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Abstract. This paper gives lower bounds for the probability of consensus for two spatially explicit
stochastic opinion models. Both processes are characterized by two finite connected graphs, that
we call respectively the spatial graph and the opinion graph. The former represents the social
network describing how individuals interact, while the latter represents the topological structure
of the opinion space. The representation of the opinions as a graph induces a distance between
opinions which we use to measure disagreements. Individuals can only interact with their neighbors
on the spatial graph, and each interaction results in a local change of opinion only if the two
interacting individuals do not disagree too much, which is quantified using a confidence threshold.
In the first model, called the imitation process, an update results in both neighbors having the
exact same opinion, whereas in the second model, called the attraction process, an update results
in the neighbors’ opinions getting one unit closer. For both models, we derive a lower bound for
the probability of consensus that holds for any finite connected spatial graph. For the imitation
process, the lower bound for the probability of consensus also holds for any finite connected opinion
graph, whereas for the attraction process, the lower bound only holds for a certain class of opinion
graphs that includes finite integer lattices, regular trees and star-like graphs.

1. Introduction

The simplest and most popular stochastic opinion model that includes space in the form of local
interactions is the voter model introduced independently in Clifford and Sudbury (1973); Holley and
Liggett (1975). In this model, individuals are represented by the vertex set of a connected graph
and are characterized by one of two possible opinions. Pairs of neighbors (individuals connected by
an edge) interact at rate one, which results in one of the two neighbors chosen at random updating
her opinion by imitating the other neighbor.

The behavior of the voter model starting from a product measure on (infinite) integer lattices
is now well understood. In one and two dimensions, the model clusters, i.e., the probability that
any two individuals disagree tends to zero, whereas in higher dimensions, coexistence occurs in that
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the process converges weakly to a nontrivial stationary distribution Holley and Liggett (1975). In
one dimension, the cluster size scales like the square root of time Bramson and Griffeath (1980),
while in two dimensions, there is no natural scale for the cluster size Cox and Griffeath (1986). In
addition, except in one dimension, the fraction of time any given individual holds a given opinion
converges almost surely to the initial density of this opinion Cox and Griffeath (1983). In particular,
in dimension two, referred to as the critical dimension for the voter model, clusters keep growing
indefinitely while at the same time individuals switch opinions frequently. This apparent paradox
indicates in fact that clusters move faster than they grow.

The limiting behavior of the voter model on finite connected graphs is trivial. In this case,
because the state space is finite, the process fixates in a configuration in which all the individuals
share the same opinion: consensus occurs with probability one. In addition, a direct application of
the optional stopping theorem for martingales shows that the probability that a given opinion wins
is simply equal to the fraction of individuals who initially hold this opinion. In contrast, for other
opinion models such as the Deffuant model Deffuant et al. (2000); Lanchier (2012b), the vectorial
Deffuant model Deffuant et al. (2000); Lanchier and Scarlatos (2014), and the constrained voter
model Vazquez et al. (2003), where the number of opinions is increased and a confidence threshold
preventing interactions between individuals who disagree too much is imposed, whether a consensus
is reached or the system fixates to a fragmented configuration with multiple discordant opinions is
far from being obvious. The goal of this paper is to study this question for the general spatial opinion
model introduced in Lanchier and Scarlatos (2017) and a variant of this model. In particular, we
give nontrivial lower bounds for the probability of consensus that are uniform in all possible finite
connected graphs.

Model description. The first opinion model we study in this paper is the stochastic process
that was introduced by Lanchier and Scarlatos (2017), while the second model is a natural variant
of this process. Like the voter model, both processes keep track of the configuration of opinions
in a population of individuals. Our models are spatial in that the individuals are represented by
the vertices of a connected graph G = (V,E), with the presence of an edge between two vertices
indicating that the two individuals can interact. In particular, this connected graph has to be
thought of as a social network. The analysis in Lanchier and Scarlatos (2017) focuses on the case
where this connected graph is the one-dimensional integer lattice and individuals can only interact
with their two nearest neighbors. In contrast, we analyze the somewhat more realistic case where
the graph can be any finite connected graph. Our models are also stochastic in the sense that
individuals update their opinion at the times of independent Poisson processes by interacting with
a random neighbor. In the voter model, individuals are characterized by one of two possible opinions
and each interaction results in an agreement between neighbors. In contrast, we assume that the
set of opinions is represented by the set of vertices of another finite connected graph G = (V,E).
In particular, for both processes, the state at time t is a spatial configuration of opinions

ξt : V→ V where ξt(x) = opinion at vertex x at time t.

The main reason for representing the set of opinions as the vertex set of a graph is to use the
geodesic distance on this graph to measure the level of disagreement between any two individuals
and incorporate a confidence threshold τ ∈ N in the models: we assume that an interaction
between two neighbors results in one of the two individuals updating her opinion if and only if the
two individuals hold different opinions but the distance between their opinions before the interac-
tion does not exceed the confidence threshold τ . This assumption is motivated by the psychological
concept of homophily, the tendency for people to be attracted to those who are similar to them-
selves. To distinguish between the graph representing the individuals’ social network and the graph
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representing the structure of the opinion space, we will call from now on

G = (V,E) = spatial graph
G = (V,E) = opinion graph.

To describe the dynamics, it is convenient to think of the spatial graph as a directed graph with
each edge in E inducing two directed edges, i.e., we define

~E = { ~xy, ~yx : {x, y} = {y, x} ∈ E} = set of directed edges.

In both models, each directed edge, say ~xy, becomes active at rate one, which results in an update
of the opinion at vertex x if and only if x and y disagree but the distance between their opinions
does not exceed the threshold τ . In the first model Lanchier and Scarlatos (2017), denoted by (ξt)
from now on, the update results in vertex x imitating vertex y. Therefore, the rate at which x
switches from opinion a to opinion a′ 6= a given that the process is in configuration ξ is

ca→a′(x, ξ) =
∑
y∈Nx

1{ξ(y) = a′ and d(a, a′) ≤ τ} (1.1)

where d(·, ·) denotes the opinion distance, i.e., the geodesic distance on the opinion graph, and
where Nx is the interaction neighborhood of vertex x defined as

Nx = {y ∈ V : {x, y} ∈ E} = {y ∈ V : ~xy ∈ ~E}.
In the second opinion model, denoted by (ζt) from now on, rather than imitating their neighbor,
individuals update their opinion so that it moves one unit closer to their neighbor’s opinion. This
evolution rule is reminiscent of the Axelrod model Axelrod (1997); Lanchier (2012a); Lanchier and
Moisson (2016); Lanchier and Scarlatos (2013); Lanchier and Schweinsberg (2012), and the vectorial
Deffuant model Deffuant et al. (2000); Lanchier and Scarlatos (2014), where each individual is
characterized by a vector of cultural features, and each interaction results in an individual imitating
only one of her neighbor’s cultural features. To define the dynamics of the stochastic process (ζt),
we introduce the sets

D(a, b) = {a′ ∈ V : d(a, a′) = 1 and d(a′, b) = d(a, b)− 1} for all a 6= b.

In other words, the set D(a, b) is the set of opinions that are at opinion distance one from opinion a
and one unit closer to opinion b. We point out that, because the opinion graph is assumed to
be connected, this set is nonempty. Then, the rate at which vertex x switches from opinion a to
opinion a′ 6= a given that the process is in configuration ζ is

ca→a′(x, ζ) =
∑
y∈Nx

∑
b 6=a

1{ζ(y) = b and d(a, b) ≤ τ and a′ ∈ D(a, b)}
cardD(a, b)

. (1.2)

The local transition rates indicate that, each time ~xy becomes active and the two neighbors are
compatible, the new opinion at vertex x is chosen uniformly at random from the set of opinions
that are adjacent to the previous opinion at vertex x and one unit closer to the opinion at vertex y.
From now on, we call imitation process, respectively, attraction process, the process described
by the local transition rates (1.1), respectively, (1.2). As previously mentioned, the imitation rule
was introduced in Lanchier and Scarlatos (2017) where the authors studied fluctuation and fixation
of the process when the spatial graph is the one-dimensional integer lattice. Although the current
paper is the first paper studying the attraction rule, the attraction process was invented a couple
of years ago by Lanchier and Scarlatos (2017) during their discussions while they were writing their
paper.

Main results. Our main results give lower bounds for the probability of consensus for both
processes. These lower bounds are uniform over all possible finite connected spatial graphs. For
the imitation process, these lower bounds also hold for all possible finite connected opinion graphs,
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whereas for the attraction process, the result only holds when the opinion graph satisfies a certain
set of inequalities that we shall call eccentricity inequalities. To define mathematically what is
meant by consensus, we first define the time to fixation as

T = sup{t : ξt 6= ξt−} = inf{t : ξt = ξs for all s > t},
the last time at which the imitation process is updated. The time to fixation under the attraction
rule is defined similarly, replacing ξ by ζ. We will prove that the time to fixation is an almost surely
finite stopping time for the natural filtration of the opinion model. Then, we define consensus as
the event that, at the time to fixation, all the individuals share the same opinion:

{consensus} = {ξT ≡ cst} = {ξT ≡ c for some c ∈ V }.
Again, the consensus event under the attraction rule is defined similarly, replacing ξ by ζ. To state
our results, recall that the eccentricity of a vertex a ∈ V , and the radius r and diameter d of
the opinion graph are defined respectively as

ε(a) = max
b∈V

d(a, b), r = min
a∈V

ε(a) and d = max
a∈V

ε(a).

When the confidence threshold τ is at least equal to the diameter d, all the individuals can interact
with their neighbors just like in the voter model, which always results in a consensus when the social
network is finite and connected.

Theorem 1.1. Assume τ ≥ d. Then, P (ξT ≡ cst) = P (ζT ≡ cst) = 1.

We now study the two stochastic spatial opinion models in the nontrivial case where τ < d. Our
analysis, however, only holds when τ ≥ r. For each process, we first give a general lower bound
that applies to all possible spatial graphs and all possible initial configurations, and then give a
more explicit expression of the lower bound when the opinions at different vertices are initially
independent and equally likely, i.e., for all V′ ⊂ V and all (ax)x∈V′ ⊂ V , we have

P (ξ0(x) = ax for all x ∈ V′) = P (ζ0(x) = ax for all x ∈ V′)

= (1/ card(V ))card(V′).

This initial distribution is referred to as the uniform product measure later. To find a lower
bound for the probability of consensus under the imitation rule, we will prove that the process (Xt)
that keeps track of the number of individuals whose opinion’s eccentricity does not exceed the
confidence threshold is a martingale. An application of the optional stopping theorem to this
process stopped at the time to fixation gives the following lower bound.

Theorem 1.2 (Imitation). Assume τ ∈ [r,d). Then,

P (ξT ≡ cst) ≥ E(card{x ∈ V : ε(ξ0(x)) ≤ τ})
card(V)

.

In particular, starting from the uniform product measure,

P (ξT ≡ cst) ≥ card{a ∈ V : ε(a) ≤ τ}
card(V )

> 0.

To find a lower bound for the probability of consensus under the attraction rule, we will study a
process (Zt) that keeps track of the eccentricity of the individuals’ opinions. We will prove that,
when the opinion graph satisfies the inequalities∑

a′∈D(a,b)

ε(a′)− ε(a)

cardD(a, b)
+

∑
b′∈D(b,a)

ε(b′)− ε(b)
cardD(b, a)

≤ 0 for all a, b ∈ V, (1.3)

that we shall call eccentricity inequalities, interactions among individuals tend to decrease the
eccentricity of their opinion, which translates mathematically into the fact that (Zt) is a super-
martingale. The lower bound for the probability of consensus again follows from an application of
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Figure 1.1. Example of a graph for which (1.3) is not satisfied. In this example,
the sets D(a, b) and D(b, a) reduce to the singletons {a′′} and {b′′}, respectively,
and ε(a) = ε(b) = 3 < 4 = ε(a′′) = ε(b′′).

the optional stopping theorem to the process stopped at the fixation time. More precisely, for all
opinion graphs that satisfy (1.3), we have the following lower bound.

Theorem 1.3 (Attraction). Assume τ ∈ [r,d) and (1.3). Then,

P (ζT ≡ cst) ≥ 1− 1

card(V)

∑
x∈V

(
E(ε(ζ0(x)))− r

τ + 1− r

)
.

In particular, starting from the uniform product measure,

P (ζT ≡ cst) ≥ 1− 1

card(V )

∑
a∈V

(
ε(a)− r

τ + 1− r

)
.

Note that the lower bounds in Theorems 1.2 and 1.3 are universal in the sense that they do not
depend on the topology of the spatial graph. Note also that, at least starting from the uniform
product measure and when τ ≥ r, the lower bound in Theorem 1.2 is always positive. Theorem 1.3,
however, can lead to trivial lower bounds that are negative. To show that the theorem indeed
implies that consensus occurs with positive probability in nontrivial cases where τ < d, we now
apply the theorem to specific opinion graphs. Before looking at these particular graphs, we point
out that there exist graphs that do not satisfy the eccentricity inequalities (1.3), and we refer to
Figure 1.1 for a counter-example.

Lattices. To begin with, we assume that the set of opinions is

V =

( n∏
i=1

[−Li, Li]
)
∩ Zn where Li ∈ N∗ (1.4)

which we turn into a graph by connecting two vertices by an edge if and only if they are at Eu-
clidean distance one apart. See the first picture in Figure 1.2 for an illustration. In this case, each
opinion can be seen as a culture, a vector of n cultural features that assume different states, just
like in the Axelrod (1997) model. After proving that the lattice satisfies (1.3), an application of
Theorem 1.3 gives the following lower bound for the probability of consensus.

Corollary 1.4 (Lattices). Let τ ∈ [r, 2r) and G be the lattice (1.4). Then, starting from the uniform
product measure,

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

) n∑
i=1

Li(Li + 1)

2Li + 1

where r = L1 + L2 + · · ·+ Ln.

Some basic algebra shows that the lower bound in the previous corollary is strictly positive, and so
nontrivial, if and only if

τ >
n∑
i=1

Li(Li + 1)

2Li + 1
+ (r− 1). (1.5)
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Figure 1.2. Picture of the graphs in Corollaries 1.4–1.6
.

Now, subtracting d− 1 = 2r− 1 from the right-hand side of (1.5), we get
n∑
i=1

Li(Li + 1)

2Li + 1
− r =

n∑
i=1

Li

(
Li + 1

2Li + 1
− 1

)

=
n∑
i=1

−Li
(

Li
2Li + 1

)
≤ −1

3

n∑
i=1

Li < 0.

This shows that the right-hand side of (1.5) is smaller than 2r − 1, so the corollary implies that
consensus occurs with positive probability for confidence thresholds less than the diameter, i.e.,
consensus occurs in nontrivial cases.

Trees. We now assume that the opinion graph consists of the rooted tree with n children (the root
has degree n and the other internal vertices degree n + 1) and radius r, and refer to the second
picture in Figure 1.2 for an illustration of this graph when n = 2 and r = 3. In this case, the root
plays the role of a “centrist” opinion, while the leaves are “extremist” opinions. Like lattices, rooted
trees satisfy the eccentricity inequalities so we can apply Theorem 1.3.

Corollary 1.5 (Trees). Let τ ∈ [r, 2r) and G be the rooted tree with n children and radius r. Then,
starting from the uniform product measure,

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

) r∑
k=1

knk
/ r∑

k=0

nk

= 1−
(

1

τ + 1− r

)
n(rnr+1 − (r + 1)nr + 1)

(1− n)(1− nr+1)
.

When τ ≥ 2r, the diameter of the tree, there is almost sure consensus starting from any initial
configuration because all the individuals can interact regardless of their opinion. When τ = 2r− 1,
the lower bound in the theorem becomes

1− 1

r

r∑
k=1

knk
/ r∑

k=0

nk ≥ 1−
r∑

k=1

knk
/ r∑

k=1

rnk > 0

so the probability of consensus is positive in the nontrivial case τ = 2r − 1. However, the lower
bound becomes negative when τ = 2r − 2.

Star-like graphs. Finally, we assume that the opinion graph consists of the star-like graph with n
branches and radius r depicted in the third picture of Figure 1.2 when n = 8 and r = 3. In this
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case, each individual can choose among n ideologies and decide to be moderate (with an opinion
close to the center of the graph) or extremist (with an opinion far from the center of the graph) in
her choice. This graph again satisfies the eccentricity inequalities and an application of Theorem 1.3
now gives the following lower bound for the probability of consensus.

Corollary 1.6 (Stars). Let τ ∈ [r, 2r) and G be the star-like graph with n branches and radius r.
Then, starting from the uniform product measure,

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

)
r(r + 1)n

2(1 + rn)
.

For the star-like graphs, some basic algebra shows that the lower bound in the corollary is strictly
positive/nontrivial if and only if

τ >
r(r + 1)n

2(1 + rn)
+ (r − 1). (1.6)

Subtracting d− 1 = 2r − 1 from the right-hand side of (1.6), we get
r(r + 1)n

2(1 + rn)
− r =

r(r + 1)n− 2r(1 + rn)

2(1 + rn)
= −r

2

(r − 1)n+ 2

rn+ 1
< 0.

This shows that the right-hand side of (1.6) is smaller than 2r − 1, so the corollary implies that,
like for lattices, consensus occurs with positive probability in nontrivial cases where the confidence
threshold is less than the diameter.

Numerical simulations. Figure 1.3 shows a comparison between the probability of consensus
obtained via numerical simulations and our theoretical lower bounds for both processes when the
individuals are located on a ring and when the opinion graph consists of the lattice and the star-like
graph, respectively. The figure shows that our lower bounds in Theorem 1.2 and Corollaries 1.4
and 1.6 are not optimal but they have the merit to be rigorous and universal in the sense that they
hold regardless of the choice of the social network. In contrast, numerical simulations cannot be
used to study the processes on all possible social networks.

The rest of the paper is devoted to the proofs of Theorems 1.1–1.3 and Corollaries 1.4–1.6. A
common aspect of the proofs of the first three theorems is to identify a certain set of configurations
that will ultimately lead to consensus with probability one (see Lemma 3.1 below). Because one of
the key ingredients to establish Theorems 1.2 and 1.3 is also the application of the optional stopping
theorem, we will start by proving that the time to fixation is an almost surely finite stopping time (see
Lemmas 2.2 and 2.4). Another difficulty is to show that the auxiliary process (Xt) mentioned above,
as well as the process (Zt) when (1.3) holds, are supermartingales adapted to the natural filtration
of the opinion models (see Lemmas 4.1 and 5.3). Finally, the key idea to prove Corollaries 1.4–1.6
is to show that the three opinion graphs in Figure 1.2 satisfy the eccentricity inequalities (1.3) in
order to use the second part of Theorem 1.3 (see Lemmas 6.1–6.3).

2. Time to fixation

The objective of this section is to prove that, for both spatial opinion models, the time to
fixation is an almost surely finite stopping time for the natural filtration (Ft) of the process under
consideration. The main reason for showing this result is to be able later to apply the optional
stopping theorem to auxiliary processes stopped at the time to fixation. To begin with, we prove
the result for the attraction process, and then explain at the end of this section how to adapt the
proof to the imitation process. Recall that the time to fixation is defined as

T = sup{t : ζt 6= ζt−} = inf{t : ζt = ζs for all s > t},
the time of the last update. Note that it is not clear from the definition that this time is a stopping
time. Indeed, it is not obvious that the event that T > t can be determined from the realization of
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Figure 1.3. Probability of consensus and corresponding lower bound as a function
of the confidence threshold for the imitation process (top pictures) and the attrac-
tion process (bottom pictures) when the opinion graph consists of the lattice (left
pictures) and the star-like graph (right pictures) of Figure 1.2. The probability of
consensus (in black) is obtained from the average of one million realizations of the
process starting from the uniform product measure when the social network consists
of the ring with eight vertices. The lower bound (in grey) is the uniform lower bound
valid for all social networks in Theorem 1.2 and Corollaries 1.4 and 1.6.

the process up to time t only. Throughout this section, given a configuration ζ, edge {x, y} ∈ E is
said to be a

congruent edge when d(ζ(x), ζ(y)) = 0,

compatible edge when d(ζ(x), ζ(y)) ∈ {1, 2, . . . , τ},
discordant edge when d(ζ(x), ζ(y)) ∈ {τ + 1, τ + 2, . . . ,d}.

From now on, we let φ(ζ) be the number of compatible edges:

φ(ζ) =
∑
{x,y}∈E

1{0 < d(ζ(x), ζ(y)) ≤ τ}.

The fact that the time to fixation is a stopping time is a consequence of the fact that it is the first
time the process hits the set A of absorbing states, which turns out to coincide with the set of
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configurations with no compatible edges:

A = {ζ : φ(ζ) = 0}.

Proving that the time to fixation is also almost surely finite is more complicated. The idea is to
show that, from each configuration, the process can reach a configuration with less compatible edges.
This, together with the finiteness of the spatial graph, implies that the time to fixation is almost
surely finite. The next lemma identifies the set of absorbing states.

Lemma 2.1 (Absorbing states). For every configuration ζ,

P (ζt = ζs for all s > t | ζt = ζ) = 1{ζ ∈ A} = 1{φ(ζ) = 0}.

Proof. Assume first that ζt ∈ A, let

s∗ = inf{s > t : some edge ~wz ∈ ~E becomes active at time s}

and let ~xy be the edge becoming active at that time. Because φ(ζ) = 0, edge {x, y} is either a
congruent edge or a discordant edge, meaning that x and y either already agree, or disagree too
much to influence each other. In either case, the opinion at y remains unchanged. By induction,
we deduce that the configuration remains unchanged at any future time so

P (ζt = ζs for all s > t | ζt = ζ) = 1 for all ζ ∈ A. (2.1)

Assume now that ζt /∈ A. Then, there is at least one compatible edge so

s∗ = inf{s > t : some compatible edge ~wz ∈ ~E becomes active at time s}

is dominated by the exponential distribution with mean one, and so almost surely finite. In addition,
letting ~xy be the edge becoming active at time s∗,

d(ζs∗(x), ζs∗(y)) = d(ζt(x), ζt(y))− 1 (2.2)

which implies that ζs∗ 6= ζt. In conclusion,

P (ζt = ζs for all s > t | ζt = ζ) = 0 for all ζ /∈ A. (2.3)

Combining (2.1) and (2.3) gives the desired result. �

The fact that T is a stopping time directly follows from Lemma 2.1.

Lemma 2.2. The time to fixation T is a stopping time.

Proof. Let (Ft) be the natural filtration associated to the attraction process. According to Lemma 2.1,
the time to fixation can be written as

T = inf{t : ζt ∈ A} = inf{t : φ(ζt) = 0}, (2.4)

from which it follows that

{T > t} = {ζs /∈ A for all s ≤ t} = {ζt /∈ A} = {ζt ∈ A}c ∈ Ft.

This shows that T is a stopping time. �

The next lemma shows that, from each configuration ζ that has at least one compatible edge,
the attraction process can reach with positive probability another configuration ζ ′ that has less
compatible edges than ζ, which is the first step to prove that the time to fixation is almost surely
finite.

Lemma 2.3. For every ζ /∈ A, there exists ζ ′ such that

P (ζt = ζ ′ | ζ0 = ζ) > 0 for all t > 0 and φ(ζ ′) < φ(ζ).
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Figure 2.4. Picture of the cluster Cx. The numbers next to the vertices represent
the individuals’ opinion in configuration ζ. In our example, the opinion distance we
use is the Euclidean distance and the confidence threshold is τ = 2. Vertex x is
the vertex with opinion 1 in the middle of the picture. In particular, the subset Vx
consists of all the vertices with opinion 1, 2, or 3, represented in black. The subset Ex
is represented by the bold edges, while the cluster Cx is represented by the circled
vertices. Configuration ζ ′ in the proof of Lemma 2.3 is obtained by simply turning
the opinion of all the circled vertices into opinion 1.

Proof. Since φ(ζ) 6= 0, configuration ζ has at least one compatible edge {x, y} ∈ E. Then, we define
the subset of vertices and the subset of edges

Vx = {z ∈ V : d(ζ(x), ζ(z)) ≤ τ} and Ex = {{w, z} ∈ E : w, z ∈ Vx}.
That is, Vx is the set of individuals that are within opinion distance τ from x, and Ex is the set of
edges that connect individuals in Vx. We also let

Cx = connected component of the graph (Vx,Ex) that contains x.

See Figure 2.4 for a picture. Assuming that edge ~yx ∈ ~E becomes active τ times in a row before
anything else happens, which occurs with positive probability because the graph is finite, after these
interactions, the individual at vertex y has the same opinion as the initial opinion of the individual
at vertex x. Because the subgraph induced by Cx is connected and finite, a simple induction implies
that, for all t > 0, there is a positive probability that, at time t, all the individuals in Cx have the
same opinion as the initial opinion of the individual at vertex x. In equations,

P (ζt = ζ ′ | ζ0 = ζ) > 0 for all t > 0, (2.5)

where ζ ′ is the configuration

ζ ′(z) =

{
ζ(x) for all z ∈ Cx

ζ(z) for all z ∈ V \ Cx
obtained from ζ by replacing all the opinions in Cx by the initial opinion ζ(x). To compare the
number of compatible edges, observe that

d(ζ ′(w), ζ ′(z)) = d(ζ(x), ζ(x)) = 0 whenever w ∈ Cx and z ∈ Cx

d(ζ ′(w), ζ ′(z)) = d(ζ(x), ζ(z)) > τ whenever w ∈ Cx and z ∈ V \ Cx.
In summary, each edge {w, z} ∈ E is a

congruent edge for ζ ′ whenever w ∈ Cx and z ∈ Cx

discordant edge for ζ ′ whenever w ∈ Cx and z ∈ V \ Cx
(2.6)
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while it is obvious that all the other edges are of the same type for both configuration ζ and
configuration ζ ′. Recall also from the definition of x and y that

{x, y} is a compatible edge for ζ but a congruent edge for ζ ′. (2.7)

It follows from (2.6) and (2.7) that

φ(ζ ′) ≤ φ(ζ)− 1 < φ(ζ). (2.8)

Combining (2.5) and (2.8) implies the lemma. �

Using the previous lemma and the finiteness of the spatial graph, we can now prove that the time
to fixation is almost surely finite.

Lemma 2.4. The time to fixation T is almost surely finite.

Proof. Because the time to fixation is the first time at which the attraction process hits an absorbing
state, it suffices to prove that, for every configuration ζ,

P (ζt ∈ A | ζ0 = ζ) > 0 for some t > 0.

In words, there exists at least one absorbing state ζ ′ that can be reached from ζ. This is obvious
if configuration ζ ∈ A. Otherwise, applying Lemma 2.3 a finite number of times (at most as many
times as there are edges in the spatial graph) gives a sequence of configurations

ζ = ζ0, ζ1, ζ2, . . . , ζ ′ = ζn with n ≤ card(E)

such that, for all k = 0, 1, . . . , n− 1 and all t > 0,

P (ζt = ζk+1 | ζ0 = ζk) > 0 and φ(ζ0) < φ(ζ1) < · · · < φ(ζn) = 0.

Taking t = 1 and using Chapman-Kolmogorov’s equations, we get

P (ζn = ζ ′ | ζ0 = ζ) ≥
n−1∏
k=0

P (ζk+1 = ζk+1 | ζk = ζk) =

n−1∏
k=0

P (ζ1 = ζk+1 | ζ0 = ζk) > 0

where φ(ζ ′) = φ(ζn) = 0 and so ζ ′ ∈ A. This completes the proof. �

The proofs of Lemmas 2.1–2.4 easily extend to the imitation process with only two exceptions.
First, because now two neighbors completely agree after an interaction, equation (2.2) becomes

0 = d(ξs∗(x), ξs∗(y)) < 1 ≤ d(ξt(x), ξt(y))

so Lemma 2.1 also holds for the imitation process. Second, directed edge ~yx ∈ ~E in the proof of
Lemma 2.3 only needs to become active once for vertex y to have the same opinion as the initial
opinion at vertex x. In particular, this lemma also holds for the imitation process. In conclusion,
the time to fixation is an almost surely finite stopping time for both processes.

3. Almost sure consensus

This section is devoted to the proof of Theorem 1.1 which states almost sure consensus for both
processes when τ ≥ d, the diameter of the opinion graph. Because the proof is exactly the same for
the imitation process and the attraction process, we only show the result for the latter. We start
with a general lemma that will be used to prove Theorems 1.1–1.3.

Lemma 3.1. We have the inclusion of events

A = {ε(ζT (x)) ≤ τ for some x ∈ V} ⊂ {ζT ≡ cst}.
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Proof. Assume that A occurs. Let x ∈ V such that ε(ζT (x)) ≤ τ and

Vi = {y ∈ V : d(x, y) = i} for all i = 0, 1, . . . ,max
v∈V

d(x, v) <∞.

To prove the result by induction, assume that

ζT (y) = ζT (x) for all y ∈ Vi for some 0 ≤ i < max
v∈V

d(x, v). (3.1)

Fix z ∈ Vi+1, and let z′ ∈ Vi be a neighbor of z. Then,

d(ζT (x), ζT (z)) ≤ max
b∈V

d(ζT (x), b) = ε(ζT (x)) ≤ τ. (3.2)

In addition, according to Lemma 2.1, configuration ζT is an absorbing state so it does not have any
compatible edge, therefore we must have

ζT (z) = ζT (z′) or d(ζT (z), ζT (z′)) > τ.

Because z′ ∈ Vi and (3.1) holds, this is equivalent to

ζT (z) = ζT (x) or d(ζT (z), ζT (x)) > τ. (3.3)

Combining (3.2) and (3.3), we deduce that

ζT (z) = ζT (x) and ζT (y) = ζT (x) for all y ∈ Vi+1.

By induction, ζT (y) = ζT (x) for all y ∈ ∪iVi = V, showing that ζT ≡ cst. �

The proof of Theorem 1.1 is now straightforward.

Proof of Theorem 1.1. Assume that τ ≥ d. Then,

ε(ζt(x)) ≤ max
a∈V

ε(a) = d ≤ τ with probability one

for all x ∈ V and t ≥ 0. This and Lemma 3.1 imply that

P (ζT ≡ cst) ≥ P (ε(ζT (x)) ≤ τ for some x ∈ V) ≥ P (ε(ζT (x)) ≤ τ for all x ∈ V) = 1.

This completes the proof. �

4. Consensus under the imitation rule

This section is devoted to the proof of Theorem 1.2. The key ingredient is to apply the optional
stopping theorem to the process that keeps track of the number of individuals whose opinion has
eccentricity at most the confidence threshold, i.e.,

Xt =
∑
x∈V

1{ε(ξt(x)) ≤ τ} = card{x ∈ V : ε(ξt(x)) ≤ τ},

stopped at the time to fixation. In order to apply the optional stopping theorem, we first prove
that this process is a bounded martingale.

Lemma 4.1. The process (Xt) is a bounded martingale.

Proof. The intuition behind the proof is the following. The process can only increase or decrease by
one, which occurs each time a compatible edge connecting an individual with opinion’s eccentricity
larger than τ and an individual with opinion’s eccentricity at most τ becomes active. When this
happens, each of the two individuals is equally likely to mimic the other individual, so the process
is equally likely to increase or decrease by one and thus is a martingale. To turn this heuristics into
equations, because each directed edge becomes active at rate one,

lim
s↓0

P (Xt+s −Xt = +1 |Ft)
s

=
∑
~yx∈~E

1{0 < d(ξt(x), ξt(y)) ≤ τ} 1{ε(ξt(x)) > τ, ε(ξt(y)) ≤ τ}. (4.1)
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The first indicator function expresses the fact that the two individuals are compatible while the
second indicator function insures that the eccentricity of the opinion at vertex x switches from
larger than τ to at most τ so that the process (Xt) indeed increases by one. Similarly, we have

lim
s↓0

P (Xt+s −Xt = −1 |Ft)
s

=
∑
~yx∈~E

1{0 < d(ξt(x), ξt(y)) ≤ τ} 1{ε(ξt(x)) ≤ τ, ε(ξt(y)) > τ}.

Exchanging the roles of x and y, this can be rewritten as∑
~yx∈~E

1{0 < d(ξt(y), ξt(x)) ≤ τ} 1{ε(ξt(y)) ≤ τ, ε(ξt(x)) > τ}. (4.2)

By symmetry of the graph distance, (4.2) equals the right-hand side of (4.1), so

lim
s↓0

E(Xt+s −Xt |Ft)
s

= lim
s↓0

(
P (Xt+s −Xt = +1 |Ft)

s
− P (Xt+s −Xt = −1 |Ft)

s

)
= 0,

showing that (Xt) is a martingale. The fact that the process is also bounded directly follows from
the fact that the spatial graph is finite: |Xt| ≤ card(V) <∞. �

Lemma 4.2. The range of XT reduces to {0, card(V)}.

Proof. Assume by contradiction that

XT ∈ {1, 2, . . . , card(V)− 1}. (4.3)

Then, there exist x, y ∈ V such that, at time T , the opinion of the individual at vertex x is at
most τ while the opinion of the individual at vertex y is more than τ . Because the spatial graph is
connected, one of the paths connecting x and y must contain an edge {x′, y′} ∈ E such that

ε(ξT (x′)) ≤ τ and ε(ξT (y′)) > τ.

This implies that edge {x′, y′} is compatible at time T since

1 ≤ d(ξT (x′), ξT (y′)) ≤ max
b∈V

d(ξT (x′), b) = ε(ξT (x′)) ≤ τ.

Hence, φ(ξT ) 6= 0, which contradicts (2.4), therefore (4.3) is false. �

Using our preliminary results, we can now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 2.2, 2.4 and 4.1, the process (Xt) is a bounded martingale
and the time to fixation is an almost surely finite stopping time, both with respect to the natural
filtration of the imitation process. In particular, the optional stopping theorem gives

E(XT ) = E(X0) = E(card{x ∈ V : ε(ξ0(x)) ≤ τ}). (4.4)

It also follows from Lemma 4.2 that

E(XT ) = card(V)P (XT = card(V)) = card(V)P (ε(ξT (x)) ≤ τ for all x ∈ V) (4.5)

while according to Lemma 3.1, we have

P (ξT ≡ cst) ≥ P (ε(ξT (x)) ≤ τ for some x ∈ V) ≥ P (ε(ξT (x)) ≤ τ for all x ∈ V). (4.6)

Combining (4.4)–(4.6), we conclude that

P (ξT ≡ cst) ≥ E(XT )

card(V)
=
E(card{x ∈ V : ε(ξ0(x)) ≤ τ})

card(V)
,

which proves the first part of the theorem. To prove the second part of the theorem, assume also
that the process starts from the uniform product measure. Then,

P (ξT ≡ cst) ≥ E(card{x ∈ V : ε(ξ0(x)) ≤ τ})
card(V)

=
card(V)P (ε(ξ0(x)) ≤ τ)

card(V)
= P (ε(U) ≤ τ)
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where U = Uniform (V ). In particular,

P (ξT ≡ cst) ≥
∑
a∈V

1{ε(a) ≤ τ}P (U = a) =
card{a ∈ V : ε(a) ≤ τ}

card(V )
.

This completes the proof. �

5. Consensus under the attraction rule

This section is devoted to the proof of Theorem 1.3 and follows the same structure as the previous
section. As previously mentioned, the key is to define an auxiliary process (Zt) that keeps track
of the eccentricity of the individuals’ opinions. Provided the eccentricity inequalities are satisfied,
this process is a supermartingale, and the theorem will follow from applying the optional stopping
theorem to this process stopped at the time to fixation. The process is defined from the eccentricity
of the individuals’ opinions and the radius r of the opinion graph by setting

Zt =
∑
x∈V

(ε(ζt(x))− r) =
∑
a∈V

(ε(a)− r) card{x ∈ V : ζt(x) = a}.

The process is smaller when the individuals’ opinions are closer to the center of the opinion graph,
the set of vertices whose eccentricity is equal to the radius, whereas it is larger when the opinions are
closer to the “periphery”. The fact that (Zt) is a supermartingale essentially means that interactions
among individuals tend to decrease the eccentricity of their opinions. To apply the optional stopping
theorem later, we first prove that the process is positive and bounded.

Lemma 5.1. For all t ≥ 0, we have 0 ≤ Zt ≤ r card(V) <∞.

Proof. Using that ε(a) ≥ r for all a ∈ V , we get

Zt =
∑
a∈V

(ε(a)− r) card{x ∈ V : ζt(x) = a} ≥ 0.

Now, let c ∈ V be any vertex in the center of the opinion graph: ε(c) = r. Then, it follows from the
triangle inequality that, for all a, b ∈ V ,

d(a, b) ≤ d(a, c) + d(c, b) ≤ ε(c) + ε(c) = 2r.

This implies that ε(a) = maxb∈V d(a, b) ≤ 2r for all a ∈ V so

Zt =
∑
x∈V

(ε(ζt(x))− r) ≤
∑
x∈V

(2r− r) = r card(V),

which is finite because both the opinion and the spatial graphs are finite. �

To prove that (Zt) is a supermartingale when inequalities (1.3) hold, it is useful to write explicitly
its infinitesimal variation. This is done in the next lemma.

Lemma 5.2. For all times t ≥ 0,

lim
s↓0

E(Zt+s − Zt |Ft)
s

=
∑
~yx∈~E

(
1{0 < d(ζt(x), ζt(y)) ≤ τ}

∑
c∈D(ζt(x),ζt(y))

ε(c)− ε(ζt(x))

cardD(ζt(x), ζt(y))

)
.

Proof. Because each ~yx ∈ ~E becomes active at rate one, which results in the individual at x updating
her opinion based on the opinion of the individual at y provided both individuals are compatible,
i.e., 0 < d(ζt(x), ζt(y)) ≤ τ ,

lim
s↓0

E(Zt+s − Zt |Ft)
s

=
∑
~yx∈~E

1{0 < d(ζt(x), ζt(y)) ≤ τ} E(φxy(Zt)− Zt |Ft) (5.1)
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where φxy(Zt) is the new value of (Zt) after individual x updates her opinion based on the opinion
of individual y. In addition, because the new opinion at vertex x is chosen uniformly at random
from the subset of opinions D(ζt(x), ζt(y)), we get

φxy(Zt)− Zt =
∑
z 6=x

(ε(ζt(z))− r) + (ε(U)− r)−
∑
z∈V

(ε(ζt(z))− r) = ε(U)− ε(ζt(x))

where U = Uniform (D(ζt(x), ζt(y))). It follows that

E(φxy(Zt)− Zt |Ft) =
∑

c∈D(ζt(x),ζt(y))

ε(c)− ε(ζt(x))

cardD(ζt(x), ζt(y))
. (5.2)

Combining (5.1) and (5.2) gives the result. �

Lemma 5.3. Assume (1.3). Then, (Zt) is a supermartingale.

Proof. Pairing the directed edges

~xy ∈ ~E and ~yx ∈ ~E for all {x, y} ∈ E,

and applying Lemma 5.2, we obtain

lim
s↓0

E(Zt+s − Zt |Ft)
s

=
∑
{x,y}∈E

(
1{0 < d(ζt(x), ζt(y)) ≤ τ}

∑
a′∈D(ζt(x),ζt(y))

ε(a′)− ε(ζt(x))

cardD(ζt(x), ζt(y))

+ 1{0 < d(ζt(y), ζt(x)) ≤ τ}
∑

b′∈D(ζt(y),ζt(x))

ε(b′)− ε(ζt(y))

cardD(ζt(y), ζt(x))

)
.

In view of (1.3) and because the opinion graph distance is symmetric, the right-hand side is non-
positive, which implies that (Zt) is a supermartingale. �

The last step before proving the theorem is to show how the probability of consensus under the
attraction rule relates to the expected value of ZT .

Lemma 5.4. For all τ ∈ [r,d),

P (ζT ≡ cst) ≥ 1− 1

card(V)

E(ZT )

τ + 1− r
.

Proof. The key to the proof is to compute the expected value of ZT by conditioning on the parti-
tion {A,B} where A and B are the two events

A = {ε(ζT (x)) ≤ τ for some x ∈ V}
B = {ε(ζT (x)) ≥ τ + 1 for all x ∈ V}.

Observing that, when B occurs,

ZT =
∑
x∈V

(ε(ζT (x))− r) ≥
∑
x∈V

(τ + 1− r) = (τ + 1− r) card(V)

and using that ZT ≥ 0 according to Lemma 5.1, we get

E(ZT ) = E(ZT |A)P (A) + E(ZT |B)P (B) ≥ E(ZT |B)P (B) ≥ (τ + 1− r) card(V)P (B).

This, and the fact that τ ∈ [r,d), give the lower bound

P (A) = 1− P (B) ≥ 1− 1

card(V)

E(ZT )

τ + 1− r
.

Recalling also that, according to Lemma 3.1,

A = {ε(ζT (x)) ≤ τ for some x ∈ V} ⊂ {ζT ≡ cst}
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implies the result. �

Applying Lemmas 5.1–5.4, we can now prove Theorem 1.3.

Proof of Theorem 1.3. By Lemmas 5.1 and 5.3, the process (Zt) is a bounded supermartingale,
while by Lemmas 2.2 and 2.4, the time to fixation T is an almost surely finite stopping time with
respect to the natural filtration of the opinion model. In particular, we may apply the optional
stopping theorem to the supermartingale (Zt) stopped at time T to get

E(ZT ) ≤ E(Z0).

This, together with Lemma 5.4, implies that

P (ζT ≡ cst) ≥ 1− 1

card(V)

E(ZT )

τ + 1− r
≥ 1− 1

card(V)

E(Z0)

τ + 1− r
.

Finally, recalling the definition of Zt, we conclude that

P (ζT ≡ cst) ≥ 1− 1

card(V)
E

(∑
x∈V

ε(ζ0(x))− r

τ + 1− r

)
= 1− 1

card(V)

∑
x∈V

(
E(ε(ζ0(x)))− r

τ + 1− r

)
,

which proves the first part of the theorem. To prove the second part of the theorem, assume also
that the process starts from the uniform product measure. Then,

P (ζT ≡ cst) ≥ 1− E(ε(ζ0(x)))− r

τ + 1− r
= 1− E(ε(U))− r

τ + 1− r

where U = Uniform (V ). In particular,

P (ζT ≡ cst) ≥ 1−
∑
a∈V

(
ε(a)− r

τ + 1− r

)
P (U = a) = 1− 1

card(V )

∑
a∈V

(
ε(a)− r

τ + 1− r

)
.

This completes the proof. �

6. Application to special opinion graphs

This section is devoted to the proof of Corollaries 1.4–1.6 that give lower bounds for the probability
of consensus under the attraction rule for the three classes of graphs in Figure 1.2. The strategy is
the same for all three classes of graphs: First, we prove that the opinion graph under consideration
satisfies the eccentricity inequalities, and then we compute explicitly the general lower bound in
the second part of Theorem 1.3 for this specific graph. To begin with, we assume that the set of
opinions is given by the n-dimensional integer lattice

V =

( n∏
i=1

[−Li, Li]
)
∩ Zn where Li ∈ N∗.

Lemma 6.1. The lattice satisfies the eccentricity inequalities (1.3).

Proof. For all a = (a1, . . . , an), b = (b1, . . . , bn) ∈ V , a 6= b, define

Λ = Λ(a, b) = Λ(b, a) = {i = 1, 2, . . . , n : ai 6= bi} 6= ∅.
The sets D(a, b) and D(b, a) are given respectively by

D(a, b) = {ai : i ∈ Λ} where ai = a+ sgn(bi − ai) ei
D(b, a) = {bi : i ∈ Λ} where bi = b+ sgn(ai − bi) ei

where sgn is the sign function and where ei is the ith unit vector in Zn. See Figure 6.5 for a picture.
Note that, on the lattice, the eccentricity of opinion a is

ε(a) = d(0, a) + r where r = ε(0) = L1 + L2 + · · ·+ Ln.
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Figure 6.5. Pictures related to the proof of Lemma 6.1.

In particular, for all i ∈ Λ, we have

ε(ai)− ε(a) = d(0, ai)− d(0, a) = |ai + sgn(bi − ai)| − |ai|.
Considering all the possible orderings of 0, ai and bi, we deduce that

ε(ai)− ε(a) =

{
+1 if bi < ai ≤ 0 or 0 ≤ ai < bi
−1 otherwise.

(6.1)

By symmetry, we have

ε(bi)− ε(b) =

{
+1 if ai < bi ≤ 0 or 0 ≤ bi < ai
−1 otherwise.

(6.2)

Because the two conditions

(bi < ai ≤ 0 or 0 ≤ ai < bi) and (ai < bi ≤ 0 or 0 ≤ bi < ai)

are incompatible, the left-hand sides of (6.1) and (6.2) cannot be simultaneously positive, from
which it follows that they add up to either 0 or −2, therefore

(ε(ai)− ε(a)) + (ε(bi)− ε(b)) ≤ 0 for all i ∈ Λ.

Using also that cardD(a, b) = cardD(b, a) = card(Λ), we conclude that∑
a′∈D(a,b)

ε(a′)− ε(a)

cardD(a, b)
+

∑
b′∈D(b,a)

ε(b′)− ε(b)
cardD(b, a)

=
∑
i∈Λ

ε(ai)− ε(a)

card(Λ)
+
∑
i∈Λ

ε(bi)− ε(b)
card(Λ)

=
∑
i∈Λ

(ε(ai)− ε(a)) + (ε(bi)− ε(b))
card(Λ)

≤ 0.

This completes the proof. �

Using Theorem 1.3 and Lemma 6.1, we can now prove Corollary 1.4.

Proof of Corollary 1.4. According to Lemma 6.1, the lattice satisfies the eccentricity inequali-
ties (1.3), therefore we may apply Theorem 1.3 to get

P (ζT ≡ cst) ≥ 1− 1

card(V )

∑
a∈V

(
ε(a)− r

τ + 1− r

)
. (6.3)
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Now, let U = Uniform (V ) and observe that

Ui = Uniform ([−Li, Li] ∩ Z) for all i = 1, 2, . . . , n.

This and ε(a)− r = d(0, a) = |a1|+ · · ·+ |an| imply that

1

card(V )

∑
a∈V

(ε(a)− r) = E(ε(U))− r = E(d(0, U)) =
n∑
i=1

E|Ui|

=
n∑
i=1

2(1 + 2 + · · ·+ Li)

2Li + 1
=

n∑
i=1

Li(Li + 1)

2Li + 1
.

(6.4)

Combining (6.3) and (6.4) gives

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

) n∑
i=1

Li(Li + 1)

2Li + 1

as desired. �

We now assume that the opinion graph is the rooted tree with n children and radius r. As for
the lattice, we first prove the eccentricity inequalities.

Lemma 6.2. The rooted tree with n children and radius r satisfies (1.3).

Proof. Letting a 6= b be two opinions, there is a unique path connecting a and b, from which it
follows that the sets D(a, b) and D(b, a) are singletons, and we write

D(a, b) = {a′′} and D(b, a) = {b′′}. (6.5)

Then, we distinguish three cases:
(1) Assume first that a is a descendant of b, meaning that the unique path going from the root

to vertex a crosses vertex b. In this case,

ε(a′′) = d(0, a′′) + r = (d(0, a)− 1) + r = ε(a)− 1

ε(b′′) = d(0, b′′) + r = (d(0, b) + 1) + r = ε(b) + 1.
(6.6)

See the left-hand side of Figure 6.6 for an illustration.
(2) By symmetry, when opinion b is a descendant of opinion a,

ε(a′′) = ε(a) + 1 and ε(b′′) = ε(b)− 1. (6.7)

(3) Finally, when neither vertex is a descendant of the other vertex,

ε(a′′) = d(0, a′′) + r = (d(0, a)− 1) + r = ε(a)− 1

ε(b′′) = d(0, b′′) + r = (d(0, b)− 1) + r = ε(b)− 1.
(6.8)

See the right-hand side of Figure 6.6 for an illustration.

Combining (6.5)–(6.8), we conclude that, in any case,∑
a′∈D(a,b)

ε(a′)− ε(a)

cardD(a, b)
+

∑
b′∈D(b,a)

ε(b′)− ε(b)
cardD(b, a)

= (ε(a′′)− ε(a)) + (ε(b′′)− ε(b)) ≤ 0

showing that the eccentricity inequalities (1.3) hold. �

We point out that, even though the proof above only applies to finite regular rooted trees, it
can be extended to show that any finite tree satisfies the eccentricity inequalities. To see this, we
observe that the center of the tree

C = {c ∈ V : ε(c) = r},
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Figure 6.6. Pictures related to the proof of Lemma 6.2.

reduces to one or two vertices. In either case, one can extend the argument in the proof of Lemma 6.2
by designating the center as the root, and using that

ε(a) = d(a,C) + r = min
c∈C

d(a, c) + r for all a ∈ V.

Using Theorem 1.3 and Lemma 6.2, we can now prove Corollary 1.5.

Proof of Corollary 1.5. According to Lemma 6.2, the tree satisfies the eccentricity inequalities (1.3),
therefore we may apply Theorem 1.3 to get

P (ζT ≡ cst) ≥ 1− 1

card(V )

∑
a∈V

(
ε(a)− r

τ + 1− r

)
(6.9)

just like in the proof of Corollary 1.4. Using that

ε(a)− r = d(0, a) for all a ∈ V
card{a ∈ V : d(0, a) = k} = nk for all k = 0, 1, . . . , r,

we obtain that

1

card(V )

∑
a∈V

(ε(a)− r) =
1

card(V )

∑
a∈V

d(0, a) =
r∑

k=0

knk
/ r∑

k=0

nk

= n

∂

∂n

(
1− nr+1

1− n

)
(

1− nr+1

1− n

) =
n(rnr+1 − (r + 1)nr + 1)

(1− n)(1− nr+1)
.

(6.10)

Combining (6.9) and (6.10), we conclude that

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

)
n(rnr+1 − (r + 1)nr + 1)

(1− n)(1− nr+1)
.

This completes the proof. �

Finally, we assume that the opinion graph is the star-like graph with n branches and radius r
depicted on the right-hand side of Figure 1.2.

Lemma 6.3. The star-like graph satisfies the eccentricity inequalities (1.3).
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Proof. This is similar to the proof of Lemma 6.2. Because there is a unique path connecting any
two opinions, say a and b, we again have

D(a, b) = {a′′} and D(b, a) = {b′′}

and we distinguish three cases:

(1) When the path going from the center to a goes trough b,

ε(a′′) = ε(a)− 1 and ε(b′′) = ε(b) + 1.

(2) When the path going from the center to b goes trough a,

ε(a′′) = ε(a) + 1 and ε(b′′) = ε(b)− 1.

(3) In all other cases, neither a nor b can be the center, and the unique path connecting a and b
must go through the center. In particular, we get

ε(a′′) = ε(a)− 1 and ε(b′′) = ε(b)− 1.

In all three cases, we have ε(a′′) + ε(b′′) ≤ ε(a) + ε(b) therefore∑
a′∈D(a,b)

ε(a′)− ε(a)

cardD(a, b)
+

∑
b′∈D(b,a)

ε(b′)− ε(b)
cardD(b, a)

= (ε(a′′)− ε(a)) + (ε(b′′)− ε(b)) ≤ 0

for all a, b ∈ V , a 6= b. This completes the proof. �

Proof of Corollary 1.6. By Lemma 6.3 and Theorem 1.3,

P (ζT ≡ cst) ≥ 1− 1

card(V )

∑
a∈V

(
ε(a)− r

τ + 1− r

)
. (6.11)

In addition, for the star-like graph, we have

ε(a)− r = d(0, a) for all a ∈ V
card{a ∈ V : d(0, a) = k} = n for all k = 1, 2, . . . , r.

It follows that

1

card(V )

∑
a∈V

(ε(a)− r) =
1

card(V )

∑
a∈V

d(0, a) =
(1 + 2 + · · ·+ r)n

1 + rn
=
r(r + 1)n

2(1 + rn)
. (6.12)

Combining (6.11) and (6.12), we conclude that

P (ζT ≡ cst) ≥ 1−
(

1

τ + 1− r

)
r(r + 1)n

2(1 + rn)
.

This proves the theorem. �
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