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Abstract. We provide scaling limits for the block counting process and the fixation line of Λ-
coalescents as the initial state n tends to infinity under the assumption that the measure Λ on
[0, 1] satisfies

∫
[0,1] u

−1|Λ− bλ|(du) < ∞ for some b ≥ 0. Here λ denotes the Lebesgue measure on
[0, 1]. The main result states that the block counting process, properly transformed, converges in
the Skorohod space to a generalized Ornstein–Uhlenbeck process as n tends to infinity. The result
is applied to beta coalescents with parameters 1 and b > 0. We split the generators into two parts
by additively decomposing Λ into a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’ Λ − bλ and
then prove the uniform convergence of both parts separately.

1. Introduction

The Λ-coalescent, independently introduced by Pitman (1999) and Sagitov (1999), is a Markov
process Π = (Πt)t≥0 with càdlàg paths, values in the space of partitions of N := {1, 2, . . .}, starting at
time t = 0 from the partition {{1}, {2}, . . .} of N into singletons, whose behavior is fully determined
by a finite measure Λ on the Borel subsets of [0, 1]. If the process is in a state with k ≥ 2 blocks,
any particular j ∈ {2, . . . , k} blocks merge at the rate

λk,j =

∫
[0,1]

uj−2(1− u)k−jΛ(du).

The reader is referred to Berestycki (2009) for a survey of Λ-coalescents. Unless Λ({1}) > 0, Πt has
either infinitely many blocks for all t > 0 almost surely or finitely many blocks for all t > 0 almost
surely. The Λ-coalescent is said to stay infinite in the first case and to come down from infinity
in the second. An atom of Λ at 1 corresponds to the rate of jumping to the trivial and absorbing
partition consisting only of the block N. For t ≥ 0 let N (n)

t denote the number of blocks of the
restriction Π

(n)
t := {B ∩ [n]|B ∈ Πt, B ∩ [n] 6= ∅} of Πt to [n] := {1, . . . , n}. The block counting
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process N (n) := (N
(n)
t )t≥0 is a [n]-valued Markov process that jumps from state k ≥ 2 to state

j ∈ {1, . . . , k − 1} at the rate

qk,j =

(
k

j − 1

)∫
[0,1]

uk−j−1(1− u)j−1Λ(du).

Clearly, N (n) starts in n at time t = 0, has decreasing paths and eventually reaches the absorbing
state 1. This work’s main objective is to analyze the limiting behavior of the block counting process
of Λ-coalescents that stay infinite as the initial state n tends to infinity by determining suitable
scaling constants. The question of the existence of scaling constants for which non-trivial limits
can be obtained is answered in the literature for coalescents with dust, i.e., (see Pitman, 1999;
Schweinsberg, 2000a) for measures Λ that satisfy∫

[0,1]
u−1Λ(du) < ∞, Λ({0}) = Λ({1}) = 0, (1.1)

and for the Bolthausen–Sznitman coalescent (Bolthausen and Sznitman, 1998), where Λ = λ is
the uniform distribution on [0, 1], an example of a dust-free coalescent that stays infinite. The
respective convergence results are recalled in Section 2, where they are stated as Propositions 2.1
and 2.2. This work provides unified proofs of Propositions 2.1 and 2.2 and extends the convergence
results by combining both proofs. The main result (Theorem 2.3) covers Λ-coalescents for which
there exists some b ≥ 0 such that ∫

[0,1]
u−1|Λ− bλ|(du) < ∞,

which can be understood that Λ is the sum of a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’
Λ − bλ. Here |Λ − bλ| denotes the total variation of the signed measure Λ − bλ. The assumption
includes Λ-coalescents where Λ = β(1, b) is the beta distribution with parameters 1 and b > 0. The
main result states that

(logN
(n)
t − e−bt log n)t≥0

converges in the Skorohod spaceDR[0,∞) as n tends to infinity. The limiting process is influenced by
both the ‘Bolthausen–Sznitman part’ and the ‘dust part’. The logarithmic version of the convergence
result has the advantage of putting the limiting process in Theorem 2.3 to the class of generalized
Ornstein–Uhlenbeck processes, which have been extensively studied in the literature. In Limic and
Talarczyk (2015), a work concerning the small-time behavior of the block counting process for a
broad class of Λ-coalescents that come down from infinity, a generalized Ornstein–Uhlenbeck process
also appears in a limit theorem for the block counting process. Regarding generalized Ornstein–
Uhlenbeck processes, the interested reader is referred to Sato and Yamazato (1984).

The fixation line L = (Lt)t≥0 is a N-valued Markov process that jumps from state k ∈ N to state
j ∈ {k + 1, k + 2, . . .} at the rate

γk,j =

(
j

j − k + 1

)∫
[0,1]

uj−k−1(1− u)kΛ(du).

The fixation line is the ‘time-reversal’ of the block counting process, in the sense that the hitting
times inf{t ≥ 0|N (n)

t ≤ m} and inf{t ≥ 0|L(m)
t ≥ n} share the same distribution, see Hénard

(2015, Lemma 2.1). Here the upper index ‘(m)’ denotes the initial state L(m)
0 = m at time t = 0.

Equivalently, the process L is Siegmund-dual (Siegmund, 1976) to the block counting process, i.e.,
(see Kukla and Möhle, 2018)

P(L
(m)
t ≥ n) = P(N

(n)
t ≤ m), m, n ∈ N, t ≥ 0. (1.2)
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For a thorough definition of the fixation line see Hénard (2015) and the references therein. The-
orem 2.4 states that (logL

(n)
t − ebt log n)t≥0 converges in DR[0,∞) as the initial value n tends to

infinity.
The article is organized as follows. In Section 2 the two known convergence results for the

block counting process of coalescents with dust (Proposition 2.1) and the Bolthausen–Sznitman
coalescent (Proposition 2.2) are recalled and the main result (Theorem 2.3) is stated. In Section 3
well-known results concerning generalized Ornstein–Uhlenbeck processes are applied to our setting.
In particular, the generator of the limiting process is determined. In Section 4 the main result is
applied to beta coalescents with parameter 1 and b > 0. The line of proof is as follows. First,
we prove Propositions 2.1 and 2.2 in Sections 5 and 6 by showing the uniform convergence of the
generators of the logarithm of the scaled block counting processes. The decomposition of Λ into the
uniform distribution multiplied by a constant and a measure that corresponds to a coalescent with
dust is transferred to the generators. This enables us to use relations obtained in Sections 5 and 6
to prove Theorem 2.3 in Section 7. Two proofs of Theorem 2.4 are given in Section 8.

Notation. Let E be a complete separable metric space. The Banach space B(E) of bounded
measurable functions f : E → R is equipped with the usual supremum norm ‖f‖ := supx∈E |f(x)|
and the Banach subspace Ĉ(E) ⊂ B(E) consists of all continuous functions vanishing at infinity.
If E ⊆ Rd for some d ∈ N, then Ck(E) denotes the space of k-times continuously differentiable
functions. A Feller semigroup (Tt)t≥0 is strongly continuous on Ĉ(E), i.e., limt→0 ||Ttf − f || = 0

for each f ∈ Ĉ(E), and satisfies Tt(Ĉ(E)) ⊆ Ĉ(E) for each t ≥ 0. The generators corresponding to
Feller semigroups, usually denoted by A, are understood to be defined on a dense subspace of Ĉ(E).
The Borel-σ-field on R is denoted by B and λ denotes Lebesgue measure on ([0, 1],B ∩ [0, 1]). For a
measure space (Ω,F , µ) and p > 0 the space of measurable functions f : Ω→ R with

∫
Ω |f |

pdµ <∞
is denoted by Lp(µ) or, in short, Lp.

2. Results

Throughout the article Λ is a finite non-zero measure on ([0, 1],B ∩ [0, 1]). Additionally, it is
assumed that Λ({0}) = Λ({1}) = 0, because coalescents in this article shall stay infinite and an
atom at 0 would imply that the coalescent comes down from infinity and an atom at 1 would imply
that the block counting process N (n) is almost surely in state 1 for all n ∈ N after a random finite
time not depending on n.

First, the two known results mentioned in the introduction are presented. A block B ∈ Πt of
size |B| = 1 is called a singleton. The number of singletons in [n] divided by n converges to the
frequency of singletons as n tends to infinity, and if the frequency of singletons is strictly positive,
the coalescent is said to have dust. A necessary and sufficient conditon for coalescents to have dust
is given by Eq. (1.1). For further results on Λ-coalescents with dust see Gnedin et al. (2011) and
Gaiser and Möhle (2016). Proposition 2.1 below has been established in Gaiser and Möhle (2016)
and Möhle (2021). In both articles the processes have non-logarithmic form and the blocks of the
coalescent are allowed to even merge simultaneously. The limiting process is the logarithm of the
frequency of singletons process as described in Pitman (1999, Proposition 26). In Möhle (2021)
the uniform convergence of the generators has been proven and a rate of convergence has been
determined. In this article the uniform convergence of the generators is going to be proven as well,
but with different techniques. In Gaiser and Möhle (2016) the convergence of the corresponding
semigroups has been shown, which is equivalent to the convergence of the generators on a core. The
proof is carried out, since parts are needed in order to verify Theorem 2.3.

Proposition 2.1 (dust case). Suppose that
∫

[0,1] u
−1Λ(du) < ∞. Then the time-homogeneous

Markov process X(n) := (X
(n)
t )t≥0 := (logN

(n)
t − log n)t≥0 converges in DR[0,∞) as n → ∞ to a
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limiting process X = (Xt)t≥0 with initial value X0 = 0 and semigroup (Tt)t≥0 given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(x+Xt)), x ∈ R, f ∈ B(R), s, t ≥ 0, (2.1)

where Xt has characteristic function E(exp(ivXt)) = exp(tψ(v)), v ∈ R, t ≥ 0, with

ψ(v) =

∫
[0,1]

((1− u)iv − 1)u−2Λ(du), v ∈ R. (2.2)

Observe that −X is a pure-jump subordinator with characteristic exponent v 7→ ψ(−v), v ∈ R.

The block counting process of the Bolthausen–Sznitman coalescent, has been treated in Möhle
(2015) and Kukla and Möhle (2018). Both works show that the semigroup of (N

(n)
t /ne

−t
)t≥0 con-

verges on a dense subset of B([0,∞)) to the semigroup of the Mittag–Leffler process as n tends to
infinity, hence the processes converge in D[0,∞)[0,∞). Taking logarithms does not spoil the con-
vergence. If f ∈ Ĉ(R), then f ◦ log ∈ Ĉ([0,∞)), and the semigroup and hence the generator A(n)

of the logarithm of the scaled block counting process X(n) = (logN
(n)
t − e−t log n)t≥0 converge as

well. We prove the convergence of A(n) in Section 6 directly. Since the scaling depends on t, the
process X(n) is time-inhomogeneous, and Kukla and Möhle (2018) have used the time-space pro-
cess in order to transfer the question of convergence to time-homogeneous Markov processes. The
time-space process is revisited in Section 6. By constructing the Bolthausen–Sznitman coalescent
from a random recursive tree, it is shown in Goldschmidt and Martin (2005) and Baur and Bertoin
(2015) that N (n)

t /ne
−t converges almost surely as n tends to infinity for each t ≥ 0. Since λ is the

particular beta distribution with both parameters equal to 1, the following result is the case b = 1
of Example 4.2 provided in Section 4.

Proposition 2.2 (Bolthausen–Sznitman case). Suppose that Λ = λ. Then the time-inhomgeneous
Markov process X(n) := (X

(n)
t )t≥0 := (logN

(n)
t − e−t log n)t≥0 converges in DR[0,∞) as n→∞ to

the time-homogeneous Markov process X = (Xt)t≥0 with initial value X0 = 0 and semigroup (Tt)t≥0

given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−tx+Xt)), x ∈ R, f ∈ B(R), s, t ≥ 0,

where Xt has characteristic function φt(v) := E(exp(ivXt)) = Γ(1 + iv)/Γ(1 + ie−tv), v ∈ R, t ≥ 0.

For b ≥ 0 define the possibly signed measure ΛD on B ∩ [0, 1] via ΛD(B) := Λ(B) − bλ(B),
B ∈ B ∩ [0, 1]. Hahn’s decomposition theorem states the existence of some set A ∈ B ∩ [0, 1]
such that Λ+

D(B) := ΛD(B ∩ A), B ∈ B ∩ [0, 1], and Λ−D(B) := −ΛD(B ∩ Ac), B ∈ B ∩ [0, 1],

define nonnegative measures. The two nonnegative measures Λ+
D and Λ−D constitute the Jordan

decomposition of ΛD. By using this decomposition, one can integrate with respect to the signed
measure ΛD by defining

∫
fdΛD :=

∫
fdΛ+

D−
∫
fdΛ−D for f ∈ L1(Λ+

D)∩L1(Λ−D). The total variation
|ΛD| of ΛD is given by |ΛD| := Λ+

D + Λ−D. The assumption of Theorem 2.3 below is the following.

Assumption A. There exists b ≥ 0 such that
∫

[0,1] u
−1|ΛD|(du) < ∞, i.e.,

∫
[0,1] u

−1Λ+
D(du) < ∞

and
∫

[0,1] u
−1Λ−D(du) <∞.

Assumption A implies that b = limε→0 ε
−1Λ((0, ε)), see Lemma 9.1 a) in the appendix. In particular,

if Assumption A holds, then the constant b is uniquely determined by the measure Λ. Schweinsberg’s
criterion (Schweinsberg, 2000b) shows that the Λ-coalescent does not come down from infinity under
Assumption A, see Lemma 9.1 b). Moreover, the Λ-coalescent is dust-free if and only if b > 0.
Assumption A is for example satisfied, if Λ has density f ∈ C1([0, 1]) with respect to λ for which
limu↘0 f

′(u) exists and is finite. In this case, b = f(0).
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Suppose that Λ satisfies Assumption A. Let Γ(z) :=
∫∞

0 uz−1e−udu, Re(z) > 0, denote the gamma
function and Ψ(z) := (log Γ)′(z) = Γ′(z)/Γ(z), Re(z) > 0, the digamma function. Define

a := b(1 + Ψ(1))−
∫

[0,1]
u−1ΛD(du) (2.3)

and the infinitely divisible characteristic exponent ψ : R→ C via

ψ(v) := iav +

∫
[0,1]

((1− u)iv − 1 + ivu)u−2Λ(du), v ∈ R. (2.4)

Formally, the constant b of Assumption A only appears in the drift part of ψ. Note however that b
is uniquely determined by Λ. In this sense b depends on Λ and therefore also influences (via Λ) the
jump part of ψ. Substituting g : (0, 1)→ R, g(u) := log(1− u), u ∈ (0, 1), shows that

ψ(v) = iav +

∫
(−∞,0)

(eivu − 1 + iv(1− eu))%(du), v ∈ R,

where the measure %, defined via

%(A) :=

∫
g−1(A)

u−2Λ(du), A ∈ B, (2.5)

satisfies
∫
R(u2 ∧ 1)%(du) < ∞ and %({0}) = 0. Hence, % is a Lévy measure, eψ(v), v ∈ R, is

the characteristic function of an infinitely divisible distribution and the process described by Eqs.
(2.6) and (2.7) below belongs to the class of generalized Ornstein–Uhlenbeck processes. Due to
%((0,∞)) = 0, the limiting process in Theorem 2.3 has only negative jumps. Compensation of
small jumps occurs if and only if b 6= 0. Further properties of the limiting process are presented in
Section 3.

Theorem 2.3. Suppose that Λ satisfies Assumption A. Then the possibly time-inhomogeneous
Markov process X(n) := (X

(n)
t )t≥0 := (logN

(n)
t − e−bt log n)t≥0 converges in DR[0,∞) as n→∞ to

the time-homogeneous Markov process X = (Xt)t≥0 with initial value X0 = 0 and semigroup (Tt)t≥0

given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−btx+Xt)), x ∈ R, f ∈ B(R), s, t ≥ 0, (2.6)

where Xt has characteristic function φt given by

φt(v) = exp

(∫ t

0
ψ(e−bsv)ds

)
, v ∈ R, t ≥ 0, (2.7)

and ψ is given by (2.4).

The dust case and the Bolthausen–Sznitman case arise from Assumption A as follows. If∫
[0,1] u

−1Λ(du) < ∞, then Assumption A holds with b = 0. Thus, a = −
∫

[0,1] u
−1Λ(du), the

definitions (2.2) and (2.4) for ψ coincide and Proposition 2.1 and Theorem 2.3 describe the same
limiting result. For Λ = λ, Assumption A holds with b = 1 and without a dust part. In this case,
a = 1 + Ψ(1) and the underlying Lévy measure % has density f with respect to Lebesgue measure
on R\{0} given by f(u) := eu(1−eu)−2 for u < 0 and f(u) := 0 for u > 0. The connection between
Proposition 2.2 and Theorem 2.3 in the Bolthausen–Sznitman case is clarified in Section 4.

A convergence result for the fixation line can be stated analogously to Theorem 2.3; see also
Gaiser and Möhle (2016, Theorem 2.13 b)) for the case b = 0.

Theorem 2.4. Suppose that Λ satisfies Assumption A. Then the possibly time-inhomogeneous
Markov process Y (n) := (Y

(n)
t )t≥0 := (logL

(n)
t − ebt log n)t≥0 converges in DR[0,∞) as n → ∞
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to the time-homogeneous Markov process Y = (Yt)t≥0 with initial value Y0 = 0 and semigroup
(Tt)t≥0 given by

Ttf(y) := E(f(Ys+t)|Ys = y) = E(f(ebty + Yt)), y ∈ R, f ∈ B(R), s, t ≥ 0, (2.8)

where Yt has characteristic function χt given by

χt(w) = exp

(∫ t

0
ψ(−ebsw)ds

)
, w ∈ R, t ≥ 0, (2.9)

and ψ is given by (2.4).

Remark 2.5. The process defined by (2.8) and (2.9) is a generalized Ornstein–Uhlenbeck process
with underlying characteristic exponent v 7→ ψ(−v), v ∈ R, but with nonnegative drift.

Remark 2.6. Let the random variable St have characteristic function φt, given by (2.7), for t ≥ 0,
and let X = (Xt)t≥0 and Y = (Yt)t≥0 denote the processes defined in Theorems 2.3 and 2.4,
respectively. Conditional on Xs = x, Xt+s is distributed as e−btx + St for all x ∈ R. Note that
Yt

d
= −ebtXt

d
= −ebtSt and that conditional on Ys = y, Yt+s is distributed as ebty − ebtSt. Hence,

P(eYt+s ≥ x|eYs = y) = P(ye
bt
e−e

btSt ≥ x) = P(xe
−bt
eSt ≤ y) = P(eXt+s ≤ y|eXs = x)

for all x, y, s, t ≥ 0, i.e., eY is Siegmund-dual to eX (see Siegmund, 1976) parallel to the Siegmund-
duality of the block counting process and the fixation line.

Remark 2.7. For the Bolthausen–Sznitman case, the convergence result corresponding to Theo-
rem 2.4 is stated in Kukla and Möhle (2018, Theorem 3.1 b)) in non-logarithmic form. The fixation
line of the Bolthausen–Sznitman coalescent is a continuous-time discrete state space branching
process in which the offspring distribution has probability generating function f(s) = s + (1 −
s) log(1 − s), s ∈ [0, 1]. The limiting process described in Theorem 2.4 is the logarithm of Neveu’s
continuous-state branching process. By Proposition 2.2, the characteristic functions χt of the mar-
ginal distributions are given by (see Kukla and Möhle, 2018, Eq. (19))

χt(w) = φt(−etw) =
Γ(1− iebtw)

Γ(1− iw)
, w ∈ R, t ≥ 0.

3. The limiting process

Standard computations (see Sato, 1999, Lemma 17.1) show that φt, given by (2.7), is the char-
acteristic function of an infinitely divisible distribution for each t ≥ 0 without Gaussian component
and Lévy measure %t given by

%t(A) =

∫
(−∞,0)

∫ t

0
1A(e−bsu)ds%(du), A ∈ B, t ≥ 0.

Sato and Yamazato (1984, Theorem 3.1) provide a formula for the generator corresponding to
the semigroup (Tt)t≥0 given by (2.6).

Lemma 3.1. Suppose that Λ satisfies Assumption A. Let ψ be given by (2.4), φt be defined by
(2.7) and let the random variable Xt have characteristic function φt for each t ≥ 0. The family of
operators (Tt)t≥0 defined by (2.6) is a Feller semigroup. Let D denote the space of twice differentiable
functions f : R → R such that f, f ′, f ′′ ∈ Ĉ(R) and such that the map x 7→ xf ′(x), x ∈ R, belongs
to Ĉ(R). Then D is a core for the generator A corresponding to (Tt)t≥0 and

Af(x) = f ′(x)(a− bx) +

∫
[0,1]

(f(x+ log(1− u))− f(x) + uf ′(x))u−2Λ(du) (3.1)

for x ∈ R and f ∈ D, where a is given by (2.3).
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Proof : Substituting g : (0, 1) → R, g(u) := log(1 − u), u ∈ (0, 1), shows that (3.1) is an integro-
differential operator of the form (1.1) of Sato and Yamazato (1984) with dimension d = 1. In Sato
and Yamazato (1984), operators of this form are initially considered as acting on the space C2

c of
twice differentiable functions with compact support (see the explanations after Eq. (1.2) in Sato
and Yamazato (1984)), but Step 3 of the proof of Sato and Yamazato (1984, Theorem 3.1) shows
that (3.1) even holds for functions f ∈ D (⊃ C2

c ). Note that the space D is denoted by F1 in Sato
and Yamazato (1984). The fact that D is a core for A is only a different phrasing of the claim in
Step 5 of the proof of Sato and Yamazato (1984, Theorem 3.1). �

The limiting process’s generator in the dust case (b = 0) is given by

Af(x) =

∫
[0,1]

(f(x+ log(1− u))− f(x))u−2Λ(du), x ∈ R,

in agreement with Eq. (3.1).
The limiting process in Theorem 2.3 arises as the solution to a certain stochastic differential

equation. For the remainder of this section, b > 0 is fixed and ψ is allowed to be the characteristic
exponent of an arbitrary infinitely divisible distribution on R, except for Lemmata 3.2 and 3.3,
which are applications of results known from the literature to the coalescent setting. Let the Lévy
process L = (Lt)t≥0 with characteristic functions E(eivLt) = etψ(v), v ∈ R, t ≥ 0, be adapted to the
filtration (Ft)t≥0 which satisfies the usual hypotheses. In particular, Lt+s−Ls is independent of Fs
for all s, t ≥ 0. The Langevin equation with Lévy noise instead of a Brownian motion

dXt = −bXtdt+ dLt, t ≥ 0, (3.2)

with initial value X0 = x has an unique (Ft)t≥0-adapted solution X = (Xt)t≥0 with càdlàg
paths. The solution to (3.2) or the corresponding semigroup are hence called generalized Ornstein–
Uhlenbeck or Ornstein–Uhlenbeck type process or semigroup. It holds that

Xt = e−btx+

∫ t

0
e−b(t−s)dLs, t ≥ 0. (3.3)

Various constructions for the stochastic integral in (3.3) are possible, e.g., in Applebaum (2009,
Sections 6.3 and 6.2) the stochastic integral is the Itô-integral with respect to semimartingales. The
process X is a stochastically continuous Markov process and the corresponding semigroup is given
by (2.6), where the characteristic functions φt of Xt are given by (2.7) with underlying infinitely
divisible characteristic exponent ψ for t ≥ 0.

Generalized Ornstein–Uhlenbeck processes bear a close connection to self-decomposable distri-
butions. A real-valued random variable S is called self-decomposable if for every α ∈ [0, 1] there
exists a random variable Sα independent of S such that S has the same distribution as αS + Sα.
If φ is the characteristic function of S, then S is self-decomposable if and only if v 7→ φ(v)/φ(αv),
v ∈ R, is the characteristic function of a real-valued random variable for every α ∈ [0, 1]. A dis-
tribution µ on R or its characteristic function φ is said to be self-decomposable if there exists a
self-decomposable random variable with distribution µ. Suppose that the Lévy measure % of the
characteristic exponent ψ satisfies∫

{|u|>1}
log(1 + |u|)%(du) <∞. (3.4)

According to Sato and Yamazato (1984, Theorems 4.1 and 4.2), Xt converges in distribution as
t → ∞ to the unique stationary distribution µ of X. The distribution µ is self-decomposable.
Conversely, every self-decomposable distribution can be obtained as the stationary distribution of
a generalized Ornstein–Uhlenbeck process. If (3.4) does not hold, then there exists no stationary
distribution. The following lemma is an application of Sato and Yamazato (1984, Theorems 4.1 and
4.2) to this article’s coalescent setting.
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Lemma 3.2. Suppose that Λ satisfies Assumption A with b > 0 and let X = (Xt)t≥0 be as in
Theorem 2.3. If

∫
(ε,1) log log(1 − u)−1Λ(du) < ∞ for some 1 − e−1 < ε < 1, then Xt converges

in distribution as t → ∞ to the unique stationary distribution µ of X. The distribution µ is self-
decomposable with characteristic function φ given by

φ(v) = exp

(∫ ∞
0

ψ(e−bsv)ds

)
, v ∈ R.

The characteristic function φt of Xt satisfies φt(v) = φ(v)/φ(e−btv), v ∈ R.
If
∫

(ε,1) log log(1− u)−1Λ(du) =∞ for 0 < ε < 1, then, for every l,

lim
t→∞

sup
x∈R

sup
y∈R

P(|e−btx+Xt − y| ≤ l) = 0.

The process has no stationary distribution.

The criterion of Shiga (1990, Theorem 1.1) for transience and recurrence complements Lemma 3.2.

Lemma 3.3. Suppose that Λ satisfies Assumption A with b > 0 and let X = (Xt)t≥0 be as in
Theorem 2.3. Then X is irreducible in R. Let ε ∈ [1 − e−1, 1) and define gΛ(y) :=

∫
(ε,1)(1 −

ey log(1−u))u−2Λ(du), y ∈ [0, 1]. If the integral∫ 1

0
z−1 exp

(
−
∫ 1

z

gΛ(y)

by
dy

)
dz (3.5)

is finite, then X is transient, i.e., it holds that P(limt→∞ |Xt| =∞|X0 = x) = 1 for every x ∈ R. If
the integral (3.5) is infinite, then X is recurrent, i.e., there exists a ∈ R such that P(lim inft→∞ |Xt−
a| = 0|X0 = a) = 1.

Note that the limiting process X or, more precisely, its semigroup (Tt)t≥0 belongs to the class
of Mehler semigroups (Bogachev et al., 1996), as is true for all generalized Ornstein–Uhlenbeck
processes, since φt+s(v) = φt(e

−bsv)φs(v), v ∈ R, for s, t ≥ 0.

4. Beta coalescents

The beta distribution β(a, b) with parameters a, b > 0 has density u 7→ Γ(a + b)/(Γ(a)Γ(b))
ua−1(1− u)b−1, u ∈ (0, 1), with respect to Lebesgue measure on (0, 1). Beta coalescents, for which
Λ = β(a, b) for some a, b > 0, have been extensively studied in the literature due to the easy
computability of the jump rates

qk,j =
Γ(a+ b)Γ(k + 1)Γ(j − 1 + b)Γ(k − j − 1 + a)

Γ(a)Γ(b)Γ(k − 2 + a+ b)Γ(j)Γ(k − j + 2)
, j ∈ {1, . . . , k − 1}, k ≥ 2. (4.1)

The β(a, b)-coalescent comes down from infinity if and only if 0 < a < 1 (Schweinsberg, 2000b,
Example 15), and has dust if and only if a > 1.

For a = 1 the beta coalescent is dust-free and does not come down from infinity. From the
observation stated below Assumption A we conclude that Assumption A is satisfied with the same
constant b. The ‘dust part’ Λ− bλ has possibly negative density u 7→ b((1− u)b−1 − 1), u ∈ (0, 1),
with respect to Lebesgue measure on (0, 1). The computations of a and ψ in the proof of the
following proposition are based on Gauß’ representation (see Whittaker and Watson, 1996, p. 247)

Ψ(z) =

∫ ∞
0

(
e−u

u
− e−zu

1− e−u

)
du, Re(z) > 0,

of the digamma function.
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Proposition 4.1. Suppose that Λ = β(1, b) with b > 0. Let a, ψ and % be given by (2.3), (2.4)
and (2.5), respectively. Then % has density f with respect to Lebesgue measure on (−∞, 0) given by
f(u) := bebu(1− eu)−2, u < 0,

a = b(1 + Ψ(b)) (4.2)

and

ψ(v) = b
(
(1− b)Ψ(b)− (1− b− iv)Ψ(b+ iv)

)
, v ∈ R. (4.3)

Proof : It can be easily verified that % has density as stated in the proposition. Eq. (4.2) follows
from ∫

[0,1]
u−1(Λ− bλ)du = b

∫ 1

0
u−1((1− u)b−1 − 1)du

= b

∫ ∞
0

(
e−bu

1− e−u
− e−u

1− e−u

)
du = b(Ψ(1)−Ψ(b)).

Next, note that

Ψ(b)−Ψ(b+ iv) =

∫ ∞
0

(e−ivu − 1)
e−bu

1− e−u
du, v ∈ R. (4.4)

Integration by parts yields

iv(Ψ(b+ iv)−Ψ(b)) =

∫ ∞
0

(iv − ive−ivu)
e−bu

1− e−u
du

= (ivu+ e−ivu − 1)
e−bu

1− e−u

∣∣∣∣u=∞

u=0

−
∫ ∞

0
(ivu+ e−ivu − 1)

(
−be−bu

1− e−u
− e−bu

(1− e−u)2
e−u
)

du

=

∫ ∞
0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2

(
1− (1− b)(1− e−u)

)
du, v ∈ R.

Hence,

(1− b)Ψ(b)− (1− b− iv)Ψ(b+ iv)

= ivΨ(b) + (1− b)(Ψ(b)−Ψ(b+ iv)) + iv(Ψ(b+ iv)−Ψ(b))

= ivΨ(b) + (1− b)
∫ ∞

0
(e−ivu − 1)

e−bu

1− e−u
du

+

∫ ∞
0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2

(
1− (1− b)(1− e−u)

)
du

= ivΨ(b) +

∫ ∞
0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2
du− iv(1− b)

∫ ∞
0

u
e−bu

1− e−u
du

= iv
(
Ψ(b)− (1− b)Ψ′(b)

)
+ b−1

∫
R\{0}

(eivu − 1− ivu)%(du)

= iv

(
Ψ(b)− (1− b)Ψ′(b) + b−1

∫
R\{0}

(eu − 1− u)%(du)

)
+ b−1

∫
R\{0}

(eivu − 1 + iv(1− eu))%(du).
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The calculation

− (1− b)Ψ′(b) + b−1

∫
R\{0}

(eu − 1− u)%(du)

=

∫ ∞
0

(
− (1− b)u(1− e−u) + e−u − 1 + u

) e−bu

(1− e−u)2
du = − e−bu

1− e−u
u
∣∣∣u=∞

u=0
= 1

and multiplication with b complete the proof of (4.3). �

Example 4.2. Suppose that Λ = β(1, b) with b > 0. Then Assumption A is satisfied with the same
constant b. According to Theorem 2.3 the process (logN

(n)
t − e−bt log n)t≥0 converges in DR[0,∞)

as n→∞ to a Markov process X = (Xt)t≥0 with initial value X0 = 0 and semigroup (Tt)t≥0 given
by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−btx+Xt)), x ∈ R, f ∈ B(R), s, t ≥ 0,

where Xt has characteristic function φt given by (2.7).
Since

∫
(1−e−1,1) log log(1−u)−1Λ(du) =

∫ 1
1−e−1 log log(1−u)−1b(1−u)b−1du <∞, the logarithmic

moment condition of Lemma 3.2 is satisfied and Xt converges in distribution as t→∞ to the unique
stationary distribution µ of X. The distribution µ is self-decomposable with characteristic function
φ given by

φ(v) = exp

(∫ ∞
0

ψ(e−bsv)ds

)
= exp

(
(1− b)

∫ v

0

Ψ(b)−Ψ(b+ iu)

u
du

)
Γ(b+ iv)

Γ(b)
, v ∈ R. (4.5)

In the last step equation (4.3) and the fact that Ψ(z) = (log Γ(z))′, Re(z) > 0, have been used. The
characteristic function φt of Xt is hence given by

φt(v) =
φ(v)

φ(e−btv)
= exp

(
(1− b)

∫ v

e−btv

Ψ(b)−Ψ(b+ iu)

u
du

)
Γ(b+ iv)

Γ(b+ ie−btv)
, v ∈ R, t ≥ 0.

Similarly to the convergence above, (N
(n)
t /ne

−bt
)t≥0 converges in D[0,∞)[0,∞) to (exp(Xt))t≥0 as

n→∞.

The following is an attempt to describe µ and the distribution of Xt. If Z has a gamma dis-
tribution with parameters b and 1, i.e., Z has density u 7→ ub−1e−u(Γ(b))−1, u > 0, with re-
spect to Lebesgue measure on (0,∞), then logZ has the self-decomposable characteristic function
v 7→ Γ(b+iv)/Γ(b), v ∈ R, see Steutel and van Harn (2004, V, Example 9.18), which implies that the
map v 7→ Γ(b+iv)/Γ(b+ie−btv), v ∈ R, is the characteristic function of a real-valued random variable
for every t ≥ 0. As long as b < 1, the function u 7→ (1− b)(Ψ(b)−Ψ(b+ iu)), u ∈ R, which appears
in the first factor on the right-hand side of (4.5), is the characteristic exponent of the negative of a
drift-free subordinator, whose Lévy measure has density u 7→ (1−b)e−bu(1−e−u)−1, u > 0, with re-
spect to Lebesgue measure on (0,∞), cf. (4.4). In particular, it is the characteristic exponent of an
infinitely divisible distribution, and if Z has characteristic function v 7→ exp((1−b)(Ψ(b)−Ψ(b+iv)),
v ∈ R, then E(log(1 + |Z|)) <∞. By Steutel and van Harn (2004, V, Theorem 6.7), the first factor
on the right-hand side of (4.5) is a self-decomposable characteristic function as well, and

v 7→ exp

(
(1− b)

∫ v

e−btv

Ψ(b)−Ψ(b+ iu)

u
du

)
, v ∈ R,

is the characteristic function of a real-valued random variable for each t ≥ 0. The arguments that
allow the decomposition of φt into the product of two characteristic functions fail for b > 1.

We shortly return to the Bolthausen–Sznitman coalescent. Recall that the Bolthausen–Sznitman
coalescent is the particular beta coalescent with driving measure Λ = β(1, 1). Proposition 4.1 with
b = 1 states that ψ(v) = ivΨ(1 + iv), v ∈ R. Example 4.2 with b = 1 entails the convergence of the
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limiting process’s marginal distributions as t→∞ to a self-decomposable distribution with charac-
teristic function φ(v) = Γ(1 + iv), v ∈ R. Let Z have an exponential distribution with parameter 1.
Then logZ is the negative of a Gumbel distributed random variable and has characteristic function
φ, see e.g. Steutel and van Harn (2004, V, Example 9.15). Hence, −Xt converges in distribution as
t→∞ to the Gumbel distribution. Moreover,

φt(v) = exp

(∫ ∞
0

ψ(e−sv)ds

)
=

Γ(1 + iv)

Γ(1 + ie−tv)
, v ∈ R, t ≥ 0,

which connects Proposition 2.2 and Theorem 2.3.

5. Proof of Proposition 2.1

In this section Λ satisfies the dust condition
∫

[0,1] u
−1Λ(du) < ∞ in addition to the general

assumption Λ({0}) = Λ({1}) = 0. Let En := {x ∈ R|exn ∈ [n]} denote the state space of
X(n) = (X

(n)
t )t≥0 = (logN

(n)
t − log n)t≥0 for each n ∈ N. By defining k := k(x, n) := exn ∈ [n] for

x ∈ En and n ∈ N, we can represent the generator A(n) of X(n) as

A(n)f(x) =

k−1∑
j=1

(f(x+ log j
k )− f(x))qk,j , x ∈ En, f ∈ Ĉ(R), n ∈ N.

The process X = (Xt)t≥0 defined by (2.1) and (2.2) is a Feller process in Ĉ(R). Let A denote the
generator. From Sato (1999, Theorem 31.5) it follows that the space Ĉ2(R) of twice differentiable
functions f ∈ C2(R) with f, f ′, f ′′ ∈ Ĉ(R) is a core for A and

Af(x) =

∫
[0,1]

(f(x+ log(1− u))− f(x))u−2Λ(du), x ∈ R, f ∈ Ĉ2(R).

The idea to prove the uniform convergence of the generators is the following: write the jump rates
as values of a distribution depending on k (with some minor adjustments) whose limiting behavior
as k → ∞ can be determined. The generators A(n) and A can then be written as the mean of
random variables and classical weak convergence results can be applied.

Proof : (of Proposition 2.1) Let f ∈ Ĉ2(R). Define h : [0, 1]×R→ R via h(u, x) := u−1(f(x+log(1−
u)) − f(x)), u ∈ (0, 1), h(0, x) := limu↘0 h(u, x) = −f ′(x) and h(1, x) := limu↗1 h(u, x) = −f(x)
for x ∈ R. Differentiating s 7→ f(x+ log(1− us)), s ∈ (0, 1), leads to

f(x+ log(1− u))− f(x) = −u
∫ 1

0

f ′(x+ log(1− us))
1− us

ds, u ∈ [0, 1), x ∈ R.

Thus,

h(u, x) = −
∫ 1

0

f ′(x+ log(1− us))
1− us

ds, u ∈ [0, 1), x ∈ R,

and h stays bounded even as u tends to 0. Define

S(k, x) :=

k−1∑
j=1

(f(x+ log j
k )− f(x))qk,j , I(x) :=

∫
[0,1]

h(u, x)u−1Λ(du), k ∈ N, x ∈ R.

(5.1)
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Obviously, A(n)f(x) = S(k, x) for x ∈ En and n ∈ N and I(x) = Af(x) for x ∈ R. Substituting
k − j for j and the definition of h yield

S(k, x) =

k−1∑
j=1

(f(x+ log(1− j
k ))− f(x))qk,k−j

=

k−1∑
j=1

h( jk , x)
j

k

(
k

j + 1

)∫
[0,1]

uj−1(1− u)k−j−1Λ(du)

=
k−1∑
j=0

h( jk , x)
j

j + 1

(
k − 1

j

)∫
[0,1]

uj−1(1− u)k−j−1Λ(du), k ∈ N, x ∈ R.

Set c :=
∫

[0,1] u
−1Λ(du) ∈ (0,∞) and define the probability measure Q on ([0, 1],B ∩ [0, 1]) via

Q(A) := c−1
∫
A u
−1Λ(du), A ∈ B ∩ [0, 1]. Let the random variables Zk, k ∈ N, have distribution

given by

P(Zk = j) =

(
k − 1

j

)∫
[0,1]

uj(1− u)k−1−jQ(du), j ∈ {0, . . . , k − 1},

i.e., Zk has a mixed binomial distribution with sample size k − 1 and random success probability
Q. Let the random variable Z have distribution Q. Then

S(k, x) = cE
(
(1− (Zk + 1)−1)h(Zk/k, x)

)
, k ∈ N, x ∈ R,

and I(x) = cE(h(Z, x)), x ∈ R. It is straightforward to check that Zk/k → Z in distribution as
k →∞, e.g., by verifying the convergence of the cumulative distribution functions (cdf) on the set of
continuity points of the cdf of Z. In particular, limk→∞ P(Zk ≤ C) = Q(0) = 0 for every C > 0 and,
hence, limk→∞ E((Zk + 1)−1) = 0. Since h is bounded and f, f ′ ∈ Ĉ(R) are uniformly continuous,
the family of functions {h(·, x)|x ∈ R} is equicontinuous on [δ, 1 − δ] for every 0 < δ < 1/2 and
uniformly bounded on [0, 1]. From Lemma 9.4 it follows that E(h(Zk/k, x))→ E(h(Z, x)) uniformly
in x ∈ R as k →∞, thus

lim
k→∞

sup
x∈R
|S(k, x)− I(x)| = 0. (5.2)

From limx→−∞ h(Z, x) = 0 a.s., the fact that h is bounded and the dominated convergence theorem
it follows that

lim
x→−∞

|I(x)| = c lim
x→−∞

|E(h(Z, x))| = 0. (5.3)

Since f ∈ Ĉ(R), limx→−∞ S(k, x) = 0 for any k ∈ N. Due to (5.2) and (5.3),

lim
x→−∞

sup
k∈N
|S(k, x)| = 0. (5.4)

As n → ∞, k = k(x, n) = exn → ∞ or x → −∞. For example, for n ∈ N and x ∈ En, either
k ≥ n1/2 or x < −1

2 log n. Distinguishing the two cases leads to

lim
n→∞

sup
x∈En

|A(n)f(x)−Af(x)|

≤ lim
k→∞

sup
x∈R
|S(k, x)− I(x)|+ lim

x→−∞
sup
k∈N
|S(k, x)|+ lim

x→−∞
|I(x)| = 0. (5.5)

By Ethier and Kurtz (1986, I, Theorem 6.1 and IV, Theorem 2.5), X(n) → X in DR[0,∞) as
n→∞. �
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Remark 5.1. The generator A(n) converges even if Λ({1}) > 0. In this case the atom at 1 can
be split off from Λ such that qk,j =

(
k
j−1

) ∫
[0,1) u

k−j−1(1 − u)j−1Λ|[0,1)(du) + Λ({1})1{1}(j), j ∈
{1, . . . , k − 1}, k ≥ 2, where the first summand are the jump rates of the block counting process
corresponding to the restriction Λ|[0,1) of Λ to [0, 1), i.e., a measure with no atom at 1. Thus,

A(n)f(x) = S(k, x) + (f(log n−1)− f(x))Λ({1}), x ∈ En, f ∈ Ĉ(R), n ∈ N,

where the jump rates in S(k, x) correspond to Λ|[0,1), and

Af(x) = I(x) + h(1, x)Λ({1}) = I(x)− f(x)Λ({1}), x ∈ (−∞, 0],

where I(x) =
∫
h(u, x)Λ|[0,1)(du), x ∈ R. The additional term corresponds to the killing of the

subordinator −X at the rate Λ({1}). Since f ∈ Ĉ(R), limn→∞ supx∈En
|(f(log n−1)−f(x))Λ({1})+

f(x)Λ({1})| = Λ({1}) limn→∞ |f(log n−1)| = 0, i.e., the additional term converges, and again (5.5)
holds true.

Remark 5.2. The approach to the convergence of the generators is related to Bernstein polynomials.
The (k − 1)-th Bernstein polynomial

k−1∑
j=0

h( j
k−1 , x)

(
k − 1

j

)
uj(1− u)k−1−j

of h(·, x) converges uniformly in u ∈ [0, 1] to h(u, x) as k →∞, if x ∈ R is fixed.

6. Proofs concerning the Bolthausen–Sznitman coalescent

In this section Λ = λ is the Lebesgue measure on [0, 1]. Define α := α(t) := e−t, t ≥ 0. The
process X(n) = (X

(n)
t )t≥0 = (logN

(n)
t − α log n)t≥0 is a time-inhomogeneous Markov process. In

order to prove the convergence in DR[0,∞) to X we want to show the uniform convergence of the
generators. Typical convergence results are stated for time-homogeneous Markov processes and in
order to use these we are going to introduce the time-space process.

6.1. Time-space process: semigroup and generator. Define the time-space processes X̃ := (t,Xt)t≥0

and X̃(n) := (t,X
(n)
t )t≥0 for n ∈ N. It is known (see, for example Revuz and Yor, 1999, p. 85,

Exercise (1.10) or Böttcher, 2014) that X̃(n) and X̃ are time-homogeneous Markov processes (and
exist on a new probability space). In the following the tilde symbol indicates the time-space setting.
Let Ẽn := {(s, x) ∈ [0,∞)×R|exnα(s) ∈ [n]} denote the state space of X̃(n), Ẽ := [0,∞)×R denote
the state space of X̃ and define k := k(s, x, n) := exnα(s) ∈ N for (s, x) ∈ Ẽn and n ∈ N. Given
f ∈ B(Ẽ) and s ≥ 0, denote the function x 7→ f(s, x), x ∈ R, by πf(s, x). The limiting process X
already is time-homogeneous. Recall that D, the space of twice differentiable functions f : R → R
such that f, f ′, f ′′ and the map x 7→ xf ′(x), x ∈ R, belong to Ĉ(R), is a core for the generator A of
the semigroup (Tt)t≥0 corresponding to X. The semigroup (T̃t)t≥0 of X̃, given by

T̃tf(s, x) = E(f(s+ t,Xs+t)|Xs = x) = E(f(s+ t, α(t)x+Xt)), (s, x) ∈ Ẽ, f ∈ B(Ẽ), t ≥ 0,

is a Feller semigroup. Let D̃ denote the space of functions f ∈ Ĉ(Ẽ) of the form f(s, x) =∑l
i=1 gi(s)hi(x) with l ∈ N, hi ∈ D and gi ∈ C1([0,∞)) such that gi, g′i ∈ Ĉ([0,∞)) for i = 1, . . . , l.

Proposition 9.6 states that D̃ is a core for the generator Ã of (T̃t)t≥0 and

Ãf(s, x) =
∂

∂s
f(s, x) +Aπf(s, x), (s, x) ∈ Ẽ, f ∈ D̃. (6.1)
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The ‘semigroup’ (T
(n)
s,t )s,t≥0 of X(n) is given by

T
(n)
s,t f(x) := E(f(X

(n)
s+t)|X(n)

s = x) = E(f(logN
(n)
s+t − α(s+ t) log n)|N (n)

s = k)

= E(f(logN
(k)
t − α(s+ t) log n)), (s, x) ∈ Ẽn, f ∈ B(R), t ≥ 0.

The ‘generator’ (A
(n)
s )s≥0 of (T

(n)
s,t )s,t≥0 is given by

A(n)
s f(x) := lim

t→0
t−1(T

(n)
s,t f(x)− f(x))

= lim
t→0

t−1
(
E
(
f(logN

(k)
t − α(s+ t) log n)

)
− f(x)

)
= −f ′(x)α′(s) log n+

k−1∑
j=1

(f(x+ log j
k )− f(x))qk,j , (s, x) ∈ Ẽn. (6.2)

Here f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). The semigroup (T̃
(n)
t )t≥0 of X̃(n), given by

T̃
(n)
t (s, x) := E(f(s+ t,Xs+t)|X(n)

s = x)

= E(f(s+ t, logN
(k)
t − α(s+ t) log n)), (s, x) ∈ Ẽn, f ∈ B(Ẽn), t ≥ 0, n ∈ N,

is a Feller semigroup on Ĉ(Ẽn) for every n ∈ N. On D̃, or more precisely, for the restriction of
f ∈ D̃ to Ẽn, the generator Ã(n) of T̃ (n) is given by

Ã(n)f(s, x) =
∂

∂s
f(s, x) +A(n)

s πf(s, x), (s, x) ∈ Ẽn, n ∈ N. (6.3)

6.2. Proof of Proposition 2.2.

Proof : (of Proposition 2.2) Recall that Λ = λ. Let f ∈ D. The approach to the proof is the same as
in Section 5, but the function u 7→ f(x+log(1−u)), u ∈ [0, 1], demands second order approximation
like in the integral part of the limiting generator (3.1). Define h : [0, 1] × R → R via h(u, x) :=
u−2(f(x + log(1 − u)) − f(x) + uf ′(x)), u ∈ (0, 1), h(0, x) := limu↘0 h(u, x) = 2−1(f ′′(x) − f ′(x))

and, since f ∈ Ĉ(R), h(1, x) := limu↗1 h(u, x) = f ′(x)− f(x) for x ∈ R. Taylor’s theorem applied
to u 7→ f(x+ log(1− u)), u < 1, with evaluation point u = 0 and exact integral remainder yields

h(u, x) = u−2

∫ u

0

u− s
(1− s)2

(f ′′(x+ log(1− s))− f ′(x+ log(1− s)))ds

=

∫ 1

0

1− s
(1− us)2

(f ′′(x+ log(1− us))− f ′(x+ log(1− us)))ds, u ∈ [0, 1), x ∈ R.

The latter formula of h(u, x) shows that h is bounded even as u tends to 0. Putting k = k(s, x, n) =

exnα(s) in (6.2) yields

A(n)
s f(x) = f ′(x)R(k, x) + S(k, x), (s, x) ∈ Ẽn, n ∈ N,

where

R(k, x) := log k −
k−1∑
j=1

k−j
k qk,j − x, k ∈ N, x ∈ R, (6.4)

and

S(k, x) :=
k−1∑
j=1

(f(x+ log j
k )− f(x) + k−j

k f ′(x))qk,j , k ∈ N, x ∈ R. (6.5)



Scaling limits for the block counting process 655

Further define I(x) :=
∫

[0,1] h(u, x)Λ(du), x ∈ R, and observe that Af(x) = f ′(x)(1+Ψ(1)−x)+I(x)

for x ∈ R.
By Eq. (4.1) with a = b = 1, k−j

k qk,j = (k − j + 1)−1, j ∈ {1, . . . , k − 1}, k ≥ 2. Hence,∑k−1
j=1

k−j
k qk,j =

∑k
j=2 j

−1 for k ≥ 2. Recall that α(s) = e−s for s ≥ 0 and k = k(s, x, n) = exnα(s)

for (s, x) ∈ Ẽn and n ∈ N. As n→∞, k →∞ or x→ −∞. Fix T > 0. E.g., if s ∈ [0, T ], then either
k ≥ nα(T+δ) or x < −α(T )(1−α(δ)) log n, where δ > 0 is a constant. The well-known asymptotics of
the harmonic numbers states that supx∈R |R(k, x)−(1+Ψ(1)−x)| = | log k−

∑k
j=1 j

−1−Ψ(1)| → 0

as k →∞. Clearly, limx→−∞ |f ′(x)| = 0. Dividing the state space as above therefore implies

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|f ′(x)||R(k, x)− (1 + Ψ(1)− x)| = 0. (6.6)

In the next step the uniform convergence of S(k, x) to I(x) is shown. Substituting k − j − 1 for
j in (6.5) yields

S(k, x) =
k−2∑
j=0

(f(x+ log(1− j+1
k ))− f(x) + j+1

k f ′(x))qk,k−j−1

=
k−2∑
j=0

h( j+1
k , x)

(j + 1)2

k2

(
k

j + 2

)∫
[0,1]

uj(1− u)k−2−jΛ(du)

=
k − 1

k

k−2∑
j=0

h( j+1
k , x)

j + 1

j + 2

(
k − 2

j

)∫
[0,1]

uj(1− u)k−2−jΛ(du), k ∈ N, x ∈ R.

Set c := Λ([0, 1]) ∈ (0,∞) and define the probability measure Q on ([0, 1],B ∩ [0, 1]) as Q := c−1Λ.
Let the random variables Zk, k ∈ N, have distribution given by

P(Zk = j) =

(
k − 2

j

)∫
[0,1]

uj(1− u)k−2−jQ(du), j ∈ {0, . . . , k − 2},

i.e., Zk has a mixed binomial distribution with sample size k − 2 and random success probability
Q. Let Z have distribution Q. Then

S(k, x) = c(1− k−1)E
(
(1− (Zk + 2)−1)h((Zk + 1)/k, x)

)
, k ∈ N, x ∈ R,

and I(x) = cE(h(Z, x)), x ∈ R. It is easy to check that (Zk + 1)/k → Z in distribution as k →∞.
The family of functions {h(·, x)|x ∈ R} is equicontinuous on [δ, 1 − δ] for every 0 < δ < 1/2 and
uniformly bounded on [0, 1]. Due to Q({0}) = c−1Λ({0}) = 0, Zk → ∞ a.s. as k → ∞, thus
limk→∞ E(1/(Zk + 2)) = 0 and the additional factor 1 − (Zk + 2)−1 in the mean above can be
omitted when considering the limit of S(k, x) as k →∞. From Lemma 9.4 it follows that

lim
k→∞

sup
x∈R
|S(k, x)− I(x)| = 0. (6.7)

From limx→−∞ h(Z, x) = 0 a.s., the fact that the functions h(·, x), x ∈ R, are uniformly bounded
and the dominated convergence theorem it follows that

lim
x→−∞

|I(x)| = c lim
x→−∞

|E(h(Z, x))| = 0. (6.8)

Since f, f ′ ∈ Ĉ(R), limx→−∞ S(k, x) = 0 for any k ∈ N and, in view of (6.7) and (6.8),

lim
x→−∞

sup
k∈N
|S(k, x)| = 0. (6.9)

As seen in the proof of Proposition 2.1, Eqs. (6.7)-(6.9) imply

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|S(k, x)− I(x)| = 0. (6.10)
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By (6.6), limn→∞ sup
(s,x)∈Ẽn,s∈[0,T ]

|A(n)
s f(x)−Af(x)| = 0. Due to (6.1) and (6.3),

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|Ã(n)f(s, x)− Ãf(s, x)| = 0

for every function f belonging to the core D̃ and each T > 0. From Ethier and Kurtz (1986, IV,
Corollary 8.7) it follows that X̃(n) → X̃ in D

Ẽ
[0,∞), hence X(n) → X in DR[0,∞) as n→∞. �

Remark 6.1. Note that Zk has a discrete uniform distribution on {0, . . . , k − 2} and Z has a con-
tinuous uniform distribution on (0, 1), since Λ = λ.

Remark 6.2. Put γ(k) :=
∑k−1

j=1(k − j)qk,j =
∑k

j=2(j − 1)
(
k
j

)
λk,j for k ≥ 2. Among dust-free

Λ-coalescents that do not come down from infinity the proof works for the Bolthausen–Sznitman
coalescent due to the asymptotics γ(k)/k = log k−Ψ(1)−1+O(k−1) as k →∞. For other measures
Λ the asymptotics of γ(k)/k might be difficult to determine. In the proof of Proposition 2.2 the fact
that Λ = λ is only used to verify (6.6). Eq. (6.10) holds true more generally for finite measures Λ on
[0, 1] with Λ({0}) = Λ({1}) = 0 and therefore we wrote Λ andQ instead of the Bolthausen–Sznitman
coalescent’s driving measure λ.

7. Proof of Theorem 2.3

In this section Λ satisfies Assumption A. We continue to use the time-space setting and the
notation of Subsection 6.1 with α replaced by α := α(t) := e−bt, t ≥ 0. Define ΛD := Λ− bλ and let
Λ+
D,Λ

−
D denote the nonnegative measures constituting the Jordan decomposition ΛD = Λ+

D − Λ−D
of ΛD. The decomposition of Λ into a ‘Bolthausen–Sznitman part’ bλ and a ‘dust part’ ΛD is
transferred to the jump rates and the generator. Proving Theorem 2.3 now only requires to suitable
arrange equations already obtained in Sections 5 and 6. To be precise, the results of Section 5 are
applied to the summands Λ±D of ΛD, but we omit this detail in the following.

Proof : (of Theorem 2.3) Let qλk,j , q
D,+
k,j and qD,−k,j denote the rates of the block counting process

corresponding to λ,Λ+
D and Λ−D, respectively, and define qDk,j := qD,+k,j − q

D,−
k,j for j ∈ {1, . . . , k} and

k ∈ N. Obviously, qk,j = bqλk,j + qDk,j . Recall that k = k(s, x, n) = exnα(s) ∈ N for (s, x) ∈ Ẽn and

n ∈ N. From (6.2) it follows that the ‘generator’ A(n)
s ofX(n) = (X

(n)
t )t≥0 = (logN

(n)
t −α(t) log n)t≥0

is given by

A(n)
s f(x) = bR(k, x)f ′(x) + bSBS(k, x) + SD(k, x), (s, x) ∈ Ẽn, n ∈ N,

where

R(k, x) := log k −
k−1∑
j=1

k−j
k qλk,j − x,

SBS(k, x) :=
k−1∑
j=1

(f(x+ log j
k )− f(x) + k−j

k f ′(x))qλk,j ,

SD(k, x) :=
k−1∑
j=1

(f(x+ log j
k )− f(x))qDk,j ,
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are defined as in (6.4), (6.5) and (5.1) for k ∈ N and x ∈ R, and f ∈ C1(R) such that f, f ′ ∈ Ĉ(R).
By Lemma 3.1 and Eq. (2.3), the generator A of X = (Xt)t≥0 can be written as

Af(x) = b(1 + Ψ(1)− x)f ′(x) + b

∫
[0,1]

f(x+ log(1− u))− f(x) + uf ′(x)

u2
λ(du)

+

∫
[0,1]

f(x+ log(1− u))− f(x)

u2
ΛD(du), x ∈ R, f ∈ D.

From Eqs. (6.6), (6.10) and (5.2)-(5.4) it follows that limn→∞ sup
(s,x)∈Ẽn,s∈[0,T ]

|A(n)
s f(x)−Af(x)| =

0 for f ∈ D. Due to (6.1) and (6.3),

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|Ã(n)f(s, x)− Ãf(s, x)| = 0

for every f ∈ D̃ and T > 0. By Proposition 9.6, the space D̃ is a core for Ã. Thus, it follows
from Ethier and Kurtz (1986, IV, Corollary 8.7) that X̃(n) → X̃ in D

Ẽ
[0,∞), hence X(n) → X in

DR[0,∞) as n→∞. �

8. Proof of Theorem 2.4

In this section Λ satisfies Assumption A. The process Y (n) = (Y
(n)
t )t≥0 = (logL

(n)
t − ebt log n)t≥0

is a possibly time-inhomogeneous Markov process, depending on whether b > 0 or not, hence we set
up the time-space framework. We provide two proofs. Using Theorem 2.3 and Siegmund-duality, in
the first proof the convergence of the one-dimensional distributions and subsequently the uniform
convergence of the semigroups is shown. The second proof, in which the uniform convergence of
generators is shown, resembles previous ones.

Proof : (First proof of Theorem 2.4) For x ∈ R and t ≥ 0 definem := deynebte ∈ N. If %t((−∞, 0)) =∫
[0,1] u

−2Λ(du) = ∞, then Xt has a continuous distribution for every t > 0. Eq. (1.2) and Theo-
rem 2.3 imply that

P(Y
(n)
t ≥ y) = P(L

(n)
t ≥ m) = P(N

(m)
t ≤ n) = P(X

(m)
t ≤ log n− e−bt logm)

−→ P(Xt ≤ −e−bty) = P(−ebtXt ≥ y), y ∈ R, t ≥ 0, (8.1)

as n → ∞. If
∫

[0,1] u
−2Λ(du) < ∞, then the dust condition is satisfied. Hence, b = 0 and (8.1)

holds true for −y in the set CXt of continuity points of Xt. Since Yt
d
= −ebtXt with b = 0,

limn→∞ P(−Y (n)
t ≤ −y) = P(−Yt ≤ −y) for every −y ∈ CXt = C−Yt . Thus, Y (n)

t converges in
distribution to Yt as n→∞ for every t ≥ 0.

Define the time-space processes Ỹ (n) := (t, Y
(n)
t )t≥0, n ∈ N, and Ỹ := (t, Yt)t≥0. The processes

Ỹ (n) and Ỹ are time-homogeneous Markov processes with state spaces Ẽn = {(s, y)|s ≥ 0, eyne
bs ∈

{n, n+ 1, . . .}} and Ẽ = [0,∞)×R and semigroups (T̃
(n)
t )t≥0 and (T̃t)t≥0. Define k := k(s, y, n) :=

eyne
bs ∈ {n, n+ 1, . . .} for (s, y) ∈ Ẽn and n ∈ N. Then

T̃
(n)
t f(s, y) = E(f(s+ t, Y

(n)
s+t)|Y (n)

s = y) = E(f(s+ t, logL
(k)
t − eb(t+s) log n))

= E(f(s+ t, ebty + Y
(k)
t )), (s, y) ∈ Ẽn, f ∈ B(Ẽ), t ≥ 0, n ∈ N.

Fix t > 0 and first let f ∈ B(Ẽ) be of the form f(s, y) = g(s)h(y), (s, y) ∈ Ẽ, where g ∈
B([0,∞)) and h ∈ Ĉ(R). Clearly, T̃ (n)

t f(s, y) = g(s + t)E(h(ebty + Y
(k)
t )), (s, y) ∈ Ẽn, n ∈ N, and

T̃tf(s, y) = E(f(s+ t, Ys+t)|Ys = y) = g(s+ t)Tth(y) = g(s+ t)E(h(ebty+Yt)), (s, y) ∈ Ẽ, where the
distribution of Yt is defined by its characteristic function χt, given by (2.9). Note that h is uniformly
continuous and bounded. For y ∈ R define the function hy : R → R via hy(x) := h(ebty + x),
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x ∈ R. The family of functions {hy|y ∈ R} is equicontinuous and uniformly bounded. From the
weak convergence of Y (k)

t to Yt as k → ∞ and Ranga Rao (1962, Theorem 3.1) it follows that
limk→∞ supy∈R |E(h(ebty + Y

(k)
t ))− E(h(ebty + Yt))| = 0. Since k = eyne

bs ≥ n for (s, y) ∈ Ẽn and
n ∈ N, limn→∞ sup

(s,y)∈Ẽn
|E(h(ebty + Y

(k)
t ))− E(h(ebty + Yt))| = 0. Thus,

lim
n→∞

sup
(s,y)∈Ẽn

|T̃ (n)
t f(s, y)− T̃tf(s, y)| = 0. (8.2)

By linearity, (8.2) holds for the algebra of functions f ∈ B(Ẽ) of the form f(s, y) =
∑l

i=1 gi(s)hi(y),

(s, y) ∈ Ẽ, where l ∈ N, gi ∈ B([0,∞)) and hi ∈ Ĉ(R) for i = 1, . . . , l. This algebra of functions
separates points and vanishes nowhere. According to the Stone–Weierstrass theorem for locally
compact spaces (see e.g. de Branges, 1959) it is a dense subset of B(Ẽ). Hence, (8.2) holds true for
f ∈ B(Ẽ). Ethier and Kurtz (1986, IV, Theorem 2.11) states that Ỹ (n) → Ỹ in D

Ẽ
[0,∞), hence

Y (n) → Y in DR[0,∞) as n→∞. �

The process Y defined by (2.8) and (2.9) is a generalized Ornstein–Uhlenbeck process (with
nonnegative linear drift) as in Sato and Yamazato (1984). The underlying infinitely divisible dis-
tribution has characteristic exponent v 7→ ψ(−v), v ∈ R. According to Sato and Yamazato (1984,
Theorem 3.1), D is a core for the corresponding generator A and

Af(y) = f ′(y)(−a+ by) +

∫
[0,1]

(f(y − log(1− u))− f(y)− uf ′(y))u−2Λ(du) (8.3)

for y ∈ R and f ∈ D; comparatively see Lemma 3.1 and its proof.

Proof : (Second proof of Theorem 2.4) The ‘generator’ (A
(n)
s )s≥0 of Y (n) is given by

A(n)
s f(y) = −f ′(y)bebs log n+

∑
j>eynebs

(f(log j − ebs log n)− f(y))γ
eynebs ,j

, (s, y) ∈ Ẽn, n ∈ N.

Here f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). Putting k := k(s, y, n) := eyne
bs for (s, y) ∈ Ẽn and n ∈ N

yields

A(n)
s f(y) = bf ′(y)(− log k + y) +

∞∑
j=1

(f(y + log(1 + j
k ))− f(y))γk,k+j , (s, y) ∈ Ẽn, n ∈ N.

Define ΛD := Λ − bλ and let Λ+
D,Λ

−
D denote the nonnegative measures constituting the Jordan

decomposition ΛD = Λ+
D−Λ−D of ΛD. Let γλk,j , γ

D,+
k,j and γD,−k,j denote the jump rates of the fixation

line corresponding to λ,Λ+
D and Λ−D, respectively, and define γDk,j := γD,+k,j −γ

D,−
k,j for j ∈ {k, k+1, . . .}

and k ∈ N. Then γk,k+j = bγλk,k+j + γDk,k+j , k ∈ N, j ∈ N0, and

A(n)
s f(y) = bf ′(y)R(k, y) + bSBS(k, y) + SD(k, y), (s, y) ∈ Ẽn, n ∈ N, (8.4)

where

R(k, y) := − log k + y +
k∑
j=1

j
kγ

λ
k,k+j , k ∈ N, y ∈ R,

SBS(k, y) :=
∞∑
j=1

(f(y + log(1 + j
k ))− f(y)− j

k1[0,1](
j
k )f ′(y))γλk,k+j , k ∈ N, y ∈ R,

SD(k, y) :=
∞∑
j=1

(f(y + log(1 + j
k ))− f(y))γDk,k+j , k ∈ N, y ∈ R,
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and f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). Using the decomposition of Λ on Eq. (8.3) yields

Af(y) = bf ′(y)(−1−Ψ(1) + y) + bIBS(y) + ID(y), y ∈ R, f ∈ D,

where

IBS(y) :=

∫
[0,1]

(f(y − log(1− u))− f(y)− uf ′(y))u−2λ(du), y ∈ R,

ID(y) :=

∫
[0,1]

(f(y − log(1− u))− f(y))u−2ΛD(du), y ∈ R.

Let f ∈ D. In the Bolthausen–Sznitman coalescent, γλk,k+j = k/(j(j + 1)) for k, j ∈ N and hence∑k
j=1

j
kγ

λ
k,k+j =

∑k
j=1(j + 1)−1 = Hk+1 − 1 = log k − 1−Ψ(1) + o(1) as k →∞. Here Hk denotes

the k-th harmonic number for k ∈ N. Thus,

lim
k→∞

sup
y∈R
|R(k, y)− (−1−Ψ(1) + y)| = 0. (8.5)

The function hBS : [0, 1] × R → R, defined via hBS(u, y) := u−2(f(y − log(1 − u)) − f(y) −
u

1−u1[0,1/2](u)f ′(y)), u ∈ [0, 1], y ∈ R, is bounded. Let the random variables Zk, k ∈ N, have
distribution given by

P(Zk = j) =

(
k + j − 2

j − 1

)∫
[0,1]

uj−1(1− u)kλ(du), j, k ∈ N,

i.e., Zk − 1 has a mixed negative binomial distribution. Observe that hBS(1 − (1 + j
k )−1, y) =

( j
k+j )

−2(f(y+ log(1 + j
k ))− f(y)− j

k1[0,1](
j
k )f ′(y)), y ∈ R, and γλk,k+j = ( j

k+j )
−2(1− (k+ j)−1)(1−

(j + 1)−1)P(Zk = j) for j, k ∈ N. Hence,

SBS(k, y) = E
(
hBS(1− (1 + Zk/k)−1, y)

(
1− 1

k + Zk

)(
1− 1

Zk + 1

))
.

Let Z have uniform distribution on (0, 1). Then IBS(y) = E(hBS(Z, y)) for y ∈ R due to
∫

[0,1] u
−2(u−

u
1−u1[0,1/2](u))λ(du) =

∫ 1/2
0 −(1 − u)−1du +

∫ 1
1/2 u

−1du = 0. The function g : (0,∞) → (0, 1), de-
fined via g(u) := 1− (1 + u)−1, u ∈ (0,∞), is bounded and continuous. Since Zk/k → Z/(1−Z) in
distribution as k →∞, 1− (1 +Zk/k)−1 = g(Zk/k)→ g(Z/(1−Z)) = Z in distribution as k →∞.
In particular, the random variables have values in [0, 1]. When considering the limit k → ∞, the
factor (1− (k + Zk)

−1)(1− (Zk + 1)−1) has no influence on SBS(k, y). From Lemma 9.4 it follows
that

lim
k→∞

sup
y∈R
|SBS(k, y)− IBS(y)| = 0. (8.6)

The measure ΛD is real-valued. Eq. (8.7) below can be proven when ΛD is replaced by Λ+
D

and Λ−D in this paragraph, and then holds for ΛD by linearity. The function hD : [0, 1] × R → R,
defined via hD(u, y) := u−1(f(y− log(1−u))− f(y)), u ∈ [0, 1], y ∈ R, is bounded. By assumption,
c :=

∫
[0,1] u

−1ΛD(du) <∞. As long as c > 0, define the probability measure Q on ([0, 1],B ∩ [0, 1])

via Q(A) := c−1
∫
A u
−1ΛD(du), A ∈ B ∩ [0, 1], and let the random variables Zk, k ∈ N, have

distribution given by

P(Zk = j) =

(
k + j − 1

j

)∫
[0,1]

uj(1− u)kQ(du), j ∈ N0, k ∈ N,
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i.e., Zk has a mixed negative binomial distribution. Observe that hD(1 − (1 + j
k )−1, y) = (f(y +

log(1 + j
k ))− f(y))k+j

j , y ∈ R, and γDk,k+j = ck+j
j (1− (1 + j)−1)P(Zk = j) for j, k ∈ N. Hence,

SD(k, y) =

∞∑
j=0

(f(y + log(1 + j
k )− f(y))γDk,k+j

= cE(hD(1− (1 + Zk/k)−1, y)(1− (1 + Zk)
−1)), k ∈ N, y ∈ R.

Let the random variable Z have distribution Q. In particular, ID(y) = cE(hD(Z, y)), y ∈ R.
According to Lemma 9.4 and since 1− (1 + Zk/k)−1 converges in distribution to Z as k →∞,

lim
k→∞

sup
y∈R
|E(hD(1− (1 + Zk/k)−1, y))− E(hD(Z, y))| = 0.

Thus,

lim
k→∞

sup
y∈R
|SD(k, y)− ID(y)| = 0. (8.7)

Note that Eq. (8.7) holds true for c = 0 as well.
Taking into account that k = eyne

bs ≥ n for (s, y) ∈ Ẽn and n ∈ N, Eqs. (8.4)-(8.7) imply

lim
n→∞

sup
(s,y)∈Ẽn

|A(n)
s f(y)−Af(y)| = 0.

The time-space variant of Ethier and Kurtz (1986, IV, Corollary 8.7) as implemented in the proof
of Theorem 2.3 yields the desired convergence of Y (n) to Y in DR[0,∞) as n→∞. �

9. Appendix

Lemma 9.1. Suppose that Λ satisfies Assumption A. Then the following statements hold.
a) b = limε→0 ε

−1Λ((0, ε)).
b) The Λ-coalescent does not come down from infinity.

Proof : a) If the condition
∫

[0,1] u
−1Λ(du) < ∞ for dust is given, then Assumption A is satisfied

with b = 0 and, by dominated convergence,
Λ((0, ε))

ε
≤
∫

(0,ε)
u−1Λ(du) −→ 0, ε→ 0.

Hence, a) holds for coalescents with dust. Now suppose that Λ satisfies Assumption A. Define ΛD :=
Λ− bλ and let Λ+

D and Λ−D denote the nonnegative measures constituting the Jordan decomposition
ΛD = Λ+

D − Λ−D of ΛD. By assumption and the first part of the proof, limε→0 ε
−1Λ±D((0, ε)) = 0.

From the decomposition Λ = bλ+ Λ+
D − Λ−D it follows that

Λ((0, ε))

ε
= b+

Λ+
D((0, ε))

ε
−

Λ−D((0, ε))

ε
−→ b, ε→ 0.

b) Let |ΛD| = Λ+
D+Λ−D denote the total variation of ΛD. Define ηΛ

k := k
∑k−2

j=0

∫
[0,1](1−u)jΛ(du)

and ηbλk and η|ΛD|
k similarly with bλ and |ΛD| in place of Λ for k ≥ 2. By assumption,

lim
k→∞

k−1η
|ΛD|
k =

∫
[0,1]

u−1|ΛD|(du) <∞.

From

(k log k)−1ηbλk = b(log k)−1
k−2∑
j=0

∫ 1

0
(1− u)jdu = b(log k)−1

k−2∑
j=0

(j + 1)−1 −→ b, k →∞,
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it follows that ηbλk +η
|ΛD|
k ∼ bk log k as k →∞. Due to Λ ≤ bλ+ |ΛD|, it holds that ηΛ

k ≤ ηbλk +η
|ΛD|
k

for k ≥ 2. Hence,
∞∑
k=2

(
ηΛ
k

)−1 ≥
∞∑
k=2

(
ηbλk + η

|ΛD|
k

)−1
= ∞.

The claim b) then follows from Schweinsberg’s criterion (Schweinsberg, 2000b, Corollary 2). �

Remark 9.2. Any converse statements of Lemma 9.1 do not hold: neither a) nor b) nor a) and b)
together imply that Assumption A holds, which can be seen by looking at the measure Λ having
density f with respect to Lebesgue measure given by f(u) := (− log u)−1 for 0 < u < 1/2 and
f(u) := 0 otherwise.

The following lemma is a generalization of the integral criterion of convergence in distribution
and is applied in Sections 5-8 to prove the uniform convergence of generators. In the statement the
notion of equicontinuity is used, whose definition is first recalled.

Definition 9.3. A family F of functions f : E → R on a metric space E with metric d is called
equicontinuous if for every ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε for all f ∈ F and
x, y ∈ E with d(x, y) < δ. The family F is called equicontinuous on a subset V ⊆ E if the family
{f |V |f ∈ F} is equicontinuous. Here f |V denotes the restriction of f to V .

Lemma 9.4. Let X,X1, X2, . . . be random variables on a probability space (Ω,F ,P) with values
in [0, 1] such that P(X = 0) = P(X = 1) = 0 and Xn → X in distribution as n → ∞. Sup-
pose that the family F of functions f : [0, 1] → R is uniformly bounded on [0, 1], i.e., M :=
supf∈F supx∈[0,1] |f(x)| <∞, and equicontinuous on [δ, 1− δ] for every 0 < δ < 1/2. In particular,
f ∈ F is bounded and continuous on (0, 1). Then

lim
n→∞

sup
f∈F
|E(f(Xn))− E(f(X))| = 0.

Proof : Let ε > 0 be arbitrary. The assumption P(X = 0) = P(X = 1) = 0 and the convergence
of Xn to X in distribution as n → ∞ provide the existence of 0 < δ < 1/2 and n0 ∈ N such
that P(Xn 6∈ [δ, 1 − δ]) < ε/(4M) for n ≥ n0 and P(X 6∈ [δ, 1 − δ]) < ε/(4M). For f ∈ F define
f̃ : [0, 1] → R via f̃(u) := f(δ), 0 ≤ u ≤ δ, f̃(u) := f(u), δ ≤ u ≤ 1 − δ, and f̃(u) := f(1 − δ),
1− δ ≤ u ≤ 1. Then {f̃ |f ∈ F} is bounded (by M) and equicontinuous on [0, 1]. Ranga Rao (1962,
Theorem 3.1) yields

lim
n→∞

sup
f∈F
|E(f̃(Xn))− E(f̃(X))| = 0.

From

|E(f(Xn))− E(f(X))| ≤ E(|f(Xn)− f̃(Xn)|)

+ |E(f̃(Xn))− E(f̃(X))|+ E(|f̃(X)− f(X)|)
≤ 2MP(Xn 6∈ [δ, 1− δ])

+ 2MP(X 6∈ [δ, 1− δ]) + |E(f̃(Xn))− E(f̃(X))|, n ∈ N, f ∈ F,
it follows that limn→∞ supf∈F |E(f(Xn)) − E(f(X))| ≤ ε. Since ε > 0 is arbitrary, the proof is
complete. �

Remark 9.5. In Ranga Rao (1962, Theorem 3.1) the state space is more generally a separable metric
space, but equicontinuity of F is required to hold on the whole state space.

Let E be a complete separable metric space and equip Ẽ := [0,∞)×E with the product metric.
The following proposition treats the generator of time-space processes of time-homogeneous Feller
processes.
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Proposition 9.6. Suppose that (Tt)t≥0 is a Feller semigroup on Ĉ(E) with generator A and that D
is a core for A. For f ∈ Ĉ(Ẽ) and s ∈ [0,∞) let πf(s, x) denote the function x 7→ f(s, x), x ∈ E.
The semigroup (T̃t)t≥0, defined via

T̃tf(s, x) := Ttπf(s+ t, x), (s, x) ∈ Ẽ, f ∈ B(Ẽ), t ≥ 0,

is a Feller semigroup on Ĉ(Ẽ). Let D̃ denote the space of functions f ∈ Ĉ(Ẽ) of the form f(s, x) =∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where l ∈ N, hi ∈ D and gi ∈ C1([0,∞)) such that gi, g′i ∈ Ĉ([0,∞))

for i = 1, . . . , l. Then D̃ is a core for the generator Ã of (T̃t)t≥0 and

Ãf(s, x) =
∂

∂s
f(s, x) +Aπf(s, x), (s, x) ∈ Ẽ, f ∈ D̃. (9.1)

Proof : Observe that all functions involved in the proof are bounded and uniformly continuous.
Clearly, the right-hand side of (9.1) lies in Ĉ(Ẽ). The core D is a dense subset of Ĉ(E). Hence
D̃ is a dense subset of the space D0 of functions f ∈ Ĉ(Ẽ) of the form f(s, x) =

∑l
i=1 gi(s)hi(x),

(s, x) ∈ Ẽ, where l ∈ N, hi ∈ Ĉ(E) and gi ∈ Ĉ([0,∞)) for i = 1, . . . , l. The algebra D0 separates
points and vanishes nowhere. The Stone–Weierstrass theorem for locally compact spaces (e.g.
de Branges, 1959) ensures that D0 is a dense subset of Ĉ(Ẽ). In de Branges (1959) the theorem is
stated for complex-valued functions, but it remains true for real-valued functions. To see this, let
f ∈ Ĉ(E) ⊆ Ĉ(E,C) be arbitrary. By the theorem, there exist a sequence (kn)n∈N ⊆ Ĉ(E,C) such
that limn→∞ ||kn − f‖ = 0. Then fn := Re(kn) ∈ Ĉ(E), n ∈ N, and ‖fn − f‖ ≤ ‖kn − f‖ → 0

as n → ∞. Thus, D̃ is a dense subset of Ĉ(Ẽ) as well. If h ∈ D and g ∈ C1([0,∞)) such that
g, g′ ∈ Ĉ([0,∞)), then

t−1(T̃tg(s)h(x)− g(s)h(x)) = t−1(g(s+ t)− g(s))h(x) + g(s+ t)t−1(Tth(x)− h(x))

converges uniformly in (s, x) ∈ Ẽ to g′(s)h(x) + g(s)Ah(x) as t ↘ 0, thus D̃ lies in the domain of
Ã and (9.1) holds true. By the same argument as above, the space D1 of functions f ∈ Ĉ(Ẽ) of
the form f(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where gi(s) = ci exp(−ais), s ∈ [0,∞) with ci ∈ R

and ai > 0 and hi ∈ D for i = 1, . . . , l, is a dense subset of Ĉ(Ẽ). By Hille–Yosida theory (see e.g.
Ethier and Kurtz, 1986, I, Proposition 3.1) it now suffices to show that the image of λI − Ã|

D̃
is a

dense subspace of Ĉ(Ẽ) for some λ > 0 in order to prove that D̃ is a core for Ã. Here I denotes the
identity map on Ĉ(E) or Ĉ(Ẽ). Let ε > 0 and f ∈ Ĉ(Ẽ) be arbitrary. By density of D1 in Ĉ(Ẽ),
there exists f1 ∈ D1 of the form f1(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, such that ‖f1 − f‖ < ε/2.

Since D is a core for A, the image of λI−A|D is a dense subset of Ĉ(E) for every λ > 0, in particular
for λ+ ai in place of λ. Hence there exists ri ∈ D such that ‖(λ+ ai)ri−Ari−hi‖ < ε/(2l‖gi‖) for
i = 1, . . . , l. Clearly, the function (s, x) 7→

∑l
i=1 gi(s)ri(x), (s, x) ∈ Ẽ, belongs to D̃ and, by (9.1),

‖(λI − Ã)
l∑

i=1

gi(s)ri(x)− f(s, x)‖ ≤ ‖(λI − Ã)
l∑

i=1

gi(s)ri(x)−
l∑

i=1

gi(s)hi(x)‖+ ‖f1 − f‖

≤
l∑

i=1

‖gi((λ+ ai)ri −Ari − hi)‖+ ε/2 ≤ ε.

In the second last step it is used that g′i(s) = −aigi(s), s ∈ [0,∞) for i = 1, . . . , l. Since ε > 0 is
arbitrary, the proof is complete. �

Remark 9.7. The last part of the proof of Proposition 9.6 can be simplified under the additional
assumption that TtD ⊆ D for every t > 0. Then T̃tD̃ ⊆ D̃ for every t ≥ 0 and the claim follows by
applying the core theorem (Ethier and Kurtz, 1986, I, Proposition 3.3).
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