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Abstract. We give conditions under which near-critical stochastic processes on the half-line have
infinitely many or finitely many cutpoints, generalizing existing results on nearest-neighbour random
walks to adapted processes with bounded increments satisfying appropriate conditional increment
moments conditions. We apply one of these results to deduce that a class of transient zero-drift
Markov chains in R¢, d > 2, possess infinitely many separating annuli, generalizing previous results
on spatially homogeneous random walks.

1. Introduction and main results

In this paper we study separation properties of trajectories of transient, near-critical, discrete-
time stochastic processes in R, and R? satisfying certain increment moment conditions. A point
of Ry is a cutpoint for a given trajectory of a stochastic process if, roughly speaking, the process
visits  and never returns to [0, z) after its first entry into (z,00). A similar notion is applicable in
higher dimensions. Under mild conditions, cutpoints may appear only in the transient case, when
trajectories escape to infinity. The more cutpoints that a process has, the ‘more transient’ it is, in a
certain sense. A fundamental question is: does a transient process have infinitely many cutpoints,
or not?

For simple symmetric random walk (SSRW) on Z?, d > 3, this question goes back to Erdds and
Taylor (1960), who proved that cutpoints have a positive density in the trajectory if d > 5. Much
later, it was shown that transient SSRW has infinitely many cutpoints in any dimension d > 3,
by Lawler (1991) (for d > 4) and James and Peres (1996). Recently, examples of transient Markov
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chains on Z, with finitely many cutpoints were produced (James et al., 2008; Csaki et al., 2010):
these processes are nearest-neighbour birth-and-death chains that are ‘less transient’ than SSRW on
Z3, in the ‘critical window’ identified by Menshikov et al. (1995). A recent extension to processes
whose jumps are size 1 to the left and size 2 to the right was given by Wang (2019).

We examine the phase transition in the quantity of cutpoints from the point of view of relatively
general processes on Ry in the manner of Lamperti (1960, 1963), and from the point of view of
many-dimensional Markov chains (cf. Georgiou et al., 2016). We (i) extend, in part, some one-
dimensional results that were restricted to nearest-neighbour Markov chains on Z, (Csiki et al,,
2010) to somewhat more general (not always Markov) processes on R with bounded jumps satis-
fying Lamperti-type conditions, and (ii) extend some many-dimensional results that were restricted
to homogeneous random walks in R?, d > 3 (James and Peres, 1996) to some transient zero-drift
non-homogeneous random walks on R%, d > 2. Indeed, it is the fact that we can undertake relevant
parts of (i) without assuming the Markov property that enables us to apply our results to higher
dimensions in (ii).

Suppose that X = (X,;n € Z,) is a discrete-time stochastic process adapted to a filtration
(Fo;n € Z4) and taking values in a measurable X C Ry with inf X = 0 and supX’ = co. We
permit Fy to be rich enough that Xy is random. For a measurable subset B of R, let |B| denote
the Lebesgue measure of B. For a set A, let #A denote the number of elements of A.

Definition 1.1. (i): The point x € Ry is a cutpoint for X if there exists ng € Z4 such that X,, <z
for all n < ng, X,, =z, and X,, > zx for all n > ny.

(ii): The point = € Ry is a strong cutpoint for X if there exists ng € Z4 such that X,, < x for all
n < ng, Xp, =, and X,, > z for all n > nyg.

(iii): For h > 0 and k € Z4, an interval I C Ry is an (h, k) cut interval if |I| > h, if there are at
least k points of Xy, X1,... in the interior of I, and every point of Xy, X1, ... in the interior of I is
a strong cutpoint for X.

The terminology in (i) and (ii) follows Csaki et al. (2010), although similar definitions appeared
earlier. We discuss some other related notions in Section 3 below. Let C denote the set of cutpoints,
and let Cs denote the set of strong cutpoints; the random sets C and C, are at most countable, with
Cs CC.

In this paper we give conditions under which either (i) #Cs = oo, or (ii) #C < oo. The example
of a trajectory on Zy which follows the sequence (0,0,1,1,2,2,...) shows that it is, in principle,
possible to have #C = oo and #Cs; < oo, but our results show that such behaviour is excluded
for the models that we consider (with probability 1); see also Conjecture 1.1 of Csaki et al. (2010,
p. 628).

We will assume the following.

(B): Suppose that there exists a constant B < oo such that, for all n € Z |
P(| Xp+1 — Xn| < B) =1.

(IN): Suppose that limsup,,_,., X, = +00, a.s.

Assumption (B) is bounded increments. The non-confinement condition (N) is implied by suitable
notions of irreducibility or ellipticity (see e.g. Menshikov et al.; 2017, §§3.3, 3.6); in particular,
condition (N) holds whenever X is an irreducible, time-homogeneous Markov chain on a locally
finite state space X C Ry. (A set X C R, is locally finite if #(X N B) < oo for every bounded
B CRy.)

For n € Z, set A, := X,,4+1 — X, the increment of the process. We will impose conditions
on the conditional increment moments E(Aﬁ | Fn), k = 1,2, that are required to hold uniformly
(in n and a.s.) on {X, > x} for large enough x. Note that the existence of E(AF | F,) for
all n € Z, is guaranteed by (B). These conditions will be formulated in terms of (measurable)
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functions py, fir, : X — R such that
we(Xp) <E(AF | Fy) < (X,), as. (1.1)

for all n € Z;. Of course, condition (B) ensures that such py, fip exist; our results are stronger
the tighter one makes the bounds in (1.1), and are more complete if ju(z) and fig(x) do not
differ by much for large 2. One near-optimal way of defining puy, fir satisfying (1.1) is described
by Menshikov et al. (2017, §3.3). Note that if X is a time-homogeneous Markov chain on X,
then B(AF | F,) = pi(X,) a.s. for some measurable g : X — R with pg(z) = E(AF | X, = 2),
and so in (1.1) we may take pp = fix = pg. Thus in the Markovian case one may replace py and fig
by ju; in the statements that follow. -
A mild additional assumption that we will often need is the following.

(V): Suppose that liminf, o p2(z) > 0.

Our first result gives a sufficient condition to have #Cs; = oo, and gives a lower bound on the
density of cutpoints. That the hypotheses of Theorem 1.2 imply X,, — oo a.s. is a result of Lamperti
(1960).

Theorem 1.2. Suppose that (B), (N), and (V) hold. Suppose also that
lim inf (2241 () — iz (2)) > 0, (1.2)
limsup (211 (z)) < oo. (1.3)
Tr—00

Then for any h € (0,00) and k € Z4, a.s. there exist infinitely many disjoint (h,k) cut intervals.
In particular P(#Cs = o0) = 1. Moreover, if E Xo < oo then there is a constant ¢ > 0 such that
E#(Cs N [0,z]) > clogz for all x sufficiently large.

For the case of a nearest-neighbour Markov chain on Z,, Theorem 1.2 is contained in a result
of Csaki et al. (2010). For the model of Wang (2019), which lives on Z, and from x > 0 jumps either
1 unit to the left or 2 units to the right, existence of infinitely many disjoint (3, 2) cut intervals (say)
implies there are infinitely many points of Z that are never visited by the walk (called ‘skipped
points’ by Wang, 2019).

To appreciate the context of Theorem 1.2, recall Lamperti’s result that, under the other con-
ditions of the theorem, condition (1.2) is sufficient for transience, while sufficient for recurrence is
lim sup,_, o (22fi1 (z) — po(z)) < 0: see Lamperti (1960) or Chapter 3 of Menshikov et al. (2017). Tt
is helpful to bear in mind the following example. Suppose that Sy, S, Sa, ... is SSRW on Z%. Then
if X, = [|Sy]|, the process X satisfies our (B) and (N), and a calculation (see e.g. Menshikov et al.,
2017, §1.3) shows that

d—1

Ili_)rg()(?:):gﬂm)) =0 = xli_)rglo(Qxﬂl(x)),
and
. Lo
2, 2] = = g, pa)

Thus (1.3) and (V) also hold, and condition (1.2) is equivalent to d — 2 > 0, i.e. d > 3. We explore
the implications of Theorem 1.2 for many-dimensional random walks in more detail in Section 2.

To find examples of transient processes with #C < oo, we require processes that are ‘less transient’
than SSRW in Z3. At this point it is most convenient to assume that X is Markov. Then a more
refined recurrence classification (see Menshikov et al., 1995) says that a sufficient condition for
transience is, for some 6 > 0 and all = sufficiently large,

1460
log

)/m(w),

2 () > (1 +
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and a sufficient condition for recurrence is the reverse inequality with 6§ < 0. E.g., if

. a c+o(l)

Jlim p2(x) = b € (0,00), and p(z) = or rlogz’ (1.4)
then a > b implies Theorem 1.2 holds, and case a < b is recurrent (regardless of ¢). The critical
case has a = b, and then ¢ < b implies recurrence and ¢ > b implies transience. This latter regime
provides examples of processes with few cutpoints, as we show in Theorem 1.3.

We need for this result some stronger regularity assumptions on the process, as follows. A set
S C Ry is uniformly locally finite if
sup #(S N[z, z + 1]) < oo. (1.5)
CEER+
(M): Suppose that X is an irreducible, time-homogeneous Markov chain on an unbounded, uni-
formly locally finite state space X C R,. List the elements of X in increasing order as

0 =50 <51 <89 <---. Suppose that there exist kg, mg € N and §y > 0 such that for all
k > ko there is m = m(k) with 1 < m < my for which
P(Xm = Sk41, max Xy < s ‘ Xo = Sk) > dp. (16)
0<t<m-—1

Note that (M) implies (N) (see e.g. Corollary 2.1.10 of Menshikov et al., 2017). Condition (1.6)
holds with mg = 1 if P(X,41 = g1 | Xn = sg) > do > 0, as in the nearest-neighbour model
of Csaki et al. (2010), but also holds for example in the setting of Wang (2019) (with mg = 2).
Theorem 1.3. Suppose that (M), (B), and (V) hold. Suppose also that there exist constants
z9 € Ry and D < oo such that

D
> — <
p1(xz) >0 and 2zpy (x) — po(x) < oz 7

, for all x > xg. (1.7)

Then P(#C < o0) = 1.

The next result gives a result in the other direction. In particular, Proposition 1.4 gives a mild
condition, not requiring (M), under which E#Cs; = co. Note that (1.8) is weaker than (1.2) from
Theorem 1.2. Theorem 1.3 and Proposition 1.4 together show that if (M) and (1.4) hold with
¢ > a =0, then #C and #C, are a.s. finite (so, in particular, Theorem 1.2 does not apply), but both
have infinite expectation.

Proposition 1.4. Suppose that (B), (N), and (V) hold. Suppose also that for some 8 > 0 and all
x sufficiently large,
2 > (14119 ; 1.8)
ap(z) = (1+ ogz fiz (). (1.
If also E X < oo, then there exists a constant ¢ > 0 such that E(#Cs N[0, x]) > cloglogx for all x
sufficiently large; in particular, E#Cs = 0.

Proposition 1.4 is reminiscent of Theorem 2 of Benjamini et al. (2011), which states that for any
transient Markov chain X on a countable state space, the expected number of f-cutpoints is infinite,
where an f-cutpoint is a cutpoint for the process f(Xo), f(X1),..., and f is a particular function
determined by the law of the Markov chain (see Benjamini et al., 2011). However, f-cutpoints are
not necessarily cutpoints in our sense, since the function f is not necessarily monotone.

Conjecture 1.5. Under the conditions of Theorem 1.3, E[(#C)®] < oo for all a < 1.

We believe that the condition (1.7) in Theorem 1.3 can be relaxed. Indeed, in the case of a
nearest-neighbour random walk on Z, it is shown in Theorem 5.1 of Csaki et al. (2010) that if, for
v >0,

1

—_ =1, forallz>1
(oglog2)" and pa(z) , for all x > 1,

2rpi(x) =1+
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then #C < oo a.s. whenever v > 1, while #Cs = 0o a.s. if v < 1.

Problem 1.6. Obtain a sharp phase transition analogous to that of Csaki et al. (2010) in the gener-
ality considered in the present paper.

2. Application to higher dimensions

Suppose that d € N, and let ¥ be an unbounded, measurable subset of R¢ with 0 € ¥. Let
= = (£,&1,&2,...) be a time-homogeneous Markov process with P(§, € 3) = 1 for all n, with
a family of laws Py(-) = P(- | & = z) for initial state x € 3. In other words, for measurable
ACY and x € ¥, P(§pq1 € A | & =) =Py(& € A) = P(x, A) for a transition kernel P. Define
O = Epy1 — & for n € Z 4, and write simply 6 for p. Throughout this section we view vectors in
R as column vectors. Write S*1 := {u € R?: |jul| = 1}, and for z € R?\ {0}, set & := a/||z||.

Assume that the increments of Z are bounded, i.e., for some constant B < oo,

P, (]0]| < B) =1, forall x € 3. (2.1)

Under assumption (2.1) the mean drift function u(x) := E,6 (a vector in R?) and increment

covariance function M(x) := E,(00"7) (a d x d symmetric matrix) are well-defined. Here E, is
expectation with respect to P,. We assume that the walk has zero drift, i.e.,

w(x) =0, forall z € ¥, (2.2)

and is uniformly non-degenerate in the sense that there exists €y > 0 such that
tr M (z) > €9, for all z € X. (2.3)

A natural class of models consists of the elliptic random walks introduced by Georgiou et al. (2016)
(see also Menshikov et al., 2017, §4.2), which are described by an asymptotic covariance structure,
as follows. Suppose that there exist constants U and V with 0 < U <V < oo for which

lim sup |2'M(2)2—U| =0, (2.4)
700 pe X ||a|| >
lim  sup |trM(z)— V’ = 0. (2.5)

700 pen:||a|| >

Note that if d = 1, then M (z) = E,(6?) is a scalar, necessarily U = V, and the process is recurrent
(see e.g. Theorem 2.5.7 of Menshikov et al., 2017). Thus we must take d > 2 to see transience, and
it turns out that we must take 2U < V (cf. Georgiou et al., 2016 and Menshikov et al., 2017, §4.2).
The case 2U > V is recurrent. The boundary case 2U = V may be recurrent or transient, and, if
transient, may fall into the regime corresponding to Theorem 1.3, so we must exclude that case.

(E): Suppose that (2.1)—(2.5) hold with d > 2 and 2U < V.
We will obtain results for = by looking at the process X defined by X,, = ||&,|| for n € Z4, and

applying our one-dimensional results from Section 1.
For the process ||Z]||, an (h, k) cut interval corresponds to an (h, k) cut annulus for Z, that is,

an annulus of width at least h for which there exist m and ¢ > k — 1 with Xg,...,X,,_1 in the
bounded complement of the annulus, X,,4¢+1, Xintet2,... in the unbounded complement of the
annulus, and X, X1, ..., Xjmte inside the annulus with || X, || < [[ X1 < -+ < | Xmae||-

Theorem 2.1. Suppose that E is a time-homogeneous Markov process on ¥ C R® for which (E)
holds. Then a.s., for any h € (0,00) and k € N, there are infinitely many (h, k) cut annuli.

The next result on homogeneous random walk, which is essentially due to James and Peres (1996,
§4), now follows as a special case of Theorem 2.1.
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Corollary 2.2. Suppose that (,(1,Ca,... € RY are ii.d. with P(||C|| < B) = 1, E¢ = 0, and
E(¢CT) = %I, where B < oo and 0 € (0,00) are constants, and I is the d by d identity matriz.
Then for d > 3, the random walk Z generated by &, = Y ;- G is transient and, a.s., for any
h € (0,00) and k € N, has infinitely many (h, k) cut annuli.

Suppose that ¢, (1, C,... € R? are ii.d. with P(|¢|| < B) = 1, E¢ = 0, and E(¢¢T) = M for
some positive-definite M. Then there exists a positive-definite matrix M /2, which defines a linear
transformation of R?, such that M /22 has increment distribution ¢ := M ~1/2¢ for which E¢ = 0
and E((CT) = M~Y2E(¢¢T)M Y2 = I. Thus Corollary 2.2 applies, showing that, if d > 3, M~1/2=
has infinitely many (h, k) cut annuli. For Z, this translates to linear transformations (by M/?) of
cut annuli, which are elliptical annuli rather than spherical annuli. This raises a natural question.

Problem 2.3. For general positive-definite M, is it the case that there are infinitely many (h, k)
spherical cut annuli for the random walk in R? d > 3, whose increments have mean zero and
covariance M?

In looking for transient multidimensional processes with finitely-many cut annuli, it is natural
to take processes with a radial drift chosen so that ||Z|| has a drift in the window identified by
Theorem 1.3. However, Theorem 1.3 requires the Markov property, and so cannot be applied to
IZ]], unless we impose some additional isotropy condition.

In the rest of this section we give the proofs of Theorem 2.1 and Corollary 2.2.

Proof of Theorem 2.1. Let X,, = ||&,]|. Lemma 4.1.1 of Menshikov et al. (2017) shows that (2.1),
(2.2), and (2.3) imply that limsup,,_, [|&n|| = 00, a.s. Moreover, Lemma 4.1.5 of Menshikov et al.
(2017) shows that under conditions (2.1) and (2.2), we have that, for some ¢ > 0,

_trM(z) — 2" M(x)2
- 2||z|

E(A} | & =) =& M(x) + O(|z] ),
as ||z|| = oo. With (2.4) and (2.5), we get

E(An [ &n = 1) +O(||lz~7),

V-U

and so (1.1) is satisfied with

V-U _1 _ V-U _1
@) =T o), mw = o,
and pz(x) = U + o(1) = fiz(x). Since U > 0, we have that (V) holds, while

hxnig.}f(%:/jl (z) — p2(z)) =V —2U.

=

Thus if V' > 2U we have that (1.2) holds. Then Theorem 1.2 gives the result. O
Proof of Corollary 2.2. The conditions of Theorem 2.1 are satisfied with M (z) = oI, U = 02, and
V =0%d, so V > 2U if and only if d > 2. O

3. Cut times and separating points

A few variations on, and relatives of, the concept of cutpoint have appeared in the literature (see
e.g. Dvoretzky et al., 1950; Csaki et al., 2010; James et al., 2008; James and Peres, 1996; Lawler,
1996, 2002). Here we briefly comment on a definition of cut time, and also introduce the notion of
a separating point, which will be useful for our proofs.

Definition 3.1. (i): The point x € Ry is a separating point for X if there exists ng € Z, such that
X, <z for all n <ng and X,, > z for all n > ny.
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(ii): We say that n € Z, is a cut time for X if X,, = maxo<¢<, X; < Xy, for all m > n.

Note that, in contrast to a cutpoint, a separating point need not be visited by X. It follows
from (ii) that if n is a cut time, then {Xo,..., Xp} N {Xnt1, Xnt2,...} = 0, an attribute that has
received some attention in discrete spaces (Lawler, 1996; Benjamini et al., 2011), but which does
not ensure the spatial separation properties that interest us here.

Let T C Z4 be the set of cut times for X, and let S C Ry be the set of separating points. Note
that C C S, and if [ is any open (h, k) cut interval, then I C §. In particular, if for some h > 0
there are infinitely many disjoint (h, k) cut intervals, then |S| = oco. The next result gives some
simple relations involving C, T, and S.

Lemma 3.2. We have (i) #C = #T, and (it) if limsup,,_,.o X, = 00, then #C = oo implies
sup S = oo.

Proof: If n is a cut time, then X, is a cutpoint. If n; < ng are different cut times, then X, =
maxo<¢<n, X¢ > Xn,+1 > Xp,. Hence #C > #7. On the other hand, if x is a cutpoint, then there
is ng for which maxo<n<n, Xn = Xp, = = and X,, > X, for all n > ng, so ng is a cut time; hence
#T > #C. Thus (i) holds.

For part (ii), suppose that limsup,,_, . X,, = 0o, and there are z; < x9 < --- € C with X,,, = xp,
for times ny < ng < ---. Since Xy, > maxXo<m<n;, Xm, we have limy_,o Xy, > limsup,, . X, =

o0, so C C S is unbounded. O

4. Hitting probability estimates

By (B) and (N), for any > X, the process X on Ry will visit [z, + B]; consider the first
time it does so, at some y € [z,x + B], say. We will show (in Lemma 4.1 below) that, provided x
is large enough, there is uniformly positive probability that on its next few steps the process makes
a sequence of uniformly positive increments, to reach [y + 2h,00), say. If then X never returns
to [0,y + h], the process will only visit [y,y + h] at (strong) cutpoints. By adjusting constants,
we can thus produce an (h, k) cut interval. The key estimate thus required is the probability that,
started close to, but greater than, y, the process never returns to [0, y]. We use a Lyapunov function
approach to estimate this probability. Related estimates are required for proving that cutpoints do
not occur. Similar hitting probability estimates play a key role in the work of James and Peres
(1996); James et al. (2008); Csaki et al. (2010); Wang (2019), which focused on the Markovian case.
We emphasise that the Markov property is not necessary for much of the argument.

We start with the following elementary lemma, which gives a one-sided ‘ellipticity’ result. Note
that since our increment moment conditions are asymptotic, we get (4.1) only for yo sufficiently
large; if we had stronger conditions so that we could take yop = 0 in (4.1), then assumption (N)
would follow automatically (see e.g. Proposition 3.3.4 of Menshikov et al., 2017).

Lemma 4.1. Suppose that (B) and (V) hold. Suppose also that liminf, .o p1(x) > 0. Then there
exist yo € Ry and € > 0 such that, for alln € Z,

P(Xpp1—Xp>e|Fn)>e, on{Xy >0} (4.1)

Proof: Let B < oo be the constant appearing in (B). Write A,, = X,,41 — X,,, and for z € R write

2t =21{z>0}and 27 = —21{z < 0},s0 z =27 — 2~ and |z| = 2t +27. By (V) and (1.1), there
exist constants § > 0 and y; € Ry such that, for all n € Z,

E(A} | Fo) > 6, on {Xp > 1} (4.2)

By assumption (1), we have A2 < B|A,|, a.s., so, by (4.2),

E(AT | Fa) + E(A, | Fo) = E(|An| | Fn) = =, on { Xy >y} (4.3)

W[ =
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Moreover, lim inf,_, /jl(l’) > 0 implies that there exists yo > 1 such that
6
E(A:’I: | Fn) - E(A;L ‘ Jrn) = E(An | 'Fn) > _ﬁ7 on {Xn > y2}' (4‘4)
Then we combine (4.3) and (4.4) to get, for all n € Z,

5
E(A | Fa) > 550 on {Xn > 10} (4.5)

Now (B) shows that for g9 > 0, A} < eg + BI{A} > go}. Thus from (4.5) we get
1 /6

P(AzZEOIfn)Z(

B - 50) , on {Xn > yQ}

Choose g9 = ¢6/(8B). Then we get

P(AZ > 8‘; ] fn) >0 o {X,, > v}

This verifies (4.1). O

For the rest of the paper we write log? x := (logz)?. Consider Lyapunov functions f, : X —
(0,00) and g, : X — (0, 00) defined for v > 0 and v > 0 by

fo(x) = {:c"Y if x> 1,
y\T) =

1 itz < 1.

and

(z) log7™"x ifx>e,
x) =
v 1 itz <e.

Given a o-algebra F and F-measurable random variables X and Y, we write 0% (Y) to represent an
F-measurable random variable such that for any ¢ > 0, there exists a finite deterministic constant
. for which [0% (V)| < €Y on the event {X > z.}.

The next result, which is central to what follows, provides increment moment estimates for our
Lyapunov functions, and is contained in Lemma 3.4.1 of Menshikov et al. (2017), incorporating a
minor correction to restore the factor of 1/2 to the v(v + 1) term in (4.7); the 1/2 factor arises
from the second-order Taylor term in the last display on p. 104 of Menshikov et al. (2017), but goes
missing by equations (3.17) and (3.23) in that reference.

Lemma 4.2. Suppose that (B) holds. Then, for v >0,
E (fy(Xn41) = f(Xn) [ Fn)
= =2 [2XaE(An | F) = (1) E(AL | Fo) + 0% (1] X072, (4.6)
and, for v >0,
E (90 (Xn+1) = 90(Xn) | Fn)
= —2 2XLE(A, | F) ~E(A] | F)] X, 2 log ™1 X,

1
+5v(v+1) E(A2 | Fn) X, 2log ™ 2 Xy + 0% (X, 2log ™% Xy). (4.7)
Throughout the paper we define, for n € Z4 and x € R, the stopping times

Tne = min{m >n: X, <z}, and 7, = min{m > n: X,, > z}. (4.8)

Here and elsewhere we adopt the usual convention that min () := co. The next two results present
our main hitting probability estimates.
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Lemma 4.3. Suppose that (B) and (V) hold. Suppose also that the conditions (1.2) and (1.3) hold.
For any 6,C with 0 < 6 < C < o0, there exist constants x1,k1, ke € (0,00), not depending on x,
such that for all x > x1 and all y > 0,

k1

X

o

2 on{r+6<X,<z+C}, (4.9)

T
k
P(nnoty < T | Fn) < Q(ZW on {X, <z +C). (4.10)

Lemma 4.4. Suppose that (B) and (V) hold.
(a) Suppose that there exists D < oo such that

D
p1(z) >0 and 2z (x) — po(r) <

4.11
~ logz’ ( )

for all z sufficiently large. For any C' < oo, there exists a constant ks € (0,00), not depending
on x, such that for all x > 1,

k3
xlogx

]P)(Tn,atzoo|fn)§

, on {X, <z+C}. (4.12)

(b) Suppose that (1.8) holds. For any § > 0 there exist constants xa,ky € (0,00), not depending
on x, such that for all x > s,

ky
= >
P(7ne = 00| Fn) 2 xlogx

, on { X, >x+0}. (4.13)

The rest of this section is devoted to the proofs of Lemmas 4.3 and 4.4.

Proof of Lemma /.5. The assumption (1.2) implies that there exist y; > 1 and g9 > 0 such that
2z (x) — fiz(x) > € for all z > y1, and hence, for all m € Z,, by (1.1),
2Xm E(Ap, | Frn) —E(AZ | Fn) > 2Xomp1 (X)) — fi2(Xim) > €0, on {Xom > y1}.
Also, by (B), A2, < B2, a.s. Thus by Lemma 4.2, we have that on {X,, > vy} for yo > y; sufficiently
large and all m € Z,,
v

E(fy(Xmt1) = fo(Xm) | F) < =3 (5 = vB?) X372

Taking ~ > 0 sufficiently small, we then have that
E(fy(Xmi1) = [ (Xm) | Fm) <0, on {Xpm > g} (4.14)

Set Y, = f(Xwm), fix n € Z;, and take x > y2. Then (Yiunr,,.;m > n) is a non-negative
supermartingale, by (4.14), and hence Yoo = limy, 00 Yinar, , a.5. exists in Ry, and (see e.g. The-
orem 2.3.11 of Menshikov et al., 2017) E(Y7, , | Fn) < Yy, a.s. It follows that

Jy(Xn) Z E(Yr, ., HTna < oo} | Fo) 2 f1(2)P(Tna < 00 | Fa),
since f, is non-increasing and X, . <z on {7,, < co}. In particular, on {X,, > = + 4},

f«/(.TU) - f’y(Xn)

P(rpe =00 | Fp) >

fw(x)
LGRS
SR N (1 w+6)’

for x > yo > 1. Hence we get the lower bound in (4.9).

For the upper bounds in the lemma, we have from (B) and the assumption (1.3) that there exists
C < oo such that 2z (z) < C for all > 0. Also, by (V) we know that there exist y; > 1 and
d > 0 such that us(z) > § for x > y;. Hence by (1.1),

2Xm E(Apy | Fn) — (v + 1)E(A3n | Fin) <C —(y+1)5, on { Xy, > y1}.
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Thus by Lemma 4.2, we get, for yo > y; sufficiently large and all = > yo,
B(fy(Xms1) = f(Xm) | F) = =2 (C+1= (7 +1)8) X372, on {Xpn > 2},

Taking ~ > 1 sufficiently large, we thus obtain, for any z > s,

E(f’y(Xerl) - fv(Xm) | Fm) >0, on { Xy, > z}. (4.15)

Fix n € Zy and y > 0, and set Y,,, = f,(X,,). The stopping times 7, ;, are a.s. finite, by
assumption (N). Then (Yiuar, ,Annep,;™ = 1) is a uniformly bounded submartingale, by (4 15),
with limit Y7,  ap, .., and, by optional stopping (see e.g. Theorem 2.3.7 of Menshikov et al., 2017),
E(Yr, oAnmoty | Fn) = Yo, a.s. In particular,

f’y@ +0) < f’Y(X ) <E(Y; Tr,aNn,z+y | Fn), on {X, <z +C}.
Hence, on {X,, <z + C},
f'y(x +0) < E(f'y(XTn,z)]l{Tn,x < 77n,56+y} ’ ]:n) + E(f'y(Xnn,ery)]l{nn,ery < Tn,:r:} ’ ]:n)
< f'y(l" — B)P(The < Mgty | Fn) + fv@ + Y Pnzty < Tnz | Fn),

where we have used the fact that f, is non-increasing and X,, . >« — B on {7, , < oo}, by (B). It

follows that, on {X,, <z + C}, “

P(nn 4y < Tn,z ’ Fn ) (4.16)

N f'y( B)*f’y(x+y)'
Here, for x > 1+ B,

fy(x—B)— fy(x+C)  (z—B)”

fv(x_B)_fv($+y) (x—B)~

T—(z+C)”
T (a+
B+c\ "
1f(1+ij)
1

y)~

4 Q

—(z

z—B
T+y
B

—y B

(1 (14 +C x+y 1-6 7
r—B y+ B 1—07

(0, 1),1m<1 Hence, by (4.16),

B+C\"~ r+y ko(z + y)
< — <
P(nn,x+y<7—n7x ’Jrn) > (1 <1+ :L‘—B> ) <y—|—B> > <y s

where 0 =

for all  sufficiently large and all y > 0, which gives the upper bound in (4.10). Moreover, it follows
from (B) that 7y, 24y — 00 a.s. as y — 00, S0 Ty, = o0 if and only if 7, , > 7y 44y for all y € N.
Hence, since the events {7, ; > 1 4+, } are decreasing in v,

P(ta =00 | Fa) = P((\ Doty < T} | Fa) = Jim B(iety < T | Fa):
yeN
Together with (4.10), this yields the upper bound in (4.9). O

Proof of Lemma /./: For part (a), the idea is similar to the proof of the upper bound in (4.9).
By (4.11) and (V), there exist y; € Ry and § > 0 so that, on {X,, > 1},

(2Xm E(An | Fn) — E(AZ, | Fin)) log X, — (v + 1) E(AZ, | )

< (2Xmfin (Xm) — p2(Xim)) log Xim — (v + 1) p2(Xim)
<D — (v+1)d.
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In particular, if we take v > 0 large enough so that D — (v +1)d < 0, then we have from Lemma 4.2
that, for all x > yo with ys sufficiently large,

E(gu(Xm+1) — 9u(Xm) | Fm) > 0, on {X,, > z}.

Fix n € Zy and y > 0, and set Yy, = ¢,(X;n). Then (Yiar, oAn,.yy ;™ > n) is a uniformly
bounded submartingale, with limit Y7, A, .., and, by optional stopping E(Yz, .an, oty | Fn) = Ya,
a.s. In particular, on {X,, <z + C},

gl’(:E + C) S gu(X'n,) S ]E(YTn,z/\nn,:c+y | ]:n)
< gu(x = B)P(Tng < Mgty | Fn) + 90 (@ + 9)P(Tne > Nnaty | Fn)-
It follows that, on {X,, <z + C},
gv(z —B) —gu(z+C)
P <T Fn) < .
Crnay we | Fa) < gv(x — B) — gu(z +y)
Since 1y, 4y — 00 as y — 0o, we get, on {X, <z + C},

(4.17)

P(7he =00 | Fn) = yli_{go P(nzvy < Tnz | Fn)
(e —B)—a(+0)
B gv(z — B) ’
by (4.17). It follows that, on {X,, <z + C},

_log™"(z+0) < ks
log™"(x — B) ~ zloga’

P(rpe =00 | Fp) <1

for all x > yo and some positive constant k3. This proves part (a).
The proof of part (b) is similar to the proof of the lower bound in (4.9), using the function g,
rather than f,, and we omit the details. ([l

5. Proof of Theorem 1.2: Infinitely many cutpoints

Throughout this section we suppose that the hypotheses of Theorem 1.2 are satisfied. Note
that (1.2) and the fact that fie(x) > 0 implies that liminf, , p1(z) > 0, so that Lemma 4.1
applies. -

Lemma 4.3 shows that the probability of having a cutpoint located around z is about 1/x. If
the (harder half of the) Borel-Cantelli lemma were applicable, this would suggest that there are
infinitely many cutpoints. However, these events are not independent across different values of z.
To use an appropriate version of the Borel-Cantelli lemma, we will bound the probability that
(roughly speaking) both = and y are cutpoints using (4.10). This yields a positive probability that
there are infinitely many cutpoints, and then an appeal to a zero—one law gives the result. This
is essentially the same approach as is taken by James and Peres (1996, §2) and Csaki et al. (2010,
§4); our approach makes it clear that the Markov property is not essential. We set this up more
precisely.

Let B < oo and € > 0 be the constants appearing in (B) and Lemma 4.1, respectively. Fix h > 0
and k € N. Choose ¢ € N such that

le > max(h, Bk). (5.1)

Let n € Z4. Recall the definitions of 7, ;, and 7, , from (4.8). For z € Ry and i € N, define the
events Ep ;. = {Xy, ,+i — Xy, .+i—1 > €}, and set

20
An,x = (ﬂ En,i,ac) N {Tnn@#»%,zq%s = OO}

i=1
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In words, A, ; occurs if, on its first passage after time n into [z, 00) the process takes in succession
2¢ positive steps of size at least e and subsequently never returns to [0,z + £2]. If the process never
visits [z, 00) before time n and then A, occurs, all visits to the interval I, := [z, x + f¢] are strong
cutpoints. More precisely, we have the following.

Lemma 5.1. Suppose that (B) holds. Then for all x > Xo + Bn, Ay, implies that I, is an (h, k)
cut interval.

Proof: On the event A, ., we have that X,,, < x for all m with n < m < 9y, z < KXo <
Kot < -0 < Xy, oa20, Xy w20 > © + 20e, and, for all m > ny . + 20, Xy > @ + fe. Thus
Ay o N {maxo<m<np Xm < x} implies that every point of X in the interval I, is a strong cutpoint.
In particular, by (B), for fixed n € Z; and all x > Xo + Bn, A, , implies every point of X in the
interval I, is a strong cutpoint.

Moreover, if z > Xo + Bn, on A, ; we have from (B) that, for 0 <m <k -1, 2 < X, .4m <
z+B(m+1) < x4+ Bk < x+/Le, by (5.1). Thus the event A,, , implies that the interval I, contains
at least k values of X, and the interval length is fe > h, by (5.1). This gives the result. O

Set ¢ := max(1,2¢e). Then for z,y € Z4 with z < y, intervals I, and I, are disjoint. Thus
to show that there exist infinitely many (h, k) cut intervals, it suffices to show that A, 4, occurs
for infinitely many z € Z, (we write this event as ‘A, 4 i.0.”). First we show that this event has
strictly positive probability, uniformly over F,, for any n.

Lemma 5.2. Under the hypotheses of Theorem 1.2, for any ¢ € N satisfying (5.1) and any q > 0,
there is a constant 6 > 0 such that, for alln € Zy, P(Ay gz t.0. | Fp) > 6, a.s.

To prove Lemma 5.2, we will apply the following conditional version of the Kochen—Stone
lemma (Kochen and Stone, 1964).

Lemma 5.3. On a probability space (2, F,P), let Ay, Aa, ... be events and G C F a o-algebra. Let
a € N be G-measurable. Suppose that Y~ P(Ap, | G) = o0, a.s. Then,
mOSTID(A | G)P(Aiyi | G
]P)(Am io. | g) > limsup Ez_fnZ]_;ii( ) | ) ( 1+J | )
m—oo YT, Zj:l P(A;NAivj | 9)
Several of the standard proofs of the Kochen—Stone lemma (Yan, 2006; Chandra, 2012) admit
trivial modifications to yield the conditional result. One route, following Yan (2006) in the un-

conditional case, proceeds via a conditional version of the Paley—Zygmund inequality and then a
conditional version of the Chung—Erdds lemma. We omit the details.

, @.s. (5.2)

Proof of Lemma 5.2. To apply Lemma 5.3, we will obtain a lower bound for P(A, , | ) and an
upper bound for P(Ay, ; N Ap gty | Fn). Fix n € Z;. Suppose that @ > a, := max(x1, Xo + 2Bn),
where x7 is the constant in Lemma 4.3. Define events

20

Dy = {7y, s+20040c = 0}, Ex = ﬂ Bz, and Fpy = {Ny, c12001y < Tin o t20ate )5

i=1
here we omit the n-dependence from the notation to make it less cumbersome, and since we keep n
fixed throughout the argument. Note that A,, , = D,NE,. Then, since 1, , > n and E, € F i w265

P(An@ | J—-.n) — E[]]‘E;I‘P(Dm | ‘/—-'7771,14‘26) ‘ fn]

Provided x > Xo + Bn, we have by (B) that maxo<,<n X < = and hence z < X, , < 2+ B.
Thus on the event E, we have that x + 20e < X, 190 < 2+ (2¢+ 1)B, so we can apply (4.9) in
Lemma 4.3 to obtain ki/x < P(Dy; | Fyy, ,420) < k2/x on E,, where ki, ks € (0,00) do not depend
on x > Xo+ Bn or on n. Thus, for all x > a,,

k‘l k2

;]P)(Ex | Fn) SP(Ang | Fr) <

T .
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Here Lemma 4.1 and repeated conditioning shows that P(E, | F,) > €2, on {X,, > yo}. We
conclude that, for some constants c1, ¢y € (0,00), all n € Z4, and all x > a,,

%, on {X,, > yo}. (5.3)

On the other hand, by (N), n,, , 120,01y < 00, a.s., so that, for z,y € Ry and n € Z,
Ape N Angiy = Ex N Dy N Eyy N Dayy = Ex N Fyy 0 Epyy 0 Doy,

up to sets of probability zero. Suppose that z > a, and y > b := [(2¢ + 1)B]|. Then (B) implies
that 1pz4y > Mne + 2¢, and so also 1y, . 420,04y = NMne+y, since the walk cannot reach [z 4y, c0)
until after time 7, ; + 2¢ > n. In particular, F, , € F, and so

n,x+y?

]P)(An,x N An,m+y | ]:n)
= E[E []lEz E[RFZ,y E[1E1+yP(D$+y ‘ fnn,x+y+2€) ‘ f”]n,ery] ‘ f’?n,erze] ‘ Fﬂn,x] ‘ fn] .

It follows from Lemma 4.3 that, on the event Egyy, P(Daty | Fy,, o 420) < 777 Thus

k
P(Ana N Ansy | F) < 2 BB P(Foy | Fopson) | P | 2]
Similarly, on the event E, we have from Lemma 4.3 that P(Fy,, | F, ,+20) < kQ(;f;y), SO
c3
]P)(An,z N An,x+y | ]:n) S @, (54)

for some c3 < 00, all n € Z,, and all z,y with > a,, and y > b.
Consider the numerator in Lemma 5.3. From the lower bound in (5.3) we have that for all n € Z.,
allz > ay, and all y > 1,

Cq

z(z +y)

where ¢4 > 0 depends on ¢. It follows that, on {X,, > yo},

P(Ange | Fn)P(Angaty) | Fo) 2 ,on {X,, > yo},

3

—T

Z P n,qx | ]:n)]P)(A n,q(x+y) | 'F Z (L‘(l’ + y)

T=an Y 1 Tr=an Y 1

m—x

w—1

w3 YL

w=an+1x=0n
" logw 1
e Y, =G
w=an+1 w=1
for some Fy-measurable C,, < oo depending on a, but not on m. Thus we get

Z P(Ange | Fo)P(An gory) | Fn) = cslog?m — Cp logm, (5.5)

r=an y=1

for all m sufficiently large, where ¢5 > 0 depends neither on n nor m, and C), does not depend on
m. We turn to the denominator in Lemma 5.3. From (5.4) and the upper bound in (5.3) we have
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that, for all n € Z,,

m m—x m b
Z Z ]P)(An,qx N An,q(ﬂ:—i—y) | Fn) < Z ZP(An,qx | F)
r=an y=1 z=an y=1
+ 3D P(Ange N Apglaty) | Fn)
r=an y=b
rx=1 x z=1y=1 rYy

where ¢g < 0o depends on b and ¢. It follows that, for all m > 2, say,
D) P(Ana N Angiy | Fu) < crlog? m, (5.6)

for ¢y < oo depending neither on n nor m.
To finish the proof, we apply Lemma 5.3 with the bounds (5.5) and (5.6) to get

cslog?m — Crlogm 5

P(Ay, 4 i.0. | Fp) > limsup 5 = —, as.,
m—c0 crlog®m cr
where ¢5/c7 is non-random, positive, and does not depend on n. O

Proof of Theorem 1.2. The proof is finished by an argument similar to James and Peres (1996,
p. 672). Let Foo = 0(Up>0Fn). Let I,ka € Fo denote the event that there are infinitely many
disjoint (h, k) cut intervals. As argued earlier (see Lemma 5.1 and the subsequent paragraph), if
Ap g occurs for infinitely many x, then I ny occurs. Thus by Lemma 5.2, for alln € Z4,

P(15% | Fr) > P(Ap gz 1.0. | Fr) > 6, as.
Then, by Lévy’s zero—one law (see e.g. Theorem 5.5.8 of Durrett, 2010), we have

0<8 < lim PGS, | F) = P, | Foo) = s, .

ok’
Hence the indicator must be equal to 1, a.s., so P(I3%) = 1.

Finally, suppose that E Xy < oco. By Lemma 5.1, the expected number of disjoint (h, k) cut
intervals in [0, z] is (taking n = 0 in the definition of A, 4,) at least

E Y 14, =E > 1a, —EXo, (5.7)
yeN: Xo<qy<z yeN:O<qy<zx
which, by (5.3), is at least clog for some ¢ > 0 and all z sufficiently large. O

Proof of Proposition 1./. Similarly to the corresponding part of the proof of Theorem 1.2, the ex-
pected number of disjoint (h, k) cut intervals in [0, z] is bounded below by (5.7), and a similar
argument to that for the lower bound in (5.3), but now using (4.13), shows

C1

P(A >
(Ans) 2 xlogx’

for some ¢; > 0 and all z sufficiently large. O
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6. Proof of Theorem 1.3: Finitely many cutpoints

To show that there are only finitely many cutpoints, one might initially seek to apply the ‘easy’
half of the Borel-Cantelli lemma. However, the probability estimates of Lemma 4.4 give an upper
bound on the probability of finding a cutpoint around x of order 1/(x log ), which is not summable.
So some additional work is needed. The basic idea that we adapt goes back to James et al. (2008,
§3), and was carried forward by Csaki et al. (2010, §3). We explain it now.

Let z € N. Define intervals I, = [§,2z] and J, = [z,2z]. Let E, denote the event that there is
at least one cutpoint in J,:

E, ={#(CnJ;) > 1}.
Recall the definition of the set S of separating points from Definition 3.1, and set

M, :=|SNI|, and F, :={SN[zx—1,z] = 0}. (6.1)
We will make use of the simple inequality
E(M; | Fo) = E(M;1g, | Fo), (6.2)

by obtaining an upper bound for the expectation of M, and a lower bound for M, on the event
E,. For the latter, the idea (following James et al., 2008) is that if there is one cutpoint (at r € J;,
say) then there tend to be many more, since for y < r to be a cutpoint one needs to visit r before
returning to y after the first visit to y. However, some care is needed in this argument, and it is here
that we need to use the Markov property to ensure that the future and the past are independent.

We will need the following estimate on the probability of first entering [z + y,00) at the point
x4y € X, before returning to [0, ], starting from not too close to x.

Lemma 6.1. Suppose that (M), (B), and (V) hold. Suppose also that there exists xy € Ry such
that pi(x) >0 for all x > x. Let 6 > 0. Then there exist ¢ > 0 and yo € Ry such that, for all x,y
withex € X, x> xg, x+y € X, and y > yo,

c

P(nn,$+y < Tn,z) Xnn,z+y =x+y ’ ]:n) > ga on {$+5 <X, < x+y}-
Proof: Take © > xq, fix n € Zy, and let z =y — B, so z > 0 whenever y > yo > B. Set
Yin = Xoar ohines. Ho < Xp <24y}, for m > n.

Then, since p1(u) > 0 for all u > z, (Y,;m > n) is a non-negative submartingale, which, by (B),
is bounded above by z + z + B, with limy, o0 Yin = X5, A, .p. o0 {2 < X, < @+ y}. So, by
optional stopping, on {z < X,, < x + y},

Xpn < E(XTn,z/\T]n,z+z | Fn) < SUP(UH,IJrz > Tpa | Fn) + (z+ 2+ B)P(nn,a:+z < Tn,z | Fn).-
Thus 5

]P)(ﬁn,JH_Z < Tn,x ‘ .Fn) Z m, on {IE+5 < Xn S $+y}

By assumption (1.5), #(X N]a,a+ B]) < K < oo for all a € Ry and some constant K. Thus there
exists an F,-measurable w € X with x + 2z <w < x + z + B for which

o
Ptz < Tnzs Xippgyr =W | Frn) > m, on {r+< X, <zx+y} (6.3)
There are at most K points of X in the interval [w,z + y|, including w and x +y; list them in order
asw=x9 <21 < <a =x+7y, where kK < K — 1. Define u; = Om(:vz) where m(w) < mg

is as in (M). Then define the event

F, Y T m {Xnn sz tU; — xj} N {Oinfz)qi X77n atzt+l <zT+ y}
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By application of (1.6), we see that, on {X,, ., = w},
P(Fnzw»y ’ ‘an,w+z) Z 65{7 (64>

uniformly in w, for y > yo sufficiently large. If F}, ;,, occurs, then after time 7y, 4., the process (i)
visits z + y without entry into (z + y,00), and (ii) by (B), does not return to [0, + z — BKmy]
before it reaches x + y. In particular, taking z > BKmg and combining (6.3) and (6.4), we get

)
P(Nnzty < Tnas Xnposy =T+ Y | Fn) > 5§K—y, on {x+0<X, <z+y},

which completes the proof. O

Proof of Theorem 1.5. We first get an upper bound for the left-hand side of (6.2). Recall that F,
as defined at (6.1) is the event that [x —1,2]NS = 0. For z € Ry, let n, := min{n € Z; : X,, > x}.
If 7;,.2—1 < 00, then X returns to [0,z — 1] after entering [z, c0), which implies F. Since, by (13),
x < X, <x+ B forall x> Xg, we may apply Lemma 4.4(a) at the stopping time 7, , to obtain

C

IP’(F§ ‘ ]-"M) < P(Tnn,m,m—l =00 | Fy nz) < zlogz’

for some constant C' < oo and all z > X. Thus there exists a constant C' < oo for which

E(M. < P(ES <
M| F)s >, B F) <
yeN:[y—1,y]NIx#0

(6.5)

for all z > 2Xj.

Next we establish a lower bound for the right-hand side of (6.2). If E, occurs, set R, :=
sup(C N J;). Since C C X is locally finite, the set C N J, is finite and so R, € C is the rightmost
cutpoint in J,. If E, does not occur, set R, = co. Then we can write

E(M;1g,) = Y E(MI{R,=r}).
reXNJy

If X, >rand R, = r, then r € C and so X,, = r for some n > 7n,. But this contradicts the fact
that r € C. Thus we have established that

{Re =1} C{Xy, =1}, (6.6)

up to events of probability zero.
Let € > 0 be the constant in Lemma 4.1, and choose £ € N with ¢ > 1. For r € X and y > 0
with y + 2(B <, let F,, denote the event

ny+£
F,, = m {A,, >} | N {77%+4+1,r < Tny+€+1,y+1} :

m=rny

If . occurs, then on the first visit to [y, 00), the process proceeds via positive steps to [y + 1, 00)
and then visits [r,00) before returning to [0,y + 1]. In particular, F,, N {R, = r} implies that
(y,y+1) CS. Let Vo, = {v1,...,yr} be a subset of X contained in I, N [0, — 2¢B] such that
yr < - <ypsatisfy y1 <5+ B,yp >r—2(B—-B,and 1 <y; —y;—1 <2+ Bforall 2<i<k.
Existence of suitable y; is assured by (B) and (M): y; can be the first point of X’ to the right of
x/2, and given y;, ¢ > 1, we can take for y;11 the first point of X’ to the right of y; at distance
greater that 1. Note that k£ is bounded below by a constant times «x for all x sufficiently large. Then
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intervals [y, y + 1] are disjoint for different y € Y, ,, and so

E(M,1{R, = r} | Fo) > IE[ S E(lg, YR, =1} | Fy) ‘ .7:0}
yny,my>X0

> IE[ > g, P(R.=r]|Fy)

YEVe,r, y>Xo

since (I3) means that, provided y > Xo and y+2(B < r, X;,, < y+B and 0, = 0y, 1041, > 0y +0+1,
so that F,, € F,, . Now the strong Markov property implies that P(R, = r | ;) = h(X,,), a.s.,
for some measurable function h with P(R, = r | X,,, = z) = h(z). But (6.6) shows that h(z) = 0
unless z =r, so P(Ry =7 | Fp,) = h(r)1{X,, = r}. Thus from (6.7) we get

E(M, YRy =7} [ Fo) 2 h(r) Y P(Fy, N {Xy, =1} | Fo)
yeym,r7y>X0

>enr) Y

yeyz,ryy>X0 Y

]-"o], (6.7)

by Lemmas 4.1 and 6.1, where ¢ > 0 is a constant, and x > xg. If z > 2X, then set ), ,, taken
in reverse order, consists of order x points all of comparable spacing started a constant distance
from r, so we get E(M,1{R, =r} | Fo) > ch(r)logz for all z > max(zg, 2X(), where ¢ > 0 is again
a positive constant. It follows that
E(M;1g, | Fo) > ¢ Z h(r)logz, for all > max(zo,2Xo).
reXNJg

On the other hand, by a similar argument,

P(E, | Fo)= Y, PRe=r|F)< > hir),

rexXns reXNJy
so that
E(M;1g, | Fo) > cP(E; | Fo)logx, for all z > max(zg,2X). (6.8)
Combining (6.5) and (6.8), we obtain from (6.2) that
B(E, | Fo) S o,
log” x

for some C' < oo and all # > max(z9,2Xo). Applied along the sequence x = 2¥, k € N, the
(conditional) Borel-Cantelli lemma then shows that Fy: occurs for only finitely many &, a.s. The
sets Jok, k € N, cover [1,00) and thus #C < oo, a.s. O
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