k > 1. In
the equivalent condition sup, R, (z) < Cm~*/2 for all m > M the values C' > 0 and M > 0 are
unknown.

However, for the transfer proposition from the non-random to the random sample size in Section 4,
estimates of sup, R}, (z) are required in the form of inequalities for each m € N.

For sample median M,, and symmetric densities px(x) qualitative difference between rates of
convergence in (2.2) was shown in Burnashev (1997, Section 5). For smooth densities with py (0) = 0

r3/4 = 1/2, the density p% () is continuous and the sample median My, ., is AN(xp,

the convergence rate has order m~!. However, when P’y (+0) # 0, the order is m~1/2.

Huang (1999) discussed the even-odd phenomenon for the median in statistical literature and
gave a counterexample which contradicts the statistical folklore: “It never pays to base the median
on an odd number of observations”.



344 Gerd Christoph, Vladimir V. Ulyanov and Vladimir E. Bening

To perform statistical analysis of large data sets Minsker (2019) presents new results for the
median-of-means estimator using new algorithms for distributed statistical estimations that exploit
divide-and-conquer approach.

In Pena et al. (2019) confidence regions for median of X in the nonparametric measurement error
model are constructed and several applications are given when a confidence interval about the center
of a distribution is desired.

To estimate the location parameter of a distribution function Fx(z) one could use also the
random mean T, = (X1 + ... + X,,)/m. If X is normally distributed with mean p and variance o2
then T% is normally distributed with mean p and variance o2?/m, whereas sample median M, is
AN (i, w02 /(2m)) and 7o2/(2m) =~ 1.5702 /m.

Although the method of the median is less effective compared to the method of the arithmetic
mean, Kolmogorov (2019) advises “when the distribution law is unknown and can deviate markedly
from the normal law, it is safer to use the method of the median.” For example, the median provides
better confidence intervals for the Laplace distribution, while the mean works better for normally
distributed observations. For heavy tailed distributions, sample median is often preferable to sample
mean. For illustration, to estimate the location parameter p of a Cauchy distribution Fx(z), with
density px(x) = (7 + n(z — p)?)~!, € R, the sample mean T is not a consistent estimator of
the location parameter p due to the stability property of the Cauchy law: T also has Cauchy
distribution function Fy(z). However, sample median M,, is AN (u, 72/(4m)), see Serfling (1950,
Section 2.3.5).

3. Non-Asymptotic Expansions for Sample Median

The regularity conditions for density px (z) in Burnashev (1997) are as follows:
Assumption A: The density px(z) is continuous and symmetric around zero, i.e., px(—x) =
px(x), x € R and px(0) > 0. Moreover, the density px(x) has three continuous bounded derivatives
in some interval (0,x0), xo > 0.
Define po=px(0) >0, pi=px(0+) and po=p(0+).
The regularity conditions in Assumption A are fulfilled, for example, for
e normal density (1.1),
e heavy tailed Student’s ¢t-distribution S, (x) with density function

I((v+1)/2 z2\ —(+1)/2
s(a) = L+ D/2) (1 n 7)
Vn T(v/2) v
including Cauchy distribution in case v = 1, where the degree of freedom parameter v > 0 deter-
mines the heaviness of the distribution tail,
e the triangular distribution with density

, v>0, xeR, (3.1)

a— |zl

to(z) =

e the continuous uniform distribution or rectangular distribution with density

1
- 2a

]I(fa,a) (:B), a>0, (32)

a?

H(fa,a) (x), a>0 (33)

Ug ()

e symmetric Laplace distribution L, (x) having density
1
l (:B)zie_ﬂ‘xl/“, reR, p>0, zekR. (3.4)
M \/§N

e and the distribution F'§(x) with density p% (z) defined by (2.3) in Example 2.1.
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The corresponding coefficients pg, p1, and po in these examples are:

hd SO(IE) pozl/\/zﬂ-v plzov p2:_1/\/27ra

_I((v+1)/2) _ ___ T(w+3)/2)
o Sl/($) Po = mu pP1 = 07 P2 = — \/’Uiﬂ'l—‘((’l) n 2)/2)7
o ta(l') : Po = a_la pP1 = —CL_2, P2 = 07
i ua(x) : bo= (2 a)_lv p1 =0, p2 =0,
o lu(x po=1/(vV2p), pL=—p2% pa=V2u?
o px(@): po=1/2, p1 =0, p2 = 0.

Under Assumption A Burnashev (1997, Theorem 1) proved in relation (2.2) an asymptotic ex-
pansion in terms of orders m~'/? and m~! with remainder O(m=3/2) as m — oo. Only a direct
combinatorial approach and no limit theorems were used in the proof. Therefore, the remainder
can be estimated by an inequality. Define

. m for even m,
m" =2[m/2] = { m—1 for odd m. (3.5)
Proposition 3.1. Let Assumption A be satisfied, then for all m > 2:
" Nx)  folz)| _ G
R = P(2povm* M,, < z) — ®(x) — — ) 3.6
where C1 does not depend on m,
pizl] x o pex®  piat
filx) = o(x) and fgx:—(?)—i-a: —i-i——)cpx. 3.7
(@) = P et) (0) =1 e 37

Since 0 < (m—1)"*—m~* < 2m=3/2 for m > 2 and & = 1/2 or a = 1 an immediate consequence
of inequality (3.6) is
Co
— m3/2 Y

SUD,cr (3.8)

P(onx/n?Mm < :n) —®(x) — f\l/(%) - f2r(n$)

where (3.8) for m =1 is trivial and C does not dependent on m.

Remark 3.2. If the parent distributions of the sample {Xji,..., X;,} have normal density (1.1),
Student’s t-density (3.1), uniform density (3.3) or the density p% (x) in (2.3) then the convergence
rate for the median M, in (2.2) is of order m™1. The triangular density (3.2) and the Laplace
density (3.1) have discontinuous derivatives at = 0, nevertheless p; > 0 and the convergence rate

n (2.2) has the order m=1/2,

Remark 3.3. As in Burnashev (1997) the natural normalizing factor in (3.6) is m*, i.e., v/m — 1 for
odd m > 3 and /m for even m. He proved also for all m > 2

P(2povm* My« < z) — P(2povVm* My=11 < x)| < Cm=3/2,
Hence, for sample median M,,, each odd observation adds an amount of information of order m=53/2
and not m~! as usual with normalizing factor \/m by M,,.

Remark 3.4. The advantage of second-order approximations is proven by numerical calculations in
Burnashev (1997, Section 4). For Laplace density the remaining term R,, in (2.2) contributes less
than 10 % of the actual value only for sample sizes m > 250. On the other hand, the remaining
term R}, from the approximation (3.6) contributes less than 10 % of the actual value starting with
the sample size m = 8 for the Laplace density and m = 11 for smooth heavy tailed Cauchy density.
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Remark 3.5. The restriction to symmetrical densities can certainly be removed by requirements
on derivatives of px(x) in some open intervals (z/9,%1/2 +¢) and (x1/5 — €,71/2). However, the
asymptotic expansions with remainder term estimations become technically much more complicated.
For example, in Kotz et al. (2001, Chapter 3) for asymmetric Laplace distributions the population
quantiles and the median are given, which depends on an additional parameter asymmetry. The
population median is located at the discontinuity point only for the symmetric Laplace density.

4. Transfer Proposition from Non-Random to Random Sample Sizes

Let the Assumption A be satisfied, then (3.8) holds for all integer m > 1. Suppose that distribu-
tion functions of the random sample size N, satisfy the following condition.

Assumption B: There exist a distribution function H(y) with H(0+) = 0, a function of bounded
variation ho(y) with ha(0) = ha(co) = 0, a sequence 0 < g, T 0o and real numbers b > 0 and C3 > 0
such that for allm € N

sup,sq [P, 'Nn <y) — H(y)| < Csn?, 0<b<1 oy
supyso [Py ' N < ) — H(y) —nha(y)| < Csn™,  b>1

Remark 4.1. The negative binomial and discrete Pareto-like sample sizes fulfill Assumption B, see
Propositions 5.1 and 6.1 below. For example, in the articles Dobler (2015); Esquivel et al. (2016);
Nunes et al. (2019a,b,c) mentioned in the introduction, the binomial or Poisson distributions as
random sample sizes N of observations are considered. If N = N, is binomial (with parameters
n and 0 < p < 1) or Poisson (with rate An, A\ > 0) distributed, then P(V, < EN,z) tends to
the degenerated in 1 distribution as n — oco. Second-order expansion in the case of a degenerate
limiting distribution could not be found. On the other hand N, is AN(EN,, Var(N,)). Berry-
Esseen inequalities for Poisson and binomial random sums are proved in Dobler (2015); Korolev
and Shevtsova (2012); Sunklodas (2014), but Chebyshev-Edgeworth expansions for these lattice
distributed random variables exist so far only with bounds of small-o or large-O orders, see e.g.
Kolassa and McCullagh (1990). For (4.1) in Assumption B, non-asymptotic error bounds Cj5 are
required because in the Theorem 4.2 one term in (4.2) depends on C5. Therefore, we cannot apply
Theorem 4.2 and 4.5 to samples with binomial or Poisson sample sizes. About non-asymptotic
bounds and large-O order conditions, see Fujikoshi and Ulyanov (2020, Chapter 1).

Theorem 4.2. Let v € {—1/2,0,1/2} and both Assumptions A and B be satisfied. Then the
following inequality holds for alln € N :

subcz [P(200(9n/Na)” /Ny My, <) = Go(w,1/90)

< GE (N;3/2) 4 (C3Dp(7) + Cy)n~", (4.2)

Y . filzy?) | fao(zy?) ha(y)
Gutfgn) = [ (@) 4 22 B a2 ). (4.3)
Dy, (7y) = supg Dy (x57) < D(7) < o0 (4.4)

D, (x; :/ — (CD xy” +
(=) 1/gn |0y (=) VY9n Y9n

where f1(2), fa(2), ha(y) are given in (5.7) and (/.1) and

L h@y)) f2(96y”)) ‘ dy.

N, for even realizations of Ny,

* _
Ny =2[Nn/2] = { N, -1 for odd realizations of N,.
The positive constants Cq, Cs, Cy, D do not depend on n.
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Remark 4.3. The scaling factor (g,/Nyn)? v/ N;; seems to be the natural one in case of the median
of a sample with a random sample size N,, since the distribution of N, /g, has a known limit
distribution and N;f the same structure as m* in Burnashev (1997), see (3.5).

Remark 4.4. The lower bound of the integral in (4.3) depends on g,, which can affect the coefficients
at 1/,/gn and 1/gy,, in the approximation. For example the proof of Theorem 5.6 in Section 8 shows
that some integrals tend to infinity as g, — oo , see (8.18):

100
gﬁ/
1/gn

Theorem 4.5. Under the conditions of Theorem /.2 and the additional conditions to functions
H(.) and ha(.), depending on the convergence rate b > 0 in (}.1):

W‘dl{(@/)gcg,ﬁ if b<1 and ~=1/2.

i H(1/gn) < c1(b) g, for b>0,
i fol/g” y~Y2dH (y) < ¢2(b) gn Sor/2 for b>1/2, (4.6)
141 fol/g" y~'dH(y) < c3(b) g, 0! for b>1,

i: he(0)=0, and |ha(1/gn)| <ca(b)ng;® for b>1, (47)
i fy g ha(w)ldy < es(®)n gy for b>1, |
we obtain for the function Gy (x,1/gy) defined in (}.3):
sup,, |Gn(2,1/gn) — Gn2(x) — Ii(z,n) — Iz(z,n)| < Cg;b (4.8)
with
J @(zy?)dH (y), 0<b<1/2,
0
o0 7
Gra(z) = f(@(xyv Pl :ryy )dH : nl(;p), 1/2<b<1, (4.9)
0 n
Y
Gz +ff2jf Vam(y) f (y), b>1,
< fi(xy?) Lo ) faolzy?)
Li(z,n :/ : + dH or b<1 4.10
O W Gy o JAH ) ] (4.10)
and
[ hmy)  falxy?)
IQ($,n)—//g ( o )th(y) for b>1. (4.11)

Remark 4.6. If b > 1/2 then (4.6ii) implies (4.61). If b > 1 then (4.6iii) implies (4.6ii) and (4.61).
Conditions (4.6) and (4.7) guarantee to extend the integration range of the integrals in (4.9) from
[1/gn,o0) to (0,00) which ensures (4.8). The length of the asymptotic expansion is defined by (4.9).

Remark 4.7. The limit distributions [ ®(xy?)dH (y) in (41.9) are scale mixtures of normal distri-
bution ®(xy?) with a real constant v and mixture distribution H (y).

In the next two sections we use both Theorems 4.2 and 4.5 when the scale mixture G(z) =
JoS ®(zy")dH (y) as limiting distribution of My, can be expressed in terms of the well-known
distributions. We obtain non-asymptotic results like in Proposition 3.1 for the sample median My,
using second order approximations for both the statistic M,,, and for the random sample size N,,.
In both cases the jumps of the distribution function of the random sample size IV,, only affect the
function ha(y) in formula (4.1).
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5. Sample Size has Negative Binomial Distribution

Let the sample size N, (r) the negative binomially distributed (shifted by 1) with parameters 1/n
and r > 0, having probability mass function

P(N, (r) = j) :W (i)r (1—i)j_1, j=12.. (5.1)

with g, = E(N,(r)) = r(n — 1) + 1. Schluter and Trede (2016, Section 2.1) pointed out that the
negative binomial distribution is one of the two leading cases for count models, it accommodates
the over-dispersion typically observed in count data (which the Poisson model cannot) and they
showed in a general unifying framework

limy, 00 sup,, [P(Ny(1)/gn < ) — G, r(2)] =0, (5.2)
where G, (x) is the Gamma distribution function with the shape parameter which coincides with
the scale parameter and equals r > 0, having density

TT T— —rx
Grp(x) = F(T)x Te Io,00)(), z€R. (5.3)

The statement (5.2) was proved earlier in Bening and Korolev (2004, Lemma 2.2).
The convergence rate in (5.2) for r > 0 is given in Bening et al. (2013, Formula (21)) or Gavrilenko
et al. (2017, Formula (17)):

sup,, [P(Np (1) /gn < ) — Grp(x)| < Cpop~ WL (5.4)

In Schluter and Trede (2016) and Gavrilenko et al. (2017) the negative binomial random variable
Ny (r) is not shifted: N,(r) = Np(r) —1 € {0,1,2,...} with EN,(r) = r(n — 1). Then we have
P(N,(r) <0) — Gy, (0) =n~" — 0 as n — oo instead of P(N,,(r) < 0) — G,,(0) = 0. Moreover

p ) :IP’<N"(T) <w+ 1_x>.
r(n—1) In In
The statements (5.2) and (5.4) still hold when N, (r) is shifted by a fixed integer. From Taylor
expansion with Lagrange remainder term it follows that for » > 1

e (x T x) — G (2) — grr(2)

1—=x

< C’g; min{r,2}.

9n n

Hence, for r > 1 shifting Nn(r) has influence of a term by g, !. Second order asymptotic expansions
for N, (r) where proved in Christoph et al. (2020, Theorem 1):

Proposition 5.1. Let r > 0, discrete random variable Ny, (r) have probability mass function (5.1)
and gn = ENp(r) =r(n—1)+ 1. For x > 0 and all n € N there exists a real number Cs(r) > 0

such that
sup, > |P <Nn(r) < x) — Gpp(z) — hQ’;(x) < Cs(r)n~ min{m}, (5.5)
where ’
0 forr <1,
hoy(z) = Grr(x) ((a: — 1)(22; r) + 2Q1(gn x)) forr> 1,

Q1(y) =1/2 — (y — [y]) and|[.] denotes the integer part of a number.

Remark 5.2. The jumps of the sample size N, (r) have an effect only on the function @(.) in the
term ho,(x). The function Qq(y) is periodic with period 1, it is right-continuous with jump height
1 at each integer point y.
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In Theorem 4.2 an estimate for the negative moment E(N,)~%/2 of the random sample size
N, is required. Proposition 5.1 is used in Bening (2020, Corollary 2) to obtain an asymptotic
expansion of negative moments E(N,,(r))™P for 1 < p+1 < r < 2. Such expansions are applied
in the mentioned paper to analyze asymptotic deficiencies and risk functions of estimates based on
random-size samples. An improved result with leading term and remainder estimation is given here:

Theorem 5.3. Let v > 0 and p > 0. Then the following expansions for negative moments hold for
alln > 2:

1 0<r<p<?2,

1;no
" In(gn) | ps _
1’*(74> g;"L + RZ;n? r=p S 2a
¥y _
w + R;.,., max{0,r — 1} <p<r <2,
E(N -p _ (7") 9n ’ 56
0l PTG —p) _ @—1)pr"(p+ 1) —p) >0
PT(r—p) (2-—r)prl(p r—p .
Ty 2L 0 —p-Drag, o PEISTS2
rPT(r—p)  (2—r)pr’In(gs) " _
T 2T()rngy < ow pri=r=2
RE.s min{p,r} > 2,

where ]R}Zm\ < c(p.7) gn min{r.2} for some constants cj(p,r) < oo, k=1,2,...,6.
Corollary 5.4. The leading terms in (5.6) and the bound (5.5) lead to the estimate

- min{rp2} p # min{r, 2}

. 5.7
In(n)n~ {22t p = min{r, 2} (5.7)

E(Nn(r)) " < C(r,p) {
Assume the statistic T}, is asymptotically normal and H(y) = Gr,(y) is the limit distribution
for Ny(r)/E(Nn(r)). As in Example 1.1 the limit distributions of the scaled statistics T}, () with

random size N, (r) and scaling factors (g, /Ny, (r))7y/N;:(r)) are again the scale mixtures

Vy(x) = /000 O (zy")dGrr(y) with ~e{-1/2,0,1/2}.

For the densities v, (z) of V,(x) then the following apply:
r’ * 2,2
v (2) = ———— L= @Y 24 gy with oy € {—1/2,0,1/2}.
@) = e v y with e {-1/2.0,1/2)
The gamma function (8.1) with o = r +1/2 and p = (r + 22/2) for v = 1/2 and (8.2) with m = 1,
p=rand ¢=12%/2 for y = —1/2 and r = 2 lead to

D +1/2) [, g2\
Szr(l")—m <1+W> . y=1/2,

vy(z) =9 olx) = \/%e*ﬁﬂ, v =0, (5.8)

la(x) = (%—I—|x|) e2lel for r=2, y=-1/2,

Hence, the scale mixtures V., (z) are the Student’s ¢-distribution with 27 degrees of freedom Sa, ()
if v = 1/2, the normal law ®(x) if v = 0 and for v = —1/2 the second order generalized Laplace
distribution: L1

Ly(x) = 5 + 5 sign(a) (1 (14 J2)) 6—2\wl), z €R. (5.9)
For arbitrary » > 0 Macdonald functions K,_;/5(7) occur in the densities l.(x) of La(z). Both
Ls(x) and la(z) can be calculated in closed forms for integer values of r. The standard Laplace
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density with variance 1 is [y(z) = % e~V2l2l These functions are discussed in more detail with
references in Christoph and Ulyanov (2020, Section 5.1.3).

Remark 5.5. In Gnedenko et al. (1984) it was shown that under the conditions of Example 1.1
the median of a sample with geometrically distributed sample size N, (1) tends to the Student
t-distribution Sa(x) for n — oo.

Theorem 5.6. Letr > 0. Consider the sample median My, .y when random sample size Ny(r) has
probability mass function (5.1) and g, = ENy(r) = r(n—1)+ 1. If inequalities (5.8) and (5.5) hold
for the median M,,(X1,..., X;) and the random sample size Ny (r), respectively, then the following
expansions apply for all n € N uniformly in x € R:

i: Scaling factor \/gn Ny (1) /Ny (r) for the sample median My, (r) leads to Student’s t-approzimation:

gn N (7) Cpn~ min{r3/2} £ 3/2,
P(2p0y [ 2220 < a) = Sora(azn))| < 1
‘ (20 Na(r) ) <o) = Saralo n”’ {CT In(n) n=3/2 r =3/2, (5.10)
where N (r) is defined in (}.5),
)= Arp(@) | Agp(z) | (2-1)(@® +2)
Szr;2(1?a”)—5'2r($)+52r(93)( N + o + Trn(r—1) Is1y ) s (5.11)
T |z
Al;r( z) = p14 |2 |H{r>1/2} and
x [(3(2r + 2?) ip?(2r +1)
As. = —> 1+——=)—————F]1 .
2r(7) = 7 ( -1 ( * 6p0> spa(2r +22)) 1Y

ii: Normal approzimation is obtained with random scaling factor /N (r) for the sample median
MNn(r) N

n—min{r,3/2}’ r#3/2,
’P( V N;Lk(r) MNn(?") < */L‘) - (I)n,Q(x)‘ <G { 1n( )n—3/2 r i 3?2
where with fi(z) and fa(z) given in (3.7)

x P20 —1/2
Qpa(r) = @(z)+ f\l(ﬁg: (hl(gn)]l{rl/Q} + IS(T)/)H{T»/Q})
fa(x)

J (hl( ) L=ty + 7 H{r>l}> (5.12)

ii: If r = 2, mized scaling factor \/N;:(2) N,(2)/gn for the statistic My, (2) leads to generalized
Laplace approrimation:

’]P’ <\/N* 2)/gn My, () < x) ~ Lo(z) — zn;Q(x)( < Con~¥? (5.13)

where La(x) is generalized distribution Laplace, defined in (5.9) and

o = {2 2 (3 (14 2) 4 20}

Remark 5.7. Under (5.4) with r > 1/2 first order expansions of P(2pogn M, < z) for v € {0,1/2}

+

were announced in the conference paper Bening et al. (2016). The convergence rates in Theorems
3.1 and 3.2 as well as in Corollaries 3.1 and 3.2 in case 1/2 < r < 1 have to be O(n™") instead
of O(n~!) as announced in Bening et al. (2016). Moreover, in case r = 1 the bound ¢/n in (5.10)
improves the corresponding estimate (9( In(n) n_l) which was stated in the aforementioned paper .
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6. Sample Size NN,, is Pareto-Like Distributed

Let Y(s) € N be discrete Pareto II distributed with parameter s > 0, having probability mass
and distribution functions

P(Y (s) = k) =

s s k
_ < = — .
pory s fhlpray and P(Y(s) <k) S+k,keN, (6.1)

which is a particular class of a general model of discrete Pareto distributions, obtained by discretiza-
tion continuous Pareto II (Lomax) distributions on positive integers, see Buddana and Kozubowski
(2014).

Now, let Yi(s), Ya(s), ..., be independent random variables with the same distribution (6.1). Define
for n € N and s > 0 the random variable

Nn(s) = 121;2{”}/]'(8) with P(N,(s) <k)= <s jﬂi k> , neN. (6.2)

The distribution of N, (s) is extremely spread out on the positive integers.
Christoph et al. (2020) proved the following Chebyshev-Edgeworth expansion:

Proposition 6.1. Let the discrete random variable Ny(s) have distribution function (6.2). For
y >0, fized s >0 and all n € N then there ezists a real number Ca(s) > 0 such that

sup P <N’;(S) < y> — Hy(y) - hQ;;(y)‘ < Ci(j), (6.3)
Hq(y) = e~V and has(y) = ses/Y (s -1+ 2Q1(ny))/(2 yz), y >0, (6.4)

where Q1(y) is defined in (5.1).
Remark 6.2. Lyamin (2010) proved a first order bound in (6.3) for integer s > 1:

8¢72/3=0.36..., s=1,n>2
']P’ (Nn(s) < JJ) - efs/x s { /

<

3|8

(6.5)

y Us =
n

272 =027..., s>2n>1
In case n =1 and s =1 we have P(N;(1) <z)=0for 0 <z < 1 and

SUPg<pet ‘P(Nl(l) <z)—e V| = SUDPg<zc1 e VT = el =0.367....

Remark 6.3. The continuous function Hs(y) = e‘s/yll{y>0} with parameter s > 0 is the distribution
function of the inverse exponential random variable W (s) = 1/V(s), where V(s) is exponentially
distributed with rate parameter s > 0. Both H(y) and P(N,(s) < y) are heavy tailed with shape
parameter 1.

Therefore E(Ny,(s)) = oo for all n € N and E(W (s)) = co. Moreover:
e First absolute pseudo moment v = [i° a:}d(]P’(Nn(s) <nz)— e‘s/x)| = 00,
e Absolute difference moment y, = fooo x“fl‘IF’(Nn(s) < n:L‘) — e*s/’”‘dx <ooforl<u<?2.
These statements are proved in Christoph et al. (2020, Lemma 2). On pseudo moments and some
of their generalizations see e.g. Christoph and Wolf (1992, Chapter 2).

Next we estimate the negative moment E(N,,(s))™P, p > 0, for the random sample size N, (s):

Theorem 6.4. Let s > 0 and p > 0. Then for all n > 2 the following statements hold for negative

moments:
F'p+1)  (s—1)pl'(p+2)

+Ri,, 0<p<l,

sbnp 2 3P+1np+1
E(N,(s))?=¢ L(p+1) RS l<p<2, (6.6)
sP np ’

Rg;n? p Z 27
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where |Ry., | < ci(p) n=2 for some constants cj(p) < oo, k=1,2,3.

Corollary 6.5. The leading terms in (6.6) and the bound (6.3) lead to the estimate
E(Na(s)) 7 < C(p) n~ (2, (6.7)
where for 0 < p < 2 the order of the bound is optimal.

Remark 6.6. In Bening (2020, Corollary 3) the expansion (6.6) for 0 < p < 1 is given with an
additional term at n~P~!, which however has order n=2, see (8.23).

Assume the statistic T}, is asymptotically normal and H(y) = Hs(y) = e=*/Y, y >0, is the limit
distribution for Np(s)/n. The limit distributions of the scaled statistics T, () with random size
Ny (s) and scaling factors (n/N,(s))Yy/N;(s)) are the scale mixtures

o0
Vi) = [ By )dH(w) with 5 € {-1/2,0,1/2)
0
see also Christoph and Ulyanov (2(]2()). The densities v, (x) of V,(x) are then given by

’y 2 - ﬂU y27/2+s/y)dy with A {_1/2707 1/2}

v ()
K \/27r
The use of (8.3) with m = 1, p = 22/2 and ¢ = s for v = 1/2 and the substitution z = 1/y and
(8.1) with a = 3/2 and p = (s + 2?/2) for v = —1/2 then lead to

hyvs@) = Vg f/;m'x, v=1/2,
’U'V(x) = QO(J") = 27'('6 ) Y= 07 (68)

s5(z;4/s) = 2\ﬁ <1+ )_/, v=—1/2.

Hence, the scale mixtures V,(z) are the Laplace distribution L; /v3(z) with scale parameter 1/1/s
if v = 1/2, the normal law ®(z) if v = 0 and for v = —1/2 the scaled Student’s t-distribution
S5 (x5 +/s) with 2 degrees of freedom and density s3(x;+/s). If Z has density s5(x;+/s) then Z//s
has a classic Student’s t-density with 2 degrees of freedom (3.1) with v = 2.

Theorem 6.7. Let s > 0. Consider the sample median My, with random sample size Ny, = Np(s)
having distribution function (6.2). If inequalities (3.8) and (0.3) hold for the median My, (X1, ..., Xp)
and the random sample size Ny(s), respectively, then the following expansions apply for all n € N:
i: Let v = 1/2. The scaling factor \/nN;i(s)/Nn(s) by the sample median My, ) leads to Laplace

approrimation:

P(on NN (8)/Nn(s) My, (s) < :c) — Ll/\/g(ac;n)‘ < Cyn32, (6.9)

where N is defined in (}.5)

sup,

Lijs@in) = Lyys(@) + @) {Ang(@) n 2 4+ Ag(@)n | (6.10)
pi |zl
Ano(w) = d
1; (‘r) 4p(2) an
honta) = GO VE) 2y pelvE
& 8s 4\ T 6l 32}
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ii: If v = 0, the normal approzimation is obtained with random scaling factor \/ Ny (s) at the sample
median My, ) with fi(x) and fa(z) given in (3.7):

_Vrfilz)  fa()
2\/§\/g>n S9n

iwi: If v = —1/2, the mized scaling factor \/N}(s) Nyn(s)/n by statistic My, (s leads to scaled

Student’s t-approximation:

P (V/N(5) Nu3)/n Moy, ) < @) = S5 (23 v/5) = (s V/5)| < Con ™2
where S3(x;+/s) is scaled Student’s distribution with density s5(xz;+/s) defined in (6.8) and
Sn;?(wa \/g) - 32(.’E, \/g) {4]9(2)\/5(%2 —|-28)

943 (s—1 1522 1105 z*
+i #"‘(1*"])723) 2 : 2 fl 2 - 3 )
dn 2+ 2s 6py/ (2% + 2s) 8p; (22 + 2s)

< Csn_3/2.

P(V Ny (s) My, (s) < ) — ®(z)

sup,

sup,.

Remark 6.8. Under the condition (6.5) a first order expansions for v € {0,1/2} was announced
in the conference paper Bening et al. (2016), where in Theorem 4.1 and Corollary 4.1 the limit
distribution has to be Ly, s(z).

7. Cornish-Fisher Expansions for Quantiles of 1, and My,

In statistical inference it is of fundamental importance to obtain the quantiles of the distribution
of statistics under consideration. Statistical applications and modeling with quantile functions
are discussed extensively by Gilchrist (2000). There are very few quantile functions which can be
expressed in closed form. The Cornish-Fisher expansions provide tools to approximate the quantiles
of probability laws.

Let F,,(z) be a distribution function admitting a Chebyshev-Edgeworth expansion in powers of

951/2 with 0 < g, T 00 as n — oo:

Fo(z) = G(z) + g() (m(l‘)g;m + az(l‘)gﬁl) + R(gn), R(gn) = O(g;,/?), (7.1)

where g(z) is the density of a three times differentiable limit distribution G(z).

Proposition 7.1. Let F,(z) be given by (7.1) and let x(u) and u be quantiles of distributions F,
and G with the same order o, i.e. Fy(x(u)) = G(u) = a. Then the following relation holds for
n — 0o:

x(u) =u -+ bl(U)Q;l/Z + bg(u)g;1 + R*(gn), R*(gn) _ 0(953/2)’
with

bi(u) = —ar(u) and bo(u) = 29,9((“12) a2(u) + d (w)ar (u) — as(u) .

Proposition 7.1 is a direct consequence of more general statements, see e.g. Ulyanov (2011,
p. 311-315), Fujikoshi et al. (2010, Chapter 5.6.1) or Ulyanov et al. (2016) and the references
therein.

First we consider random median My, if sample size N,, = N,,(r) is negative binomial distributed
with probability mass function (5.1) and Student’s t-distribution So,(z) is the limit law. The second
order expansion (5.10) in Theorem 5.6 admits a relation like (7.1) with g, = r(n — 1) + 1 and
aip(x) = Ag.r(x), k = 1,2. The transfer Proposition 7.1 implies the following statement:
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Corollary 7.2. Suppose r > 0. Let x = xo and u = us be a-quantiles of standardized statistic
P(on\/gn (1)/Nn(1) My, () < x) and of the limit Student’s t-distribution Sa,(u), respectively.
Then with previous definitions the following Cornish-Fischer expansion holds as n — oo:

prulul | B(u) O 3%), 123/

4p \/— {7">1/2} + In Hr>1} + (’)(ln(n)n_g/Q), r—= 3/2 ’

plu _(5—7“)u —|—(57“+2)u)_u3< pfz)
where  Ba(u) = 37 i2r — 1) T 1+6pg .

Next we study the approximation of quantiles for the random mean My, if sample size N,, =
Ny, (s) is based on discrete Pareto distributions with probability mass function (6.2) and Laplace
distribution Ly, ;() is the limit law. Relation (6.9) in Theorem 6.7 admits a expansion like (7.1)
with g, = n and ay(z) = A.s(x), k = 1,2. The transfer Proposition 7.1 leads now to:

r=u—

Corollary 7.3. Suppose s > 0. Let x = x, and u = uqy be a-quantiles of standardized statistic
P<2p0\/an;(s)/Nn(s) My, s < x) and of the limit Laplace distribution Ly, s(u), respectively.

Then with previous definitions the following Cornish-Fisher expansion holds

B
x:u—f;g\;%‘—k 275u>+(’)(n_3/2), as mn— oo,
4—s)u(l+ v2s|ul) 3
here B i’ _U(l ﬂ).
where 2(u) = 8l + S5 T +6p8

For the sake of completeness let us consider the Cornish-Fischer expansion for the median M,,,

too. With (3.8) where ai(z) = fr(x), k = 1,2 are defined in (3.7), then holds

Corollary 7.4. Let x = x, and u = us be a-quantiles of standardized statistic P(me/ m* M, < :C)

and of the limit normal distribution ®(u), respectively. Then with previous definitions the classical
Cornish-Fischer expansion holds as m — oco:

prulul (ﬁw uuy pz) a2
r=u— + — ————(1+ ) + O(m™>7"%).
Apgy/m 8pp 4 4 6 g

8. Proofs

In order to be able to present the occurring integrals in closed forms, we use the following formulas
in Prudnikov et al. (1986) 2.3.3.1, 2.3.16.2, 2.3.16.3 and 2.5.31.4:

Joo =t e Py Y ISy te Pldy =T(a)p~®, a>0, p>0, (8.1)
[2 12 mpu=alygy = (~1ym \/Eaa—w,; (p~Y2e"2VPT), m=0,1,2,..., (8.2)
oo ymm12 em=afygy = (—1ymYE DT (e72VRT) | m=0,1,2,..., (8.3)

Vp 0"
I'(«) sin(«) arctan(b/p)
(b2 +p2)a/2 ’
and the Fourier series expansion of Q;(y) at all non-integer points y, see formula 5.4.2.9 with a = 0:

Q) =1/2- - =Y TRy (85

Proof of Proposition 5.1: Following the proof of Burnashev (1997, Theorem 1) one has to change
Stirling’s formula of the Gamma functions I'(z) and 1/I'(z) as z — oo by inequalities, proved in

JoSy* e P sin(by)dy = a>-—1 (8.4)



Expansions for Sample Median with Random Sample Size 355

Nemes (2015, Theorem 1.3):

r(z) = wﬁfﬂﬂfmku%~z%2+Ru»
1 _ 1 =122 1 4 z >0,
) = mz e® (1 R 288 — +R3( ),
with {|Rs(2)],|Bs(2)] < c2=3 and ¢— (”5(3)%3))&2\@“) < 0.006.

Here ((z) is the Riemann zeta function with ((3) ~ 1.202...

Finally, when ever Taylor’s formula is used with remainder in big O notation, then the remainder
has to be estimated in Lagrange form by an inequality. The constants Cy,Cs > 0 in (3.6) and (3.8)
depend only on pg, p1, p2 and the upper bound of p’{(z) in some interval (0, zg), zo > 0. O

Proof of Theorem J.2: The proof follows along the similar arguments of the more general transfer
theorem in Bening et al. (2013, Theorem 3.1) for v > 0 under conditions of our Theorem 4.2. Then
conditioning on N,,, we have

P<2po (gn/Nu) /NE My, < x) - P(on\/NT;MNn < x(Nn/gn)'Y)
= Zm:l ]P’(onx/n?Mm <z (m/gnW) P(N,, =m).
Using now (3.8) with ®,,(2) := ®(2) + m~Y2f1(2) + m~ fo(2):

sup, 3 ‘P(zpox/n? M, <z (m/gn)7> ~B(x (m/gn)v)‘ P(N, = m)

f) 2Zm_ m 732 P(N, = m) = CoE(N,%/?). (8.6)

Taking into account P(Nn/gn < 1/gn> = IP’(Nn < 1) = 0 we obtain

Z:=1 D, (z(m/gn)")P(Ny, =m) =E (®n, (x(Nn/gn)?))

= y An(x7y;7)dP(Nn/gn < y) = Gn(x7 1/971) + 1(7)7
an

where A, (z,y;7) == ®(zy?) + fi(xy?)//gny + f2(z YY) /(gny), Gn(x,1/gy) is defined in (4.3) and
10) = [ a2/ <) - 1) - 22),
1/gn n
Estimating integral I(+) we use integration by parts for Lebesgue-Stieltjes integrals:

y=L
] < sup, Jim |An(w,y39)[[P(Nn/gn < y) = H(y) - n"ha(y)|

y=1/gn

+ Supx// ’a (z,y;7 ‘ IP(Nn/gn <y) — H(y) — n~ha(y)| dy.
gn

First we calculate (0/0y)A,(z,y;~) for v € {0,£1/2}. We get
0 (filzy?)y _ sign(z) ai(zy?) 0 (fazy)\ _ @(zy?)
8y( NG >_ 4q3/2 and 8y( y )_ 492
with ¢1(z) = ag(2y — 1/2 — v 2%)2% p(2) and
q@2(z) = (’y azz® — (yay + (5v — 1)az)z* + ((3y — 1)ag — 37)2% + 3(y — 1)>z<p(z),
where ag = p1/pg, a1 =1+ po/(6p3) and as = p?/(8p§), see (3.7).
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The functions fx(z) and gx(2), k = 1,2, are bounded, we suppose
sup, |fx(2)] < ¢ <oo and sup, |qk(2)| < f < oo, k=1,2. (8.8)

To estimate D, (7y) defined in (4.4) we look at D, (x;v) for x # 0 since D, (0;7)=0. Using (8.7)
together with flofgn(a/ay)qD(xyV)dy =1-®(z/gy) <1/2 for >0 and flo/ogn [(0/0y)®(xy?)|dy =

®(x/gn) < 1/2 for x < 0 in case of v = £1/2 and C%@(xy”) = 0 for v = 0, then we find
Dp(z;y) < 1/24¢7%/2 + ¢5*/4 = D(y) < oo and (4.4) holds. It follows from (4.1) and (8.8)
that |I(v)] < (Cs+ D(v) C3) n= with Cy = (1 + ¢} + ¢3)Cs. Together with (8.6), Theorem 4.2 is
proved. ]
Proof of Theorem /J.5: Using condition (4.61) we find
l/gn 1/gn b
| enane < [ dnt) = #0/5.) -~ 1O < g
It follows from (8.8), (4.6ii) and (4.6iii) that for k = 1,2
1/gn 1/gn
| e ) < i [y AR ) < e (g
0 0

Integration by parts, |z|@(2)/2 < ¢* = (8me)~ /2, (4.7i) and (4.7ii) lead to

1/gn 1/gn 1 b

| ey dnatw) < at/g)l+ e [y hao)ldy < (ot gy
0 0

Taking into account (4.3), (4.9), (4.10) and (4.11) we obtain (4.8). O

Proof of Theorem 5.3: Integrating by parts and substituting y/g, = = , we obtain

_ 1 p [ 1 Ny (r) >
E(N,(r p—/ —dP(N,(r) <y) = = IP’( <z|dx
e ? = [T ) <o) = 5 [ e (R

_p [T 1 ha.r(x) B
=2 /1/gn TSy <Gr,r(w) + == Jde+ Ri(n) = I + I + Ri(n), (8.9)

where (5.5) of the Proposition 5.1 gives
*© 1 N, ha,y
Ry(n)| < ﬁ/ - [p>< () _ g,») Gy(r) = 2@
9n J1/g, xP In n
)

The integral I; in (8.9) we calculate with integration by parts:

Cs(r)
dr < pmin{r,2}

D * Gryp(z) _
L= P /l/gn RS dx = I1.p(n) + Ra(n)

with Ro(n) = Grp(1/gn) <77g,"/T(r+1)

o W + R3(n), p<r,
Iip(n) = " iz / ° rirdﬂf = { 7" In(gn) + Ry(n) — (8.10)
L) gn Jijq, ot r(ryg, " PEh
Rs5(n), p>,
where for p <r /
T’T ! In rT—p— —rx /]"T
RO gl T S e
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In case p = r we split the integral in I1,,(n) into three parts, the first one leads to the leading term

in (8.10):
0o —Tw 1/r 1/r 1—e T I
/ ¢ da::/ l‘_ldl’/ edx+/ € da. (8.11)
gn L 1/gn 1/gn €T 1/r X
Then we obtain )
r" In(gy) m(l+r+e )
Ri(n)| = |1.,(n) — -
bl = [Ba) = gy gr NGr
For p > r we have
,rT o e—TLE 7,,7‘
R5(n) = / dr < .
=50 L S TO 0N

Now we calculate the integral I5 in (8.9) in case of r > 1:
p [ hoy(x) prT(2—71) /oo T
S gin /1/gn s 2rT(r) gnn Jiyg, 2772 (x = D)dz + Irp(n) (8.12)

Define I3 ,(n) = Iy — Iz ,(n). Since the integrals in I} and I3 ,(n) have the same structure, one get
with the above method for » > 1

W)(F(r—p)—rf(r—p—1)> + Rg(n), p<r—1,
Tap(n) =y PTBT) n e (8.13)
’ QT,F(r)gZ—ln( 1 (gn)) +R7( )7 D 1,
Bs(n), p>r—1,

where |Ri(n)| < cx(r,p)g,,", with some constants c(r,p), k = 6,7,8.
It remains to show that integral I5,(n) in (8.12) has the order of the remainder:

e
/1‘ ppt2-r Ql (g” (IJ) dx

/gn

r—1

pT‘
L(r)gnn

T

for r>1. (8.14)

[L2,p(n)] = < c(p,7)9n

Let 0 <p <r—1. Then

I p(n) = pr /OO ¢’ Q1(gnz)dz + R (n)—ﬂJ* (n) + Ry(n)
T T g Jy ar MY T ) g T

where, since g, < rn for r > 1 and |Q1(gnz)| < 1/2, applies

r—1

p?"
L(r)ghn

1gn o—ra T g g
et pr T Cpy
/0 $P+2*TQl(gn LE)dl? < /0 ppt2—r qn

[Ro(m)| = < T

Considering (8.5) and interchange integral and sum we find

. (0.9} e*'f’ﬁ? o) 1 o0 677“:1: .
J3p(n) = /0 WQl (gn x)dx = Zk:1 e /0 e sin(2 7k g, x)dx.
Applying (8.4) with « =r —p—1, p=r and b = 27kg,, then
) 1 o0
* _ = r—p—2_—rx _:
J5,(n) = Zk:l ]“T/o x e " sin(2mk g, x)dx
F'r—p-1) ZOO sin ((r — p — 1) arctan (27kg, /7))
T k=1 k ((27rkgn)2 +Tg)(r—p—l)/?

Hence, for 0 < p < r — 1 we have

F(r—p-1) 00 1 F'(r—p-1) e
* <~ =z 7 E < _ r+p+1
[2p(n)] < T k=1 k (2w k gn)r—P~t = w(2m)r—p-1 (r=p)g,




358 Gerd Christoph, Vladimir V. Ulyanov and Vladimir E. Bening

with Riemann zeta function {(r — p) < oo since r —p > 1 and (8.14) holds.
In case 0 < p = r — 1 the Fourier series expansion (8.5) of Q1(y) and integration by parts lead to

9n <ol 1IN
Irp(n) "N En Z k227r <€r/gn - /1/gn <?+§>e cos(2mk g, x)dx
and . )
pr’ o 2¢n+gn/r _pr'Tt2r+1) _
I —_— < 2 " =r—1.
| 2#’( )’ = F( )gnn Zk:l k29 12 I 2F(7“)7T2 C( )gn y P=T
If p>r—1 using |Q1(y) < 1/2 we find
prrfl /oo 2 p?“T B
I,(n)| < =———— x TPy < " >r—1,
| 2#’( )| F(T)gﬁn on 2F( )(p+1_r)gn p
and (8.14) is proved. Estimates (8.9), (8.10), (8.13) and (8.14) lead to (5.6) and Theorem 5.3 is
proved. ]

Proof of Theorem 5.6: We use Theorems 4.2 and 4.5 with H(y) = G,,(y), h2(y) = hor(y), gn =
r(n —1)+ 1 and b = min{r, 2} defined in Proposition 5.1 .
It follows from (5.7) with p = 3/2 that

—min{r,3/2}
-3/2 n , T 75 3/2
E(N, <C 8.15

( n(r)) <€) {ln(n) n32 p= 3/2. ( )
Next we check conditions (4.6) and (4.7). Using (5.3) we find for £ =0, 1,2

1/gn o gn r

—k/szM r / r—k/2=1 =1y g, < r —r+k/2
/ RGN A G IR

Hence we obtain ¢y 1(r) = r" (T'(r) (r — k/2)" 1 if r > k/2 for k = 0,1,2 in (4.6).
Let r > 1 and define
r—1

* T —r
¢y = T() sgp{e Y(ly=12 =7+ 1)} < cc. (8.16)

In this case we find g¢,,(0) = 0, h2,(0) = 0 and g, < rn. Hence (4.7i) and (4.7ii) hold with
ca(r) =c§ and c5(r) = /(r —1).

Now we estimate the integrals (4.10) and (4.11). Using (8.8) for fi(z) and fa(z) defined in (3.7)
we find for 0 < r < 1/2 and v € {0,1/2}:

o0 Y * .7 00 * —
i (T37) = /1 ) W\@y)’dGM( ) < ;1(7") /1 / yr—3/2dy:%
gn In

If r =1/2 and v = 1/2 then with 22/(1 + 2%) < 1 we have

a2\ |p| 2lp
Jit oo (1:1/2) = (H+22)/2)y g, < < .
1,1/2,n(95 /2) 82 //gn y< 8mp3 (1 +22)/2 ~ 87pj

In the case of r = 1/2 and 7 = 0 using (8.11) we find for first integral in (4.10)
filx) [ e_y/2dy _ @) Ingn) | _ 1 (3/2+ €7
V21T \/Gn J1/g, Y V2T \/In V2T \/Gn

Consider the second term in (4.10). Let r < 1 and v € {0,1/2}, then

Tyalin) = [ / 26, < el (8.15)
gn

(8.17)
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If r =1 and v = 1/2 we define the polynomial Py(z) by fa(z) = Py(2)z ¢(2) with z = 2 /y and
put ¢ = sup,{|Ps(2)|¢(2/v2)} < 0o. Then |f2(2)| < cilz| e /4, g =n and

o *
T (5:1/2) < ¢ |z 12— @Ay gy « _CIEIVT o o
1,1,n( / )— 4| | 1/ny y < (x2/4+ 1)1/2 < \/>

If =1 and v = 0 using (8.11) we obtain in the same way as in (8.17)

fa(x) /°° e V2 gy 2@ @) 5@+ e’l) (8.19)
no Jim o Y n n
Hence, for 0 < r <1 and v € {0,1/2} we have
f1(z) In(gn) fa(x) In(n) —r
_[1(11,71) - WH{T:UZ’YZO} - f H{r:l,'y:()} < Crgn :
In the case of v = —1/2, the integral I1(z,n) does not occur because we only consider only the case
r=2.

Now we estimate Ia(x,n) in (4.11) for r > 1 and v € {0,£1/2}. Integration by parts for
Lebesgue-Stieltjes integrals, (8.7) and (4.71) lead to

Bl < (/) + Falo/gl) o (1 /o) + ()
< (e +Bealr) g7 + T3 w,m) (5.20)
with ,
] _ [ (aey)] | lga(zy?)|
Bl = [ (G ) I )l (8.21)

where for £ = 1,2 functions fi(z) and gx(z) are bounded, see (8.8).
Moreover gny? > \/gny>/? for y > 1/g, and g, < nr for r > 1.
If 1 < r < 3/2 with ¢f defined in (8.16) we find

|I§(:L‘ n)| < (CT* + C;*)cg /OO - 5/2dy _ (cﬂ{* —|—c;*)r6§ g
T Angn iy, 4(3/2—r) 7"
-1
If r > 3/2 with ¢ = %(r) supy{(e_’”y/2 (ly—1]|2=7r|+1)} < co we obtain

N i)y [ 50 it + e )rel'(r—3/2
‘12(x’n)‘§(14 2)4/ y 5/2e y/2dy§(1 2) 4 (3/2 /)
nVn  Jig, A(r/2)r=3/2g5

For r = 3/2 the above estimates of |I;(z,n)| lead to an exponential integral:

« (ci" + 3" )a /1 1 /OO —3y/2
L(z,n) < ~——2r2 y dy + e 3V 2qy
115 (z,n)| In v o 1

(e +cs)rct <1n(gn) n 36—3/2) g3

- 4
In the latter case r = 3/2 the bound |I3(x,n)| < C’g;i;/2 may be obtained for v = 1/2 with an
analogous procedure as for estimating the above integral |I;(z,n)| for r = 1 in (8.18). This proof is

omitted because the rate of convergence in Theorem 5.6, see (5.10), is determined by the negative
moment (8.15), where the term In(n) cannot be omitted.

To obtain (5.11) we calculate the integrals in (4.9), which are similar to that in the proof of
Theorem 2 in Christoph et al. (2020). The densities of the limit laws are given in (5.8) for v €
{0,£1/2}.
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The calculation of the further integrals in (4.9) depends on 7.
For v =1/2 and r > 1/2 we find with fi(z) defined in (3.7) and « = 1/2 in (8.1)

* filz/y) p1 Jf\w! / y 2 p1 z|z|
————dG,,(y) = dy = ().
/ ) (y) 4p0 \/ﬂ e(r+z2/2)y Yy 4p3 52 (ZE)
Analogously, if 7 > 1 we obtain for fo(z) with a = —1/2,1/2,3/2 in (8.1)
< fa(z\/y) x [(3(2r+x ) 2 pirt(2r +1)
——dGr,(y) = ———— + (1 + = Tao o ( S2r(x).
/0 Yy () 4 2r — 1 ( * 6p0) 8pg (2r + 22) s2r(2)

The integral [;° ®(z\/y)dhay(y) in (1.9) is the same as the integral J4(x) in the proof of Theorem
2 in Christoph et al. (2020) where is shown:

o0 (2 —r)z(x® +1)
| ovian, ) - S o @)

which proves the the Theorem 5.6 for v = 1/2.

If v = 0 then fi(zy?) = fr(z), together with (8.17), (8.19), (8.1) with o =r —k/2 and p = r for
k= 1,2, we proved (5.12).

If y = —1/2 and r = 2 then with (8.3) with m = 0,1,2, p = 22/2 and ¢ = 2 we find (5.13). Since
for r = 2 we have ha.2(y) = g2:2(y) Q1(9ny)/2. Integration by parts leads to

> |z| / —1/2 - T
O(x dhs. =0 /2 =%/ (2y)—2y d
" wervmna| - 2| [ Qgu)dy| < 57—
where the last inequality was shown in Christoph and Ulyanov (2020) for J3,, in formula (A12).
Theorem 5.6 is proved. O

— S < -Tr
~ sup <c(r)n

xT

Proof of Theorem 0./: As in the beginning of the proof of Theorem 5.3 we obtain

1 ha.s
E(N,(s))™P = % L 29T <Hs(x) + Zn(x)> dr + Ri(n) = Iy + I + I3 + Ri(n),

where, with substitution z = 1/y we find

o ,—s/x 00 F( 1
p p - p+1)
I = ne Jo  artl dz + Ra(n) = np/o YTy + Raln) = sPnp + Ba(n),
_ps(s—1) 00 =8/ _(s-1)pT(p+2)
I = 5P /0 13 dx 4+ R3(n) = 9 gt Ipyp i1 + R3(n),

considering (8.5)

o ,—s/z 0 00 —s/x
I = ps / e Ql(nx)d ps 1/ e S.1n(27rknac)al:l7
1

ntL ), apts ot k=1 ke [y, xPt3

and with (6.3) of Theorem 6.1

p * 1 Nn(s) hQST(:C) 03(8)
P — Hy(x) - ———= <
Ri(n)] < n,,/l/n — ( () ) =y (a) - P gy < O
Since for « >0 and 0 < § < 2
1/n fs/x atf
Oé/(; xa+l gl < e Snna S C(Oé,ﬁ, S) n_ﬁv C(Oé,,@, S) = <a;6) (822)

we find with ¢o = pC(0,2,s) and c3 = spls —1]C(2,2,s)/2

p /1/n e—s/m o ps |S _ 1| 1/n e—s/a: 3
0

P de < ﬁ and |R3(n)‘ = 2np+1 . dr <
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It remains to estimate I3. Partial integration leads to

[o S p+3 o0
/ sm(27rkna;)d n / <p+3 s > cos(27rkn:c)dx.
1 1

Jn €5/ apt3 YT enankn /n \ P xS | es/ra ki
Considering the second inequality of (8.22) and Y 3o, k=2 = 72/6 we obtain
_ 2I'(p + 4) _
| 15] Sps(ne s”—f—W < c(s,p)n~2 (8.23)
Theorem 6.4 is proved. ]

Proof of Theorem 6.7: We use Theorems 4.2 and 4.5 with H(y) = H(y) and ha(y) = ha.s(y) defined
n (6.4), b=2 and g, = n.

It follows from (6.7) with p = 3/2 that E(Nn(s))_3/2 < C(r)yn=3/2.

The three conditions in (4.6) for £ =0,1,2 and s > 0 follow from

1/n 1/n 00
/ Y24 () :/ y—kz/Qie—s/ydy :/ 126550 < sy (5)n- 2T/
0 0 n

with cg41(s) = 2572, Moreover, (4.7) is valid, since ha.s(0) = limyo ho;s(y) = 0,

1 27(ls—1|+1

aa(1/m)] < galls = 1+ e < U — ooy (3.0

and
Uy A1) [ el ~1+1
/ | 275(y)|dy < 5(|5 |+ )/ € 2 dy < S’S |+ n2@78n = 65(8) nil.
0 Y 2 0 Yy 4
It is worth to mention that in conditions (4.6) and (4.7) the functions H(1/n) and ho.s(1/n) and
2

the corresponding integrals decrease even exponentially with order ne™*™ or n“e™*", s > 0.

It remains to estimate Iy(z,n) given in (4.11). Changing only hg.,(y) by ha,s(y) in the estimations
(8.20) and (8.21) of the corresponding Io(x, n) in the proof of Theorem 5.6, using partial integration,
the estimates (8.24), (8.8) and ny? > \/ny>/? for y > 1/n, then we obtain

ettt (A R (s~ U DTG/2)
[Ir(x;n)| < (] +¢3) ca(s)n™= + 16 532,37 = c(s)n”c.
To obtain (6.10) we calculate integrals in (4.9) for b =3/2 and v € {0, £1/2}.
Let v = 1/2. With (8.3) forp=22/2>0,5>0, m=0,1,2:

() o0 —z2y/2—s/y m
/ S‘D(I\/@cms(y):/ ¢ dy = (—1ym 5 9" vl (8.25)
0 0

ym—3/2 mmerl/Z v= |.’L’| Hs™m
where
S 3 7\/%”3‘ S 82 7\/%”‘ ’.’E| 1
—1 _— g _— g _— _— .
( )|$|8se ly/ys(z) and ]w|8526 ( o + 28)l1/\/g(x)

Using (8.25) for m =1,

/fl(x\/@)dH( - prx|z|s e—(x2/2)y—s/yd prz|a]
) VY

= l x
wver ) YT g yval?)

and with (8.25) for m = 0, 1,2, we calculate

/oo Mdﬂs(y) :Z{3m+ <1+}723)x2_W} by ys(@).
0

Y 2s 6 p; 8p§
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Finally, in the proof of Theorem 5 in Christoph et al. (2020), see J4 and Jj, it was shown that

[ ottt - CICEBID, | < g

sup
X

Let now v = 0. Since fi(.) for £ = 1,2 do not depend on y we get (5.12) with

’ / " ) y e vy = fi(a) s / T Mo = fi(a) s T(R/2 4 1),
0 0

If v = —1/2, we calculate the integrals with fi(.) and fa(.) in (4.9) with the second equation in
(8.1) for a = 5/2 7/2,9/2. The last integral in (4.9) is identical to J3 (x) = Ji(z) + J35.4(2) in
the proof of Theorem 8 in Christoph and Ulyanov (2020) and the integrals were calculated there.

Hence
oo
_ X _
wtsup| [T @/ Vidhaty) - 3 s vE)| < Clon
x 0 4 (CL‘ 2s
and Theorem 6.7 is proved. ]
Acknowledgements

The authors would like to thank the Editor and Reviewers for their careful review of the manu-
script and pertinent comments. Their constructive feedback has helped to improve the quality of
this work and shape its final form.

References

Ahsanullah, M., Nevzorov, V. B., and Shakil, M. An introduction to order statistics, volume 3 of
Atlantis Studies in Probability and Statistics. Atlantis Press, Paris (2013). ISBN 978-94-91216-
82-4; 978-94-91216-83-1. MR3025012.

Andrews, D. F. and Mallows, C. L. Scale mixtures of normal distributions. J. Roy. Statist. Soc.
Ser. B, 36, 99-102 (1974). MR359122.

Balakrishnan, N. and Rao, C. R., editors. Order statistics: applications, volume 17 of Handbook of
Statistics. North-Holland Publishing Co., Amsterdam (1998a). ISBN 0-444-82922-9. MR 1672283.

Balakrishnan, N. and Rao, C. R., editors. Order statistics: theory € methods, volume 16 of Handbook
of Statistics. North-Holland, Amsterdam (1998b). ISBN 0-444-82091-4. MR1668739.

Bening, V. E. On risks of estimates based on random-size samples. Moscow Univ. Comput. Math.
Cybernet., 44 (1), 16-26 (2020). MRA112872.

Bening, V. E., Galieva, N. K., and Korolev, V. Y. Asymptotic expansions for the distribution
functions of statistics constructed from samples with random sizes. Inform. Primen., 7 (2), 75-83
(2013). In Russian, available at: http://mi.mathnet.ru/eng/ia263.

Bening, V. E. and Korolev, V. Y. On the use of Student’s distribution in problems of probability
theory and mathematical statistics. Teor. Veroyatn. Primen., 49 (3), 417-435 (2004). MR2144862.

Bening, V. E. and Korolev, V. Y. Some statistical problems related to the Laplace distribution.
Inform. Primen., 2 (2), 19-34 (2008). In Russian, available at: http://mi.mathnet.ru/eng/ia93.

Bening, V. E., Korolev, V. Y., and Zeifman, A. I. Asymptotic expansions for the distribution
function of the sample median constructed from a sample with random size. In Claus, T. et al.,
editors, Proceedings 30th ECMS 2016 Regensburg, pp. 669-675 (2016). DOI: 10.7148/2016-0669.

Buddana, A. and Kozubowski, T. J. Discrete Pareto Distributions. Econ. Qual. Control, 29 (2),
143-156 (2014). DOI: 10.1515/eqe-2014-0014.

Burnashev, M. V. Asymptotic expansions for the median estimate of a parameter. Theory Probab.
Appl., 41 (4), 632-645 (1997). MR1687125.

Chen, L. H. Y., Goldstein, L., and Shao, Q.-M. Normal approzimation by Stein’s method. Probability
and its Applications. Springer, Heidelberg (2011). ISBN 978-3-642-15006-7. MR2732624.


http://www.ams.org/mathscinet-getitem?mr=MR3025012
http://www.ams.org/mathscinet-getitem?mr=MR359122
http://www.ams.org/mathscinet-getitem?mr=MR1672283
http://www.ams.org/mathscinet-getitem?mr=MR1668739
http://www.ams.org/mathscinet-getitem?mr=MR4112872
http://mi.mathnet.ru/eng/ia263
http://www.ams.org/mathscinet-getitem?mr=MR2144862
http://mi.mathnet.ru/eng/ia93
http://dx.doi.org/10.7148/2016-0669
http://dx.doi.org/10.1515/eqc-2014-0014
http://www.ams.org/mathscinet-getitem?mr=MR1687125
http://www.ams.org/mathscinet-getitem?mr=MR2732624

Expansions for Sample Median with Random Sample Size 363

Christoph, G., Monakhov, M. M., and Ulyanov, V. V. Second-order Chebyshev-Edgeworth and
Cornish-Fisher expansions for distributions of statistics constructed with respect to samples of
random size. J. Math. Sci. (N.Y.), 244 (5), 811-839 (2020). Translated from Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 466, Veroyatnost i Statistika 26, 167-207
(2017). MR3760051.

Christoph, G. and Ulyanov, V. V. Second Order Expansions for High-Dimension Low-Sample-Size
Data Statistics in Random Setting. Mathematics, 8 (7), 1151 (2020). DOI: 10.3390 /math8071151.
Reprinted in Stability Problems for Stochastic Models: Theory and Applications, Zeifman, A.,
Korolev, V. and Sipin, A. (Eds.), MDPI Basel, 259-286 (2021) ISBN 978-3-0365-0452-0 (Hbk);
ISBN 978-3-0365-0453-7 (PDF). DOI: 10.3390/books978-3-0365-0453-7.

Christoph, G. and Ulyanov, V. V. Chebyshev—Edgeworth-Type Approximations for Statistics Based
on Samples with Random Sizes. Mathematics, 9 (7), 775 (2021a). DOI: 10.3390/math9070775.
Christoph, G. and Ulyanov, V. V. Random Dimension Low Sample Size Asymptotics. In Shiryaev,
A., Samouylov, K., and Kozyrev, D., editors, Recent Developments in Stochastic Methods and Ap-
plications, volume 371 of Springer Proceedings in Mathematics € Statistics, chapter 16. Springer,

Cham (2021b). ISBN 978-3-030-83266-7. DOI: 10.1007/978-3-030-83266-7.

Christoph, G. and Wolf, W. Convergence theorems with a stable limit law, volume 70 of Mathematical
Research. Akademie-Verlag, Berlin (1992). ISBN 3-05-501416-2. MR 1202035.

Cramér, H. Mathematical Methods of Statistics. Princeton Mathematical Series, vol. 9. Princeton
University Press, Princeton, N. J. (1946). MRO016588.

David, H. A. and Nagaraja, H. N. Order statistics. Wiley Series in Probability and Statistics. John
Wiley & Sons, Hoboken, NJ, third edition (2003). ISBN 0-471-38926-9. MR 1994955.

de Haan, L. and Ferreira, A. Eztreme value theory. An introduction. Springer Series in Operations
Research and Financial Engineering. Springer, New York (2006). ISBN 978-0-387-23946-0; 0-387-
23946-4. MR2234156.

Dobler, C. New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered
random sums by probabilistic methods. ALEA Lat. Am. J. Probab. Math. Stat., 12 (2), 863902
(2015). MR3453299.

Embrechts, P., Klippelberg, C., and Mikosch, T. Modelling extremal events. For insurance and
finance, volume 33 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1997).
ISBN 3-540-60931-8. MR 1458613.

Esquivel, M. L., Mota, P. P., and Mexia, J. a. T. On some statistical models with a random number
of observations. J. Stat. Theory Pract., 10 (4), 805-823 (2016). MR3558403.

Fujikoshi, Y. and Ulyanov, V. V. Non-asymptotic analysis of approzimations for multivariate sta-
tistics. SpringerBriefs in Statistics, JSS Research Series in Statistics. Springer, Singapore (2020).
ISBN 978-981-13-2616-5; 978-981-13-2615-8. MR4177254.

Fujikoshi, Y., Ulyanov, V. V., and Shimizu, R. Multivariate statistics. High-dimensional and large-
sample approzimations. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.,
Hoboken, NJ (2010). ISBN 978-0-470-41169-8. MR2640807.

Gavrilenko, S. V., Zubov, V. N., and Korolev, V. Y. The rate of convergence of the distributions of
regular statistics constructed from samples with negatively binomially distributed random sizes
to the Student distribution. J. Math. Sci. (N.Y.), 220 (6), 701-713 (2017). MR3595558.

Gilchrist, W. Statistical Modelling with Quantile Functions. Chapman and Hall/CRC (2000). ISBN
9780429119200. DOI: 10.1201/9781420035919.

Gnedenko, B. V. Estimating the unknown parameters of a distribution with a random number of
independent observations. In Probability theory and mathematical statistics (Russian), volume 92,
pp. 146-150 (1989). MR 1062891.

Gnedenko, B. V. and Korolev, V. Y. Random summation. Limit theorems and applications. CRC
Press, Boca Raton, FL (1996). ISBN 0-8493-2875-6. MR 1387113.


http://www.ams.org/mathscinet-getitem?mr=MR3760051
http://dx.doi.org/10.3390/math8071151
http://dx.doi.org/10.3390/books978-3-0365-0453-7
http://dx.doi.org/10.3390/math9070775
http://dx.doi.org/10.1007/978-3-030-83266-7
http://www.ams.org/mathscinet-getitem?mr=MR1202035
http://www.ams.org/mathscinet-getitem?mr=MR0016588
http://www.ams.org/mathscinet-getitem?mr=MR1994955
http://www.ams.org/mathscinet-getitem?mr=MR2234156
http://www.ams.org/mathscinet-getitem?mr=MR3453299
http://www.ams.org/mathscinet-getitem?mr=MR1458613
http://www.ams.org/mathscinet-getitem?mr=MR3558403
http://www.ams.org/mathscinet-getitem?mr=MR4177254
http://www.ams.org/mathscinet-getitem?mr=MR2640807
http://www.ams.org/mathscinet-getitem?mr=MR3595558
http://dx.doi.org/10.1201/9781420035919
http://www.ams.org/mathscinet-getitem?mr=MR1062891
http://www.ams.org/mathscinet-getitem?mr=MR1387113

364 Gerd Christoph, Vladimir V. Ulyanov and Vladimir E. Bening

Gnedenko, B. V., Stomatovich, S., and Shukri, A. Distribution of the median. Vestnik Moskov.
Univ. Ser. I Mat. Mekh., 2, 59-63 (1984). MR741166.

Huang, J. S. Third-order expansion of mean squared error of medians. Statist. Probab. Lett., 42 (2),
185-192 (1999). MR1680118.

Kalashnikov, V. Geometric sums: bounds for rare events with applications. Risk analysis, reliability,
queueing, volume 413 of Mathematics and its Applications. Kluwer Academic Publishers Group,
Dordrecht (1997). ISBN 0-7923-4616-5. MR 1471479.

Kolassa, J. E. and McCullagh, P. Edgeworth series for lattice distributions. Ann. Statist., 18 (2),
981-985 (1990). MR1056348.

Kolmogorov, A. N. Method of median in the theory of errors. In Shiryaev, A. N., editor, Selected
works. II. Probability theory and mathematical statistics, Springer Collected Works in Mathemat-
ics, pp. xvii+597. Springer, Dordrecht (2019). ISBN 978-94-024-1709-8. Translation from Russian
of the original in Matem. Sbornik, 38, 47-50 (1931), MR3822137.

Kolmogorov, A. N. and Prokhorov, Y. V. On sums of a random number of random terms. Uspehi
Matem. Nauk (N.S.), 4 (4(32)), 168-172 (1949). MR0031215.

Korolev, V. and Shevtsova, I. An improvement of the Berry-Esseen inequality with applications
to Poisson and mixed Poisson random sums. Scand. Actuar. J., 2012 (2), 81-105 (2012).
MR2929524.

Kotz, S., Kozubowski, T. J., and Podgorski, K. The Laplace distribution and generalizations: A
revisit with applications to communications, economics, engineering, and finance. Birkh&duser
Boston, Inc., Boston, MA (2001). ISBN 0-8176-4166-1. MR 1935481.

Lyamin, O. O. On the rate of convergence of the distributions of certain statistics to the Laplace
distribution. Moscow Univ. Comput. Math. Cybernet., 34 (3), 126-134 (2010). MR2757875.

Minsker, S. Distributed statistical estimation and rates of convergence in normal approximation.
FElectron. J. Stat., 13 (2), 5213-5252 (2019). MR4043072.

Nemes, G. Error bounds and exponential improvements for the asymptotic expansions of the
gamma function and its reciprocal. Proc. Roy. Soc. Edinburgh Sect. A, 145 (3), 571-596 (2015).
MR3371568.

Nevzorov, V. B. Records: mathematical theory, volume 194 of Translations of Mathematical Mono-
graphs. American Mathematical Society, Providence, RI (2001). ISBN 0-8218-1945-3. Translated
from the Russian manuscript by D. M. Chibisov. MR1791071.

Nunes, C., Capistrano, G., Ferreira, D., Ferreira, S. S., and Mexia, J. a. T. Exact critical values for
one-way fixed effects models with random sample sizes. J. Comput. Appl. Math., 354, 112-122
(2019a). MR3944878.

Nunes, C., Mério, A., Ferreira, D., Ferreira, S. S., and Mexia, J. a. T. Random sample sizes
in orthogonal mixed models with stability. Comput. Math. Methods, 1 (5), €1050, 11 (2019b).
MR4179392.

Nunes, C., Mério, A., Ferreira, D., Ferreira, S. S., and Mexia, J. a. T. Random sample sizes
in orthogonal mixed models with stability. Comput. Math. Methods, 1 (5), e1050, 11 (2019c¢).
MR4179392.

Pena, E. A., Pena, E. A., and Kim, T. Median confidence regions in a nonparametric model.
Electron. J. Stat., 13 (2), 2348-2390 (2019). MR3932072.

Pike, J. and Ren, H. Stein’s method and the Laplace distribution. ALEA Lat. Am. J. Probab. Math.
Stat., 11 (1), 571-587 (2014). MR3283586.

Prudnikov, A. P., Brychkov, Y. A., and Marichev, O. 1. Integrals and series. Vol. 1. Elemen-
tary functions. Gordon & Breach Science Publishers, New York (1986). ISBN 2-88124-097-6.
MRO874986.

Reiss, R.-D. Approzimate distributions of order statistics. With applications to nonparametric sta-
tistics. Springer Series in Statistics. Springer-Verlag, New York (1989). ISBN 0-387-96851-2.
MR988164.


http://www.ams.org/mathscinet-getitem?mr=MR741166
http://www.ams.org/mathscinet-getitem?mr=MR1680118
http://www.ams.org/mathscinet-getitem?mr=MR1471479
http://www.ams.org/mathscinet-getitem?mr=MR1056348
http://www.ams.org/mathscinet-getitem?mr=MR3822137
http://www.ams.org/mathscinet-getitem?mr=MR0031215
http://www.ams.org/mathscinet-getitem?mr=MR2929524
http://www.ams.org/mathscinet-getitem?mr=MR1935481
http://www.ams.org/mathscinet-getitem?mr=MR2757875
http://www.ams.org/mathscinet-getitem?mr=MR4043072
http://www.ams.org/mathscinet-getitem?mr=MR3371568
http://www.ams.org/mathscinet-getitem?mr=MR1791071
http://www.ams.org/mathscinet-getitem?mr=MR3944878
http://www.ams.org/mathscinet-getitem?mr=MR4179392
http://www.ams.org/mathscinet-getitem?mr=MR4179392
http://www.ams.org/mathscinet-getitem?mr=MR3982072
http://www.ams.org/mathscinet-getitem?mr=MR3283586
http://www.ams.org/mathscinet-getitem?mr=MR0874986
http://www.ams.org/mathscinet-getitem?mr=MR988164

Expansions for Sample Median with Random Sample Size 365

Robbins, H. The asymptotic distribution of the sum of a random number of random variables. Bull.
Amer. Math. Soc., 54, 1151-1161 (1948). MR27974.

Schluter, C. and Trede, M. Weak convergence to the Student and Laplace distributions. J. Appl.
Probab., 53 (1), 121-129 (2016). MR3540785.

Serfling, R. J. Approximation theorems of mathematical statistics. Wiley Series in Probability
and Mathematical Statistics. John Wiley & Sons, Inc., New York (1980). ISBN 0-471-02403-1.
MR595165.

Sunklodas, J. K. On the normal approximation of a binomial random sum. Lith. Math. J., 54 (3),
356-365 (2014). MR3240976.

Ulyanov, V. V. Cornish-Fisher expansions. In International Encyclopedia of Statistical Science, pp.
312-315. Springer, Berlin (2011). DOI: 10.1007/978-3-642-04898-2.

Ulyanov, V. V., Aoshima, M., and Fujikoshi, Y. Non-asymptotic results for Cornish-Fisher expan-
sions. J. Math. Sci. (N.Y.), 218 (3), 363-368 (2016). MR3553142.

van der Vaart, A. W. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press, Cambridge (1998). ISBN 0-521-49603-9;
0-521-78450-6. MR 1652247.

Wald, A. Some generalizations of the theory of cumulative sums of random variables. Ann. Math.
Statistics, 16, 287-293 (1945). MR 13852.


http://www.ams.org/mathscinet-getitem?mr=MR27974
http://www.ams.org/mathscinet-getitem?mr=MR3540785
http://www.ams.org/mathscinet-getitem?mr=MR595165
http://www.ams.org/mathscinet-getitem?mr=MR3240976
http://dx.doi.org/10.1007/978-3-642-04898-2
http://www.ams.org/mathscinet-getitem?mr=MR3553142
http://www.ams.org/mathscinet-getitem?mr=MR1652247
http://www.ams.org/mathscinet-getitem?mr=MR13852

	1. Introduction
	2. Elements of Order Statistics
	3. Non-Asymptotic Expansions for Sample Median 
	4. Transfer Proposition from Non-Random to Random Sample Sizes
	5. Sample Size has Negative Binomial Distribution
	6. Sample Size Nn is Pareto-Like Distributed
	7. Cornish-Fisher Expansions for Quantiles of Mm and MNn
	8. Proofs
	Acknowledgements
	References

