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Abstract. We continue our analysis of Ising models on the (directed) Erdős-Rényi random graph
G(N, p). We prove a quenched Central Limit Theorem for the magnetization and describe the
fluctuations of the log-partition function. In the current note we consider the low temperature
regime β > 1 and the case when an external magnetic field is present. In both cases, we assume
that p = p(N) satisfies p3N →∞.

1. Introduction and main results

1.1. Description of the model. In this paper we continue our investigation of Ising models on the
Erdős-Rényi random graph. Technically speaking they are disordered ferromagnets in the sense of
Fröhlich’s lecture Fröhlich (1986). The model we are studying was introduced and first analyzed by
Bovier and Gayrard in Bovier and Gayrard (1993). The topology of this model is given by a directed
Erdős-Rényi graph G = G(N, p). Its vertex set is the set {1, . . . , N}, and each of the directed edges
(i, j) is realized with probability p ∈ (0, 1] independently of all other edges. For simplicity, the case
i = j is admitted. The random variables εNi,j = εi,j , i, j ∈ {1, . . . , N}, which indicate whether an
edge (i, j) is present or not, are thus assumed to be i.i.d. with distribution

P[εi,j = 1] = p, P[εi,j = 0] = 1− p.
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Our general assumption is that p = p(N) satisfies p3N →∞ as N →∞. This is more than enough
to ensure that asymptotically almost surely the graph is connected. It is likely that one could prove
variants of our central results also under the weaker assumption pN →∞, but our main technique
runs into problems.

On a fixed realization of this Erdős-Rényi random graph G we define the Hamiltonian or energy
function of the Ising model. It is given by the function

H = HN : {−1,+1}N → R

defined as

H(σ) := − 1

2Np

N∑
i,j=1

εi,jσiσj − h
N∑
i=1

σi (1.1)

for σ = (σ1, . . . , σN ) ∈ {−1,+1}N . We note that H also depends on the parameter h, but for
the sake of readability we suppress this dependence in the notation. Here h > 0 plays the role
of an external magnetic field. With such an energy function H we associate a Gibbs measure on
{−1,+1}N . This is a random probability measure with respect to the randomness encoded by the
(εi,j)

N
i,j=1. It is given by

µβ,h,N (σ) :=
1

ZN (β, h)
exp(−βH(σ)), σ ∈ {−1,+1}N , (1.2)

where β > 0 is called the inverse temperature. The normalizing constant is the partition function
given by

ZN (β, h) :=
∑

σ∈{−1,+1}N
exp(−βH(σ)).

The well-studied Curie-Weiss model is a special case of this setup, namely the situation where
p ≡ 1. For a survey over many results on this model see Ellis (2006). The Curie-Weiss model
is an interesting model for ferromagnetism because it exhibits a phase transition at the critical
temperature βc = 1. This phase transition can be seen by analyzing the magnetization per particle

mN (σ) :=

∑N
i=1 σi
N

=
|σ|
N
.

Here we have introduced the notation

|σ| :=
N∑
i=1

σi = NmN (σ).

To avoid possible confusion, observe that |σ| can be negative. In the Curie-Weiss model with h = 0
the distribution of the magnetization per particle mN under the Gibbs measure converges to

1

2
(δm+(β) + δm−(β)).

Here δx is the Dirac-measure in a point x, while m+(β) is the largest solution of

z = tanh(βz), (1.3)

andm−(β) = −m+(β). Observe that for β ≤ 1 the above equation (1.3) has only the trivial solution
m+(β) = 0. Therefore in the high temperature regime β ≤ 1 the magnetization per particle mN

converges to 0 in probability. For β > 1 the largest solution of (1.3) is strictly positive. Hence
in the low temperature regime β > 1 the magnetization mN is asymptotically concentrated in two
values, a positive one and a negative one.
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Let us now turn to the Curie-Weiss model with h > 0 and β > 0. Then, it is known Ellis (2006)
that the distribution of the magnetization per particle mN under the Gibbs measure converges to
δm+(β,h). Here m+(β, h) is the largest solution of

z = tanh(β(z + h)). (1.4)

In Bovier and Gayrard (1993) the authors show that the same limit theorems for mN hold
in the dilute Curie-Weiss Ising model, that we defined in (1.1) and (1.2), as long as pN → ∞.
More concretely, if β ≤ 1 and h = 0, then for almost all realizations of the random graph, the
magnetization mN converges to 0 in probability under the Gibbs measure, while for β > 1 and
h = 0 it converges to 1

2(δm+(β) + δm−(β)) in distribution. Moreover, for all β > 0 and h > 0, mN

again converges in probability to δm+(β,h). This latter fact is not explicitly stated in Bovier and
Gayrard (1993), however, it can be easily derived with the methods introduced there.

The starting point of our investigations in Kabluchko et al. (2019), Kabluchko et al. (2021), and
Kabluchko et al. (2020), as well as the current note, is the observation that in the Curie-Weiss model
one can also prove a Central Limit Theorem for the magnetization when β < 1 and h = 0 (see,
e.g. Chatterjee and Shao (2011), Eichelsbacher and Löwe (2010), Ellis (2006), Ellis and Newman
(1978)). These references show that

√
NmN converges in distribution to a normal random variable

with mean 0 and variance 1
1−β . Furthermore, as can be expected from this result, at β = 1, there

is no such standard Central Limit Theorem and one has to scale in a different way. The result is
that 4

√
NmN converges in distribution to a non-normal random variable with density proportional

to exp(− 1
12x

4) with respect to the Lebesgue measure. If β > 1, one has to consider the conditional
distribution of

√
N(mN−m+(β)) conditioned to mN being positive. In this case

√
N(mN−m+(β))

conditioned on mN > 0 converges in distribution to a normal distribution with expectation 0 and
variance

σ2(β, 0) := σ2(β) :=
1−m+(β)2

1− β(1−m+(β)2)
. (1.5)

Similarly, when h > 0 the random variable
√
N(mN − m+(β, h)) converges in distribution to a

normal distribution with expectation 0 and variance

σ2(β, h) :=
1−m+(β, h)2

1− β(1−m+(β, h)2)
. (1.6)

These results can be found in Ellis et al. (1980).
The general question we have been investigating in previous articles was, whether such limit

theorems also hold in the dilute setting introduced above. To state our results let us introduce the
following random element of the space of finite measures on R, denoted byM(R):

LN :=
1

ZN (β, h)

∑
σ∈{−1,+1}N

e−βH(σ)δ 1√
N
(
∑N
i=1 σi−Nm), (1.7)

where m is either m+(β) (resp. m−(β)) or m+(β, h) depending on the case we consider. In the
notation, we suppress the dependence of LN on β and h. Then the probability measure LN is
random, since it depends on the random variables εi,j , i, j ∈ {1, . . . , N}. In Kabluchko et al. (2019)
we showed that, if p3N2 →∞, β < 1, and h = 0 the random element LN converges in probability to
the normal distribution with mean 0 and variance 1

1−β , denoted by N0,1/(1−β), which is an element
inM(R). In Kabluchko et al. (2020) we extended this result to the situation of pN → ∞, β < 1,
and h = 0. Moreover, for p4N3 →∞, β = 1, and h = 0 we considered

L1
N :=

1

ZN (β, h)

∑
σ∈{−1,+1}N

e−βH(σ)δ 1

N3/4

∑N
i=1 σi
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and showed that it converges in probability to M ∈M(R), the probability measure with density

ψ(x) :=
e−

1
12
x4∫

R e−
1
12
y4dy

.

For smaller values of p, β = 1, and h = 0 we showed that suitable versions of L1
N again have

a normal distribution as limiting distribution (again in probability). Finally, in Kabluchko et al.
(2021) we analyzed the fluctuations of the random partition function ZN (β, h).

Note that the situation we analyzed in Kabluchko et al. (2019), Kabluchko et al. (2021), and
Kabluchko et al. (2020), as well as in the present note is of a different character than the results
for sparse (Erdős-Rényi) graphs. Such situations were deeply studied by Dembo and Montanari in
Dembo and Montanari (2010a) and Dembo and Montanari (2010b) and by van der Hofstad and
coauthors in Dommers et al. (2016), Dommers et al. (2010), Dommers et al. (2014), Giardinà et al.
(2016), and Giardinà et al. (2015). In particular, we will comment on related results by Giardina
et al. in Giardinà et al. (2016) and Giardinà et al. (2015) at the end of the next subsection.

1.2. Main results. As announced, in this note we will study the fluctuations of mN , when either
h = 0 and β > 1, or when h > 0 and β > 0 is arbitrary. In both cases we require that p is such that
p3N →∞. The results will be formulated in terms of the quantity LN defined in (1.7) and related
quantities L+

N and L−N to be defined below. Recall that LN is a random element ofM(R), the set
of finite measures on R and thatM(R). We endowM(R) with the topology of weak convergence
and denote by ρweak any metric generating the weak topology and turning M(R) into a complete
separable metric space.

Our main results are Central Limit Theorems for mN . The first one is

Theorem 1.1. Assume that h = 0, β > 1, and p3N →∞ as N →∞. Then,

L+
N :=

2

ZN (β, h)

∑
σ∈{−1,+1}N

e−βH(σ)δ 1√
N
(
∑N
i=1 σi−Nm+(β)) 1

∑N
i=1 σi>0,

considered as a random element of the setM(R), converges in probability to the normal distribution
N0,σ2(β), which is considered as a deterministic element ofM(R). Here the variance σ2(β) is given
by (1.5). In other words, for every ε > 0,

lim
N→∞

P[ρweak
(
L+
N ,N0,σ2(β)

)
> ε] = 0.

An analogous assertion holds true, if, in the definition of L+
N , we replace m+(β) by −m+(β) =

m−(β) and restrict our attention to configurations with negative magnetization, i.e. if we consider

L−N :=
2

ZN (β, h)

∑
σ∈{−1,+1}N

e−βH(σ)δ 1√
N
(
∑N
i=1 σi−Nm−(β))

1∑N
i=1 σi≤0

.

Remark 1.2. Intuitively, approximately one half of the configurations are such that the magnetiza-
tion per particle is close to m+(β), whereas for the other half it is close to m−(β). This is very
different from the high-temperature setting considered in the previous publications Kabluchko et al.
(2019) and Kabluchko et al. (2020), where the magnetization per particle was concentrated near
0. In L+

N we only take the configurations with positive magnetization into account, which is why a
factor of 2 is necessary in its definition. Without the factor, the limit would be a measure of total
mass 1/2.

Our second main theorem is
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Theorem 1.3. Assume that h > 0, β > 0, and p3N →∞ as N →∞. Then,

LN :=
1

ZN (β, h)

∑
σ∈{−1,+1}N

e−βH(σ)δ 1√
N
(
∑N
i=1 σi−Nm+(β,h)),

considered as a random element ofM(R), converges in probability to N0,σ2(β,h). Here m+(β, h) and
σ2(β, h) are given by (1.4) and (1.6). In other words, for every ε > 0,

lim
N→∞

P[ρweak(LN ,N0,σ2(β,h)) > ε] = 0.

In Kabluchko et al. (2021) we also analyzed the fluctuations of ZN (β, h) for β < 1, h = 0. Before
we state the corresponding result for h = 0, β > 1 and for h > 0, β > 0 we introduce some notation.
We set

m :=

{
m+(β) if h = 0, β > 1

m+(β, h) if h > 0, β > 0

and

Z̃N (β, h) :=
∑

σ∈{−1,+1}N
e−βH(σ) exp

(
− β

2Np
m2

N∑
i,j=1

εi,j

)
. (1.8)

We comment on the role of Z̃N (β, h) at the beginning of Section 3. In the following theorem, it is
possible to replace EZ̃N (β, h) by its asymptotic forms given in (3.19) below and (4.1), but we prefer
not to state these long expressions explicitly.

Theorem 1.4. Assume that h = 0, β > 1 or h > 0, β > 0. Further assume that p = p(N) is such
that p3N →∞ as N →∞ and, moreover, that p(N) is bounded away from 1. Then,

log(ZN (β, h)/EZ̃N (β, h))− βNm2

2√
β2m4(1−p)

4p

→ N0,1

in distribution.
For fixed 0 < p < 1 that does not depend on N this may be rewritten as

ZN (β, h)/EZ̃N (β, h)

e
βNm2

2

→ eζ

in distribution. Here ζ denotes a normal random variable with expectation 0 and variance β2m4(1−p)
4p .

We will prepare the proof of these theorems analytically in the following section. The actual
proofs will follow in Sections 3–5.

Remark 1.5. In Giardinà et al. (2016) and Giardinà et al. (2015) the authors prove Central Limit
Theorems for the magnetization of Ising models on sparse random graphs. They consider the
distribution of the magnetization under three different measures: the random quenched setting,
the averaged quenched measure, and the annealed measure. The first of these situations is (apart
from the random graph considered) similar to our setting. The second situation considers the
measure µβ,h,N averaged over the distribution of the random edges in the graph, while the annealed
measure is given by µanβ,h,N = 1

EZN (β,h)E exp(−βH(σ)), where the expectation is with respect to
the bond distribution. The results in Giardinà et al. (2016, Theorem 1.3) and Giardinà et al.
(2015, Theorems 1.3 and 1.5) indicate that for sparse graphs there is a clear distinction between
the (averaged) quenched case and the annealed case. Under all three of the above measures the
magnetization satisfies a CLT. However, while the variances for the normal distribution under the
random quenched measure and the averaged quenched measure agree, the variance for the annealed
measure in general differs from them. In our setting the annealed CLT is easy to analyze using the
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techniques developed in Kabluchko et al. (2019), Kabluchko et al. (2020), as well as in the next two
sections. The result is that also under the annealed measure the magnetization obeys a CLT with
the same variance as in the random quenched case. Given that even in the sparse situation the
asymptotic variances of the distribution of the magnetizations agree under the random quenched
and the averaged quenched measure and that a large expectation of the degree distribution has
an averaging effect for the important observables, it appears likely that also under the averaged
quenched measure mN obeys a CLT with the same variance as in the other two situations. However,
this is rather difficult to prove and thus cannot be done in the article.

Remark 1.6. While we were working on this manuscript Deb and Mukherjee published some really
interesting results on the fluctuations of the magnetization of Ising models on general almost regular
graphs in Deb and Mukherjee (2020). Their results partially confirm our results in Kabluchko et al.
(2019) and Kabluchko et al. (2020), as well as those of Theorems 1.1 and 1.3. However, their
techniques are completely different from ours. On the other hand, our third main result, Theorem
1.4, is new. Its proof relies on the results developed in order to prove Theorems 1.1 and 1.3.

2. Technical preparation

In the proof of our main theorems we will encounter some functions for which we will need an
expansion up to certain orders. These functions will be studied and analyzed in this section.

More precisely, for arbitrary complex variables z and p let us define the function

F (p, z) := log(1− p+ pez). (2.1)

Note that in this section we do not assume that p is a probability. We will next compute the power
series expansion of some linear combinations of F (p, z) in p and z variables around the origin (0, 0).

Note that, for |p| < 2 and |z| < z0 with sufficiently small z0 > 0, we can estimate that

|p(ez − 1)| < 1.

Thus, the function F (p, z) is an analytic function of two complex variables p and z on the domain

D = {(p, z) ∈ C2 : |p| < 2, |z| < z0}.

Therefore, it has a power series expansion which converges uniformly and absolutely on compact
subsets of this domain. In particular, by absolute convergence, we can re-arrange and re-group
the terms arbitrarily. We will use the following first terms of the power series expansion in our
computations:

F (p, z) = pz +
p(1− p)

2
z2 +

p(2p2 − 3p+ 1)

6
z3 +

p(−6p3 + 12p2 − 7p+ 1)

24
z4 +O(z5). (2.2)

The following claim has already been proven in Kabluchko et al. (2019), Lemma 1.

Lemma 2.1.

F (p, z) = p
∞∑
k=1

Pk(p)

k!
zk,

where Pk(p) is a power series in p with constant term Pk(0) = 1 for all k ∈ N.

Corollary 2.2. If z and y range in a compact subset of R and p, γ are such that (p, γ(±z+y)) ∈ D,
then

(i)

F (p, γ(z + y)) + F (p, γ(−z + y))

2
= pγy +

1

2
p(1− p)γ2(z2 + y2) +O(pγ3),
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(ii)
F (p, γ(z + y))− F (p, γ(−z + y))

2
= pγz + p(1− p)γ2zy +O(pγ3).

In both cases, the constant in the O-term is uniform as long as z, y stay in compact subsets of R
and (p, γ(±z + y)) ∈ D.

Proof : From Lemma 2.1 we have

F (p, γ(z + y)) + F (p, γ(−z + y))

2
=
p

2

∞∑
k=1

Pk(p)

k!
γk
(
(z + y)k + (−z + y)k

)
= pγy +

1

2
p(1− p)γ2(z2 + y2) +

p

2
γ3
∞∑
k=3

Pk(p)

k!
γk−3

(
(z + y)k + (−z + y)k

)
= pγy +

1

2
p(1− p)γ2(z2 + y2) +O(pγ3).

Similarly, we have

F (p, γ(z + y))− F (p, γ(−z + y))

2
=
p

2

∞∑
k=1

Pk(p)

k!
γk
(
(z + y)k − (−z + y)k

)
= pγz + p(1− p)γ2zy +O(pγ3).

�

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. The proof of Theorem 1.3 is quite similar and in
Section 4 we will basically point out the differences between the two proofs. Hence, throughout this
section we will assume that h = 0 and β > 1. The main idea, for both Theorem 1.1 and Theorem 1.3,
is to consider the following modification of the partition function for g ∈ Cb(R) (meaning that g is
globally bounded and continuous) such that g ≥ 0, g 6≡ 0

Z+
N (β, h, g) :=

∑
σ∈{−1,+1}N

g

(
|σ| −Nm√

N

)
e−βH(σ) 1|σ|>0,

where we put m := m+(β). Then we have

1

2

∫ +∞

0
g(x)L+

N (dx) = Eµβ,h,N

[
g

(
|σ| −Nm√

N

)
1|σ|>0

]
=
Z+
N (β, h, g)

ZN (β, h)
, (3.1)

where, for a fixed disorder (εi,j)
N
i,j=1, Eµβ,h,N denotes the expectation with respect to the Gibbs

measure µβ,h,N .
Instead of Z+

N (β, h, g) we study the related quantity Z̃+
N (β, h, g) in which the summands, as we

will show, behave like asymptotically independent random variables. To define Z̃+
N (β, h, g), for

σ ∈ {±1}N and for fixed β > 0 we first introduce

γ :=
β

2Np

as well as

T (σ) := Tβ,N (σ) := exp

(
γ

N∑
i,j=1

εi,jσiσj − γm2
N∑

i,j=1

εi,j

)
.



544 Zakhar Kabluchko, Matthias Löwe and Kristina Schubert

We will suppress the indices β and N in Tβ,N (σ) in the rest of this section. We will usually use
T (σ) to compute its expectation, its variance or covariances of the form Cov(T (σ), T (τ)). From the
expressions that we obtain it will be obvious that T (σ) depends on β and N .

Then, for g ∈ Cb(R) such that g ≥ 0, g 6≡ 0, we set

Z̃+
N (β, h, g) :=

∑
σ∈{−1,+1}N

g

(
|σ| −Nm√

N

)
T (σ) 1|σ|>0 .

Note that in (1.8) we defined a related quantity

Z̃N (β, h) :=
∑

σ∈{−1,+1}N
e−βH(σ) exp

(
− γm2

N∑
i,j=1

εi,j

)
,

which does not exactly correspond to Z̃+
N (β, h, 1) since in the latter quantity the summation is

restricted to |σ| > 0. Since

Z+
N (β, h, g) = Z̃+

N (β, h, g) exp

(
γm2

N∑
i,j=1

εi,j

)
(3.2)

we have
Z+
N (β, h, g)

ZN (β, h)
=
Z̃+
N (β, h, g)

Z̃N (β, h)
. (3.3)

Let us investigate, how Z̃+
N (β, h, g) behaves. We start our analysis by the following computation

Lemma 3.1. For h = 0, β > 1, and p3N →∞ as N →∞ we have for all σ ∈ {−1,+1}N

ET (σ) = exp

(
β

2N
(|σ|2 −m2N2) +

(1− p)β2

8p

(
m4 − 2m2|σ|2

N2
+ 1

)
+ o(1)

)
with an o(1)-term that is uniform over σ ∈ {−1,+1}N .

Proof : We compute

ET (σ) =
N∏

i,j=1

E
[
eγεi,jσiσj−γm

2εi,j
]
=

N∏
i,j=1

(
1− p+ peγ(σiσj−m

2)
)
.

If we introduce

f(x) = f(x; p, γ) = log(1− p+ peγ(x−m
2)) = F (p, γ(x−m2)),

where F is given by (2.1), we can continue by

ET (σ) = exp

(
N∑

i,j=1

log(1− p+ peγ(σiσj−m
2))

)
= exp

(
N∑

i,j=1

f(σiσj)

)
.

Note that σi ∈ {±1} for all i and hence σiσj ∈ {±1}. For the two values ±1 we can rewrite f in a
linear form. More precisely, we write

f(x) = a0 + a1x, x ∈ {−1,+1}.
The two coefficients a0 and a1 naturally are dependent on p, m and γ. They can be computed from
the following two equations

a0 =
f(1) + f(−1)

2
=

log(1− p+ peγ(1−m
2)) + log(1− p+ peγ(−1−m

2))

2
,

a1 =
f(1)− f(−1)

2
=

log(1− p+ peγ(1−m
2))− log(1− p+ peγ(−1−m

2))

2
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to obtain

ET (σ) = exp(N2a0 + a1|σ|2).

Using Corollary 2.2 we see immediately that

a0 = −γpm2 +
γ2

2
p(1− p)(m4 + 1) +O(pγ3)

and

a1 = pγ − γ2p(1− p)m2 +O(pγ3).

Thus

ET (σ) = exp

(
β

2N
(|σ|2 −m2N2) +

(1− p)β2

8p

(
m4 − 2m2|σ|2

N2
+ 1

)
+ o(1)

)
with an o-term that is uniform in σ ∈ {−1,+1}N . This was the assertion. �

We will now compute the asymptotic expectation of Z̃+
N (β, h, g). To this end, we will introduce

the following set of spin configurations. Set

S1
N :=

{
σ ∈ {±1}N :

∣∣ |σ| −Nm ∣∣ ≤ √NκN}
with κN = p

√
N/(p3N)2/5. These spin configurations will be called typical in the following proof.

The corresponding set of values of |σ| is denoted by WN,m, i.e.

WN,m := {|σ| : σ ∈ S1
N} = {dNm−

√
NκNe, . . . , bNm+

√
NκNc}. (3.4)

The set of the atypical spin configurations is denoted by

S1c
N := {σ :

∣∣ |σ| −Nm∣∣ > √NκN , |σ| > 0}.

Proposition 3.2. For all g ∈ Cb(R), g ≥ 0, g 6≡ 0, h = 0, β > 1, and p with Np3 →∞ we have

lim
N→∞

EZ̃+
N (β, h, g)

e
(1−p)β2

8p
(1−m4)−NI(m)

2N+1 1√
1−m2

σ(β)Eξ[g(ξ)]
= 1.

Here, the function I is given by formula (3.6) below and

Eξ[g(ξ)] =
1√

2πσ2(β)

∫ ∞
−∞

g(x)e
− x2

2σ2(β)dx,

i.e. ξ denotes a normally distributed random variable with expectation 0 and variance σ2(β).

Proof : By decomposing {±1}N into typical and atypical σ’s, defined by S1
N , we have

EZ̃+
N (β, h, g) =

∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
ET (σ) +

∑
σ∈S1c

N

g

(
|σ| −Nm√

N

)
ET (σ).
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For the typical configurations with |σ| ∈WN,m we have from Lemma 3.1

∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
ET (σ) (3.5)

=e
(1−p)β2

8p
(m4+1)

∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
e
β
2N

(|σ|2−m2N2)− (1−p)β2
8p

2m2|σ|2

N2 +o(1)

=e
(1−p)β2

8p
(m4+1)

∑
k∈WN,m

∑
σ∈{±1}N :
|σ|=k

g

(
|σ| −Nm√

N

)
e
β
2N

(|σ|2−m2N2)− (1−p)β2
8p

2m2|σ|2

N2 +o(1)

=e
(1−p)β2

8p
(m4+1)

∑
k∈WN,m

g

(
k −Nm√

N

)
e
β
2N

(k2−m2N2)− (1−p)β2
8p

2m2k2

N2 +o(1)
(
N
N+k
2

)
.

Note that from Stirling’s formula

log(n!) = n log n− n+
1

2
log(2π) +

1

2
log(n) +O(1/n),

we obtain for k ∈WN,m

2−N
(
N
N+k
2

)
=

√
2

πN

1√
(1− k

N )(1 + k
N )

e−NI
(
k
N

)
+o(1)

= (1 + o(1))

√
2

πN

1√
(1− k2

N2 )
e−NI

(
k
N

)

= (1 + o(1))

√
2

πN(1−m2)
e−NI

(
k
N

)
with an o(1)-term that is uniform for all k such that k ∈ WN,m. We have used that κN = o(

√
N).

Here,

I(x) :=
1− x
2

log(1− x) + 1 + x

2
log(1 + x) for x ∈ [−1, 1]. (3.6)

Hence, we arrive at∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
ET (σ)

= (1 + o(1))e
(1−p)β2

8p
(m4+1)

2N
1√

1−m2

√
2

πN

×
∑

k∈WN,m

g

(
k −Nm√

N

)
e
β
2N

(k2−m2N2)− (1−p)β2
8p

2m2k2

N2 −NI
(
k
N

)
.

Let us write k
N = m+ ck√

N
with |ck| ≤ κN . Then,

NI

(
k

N

)
= NI(m) + I ′(m)ck

√
N + I ′′(m)

c2k
2

+O
(
κ3N√
N

)
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and the O-term is uniform for all k ∈ WN,m and can be estimated above by o(1) because of our
choice of κN and since p3N →∞. Then∑

σ∈S1
N

g

(
|σ| −Nm√

N

)
ET (σ)

= (1 + o(1))e
(1−p)β2

8p
(m4+1)−NI(m)

2N
1√

1−m2

√
2

πN

×
∑

k∈WN,m

g

(
k −Nm√

N

)
e
β
2N

(
2N3/2mck+c

2
kN
)
− (1−p)β2

8p

2m4N2+4m3N3/2ck+2m2c2kN

N2

e−I
′(m)ck

√
N−I′′(m)

c2k
2 . (3.7)

Now the linear term in ck in the above expression is

ck

(
βm
√
N − β2(1− p)m3

2p
√
N

−
√
NI ′(m)

)
= ck

(
βm
√
N −

√
NI ′(m)

)
+ o(1) = o(1),

where the first equality follows from κN = o(p
√
N) while the second equality follows from I ′(x) =

1
2 log

(
1+x
1−x

)
= artanh(x) and m = tanh(βm). Therefore, with an o(1)-term that is uniform for

typical σ we have that∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
ET (σ)

= (1 + o(1))e
(1−p)β2

8p
(m4+1)−NI(m)

2N
1√

1−m2

√
2

πN∑
k∈WN,m

g

(
k −Nm√

N

)
e
β
2
c2k−

(1−p)β2
8p

2m4N2+2m2c2kN

N2 e−I
′′(m)

c2k
2

= (1 + o(1))e
(1−p)β2

8p
(−m4+1)−NI(m)

2N
1√

1−m2

√
2

πN∑
k∈WN,m

g

(
k −Nm√

N

)
e
β−I′′(m)

2
c2k ,

where we used that κ2N = o(pN). Note that for the term in the last exponential we have

β − I ′′(m)

2
c2k = −

1− β(1−m2)

2(1−m2)
c2k = −

1

2σ(β)2
c2k = −

1

2σ(β)2

(
k −Nm√

N

)2

,

where we used ck = (k −Nm)/
√
N . We see that√

1

2πNσ2(β)

∑
k∈WN,m

g

(
k −Nm√

N

)
exp

(
− 1

2σ(β)2

(
k −Nm√

N

)2)
converges to √

1

2πσ2(β)

∫ ∞
−∞

g(x) exp

(
− x2

2σ(β)2

)
dx = Eξ[g(ξ)].

Indeed, this is basically the approximation of an integral by its Riemann sum. Note that for
k ∈ WN,m the variable ck = (k − Nm)/

√
N ranges in [−κN ,+κN ] intersected with a lattice of

mesh size 1/
√
N . Over each fixed interval, the Riemann approximation argument applies. Since
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κN → ∞, we need an additional justification for the applicability of the Riemann approximation
over intervals of growing size. Note that√

1

2πσ2(β)

∫ ∞
−∞

g(x) exp

(
− x2

2σ(β)2

)
dx <∞.

Hence, for all ε > 0, there is a compact interval Iε such that√
1

2πσ2(β)

∫
x/∈Iε

g(x) exp

(
− x2

2σ(β)2

)
dx < ε

as well as √
1

2πNσ2(β)

∑
k∈WN,m:

ck∈I
c
ε

g

(
k −Nm√

N

)
exp

(
− 1

2σ(β)2

(
k −Nm√

N

)2)
< ε,

where Icε denotes the complement of Iε in R. For the second claim, bound g by its supremum and
estimate the remaining sum by the corresponding integral using monotonicity. On the fixed interval
Iε we have convergence of Riemann sums to Riemann integrals, meaning that for sufficiently large
N , the difference between both is at most ε. But this means∣∣∣∣∣
√

1

2πNσ2(β)

∑
k∈WN,m

g

(
k −Nm√

N

)
exp

(
− 1

2σ(β)2

(
k −Nm√

N

)2)

−

√
1

2πσ2(β)

∫ ∞
−∞

g(x) exp

(
− x2

2σ(β)2

)
dx

∣∣∣∣∣ < 3ε

for all N sufficiently large.
To prove the proposition, it suffices to show that the atypical spin configurations do not contribute

to the asymptotic size of Z̃+
N (β, h, g). Recall that the set of atypical spin configurations is denoted

by
S1c
N := {σ :

∣∣ |σ| −Nm∣∣ > √NκN , |σ| > 0}.
The corresponding set of possible values for |σ| will be called W c

N,m. We will use the following
bound on the binomial coefficient which again is a consequence of Markov’s inequality:(

N
N+k
2

)
≤ 2Ne−NI(

k
N
), |k| ≤ N. (3.8)

We can use Lemma 3.1 in combination with (3.8) to obtain∑
σ∈S1c

N

g

(
|σ| −Nm√

N

)
ET (σ)

≤e
(1−p)β2

8p
(m4+1)||g||∞

∑
k∈W c

N,m

e
β
2N

(k2−m2N2)− (1−p)β2
8p

2m2k2

N2 +o(1)
(
N
N+k
2

)

≤Ce
(1−p)β2

8p
(m4+1)

2N
∑

k∈W c
N,m

e
β
2N

(k2−m2N2)− (1−p)β2
8p

2m2k2

N2 −NI( k
N
) (3.9)

for some constant C > 0. For the next step again write k = Nm + ck
√
N , this time κN < |ck| <

Cm
√
N (the exact value for Cm depends on m). For the second term in the exponent we obtain the
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estimate

− (1− p)β2

8p

2m2k2

N2
= −m

4(1− p)β2

4p
− ck(1− p)β2

2p
√
N

m3 −
c2k(1− p)β2

4pN
m2

≤ −m
4(1− p)β2

4p
− ck(1− p)β2

2p
√
N

m3.

Inserting this estimate into (3.9) leads to∑
σ∈S1c

N

g

(
|σ| −Nm√

N

)
ET (σ)

≤Ce
(1−p)β2

8p
(m4+1)

2N
∑

k∈W c
N,m

e
β
2N

(k2−m2N2)−m
4(1−p)β2

4p
− ck(1−p)β

2

2p
√
N

m3−NI( k
N
)
. (3.10)

Next observe that from the analysis of the Curie-Weiss model (see Ellis (2006) for the large deviations
regime and Eichelsbacher and Löwe (2004) for the regime of moderate deviations) we know that the
function k

N 7→
β
2N k

2 −NI( kN ) attains its maximum for k
N positive at m and that

β

2N
k2 −NI

(
k

N

)
≤ N

(
β

2
m2 − I(m)

)
−K1c

2
k (3.11)

for some sufficiently small constant K1 > 0. Moreover, c2k will be at least of order κ2N . Hence∑
σ∈S1c

N

g

(
|σ| −Nm√

N

)
ET (σ)

≤Ce
(1−p)β2

8p
(−m4+1)

2Ne−NI(m)
∑

k∈W c
N,m

e
− 2ck(1−p)β

2

4p
√
N

m3−K1c2k

≤Ce
(1−p)β2

8p
(−m4+1)

2Ne−NI(m)
∑

k∈W c
N,m

e−K2c2k (3.12)

for some other constant K2 > 0. We used that ck/(p
√
N) = c2k/(ckp

√
N) with ckp

√
N →∞ in the

denominator.
Now c2k ≥ κ2N ≥ N1/10 and the sum contains at most N summands, which yields

lim
N→∞

∑
k∈W c

N,m

e−K2κ2N = 0. (3.13)

This shows that the contribution of the spin configurations in S1c
N is negligible and therefore proves

the proposition. �

In the next step we will control the variance of Z̃+
N (β, h, g) in order to show that it is of smaller

order than the squared expectation. This would imply that the quantity Z̃+
N (β, h, g) is self-averaging

meaning that Z̃+
N (β, h, g)/EZ̃

+
N (β, h, g) converges in probability to 1. Our first step in this direction

is

Lemma 3.3. For h = 0, β > 1, all p = p(N) such that p3N → ∞, and all σ, τ ∈ {−1,+1}N we
have

E(T (σ)T (τ)) = exp(N2b0 + b1|σ|2 + b2|τ |2 + b12|στ |2),
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where

b0 = −2(m2p)γ + (p+ 2m4p− p2 − 2m4p2)γ2 +O(pγ3),
b1 = b2 = pγ + (−2m2p+ 2m2p2)γ2 +O(pγ3),

b12 = (p− p2)γ2 +O(pγ3),

and the O-term is uniform over σ, τ ∈ {−1,+1}N . Here, we set

|στ | :=
N∑
i=1

σiτi.

Proof : We have

E(T (σ)T (τ)) =
N∏

i,j=1

(
1− p+ peγ(σiσj+τiτj−2m

2)
)
= exp

(
N∑

i,j=1

f(σiσj + τiτj)

)
,

where
f(x) = f(x; p, γ) = log(1− p+ peγ(x−2m

2)) = F (p, γ(x− 2m2)),

and F is given by (2.1). Note that for fixedm, f(σiσj+τiτj) is a function of the arguments x1 = σiσj
and x2 = τiτj , where x1 and x2 take values in {±1}. Hence, for these values of x1 and x2, we can
write

f(x1 + x2) = b0 + b1x1 + b2x2 + b12x1x2,

where the coefficients are given by

b0 =
f(2) + f(−2) + 2f(0)

4
,

b12 =
f(2) + f(−2)− 2f(0)

4
,

b1 = b2 =
f(2)− f(−2)

4
.

The representation of the coefficients is then an immediate consequence of Corollary 2.2. Using
(2.2) the lemma is proved. �

From here we start to estimate the variance of Z̃+
N (β, h, g).

Proposition 3.4. For h = 0, β > 1, all p = p(N) such that p3N → ∞, and all g ∈ Cb(R), g ≥ 0,
g 6≡ 0 we have that

V(Z̃+
N (β, h, g)) = o

(
E2[Z̃+

N (β, h, g)]
)
.

Proof : Obviously,

V(Z̃+
N (β, h, g)) = E

[(
Z̃+
N (β, h, g)

)2]
− E2[Z̃+

N (β, h, g)].

The asymptotics of the second term on the right is already known from Proposition 3.2. Our aim
is to show that the first term satisfies

E
[(
Z̃+
N (β, h, g)

)2]
≤ (1 + o(1))E2[Z̃+

N (β, h, g)].

Since the variance cannot become negative, this would imply the assertion. Introduce the set of
typical pairs of spin configurations

S2
N := {(σ, τ) : |σ|, |τ | ∈WN,m,

∣∣|στ | −Nm2
∣∣ ≤ C ′√NκN},
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where WN,m is defined as in (3.4), C ′ is a constant to be specified below, and we recall that
|στ | :=

∑N
i=1 σiτi. The pairs of spin configurations (σ, τ) that are not in S2

N will be called atypical.
The set of atypical pairs (σ, τ) that satisfy |σ| > 0, |τ | > 0 will be denoted by S2c

N . We split
E[(Z̃+

N (β, h, g))
2] into the contribution of typical and atypical pairs of spin configurations as follows:

E
[(
Z̃+
N (β, h, g)

)2]
=

∑
(σ,τ)∈{±1}N×{±1}N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

=
∑

(σ,τ)∈S2
N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

+
∑

(σ,τ)∈S2c
N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ)).

Let us first consider the typical spin configurations. Using Lemma 3.3 we obtain

∑
(σ,τ)∈S2

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

=
∑

(σ,τ)∈S2
N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
e−2m

2N2pγ+N2p(1−p)(2m4+1)γ2+o(1)

× exp
((
pγ +

(
− 2m2p+ 2m2p2

)
γ2
)(
|σ|2 + |τ |2

)
+
(
p− p2

)
γ2|στ |2

)
= e

(1−p)β2(1+2m4)
4p

+o(1)
∑

(σ,τ)∈S2
N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

(
(|σ|2−m2N2)+(|τ |2−m2N2)

)
− (1−p)β2

4p
2m2(|σ|2+|τ |2)

N2 +
(1−p)β2

4N2p
|στ |2

. (3.14)

Our first observation is that the term with |στ |2 can be asymptotically replaced by a term not
depending on σ and τ . Indeed, for (σ, τ) ∈ S2

N we have that

(1− p)β2

4N2p
|στ |2 = (1− p)β2m4

4p
+ o(1)

because κN = o(pN). Our second observation is that the same can be done for the term involving
|σ|2 + |τ |2 since

(1− p)β2

4p

2m2(|σ|2 + |τ |2)
N2

=
(1− p)β2

4p

2m2 · 2N2m2

N2
+ o(1) =

(1− p)β2m4

p
+ o(1),

where we used that κN = o(p
√
N). Overall, we get

∑
(σ,τ)∈S2

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

=e
(1−p)β2(1−m4)

4p
+o(1)

∑
(σ,τ)∈S2

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
e
β
2N

(
(|σ|2−m2N2)+(|τ |2−m2N2)

)
.
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Now we have the upper estimate∑
(σ,τ)∈S2

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ e
(1−p)β2(1−m4)

4p
+o(1)

∑
(σ,τ)∈S1

N×S
1
N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

(
(|σ|2−m2N2)+(|τ |2−m2N2)

)
≤ e

(1−p)β2(1−m4)
4p

+o(1)

( ∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
e
β
2N

(|σ|2−m2N2)

)2

.

To justify the inequality, observe that in the first line we sum over a smaller set of pairs (σ, τ)
because S2

N involves an additional constraint on |στ |, and recall that g ≥ 0.
Now we proceed similarly to the proof of Proposition 3.2. Indeed, in the same way we prove that∑

σ∈S1
N

g

(
|σ| −Nm√

N

)
e
β
2N

(|σ|2−m2N2) = e−NI(m)2N+1 1 + o(1)√
1−m2

σ(β)Eξ[g(ξ)].

This, together with the statement of Proposition 3.2 shows that∑
(σ,τ)∈S2

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ)) ≤ (1 + o(1))

(
EZ̃+

N (β, h, g)
)2
.

We will now show that the contribution of the atypical spins to the variance of Z̃+
N (β, h, g) is

negligible. We need to show that∑
(σ,τ)∈S2c

N

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ)) = o

((
EZ̃+

N (β, h, g)
)2)

.

Note that the pairs of spin configurations (σ, τ) ∈ S2c
N either satisfy∣∣ |σ| −Nm∣∣ > √NκN or,

∣∣ |τ | −Nm∣∣ > √NκN or,
∣∣ |στ | −Nm2

∣∣ > C ′
√
NκN .

In the case when ∣∣ |σ| −Nm∣∣ > √NκN or
∣∣ |τ | −Nm∣∣ > √NκN

we can proceed similarly as in the proof of Proposition 3.2. For concreteness, let us assume that
we consider the situation where | |σ| − Nm| >

√
NκN and τ is arbitrary and let us denote the

corresponding set of spin configurations by S2c
N,A. Then, starting from (3.14), we estimate∑

(σ,τ)∈S2c
N,A

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ e
(1−p)β2(1+2m4)

4p
+o(1)‖g‖∞

∑
(σ,τ)∈S2c

N,A

g

(
|τ | −Nm√

N

)
e
β
2N

((|σ|2−m2N2)+(|τ |2−m2N2))

× e
− (1−p)β2

4p
2m2(|σ|2+|τ |2)

N2 +
(1−p)β2

4N2p
|στ |2

≤ e
(1−p)β2(2+2m4)

4p
+o(1)‖g‖∞

∑
(σ,τ)∈S2c

N,A

g

(
|τ | −Nm√

N

)
e
β
2N

((|σ|2−m2N2)+(|τ |2−m2N2))

× e
− (1−p)β2

4p
2m2(|σ|2+|τ |2)

N2
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because (1−p)β2

4N2p
|στ |2 ≤ (1−p)β2

4p . Thus∑
(σ,τ)∈S2c

N,A

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ e
(1−p)β2(2+2m4)

4p
+o(1)‖g‖∞

×
∑
(k,l):

|k−Nm|>
√
NκN

g

(
l −Nm√

N

)
e
β
2N

((k2−m2N2)+(l2−m2N2))− (1−p)β2
4p

2m2(k2+l2)

N2

(
N
N+k
2

)(
N
N+l
2

)

≤ e
(1−p)β2(2+2m4)

4p 2N‖g‖∞
∑

k:|k−Nm|>
√
NκN

e
β
2N

(k2−m2N2)− (1−p)β2
4p

2m2k2

N2 −NI
(
k
N

)

×
∑
l

g

(
l −Nm√

N

)
e
β
2N

(l2−m2N2)− (1−p)β2
4p

2m2l2

N2

(
N
N+l
2

)
where the last step follows from

2−N
(
N
N+k
2

)
≤ exp

(
−NI

(
k

N

))
.

Note that as in Proposition 3.2, especially equation (3.5) and the following equations we obtain that

e
(1−p)β2(2+2m4)

4p

∑
l

g

(
l −Nm√

N

)
e
β
2N

(l2−m2N2)− (1−p)β2
4p

2m2l2

N2

(
N
N+l
2

)
= (1 + o(1))e

(1−p)β2
2p

−NI(m)
2N+1 1√

1−m2
σ(β)Eξ[g(ξ)]

= (1 + o(1))e
(1−p)β2(3+m4)

8p EZ̃+
N (β, h, g).

This implies that∑
(σ,τ)∈S2c

N,A

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ (1 + o(1))EZ̃+
N (β, h, g)e

(1−p)β2(3+m4)
8p 2N‖g‖∞

∑
k:|k−Nm|>

√
NκN

e
β
2N

(k2−m2N2)− (1−p)β2
4p

2m2k2

N2 −NI
(
k
N

)

≤ (1 + o(1))EZ̃+
N (β, h, g)e

(1−p)β2(3+m4)
8p 2N‖g‖∞

∑
k:|k−Nm|>

√
NκN

e
β
2N

(k2−m2N2)−NI
(
k
N

)
.

But following the steps in (3.11), (3.12), and (3.13) we see that

e
(1−p)β2(3+m4)

8p 2N
∑

k:|k−Nm|>
√
NκN

e
β
2N

(k2−m2N2)−NI
(
k
N

)

=e
(1−p)β2(2+2m4)

8p e
(1−p)β2(1−m4)

8p 2N
∑

k:|k−Nm|>
√
NκN

e
β
2N

(k2−m2N2)−NI
(
k
N

)

≤e
(1−p)β2(2+2m4)

8p e
(1−p)β2

8p
(−m4+1)

2Ne−NI(m)
∑

k∈W c
N,m

e−K2c2k
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with the set W c
N,m defined as in the proof of Proposition 3.2. But

e
(1−p)β2(2+2m4)

8p

∑
k∈W c

N,m

e−K2c2k ≤ Ce
(1−p)β2(2+2m4)

8p e−K2κ2N → 0

because κ2Np→∞. Together with Proposition 3.2 this shows that∑
(σ,τ)∈S2c

N,A

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ)) = o

((
EZ̃+

N (β, h, g)
2
))
.

Hence the contribution of the pairs of spin configurations from S2c
N,A is asymptotically negligible.

The contributions of pairs of spin configurations from S2c
N,B, the set where

| |τ | −Nm| >
√
NκN

and σ is arbitrary, is bounded in the same way.
It remains to estimate the contribution of the pairs of spin configurations of the set

S2c
N,C :=

{
(σ, τ) ∈ S2c

N :
∣∣ |σ| −Nm∣∣ ≤ √NκN ,∣∣ |τ | −Nm∣∣ ≤ √NκN , ∣∣ |στ | −Nm2

∣∣ > C ′
√
NκN

}
.

Let us denote by R2c
N,C the set of possible values (k, l, n) the vector (|σ|, |τ |, |στ |) can take, when

(σ, τ) ∈ S2c
N,C , formally

R2c
N,C := {(k, l, n) : ∃(σ, τ) ∈ S2c

N,C with (k, l, n) = (|σ|, |τ |, |στ |)}.
Moreover, denote by VN (k, l, n) the set of pairs

(σ, τ) ∈ {±1}N × {±1}N for which |σ| = k, |τ | = l, and |στ | = n

and set νN (k, l, n) := #VN (k, l, n). Note in particular that by the definition of |σ|, |τ | and |στ | we
have

− (N + k) ≤ l + n ≤ N + k and − (N − k) ≤ l − n ≤ N − k. (3.15)
In order to treat the corresponding contribution we need to compute the distribution of |στ | in

greater detail. We begin by using Lemma 3.3 again:∑
(σ,τ)∈S2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

= e
(1−p)β2(1+2m4)

4p
+o(1)

∑
(σ,τ)∈S2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

((|σ|2−m2N2)+(|τ |2−m2N2))− (1−p)β2
4p

2m2(|σ|2+|τ |2)
N2 +

(1−p)β2

4N2p
|στ |2

= e
(1−p)β2(1+2m4)

4p
+o(1)

∑
(k,l,n)∈R2c

N,C

∑
(σ,τ)∈VN (k,l,n)

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

((|σ|2−m2N2)+(|τ |2−m2N2))− (1−p)β2
4p

2m2(|σ|2+|τ |2)
N2 +

(1−p)β2

4N2p
|στ |2

= e
(1−p)β2(1+2m4)

4p
+o(1)

∑
(k,l,n)∈R2c

N,C

g

(
k −Nm√

N

)
g

(
l −Nm√

N

)

× e
β
2N

((k2−m2N2)+(l2−m2N2))− (1−p)β2
4p

2m2(k2+l2)

N2 +
(1−p)β2

4N2p
n2

νN (k, l, n).
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As observed in Kabluchko et al. (2020) νN (k, l, n) divided by 22N is a probability mass function,
which can be written in terms of a conditional probability:

2−2NνN (k, l, n) = Punif(|σ| = k, |τ | = l, |στ | = n)

= Punif(|στ | = n
∣∣∣ |σ| = k, |τ | = l)P(|σ| = k)P(|τ | = l)

= 2−N
(
N
N+k
2

)
2−N

(
N
N+l
2

)
P(|στ | = n

∣∣∣ |σ| = k, |τ | = l).

Here, Punif denotes the probability distribution under which (σ, τ) is uniformly distributed on
{±1}N × {±1}N . Using the hypergeometric distribution, we can express the conditional proba-
bility P(|στ | = n

∣∣∣ |σ| = k, |τ | = l) as the following fraction:

P(|στ | = n
∣∣∣ |σ| = k, |τ | = l) =

( N+k
2

N+k+l+n
4

)( N−k
2

N+l−k−n
4

)
( N
N+l
2

) . (3.16)

We will use

cN−1/22Ne−NI(
k
N
)−λN (k) ≤

(
N
N+k
2

)
≤ CN−1/22Ne−NI(

k
N
)−λN (k), |k| ≤ N

for some constants c, C > 0 which was shown in Kabluchko et al. (2020), Eqn. (4.11), as a conse-
quence of Stirling’s formula. Here

λN (k) :=
1

2
log

(
(N + 1)2 − k2

N2

)
.

With this formula we can treat the binomial coefficients in (3.16) (where we bound the log-correction
in the exponent of the denominator by 0) to obtain

P(|στ | = n
∣∣∣ |σ| = k, |τ | = l) ≤ C

√
N

(N + k)(N − k)

× e
−N
(
N+k
2N

I( l+n
N+k

)+N−k
2N

I( l−n
N−k )−I(

l
N
)
)
−λN+k

2
(n+l

2
)−λN−k

2
( l−n

2
)
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for some positive constant C. Note that k = N or l = N is excluded by the definition of R2c
N,C .

Moreover, on R2c
N,C we have that

√
N

(N+k)(N−k) ≤ C/
√
N (again for another C > 0). Thus

∑
(σ,τ)∈S2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ Ce
(1−p)β2(1+2m4)

4p

∑
(k,l,n)∈R2c

N,C

g

(
k −Nm√

N

)
g

(
l −Nm√

N

)

× e
β
2N

(
(k2−m2N2)+(l2−m2N2)

)
− (1−p)β2

4p
2m2(k2+l2)

N2 +
(1−p)β2

4N2p
n2
(
N
N+k
2

)(
N
N+l
2

)
× 1√

N
e
−N
(
N+k
2N

I( l+n
N+k

)+N−k
2N

I( l−n
N−k )−I(

l
N
)
)
−λN+k

2
(n+l

2
)−λN−k

2
( l−n

2
)

= Ce
(1−p)β2(1+3m4)

4p

∑
(k,l,n)∈R2c

N,C

g

(
k −Nm√

N

)
g

(
l −Nm√

N

)

× e
β
2N

(
(k2−m2N2)+(l2−m2N2)

)
− (1−p)β2

4p
2m2(k2+l2)

N2 +
(1−p)β2

4N2p
(n2−m4N2)

(
N
N+k
2

)(
N
N+l
2

)
× 1√

N
e
−N
(
N+k
2N

I( l+n
N+k

)+N−k
2N

I( l−n
N−k )−I(

l
N
)
)
−λN+k

2
(n+l

2
)−λN−k

2
( l−n

2
)
.

Now, borrowing an idea from Kabluchko et al. (2020) we observe that

l

N
=
N − k
2N

l − n
N − k

+
N + k

2N

l + n

N + k
,

i.e. l
N is a convex combination of l+n

N+k and l−n
N−k with weights N+k

2N and N−k
2N , respectively. On the

other hand, I is a convex function, and, even more, considering its Taylor expansion

NI(l/N) =
l2

2N
+
∑
j≥2

d2j
l2j

N2j−1

with positive coefficients d2j we see that it is a positive linear combination of convex functions.
Using that d2 = 1

2 we obtain

−N
(
N + k

2N
I

(
l + n

N + k

)
+
N − k
2N

I

(
l − n
N − k

)
− I
(
l

N

))
=−N

(
N + k

2N

∞∑
j=1

d2j

(
l + n

N + k

)2j

+
N − k
2N

∞∑
j=1

d2j

(
l − n
N − k

)2j

−
∞∑
j=1

d2j

(
l

N

)2j
)

≤− N

2

(
N + k

2N

(
l + n

N + k

)2

+
N − k
2N

(
l − n
N − k

)2

−
(
l

N

)2
)

=− 1

2

(Nn− lk)2

N(N2 − k2)
= −1

2

(n− lk
N )2

(N − k2

N )
,

where for the inequality we used that for each j ≥ 2

N + k

2N
d2j

(
l + n

N + k

)2j

+
N − k
2N

d2j

(
l − n
N − k

)2j

− d2j
(
l

N

)2j

≥ 0.
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Thus

e
−N
(
N+k
2N

I( l+n
N+k

)+N−k
2N

I( l−n
N−k )−I(

l
N
)
)
−λN+k

2
(n+l

2
)−λN−k

2
( l−n

2
)

≤ exp

(
−

(n− kl
N )2

2(N − k2

N )
− λN+k

2

(
n+ l

2

)
− λN−k

2

(
l − n
2

))

≤C exp

(
−

(n− kl
N )2

2(N − k2

N )

)
.

We used that e
−λN+k

2
(n+l

2
)−λN−k

2
( l−n

2
)
≤ C as by the definition of λ and the lower bounds in (3.15)

e
−λN+k

2
(n+l

2
)
=

(
1 +

1

2

n+ l

N + k

)− 1
2

≤ C

and

e
−λN−k

2
( l−n

2
)
=

(
1 +

1

2

l − n
N − k

)− 1
2

≤ C.

Therefore ∑
(σ,τ)∈S2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ Ce
(1−p)β2(1+3m4)

4p

∑
(k,l,n)∈R2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
(3.17)

× e
β
2N

((k2−m2N2)+(l2−m2N2))− (1−p)β2
4p

2m2(k2+l2)

N2 +
(1−p)β2

4N2p
(n2−m4N2)

(
N
N+k
2

)(
N
N+l
2

)
× 1√

N
exp

(
−

(n− kl
N )2

2(N − k2

N )

)
.

Note that on R2c
N,C we have that kl

N differs from Nm2 by at most C
√
NκN for some constant C.

On the other hand, n differs from Nm2 by at least C ′
√
NκN by our definition of S2c

N,C . Choosing
C ′ := 2C we have that |n− kl

N | ≥ C
√
NκN and hence

1√
N

exp

(
−

(n− kl
N )2

2(N − k2

N )

)
≤ exp

(
− C2Nκ2N/(2N)

)
= exp

(
− C2κ2N/2

)
.

On the other hand,
(1− p)β2

4N2p
(n2 −m4N2) ≤ K/p

for some constant p. Hence the sum over n on the right hand side of (3.17) (which contains at most
N summands) can be bounded by

N exp

(
− C2κ2N/2 +

K

p

)
= o(1).

The latter is true, since 1
p = o(κ2N ), because pκ

2
N →∞ as N →∞ and

N exp
(
− C2κ2N/2

)
= o(1).
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Thus we have that∑
(σ,τ)∈S2c

N,C

g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)
E(T (σ)T (τ))

≤ o(1)
∑

k,l∈WN,m

e
(1−p)β2(1+3m4)

4p g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

((k2−m2N2)+(l2−m2N2))− (1−p)β2
4p

2m2(k2+l2)

N2 +
(1−p)β2

4N2p
(n2−m4N2)

(
N
N+k
2

)(
N
N+l
2

)
.

Following the lines of the proof of Proposition 3.2, we see that for k, l ∈WN,m we have

(1− p)β2

4p

2m2(k2 + l2)

N2
=

(1− p)β2m4

p
+ o(1).

Hence ∑
k,l∈WN,m

e
(1−p)β2(1+3m4)

4p g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

((k2−m2N2)+(l2−m2N2))− (1−p)β2
4p

2m2(k2+l2)

N2

(
N
N+k
2

)(
N
N+l
2

)
=

∑
k,l∈WN,m

e
(1−p)β2(1−m4)

4p g

(
|σ| −Nm√

N

)
g

(
|τ | −Nm√

N

)

× e
β
2N

((k2−m2N2)+(l2−m2N2))

(
N
N+k
2

)(
N
N+l
2

)
and – as in Proposition 3.2 – the sum on the right-hand side is bounded above by [EZ̃+

N (β, h, g)]
2.

Thus ∑
(σ,τ)∈S2c

N,C

g

(
|σ|√
N

)
g

(
|τ |√
N

)
E(T (σ)T (τ)) = o

((
EZ̃+

N (β, h, g)
)2)

,

which shows that also the contribution from S2c
N,C is negligible. This finishes the proof. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: Proposition 3.4 shows that, when p3N →∞, we have that V(Z̃+
N (β, h, g)) =

o((EZ̃+
N (β, h, g))

2) for all non-negative g ∈ Cb(R), g 6≡ 0. This immediately implies

Z̃+
N (β, h, g)

EZ̃+
N (β, h, g)

→ 1

in L2, for all non-negative g ∈ Cb(R), g 6≡ 0. By Chebyshev’s inequality, this implies that

Z̃+
N (β, h, g)

EZ̃+
N (β, h, g)

→ 1

in probability. Recall from Proposition 3.2 that

lim
N→∞

EZ̃+
N (β, h, g)

e
(1−p)β2

8p
(1−m4)−NI(m)

2N+1 1√
1−m2

σ(β)Eξ[g(ξ)]
= 1.

Arguing in the same way but without the restriction to |σ| > 0 we get

Z̃N (β, h)

EZ̃N (β, h)
→ 1 (3.18)
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in probability and

lim
N→∞

EZ̃N (β, h)

e
(1−p)β2

8p
(1−m4)−NI(m)

2N+1 1√
1−m2

σ(β)

= 2. (3.19)

Note that the limit equals 2 because the summation can be split into two sums over configurations
with |σ| > 0 and |σ| ≤ 0 having the same asymptotic behavior.

Recall that for the convergence of the random probability measure L+
N defined in (1.7) we need

to consider its integral against all non-negative g ∈ Cb(R). Moreover recall that, according to (3.1)
and (3.3) we have∫ +∞

0
g(x)L+

N (dx) = 2Eµβ,h,N

[
g

(∑N
i=1 σi −Nm√

N

)]
=
Z̃+
N (β, h, g)

1
2 Z̃N (β, h)

.

The above claims and Slutsky’s lemma yield

lim
N→∞

∫ +∞

0
g(x)L+

N (dx) = lim
N→∞

EZ̃+
N (β, h, g)

1
2EZ̃N (β, h)

= Eξ[g(ξ)] (3.20)

in probability, where ξ denotes a normally distributed random variable with expectation 0 and
variance σ2(β). Hence, we have shown that the measure L+

N , considered as a random element of the
space of finite measures, converges in probability to a normal distribution with mean 0 and variance
σ2(β). This is the assertion of Theorem 1.1. �

4. Proof of Theorem 1.3

We go through the proof of Theorem 1.1 and indicate where we need to adjust the arguments.
At the beginning of Section 3 we already defined T (σ) = Tβ,N (σ) for h = 0. Now, in the definition
of T and in the rest of the proof we use

m = m+(β, h)

and set

T (σ) := Tβ,h,N (σ) := exp

(
γ

N∑
i,j=1

εi,jσiσj − γm2
N∑

i,j=1

εi,j + βh
N∑
i=1

σi

)
and

Z̃N (β, h, g) :=
∑

σ∈{−1,+1}N
g

(
|σ| −Nm√

N

)
T (σ).

Again, we will suppress the indices β, h and N in Tβ,h,N (σ) in the rest of this section.
In the expansion of ET (σ), we get an additional deterministic term exp(βh|σ|), i.e. we get im-

mediately

Lemma 4.1. Assume h > 0, β > 0. Then for all σ ∈ {−1,+1}N we have

ET (σ) = exp

(
β

2N
(|σ|2 −m2N2) +

(1− p)β2

8p2

(
m4 − 2m2|σ|2

N2
+ 1

))
exp(hβ|σ|+ o(1))

with an o(1)-term that is uniform over σ ∈ {−1,+1}N .
The analogue of Proposition 3.2 now reads as follows.

Proposition 4.2. For all g ∈ Cb(R), g ≥ 0, g 6≡ 0, h > 0, β > 0, and p with Np3 →∞ we have

lim
N→∞

EZ̃N (β, h, g)

e
(1−p)β2

8p
(−m4+1)−NI(m)+βhNm

2N+1 1√
1−m2

σ(β, h)Eξ[g(ξ)]
= 1, (4.1)

where ξ denotes a normally distributed random variable with expectation 0 and variance σ2(β, h).
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Proof : We note that, in contrast to the case h = 0, there is an additional term eβhNm in the
denominator in the assertion of the proposition. We proceed as in the proof of Proposition 3.2. The
main difference is that ET (σ) has an supplementary factor eβh|σ|, which results in an extra factor
eβhk in (3.5). The remaining notation is the same as in the proof of Proposition 3.2. Again we use
k
N = m+ ck√

N
with |ck| ≤ κN , i.e.

eβhk = eβhNmeβh
√
Nck .

Instead of (3.7) we have∑
σ∈S1

N

g

(
|σ| −Nm√

N

)
ET (σ)

= (1 + o(1))e
(1−p)β2

8p
(m4+1)−NI(m)+βhNm

2N
1√

1−m2

√
2

πN

×
∑

k∈WN,m

g

(
k −Nm√

N

)
e
β
2N

(2N3/2mck+c
2
kN)− (1−p)β2

8p

2m4N2+4m3N3/2ck+2m2c2kN

N2 +βh
√
Nck

× e
−NI′(m)

ck√
N
−I′′(m)

c2k
2 .

The linear term in ck in the exponent is

ck

(
βm
√
N − β2(1− p)m3

2p
√
N

−
√
NI ′(m) + βh

√
N

)
= ck

(
βm
√
N −

√
NI ′(m) + βh

√
N
)
+ o(1)

= o(1),

where the first equality follows from the definition of κN and Np3 → ∞ and the second equality
follows fromm+(β, h) = tanh(β(m+(β, h)+h)), which is the defining relation form+(β, h). The rest
of the proof for typical spin configurations can remain unchanged, except for the additional factor
eβhNm, which now appears in the denominator in the assertion of the proposition. For atypical spin
configurations we get again an extra factor eβhk in the expansion of ET (σ), i.e. instead of (3.10) we
arrive at ∑

σ∈S1c
N

g

(
|σ| −Nm√

N

)
ET (σ)

≤C||g||∞e
(1−p)β2

8p
(m4+1)

2N
∑
k:

k2∈Wc
N,m,0

e
β
2N

(k2−m2N2)−m
4(1−p)β2

4p
− 2ck(1−p)β

2

4p
√
N

m3−NI( k
N
)
eβhk.

The function k
N 7→

β
2N k

2 −NI( kN ) + βhk attains its maximum in m+(β, h) and hence

β

2N
k2 −NI( k

N
) + βhk ≤ N

(
β

2
m2 − I(m) + βhm

)
− k1c2k,

for some k1 > 0. The rest of the proof is completely analogous to the case h = 0. �

In the expansion of E(T (σ)T (τ)) we get two extra terms, which leads immediately to the following
analogue of Lemma 3.3.

Lemma 4.3. For h > 0, β > 0, all p = p(N) such that p3N → ∞ and all σ, τ ∈ {−1,+1}N we
have

E(T (σ)T (τ)) = exp(N2b0 + b1|σ|2 + b2|τ |2 + b12|στ |2 + hβ(|σ|+ |τ |))
with coefficients b0, b1, b2, b12 given in Lemma 3.3.
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The proof of

V(Z̃N (β, h, g)) = o
(
E2[Z̃N (β, h, g)]

)
,

i.e. of the result corresponding to Proposition 3.4, as well as the rest of the proof is completely
analogous to the case h = 0, where in (3.20) ξ is now a normally distributed random variable with
expectation 0 and variance σ2(β, h). In particular, it follows that

Z̃N (β, h, g)

EZ̃N (β, h, g)
→ 1,

Z̃N (β, h)

EZ̃N (β, h)
→ 1, (4.2)

in probability.

5. Proof of Theorem 1.4

We give the proof for the two cases h = 0, β > 1 and h > 0, β > 0 simultaneously. The main
ingredient for the fluctuations of ZN (β, h) is the relation (see (3.2))

ZN (β, h) = Z̃N (β, h) exp

(
γm2

N∑
i,j=1

εi,j

)
together with

Z̃N (β, h)

EZ̃N (β, h)
→ 1 in probability;

see (3.18) for the case h = 0, β > 1, and (4.2) for the case h > 0, β > 0. The term exp
(
γm2

N∑
i,j=1

εi,j

)
can easily be treated by the Central Limit Theorem.

Proof of Theorem 1.4: We have

log
ZN (β, h)

EZ̃N (β, h)
= log

Z̃N (β, h)

EZ̃N (β, h)
+ γm2

N∑
i,j=1

εi,j .

Note that γ
∑N

i,j=1 εi,j is a sum of independent random variables with

E

(
γ

N∑
i,j=1

εi,j

)
= γpN2 =

β

2
N

and

V

(
γ

N∑
i,j=1

εi,j

)
= γ2N2p(1− p) = β2

4p
(1− p).

Hence, by the Central Limit Theorem (which applies since N2p(1− p)→∞) we have for N →∞

γm2
∑N

i,j=1 εi,j −m2 β
2N√

m4 β
2

4p (1− p)
→ N0,1

in distribution. It follows that

log ZN (β,h)

EZ̃N (β,h)
−m2 β

2N√
m4 β

2

4p (1− p)
=

log Z̃N (β,h)

EZ̃N (β,h)√
m4 β

2

4p (1− p)
+
γm2

∑N
i,j=1 εi,j −m2 β

2N√
m4 β

2

4p (1− p)
.
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The numerator of the first summand converges to 0 in probability, while the denominator is bounded
away from 0 because p is bounded away from 1. It follows that the first term converges to 0 in
probability and hence

log ZN (β,h)

EZ̃N (β,h)
−m2 β

2N√
m4 β

2

4p (1− p)
→ N0,1

in distribution. This completes the proof. �
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