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Abstract. A split tree of cardinality n is constructed by distributing n “balls” in a subset of
vertices of an infinite tree which encompasses many types of random trees such as m-ary search
trees, quad trees, median-of-(2k + 1) trees, fringe-balanced trees, digital search trees and random
simplex trees. In this work, we study Bernoulli bond percolation on arbitrary split trees of large but
finite cardinality n. We show for appropriate percolation regimes that depend on the cardinality
n of the split tree that there exists a unique giant cluster, the fluctuations of the size of the giant
cluster as n — oo are described by an infinitely divisible distribution that belongs to the class of
stable (asymmetric) Cauchy laws. This work generalizes the results for the random m-ary recursive
trees by Berzunza (2015). Our approach is based on a remarkable decomposition of the size of the
giant percolation cluster as a sum of essentially independent random variables which may be useful
for studying percolation on other trees with logarithmic height; for instance in this work we study
also the case of regular trees.

1. Introduction

Consider a tree T}, of large but finite size n € N and perform Bernoulli bond-percolation with
parameter p, € [0, 1] that depends on the size of the graph. This means that we remove each edge in
T, with probability 1—p,,, independently of the other edges, inducing a partition of the set of vertices
into connected clusters. In particular, we are interested in the supercritical percolation regime, in
the sense that with high probability, there exists a giant cluster, that is of size comparable to that
of the entire tree. Bertoin (2013) established for several families of trees with n vertices that the
supercritical regime corresponds to percolation parameters of the form 1 — p,, = ¢/¢(n) + o(1/4(n))
as n — 0o, where ¢ > 0 is fixed and ¢(n) is an estimate of the height of a typical vertex in the tree
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structure'. More precisely, Bertoin (2013) showed that under the previous regime the size I';, of the
cluster containing the root satisfies lim,_soo n T, = I'(c¢) in law, for some random variable I'(¢) # 0.
This includes, important families of random trees with logarithmic height, such as random recursive
trees, preferential attachment trees, binary search trees where it is well-known that ¢(n) = Inn; see
Drmota (2009), Durrett (2010, Section 4.4). In those cases the random variable I'(c) is a constant;
see Bertoin (2014Db), Bertoin and Uribe Bravo (2015), Berzunza (2015). A different example is the
Cayley tree where £(n) = \/n and I'(c) is not a constant; see Pitman (1999).

More recently, some authors have considered analysing the fluctuations of the size of the largest
percolation cluster as n — oo for different families of trees with logarithmic height; see Schweinsberg
(2012) and Bertoin (2014a) for random recursive trees, Berzunza (2015) for m-ary random increasing
trees (these include binary search trees) and preferential attachment trees. The motivation stems
from the feature that the size of the giant cluster resulting from supercritical bond percolation on
those trees has non-Gaussian fluctuations. Instead, they are described by an infinitely divisible
distribution that belongs to the class of stable (asymmetric) Cauchy laws. This contrasts with
analogous results on other random graphs where the asymptotic normality of the size of the giant
clusters on supercritical percolation is established. We refer for instance to the works of Stepanov
(1970), Bollobas and Riordan (2012) and Seierstad (2013).

The main purpose of this work is to investigate analogously the case of random split trees which
were introduced by Devroye (1999). The class of random split trees includes many families of
trees that are frequently used in algorithm analysis, e.g., binary search trees (Hoare (1962)), m-ary
search trees (Pyke (1965)), quad trees (Finkel and Bentley (1974)), median-of-(2k+1) trees (Walker
and Wood (1976)), fringe-balanced trees (Devroye (1993)), digital search trees (Coffman and Eve
(1970)) and random simplex trees (Devroye (1999, Example 5)). Informally, a random split tree T5,°
of “size” (or cardinality) n is constructed as follows. Consider a rooted infinite b-ary tree with b € N
and where each vertex is a bucket of finite capacity s € N. We place n balls at the root, and the
balls individually trickle down the tree in a random fashion until no bucket is above capacity. Each
vertex draws a split vector V = (Vi,...,V;) from a common distribution, where V; describes the
probability that a ball passing through the vertex continues to the i-th child. A precise description
of this algorithm is given in Section 1.1. Finally, any vertex u such that the sub-tree rooted as u
contains no balls is then removed, and we consider the resulting tree T,,°. An important peculiarity
of the split tree T5" is that the number of vertices is random in general which makes the study
of split trees usually challenging. It must also be pointed out that later we assume that b < oc.
However, we believe that our approach can be applied to cases when b = oo with a little extra
effort. The case b = oo includes uniform recursive trees and preferential attachment trees for which
recently Janson (2019) has shown that they can be viewed as special split trees.

Loosely speaking, our main result shows that in the supercritical percolation regime the size
of the giant cluster has also non-Gaussian fluctuations where the “size” of T,,° can be defined as
either the number of vertices or the number of balls. We then show that the supercritical regime
corresponds to 1 —p, = ¢/Inn with ¢ > 0 fixed which agrees with the fact that split trees belong to
the family of trees with logarithmic height; see Devroye (1999). Essentially, this is Bertoin (2013)
criterion. Then, our main contribution establishes that the fluctuations of the “size” (either number
of vertices or balls) of the giant cluster are described by an infinitely divisible distribution, the
so-called continuous Luria-Delbriick law. Finally, we show that the approach developed in this work
may be useful for studying percolation on other classes of trees, such as for instance regular trees
(see Section 5 below).

We next introduce formally the family of random split trees and relevant background, which will
enable us to state our main result in Section 1.2.

lFor two sequences of real numbers (An)n>1 and (Bp)n>1 such that B, > 0, we write A, = o(B,) if
limp 500 An/Brn = 0. We also write A, = O(B,,) if limsup,,_, . |An|/Bn < o0
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1.1. Random split trees. In this section, we introduce the split tree model with parameters b, s, s,
s1, V and n introduced by Devroye (1999). Some of the parameters are the branch factor b € N, the
vertex capacity s € N, and the number of balls (or cardinality) n € N. The additional integers sg
and s; are needed to describe the ball distribution process. They satisfy the inequalities

0<s, 0<s9<s, 0<bsy<s+1-s. (1.1)

The so-called random split vector V = (V1, ..., V}) is a random non-negative vector with Z?zl Vi=1
and V; >0, fori=1,...,b.

Consider an infinite rooted b-ary tree T, i.e., every vertex has b children. We view each vertex of
u € T as a bucket with capacity s and assign to it an independent copy Vy = (Vi 1, ..., Vup) of the
random split vector V. The split tree T,," is constructed by distributing n balls among the vertices
of T. For a vertex u, let n, be the number of balls stored in the sub-tree rooted at u. The tree T;,"
is then defined as the largest sub-tree of T such that n, > 0 for all u € T,’. Let uq,...,u; be the
child vertices of u. Conditioning on n,, and V,, if n,, <s, thenn,, =0foralli =1,...,b;if n, > s,
then the cardinalities (ny,,...,ny,) of the b sub-trees rooted at uq, ..., u, are distributed as

Mult(nu — 59 — bsi, Vu71, R Vu,b) + (81, ce 81),

where Mult denotes the multinomial distribution, and b, s, s¢, s1 are integers satisfying (1.1).

It would be convenient to recall one more equivalent description of 7,,° where one inserts data
items into an initially empty data structure T. Let C(u) denote the number of balls in vertex u,
initially setting C'(u) = 0 for all u. We call u a leaf if C'(u) > 0 and C'(v) = 0 for all children v of u,
and internal if C'(v) > 0 for some strict descendant v of u. Then T,,® is constructed recursively by
distributing n balls one at time to generate a subset of vertices of T. The balls are labelled using
the set {1,2,...,n} in the order of insertion. The j-th ball is added by the following procedure.

(1) Insert j to the root.

(2) While j is at an internal vertex u € T, choose child ¢ with probability V;,; and move j to
child 1.

(3) If j is at a leaf u with C'(u) < s, then j stays at u and C(u) increases by 1. If j is at a leaf
with C(u) = s, then the balls at u are distributed among u and its children as follows. We
select sy < s of the balls uniformly at random to stay at u. Among the remaining s+ 1 — s
balls, we uniformly at random distribute s; balls to each of the b children of u. Each of the
remaining s + 1 — sg — bs; balls is placed at a child vertex chosen independently at random
according to the split vector assigned to u. This splitting process is repeated for any child
which receives more than s balls.

We stop once all n balls have been placed in T and obtain 7" by deleting all vertices v € T such
that the sub-tree rooted at w contains no balls; an internal vertex of T}," contains exactly sq balls,
while a leaf contains a random number in {1, ..., s}. This description will be used in Appendix A.

Remark 1.1. The number of vertices N of T},” is a random variable in general although the number
of balls n is deterministic. This is one of the main challenges in the study of split trees.

Remark 1.2. Depending on the choice of the parameters, several important data structures may be
modelled. For instance, the binary search trees where b = 2, s = sg = 1, s; = 0 and V is distributed
as (U,1 —U) for U a random variable uniform on [0,1]. In this case N = n. Some other relevant
(and more complicated) examples of split trees are m-ary search trees, median-of-(2k + 1) trees,
quad trees, simplex trees; see the original work of Devroye (1999) for details.

Remark 1.3. We can and will assume without loss of generality that the components of the split
vector V are identically distributed by the random permutations explained by Devroye (1999). In
particular, E[V1] = 1/b.



668 Gabriel Berzunza Ojeda, Xing Shi Cai and Cecilia Holmgren

Two quantities deeply related to the structure of split trees are
p=0bE[-ViInVi] and o2 :=bE[V;In® V] — p? (1.2)

Note that p € (0,Inb) and 0 < oo. They were introduced first by Devroye (1999) to study the
height of T;," as the number of balls increases.

In the study of split trees, the following condition is often assumed as this is satisfied by all types
of split trees used in applications:

Condition 1. Assume that P(V; =1) =P(V; =0) =0.

In the present work, we use the so-called total path length of T,," defined by ¥(T7") :== Y1 | Dy, (4),
where D,,(j) denotes the height (or depth) of the ball labeled j when all n balls have been inserted
in 7,,°. Broutin and Holmgren (2012, Theorem 3.1) have shown that under Condition 1,

E[T(T5P)] = p 'nlnn + w(nn)n + o(n), (1.3)
where @ : R — R is a continuous periodic function of period
d:=sup{a>0:P(InV; € aZ) = 1}. (1.4)

In particular, if the random variable In V; is non-lattice”, then d = 0 and the function w is a constant
and we write ¢ = w.

We point out that the proof of Broutin and Holmgren (2012, Theorem 3.1) is missing some
details for the case when InVj is lattice. The issue there is that the convergence (24) in Broutin
and Holmgren (2012) only holds when the distribution of In V; is non-lattice. Nevertheless, a close
look to the proof of Broutin and Holmgren (2012, Lemma 4.2) and Lemma 1.7 (ii) below show that
the result by Broutin and Holmgren (2012, Theorem 3.1) is correct also in the lattice case.

Remark 1.4. In binary search trees the function w equals to 2 — 4 where v is the Euler’s constant;
see Hibbard (1962). A similar result has been proven for random m-ary search trees (Mahmoud
(1986)), quad trees (Neininger and Riischendorf (1999)), the random median of a (2k + 1)-tree
(Rosler (2001)), tries, and Patricia tries (Bourdon (2001)).

An alternative notion of path length is the sum of all the heights of the vertices in T}, i.e.,
T(T3") = 3 erse dn(u), where dp(u) denotes the height of the vertex u € Tp,". Recall that the
height of a vertex is defined as the minimal number of edges of T;,” which are needed to connect it
to the root.

Condition 2. Suppose that In'Vy is non-lattice. Furthermore, for some a > 0 and € > 0, E[N] =
an + O(n(lnn)~17¢).

Assuming that Condition 2 holds, Broutin and Holmgren (2012, Corollary 5.1) showed that
E[Y(T:P)] = ap 'nlnn + (n+o(n), for some constant ¢ € R. (1.5)

Remark 1.5. Holmgren (2012, Theorem 1.1) showed that if In V) is non-lattice, i.e., d = 0, then
there exists a constant a > 0 such that E[N] = an + o(n) and furthermore Var(N) = o(n?).
However, this result is not enough to deduce (1.5) from (1.3) and the extra control in E[N] is
needed; see Broutin and Holmgren (2012, Section 5.1). On the one hand, Condition 2 is satisfied in
many interesting cases. For instance, it holds for m-ary search trees (Mahmoud and Pittel (1989)).
Moreover, Flajolet et al. (2010) showed that for most tries (where s =1 and sy = 0 and as long as
In V is non-lattice) Condition 2 holds. On the other hand, there are some special cases of random
split trees that do not satisfy Condition 2. For instance, tries with a fixed split vector (1/b,...,1/b),
in which case In V; is lattice with d = b.

2The random variable In Vi is non-lattice when there is not a € R such that In Vi € aZ almost surely. The constant
d is called the span of the lattice when d > 0 and In V; is non-lattice when d = 0.
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Remark 1.6. One can use Condition 2 to improve the result by Holmgren (2012, Theorem 1.1) and
obtain that Var(N) = o(n?In"27%n). We refer to Holmgren (2012, Theorem 1.1) and Holmgren
(2012, Remark 3.1) for a proof.

Finally, we recall and extend some results by Holmgren (2012, Section 2) and Broutin and Holm-
gren (2012, Section 4.2) related to the application of renewal theory in the study of split-trees. For

k> 1, set S = Z§:1 —InV} where (V/,j > 1) is a sequence of i.i.d. copies of V;. Following the

presentation by Holmgren (2012) (or Broutin and Holmgren (2012, Section 4.2)), for £ > 1 and
t € R, let ¥ (t) == b*P(S; < t) and define the renewal function

U(t) =Y dx(t).
k=1

Observe that U(t) = 0, for t < 0. For t € R, let J(¢) = 91(t) and observe that U satisfies the
following renewal equation

U(t) =9(t) + (U *d9)(t), where (U=x*dd)(t) = /t Ut — z)dd(z), for t>0. (1.6)
0

Lemma 1.7. Suppose that Condition 1 holds. The renewal function U satisfies the following.
(i) If InVy is non-lattice, then

U(t) = (i +0(1)> e as 1 — .

(i) If the distribution of InVy is lattice with span d defined in (1./), then

Ud]t]) = (Zl _1e_d +0(1)) el s 1o oo

Proof: Part (i) follows from Holmgren (2012, Lemma 2.1). To prove part (ii), we use the lattice
version of the key renewal theorem. Observe that di(¢) is not a probability measure. Following
Holmgren (2012) (or Broutin and Holmgren (2012, Section 4.2)), one can define another (“tilted”)
measure dw(t) = e~'dd(t) which indeed is a probability measure. Furthermore, dw(t) is lattice with
period d. The renewal equation (1.6) can then be written as

U(t) = 9(t) + (U x dw)(t), where U(t) = e tU(t) and J(t) = e t0(t),

for t > 0. On the other hand, > 77, J(kd) = (1 — e~%) 1. Therefore, (ii) follows from Asmussen
(2003, Proposition 4.1, Chapter V). O

In Broutin and Holmgren (2012, Section 4.2), the second-order behaviour of the renewal function
U is also studied. More precisely, Broutin and Holmgren (2012, Lemma 4.2) establishes that under
Condition 1 (and even for degenerate V7 ) one has that

t - o2 — 2 B
/0 e ? (U(z) —pte?)dz = 52 ptHo(t) +o(1), as t— oo, (1.7)
where ¢ : R — R is a continuous d-periodic function with d defined in (1.4). Moreover, if d = 0
then ¢ = 0; see Holmgren (2012, Corollary 2.2) for the non-lattice case.

1.2. Main results. In this section, we present the main results of this work. Let 7T, be a split tree
with n balls. We then perform Bernoulli bond percolation with parameter

C

n=1- 1.8
p o (1.8)
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where ¢ > 0 is fixed. We write G, for the size, i.e., the number of balls, of the percolation cluster that
contains the root. Our first result shows that this choice of the percolation parameter corresponds
precisely to the supercritical regime we are interested in.

Lemma 1.8. Suppose that Condition 1 holds. In the regime (1.8), we have that

lim n '@, = e_ﬁ, in probability.
n—o0

Moreover, the root cluster is the unique giant component, i.e., lim, oo n‘lé?lnd = 0 in probability,
where G%“d denotes the number of balls of the second largest percolation cluster.

Alternatively, let GG,, be the number of vertices in the root cluster. Then we have the similar
result:

Lemma 1.9. Suppose that Conditions 1 and 2 hold. In the regime (1.8), we have that

lim n'G, = oze_i, in probability, (1.9)

n—oo

where a > 0 is the constant in Condition 2. Moreover, the root cluster is the unique giant component,
i.e., limy, oo n 1G20 = 0 in probability, where G* denotes the number of vertices of the second
largest percolation cluster.

Lemma 1.8 and Lemma 1.9 are a consequence of the results of Bertoin (2013) which provides
a simple characterization of tree families and percolation regimes which yield giant clusters; their
proofs are given in Section 2. Lemma 1.8 and Lemma 1.9 can be viewed as the law of large numbers
for the “size” of the giant cluster, and it is then natural to investigate the fluctuations of Gp and Gy,.
To give a precise statement, recall that a real-valued random variable Z has the so-called continuous
Luria-Delbriick law® when its characteristic function is given by

E [eitZ] = exp (—g|t| —itln ‘t‘) s teR.

This distribution arises in limit theorems for sums of positive i.i.d. random variables in the domain
of attraction of a completely asymmetric Cauchy process; see e.g., Geluk and de Haan (2000). In
the context of percolation on large trees, it was observed first by Schweinsberg (2012) (see also
Bertoin (2014a) for an alternative approach) in relation with the fluctuations of the size (number of
vertices) of the giant cluster for supercritical percolation on random recursive trees. More precisely,
let T°¢ be a random recursive tree with n vertices and denote by Gi¢ the size (number of vertices)
of the largest percolation cluster after performing percolation with parameter p, as in (1.8); In
Bertoin (2014Db), it has been proven that this yields also to the supercritical regime in 7}, i.e.,
lim,, 00 171G = €7¢ in probability. Then,

(n7'GI¢ —e ) Inn —ce “Inlnn 4 —ce” (Z +1nc),

where % means convergence in distribution as n — co. More recently, Berzunza (2015) has shown
for preferential attachment trees and m-ary random increasing trees (the latter includes the case
of binary search trees) that the fluctuations of the size of the giant component in the percolation
regime (1.8) are also described by the continuous Luria-Delbriick distribution.

On the other hand, the continuous Luria-Delbriick distribution has been further observed in
several weak limit theorems for the number of cuts required to isolate the root of a tree; see the
original work of Meir and Moon (1970). For random recursive tree (Drmota et al. (2009), Tksanov and
Mohle (2007)), random binary search tree (Holmgren (2010b)) and split trees (Holmgren (2011)).

3The name of this distribution had its origin in a series of classic experiments in evolutionary biology pioneered
by Luria and Delbriick (1943) in order to study “random mutation” versus “directed adaptation” in the context of
bacteria becoming resistant to a previously lethal agent. We refer also to Mohle (2005).
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We refer to Cai et al. (2019) and Cai and Holmgren (2019) for a generalization of the Meir and
Moon cutting model where similar results appear.
We now state the central results of this work.

Theorem 1.10. Suppose that Condition 1 holds and that In V7 is non-lattice. As n — 0o, there is
the convergence in distribution

G _c _c _c 2 2
T ek |Inn— Seinlnn & —Ze H(Z—i—ln( >+gu—|—(u 0)2(C+M)—7+1>,
n % @ % 2p

where p and o® are the constants defined in (1.2), w =< (a constant) is defined in (1.3), v is the
FEuler constant and the variable Z has the continuous Luria-Delbrick distribution.

Similarly, we obtain that the fluctuations of G,, are also described by Z.

Theorem 1.11. Suppose that Condition 1 and 2 hold. As n — oo, there is the convergence in
distribution

c 2 _ 2
&—ae_ﬁ nn— Zeinlnn & — Lok Z +1n —i—C—N—i—(’u U)(C+M)—7—|—1 )
n I 0 m ! 2u?

where . and o* are the constants defined in (1.2), a is defined in Condition 2, C is defined in (1.5),
v s the Buler constant and the variable Z has the continuous Luria- Delbruck: distribution.

We also show that Theorem 1.10 can essentially be extended to the case when InV; is lattice.
Consider the following additional condition. Write y = |y| + {y} for the decomposition of a real
number y as the sum of its integer and fractional parts.

Condition 3. Let T,,” be a split tree with cardinality n and span d > 0 defined in (1.4). Furthermore,
suppose that {d~*Inlnn} — 0 € [0,1), as n — oo.

We introduce for every p € [0,1) and ¢,d, z > 0,

=c,d _ c d dlo—d 'Inz—dc/u|—do
=20 x) —€ )
nl—e

where 1 is the constant defined in (1.2). The function EZ’d decreases as  — oo and it can be viewed
as the tail of a measure EZ’d on (0,00). Note also that this measure fulfils the integral condition
f(o ooy (LA 22)25%(dz) < co. This enables us to introduce a Lévy process without negative jumps

Zy d = (Zy it t))t>0 with Laplace exponent
@‘é’d(a) = /(0 )( T =1+ azrlpay)=; d(dz),

ie., E[e*“Z?d(t)] = e!®5"@)  for ¢ > 0.

Theorem 1.12. Suppose that Condition 1 holds and that T} satisfies Condition 3. For any constant
0 > 0, as n — 0o, there is the convergence in distribution

(énn — e_ft> Inn — %e_i Inlnn + ce k (w(lnn) — & (ln (9—1e—§ lnn)))

. 2 2
4, —Zg’d(l) _Ce i <C + (W —o )2(C+ U)) ’
p % 2p

where p and o are the constants defined in (1.2), w is the function defined in (1.3), ¢ is the
function defined in (1.7), o is defined in Condition 3 and v is the Euler constant.
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Remark 1.13. Following Bertoin (2013), we point out that Lemmas 1.8 and 1.9 still hold whenever
the percolation parameter satisfies p, = 1 — c¢ln™'n + o(ln_1 n), where ¢ > 0 is fixed, which still
falls in the supercritical regime; see Bertoin (2013, Theorem 1). However, to obtain similar results
to those in Theorems 1.10, 1.11 and 1.12 one needs to know more information of the o(In"! n) term.

The constants appearing in our main results can be computed explicitly for some types of trees.
For example, if T,?St is a binary search tree with n vertices (recall Remark 1.2), then N =n, a =1,
pw=1/2,02=1/4,( =¢=2y—4and ¢ = 0; see for example Hibbard (1962). Moreover, the result
in Theorem 1.10 (or Theorem 1.11) applied to TP coincides with Berzunza (2015, Theorem 1.1).
The value of the constant can also be computed, for instance, for quad trees or for m-ary search
trees; we refer to Neininger and Riischendorf (1999) and Mahmoud (1986), respectively, for details.

The approach used by Schweinsberg (2012) for recursive trees relies on its connection with the
Bolthausen-Sznitman coalescent found by Goldschmidt and Martin (2005) and the estimation of
the rate of decrease of the number of blocks in such coalescent process. The alternative approach of
Bertoin (2014a) makes use of the special properties of recursive trees (namely the splitting property)
and more specifically of a coupling due to Iksanov and Mohle (2007) connecting the Meir and
Moon (1970) algorithm for the isolation of the root with a certain random walk in the domain of
attraction of the completely asymmetric Cauchy process. This clearly fails for split-trees. On the
other hand, the basic idea of Berzunza (2015) for the case of m-ary random increasing trees and
preferential attachment trees is based in the close relation of these trees with Markovian branching
processes and the dynamical incorporation of percolation as neutral mutations. Roughly speaking,
this yields to the analysis of the asymptotic behaviour of branching processes subject to rare neutral
mutations. The relationship between percolation on trees and branching process with mutations
was first observed by Bertoin and Uribe Bravo (2015). Recently, Holmgren and Janson (2017) have
shown that some kinds of split trees (but not all) can be related to genealogical trees of general
age-dependent branching processes (or Crump-Mode-Jagers processes), for instance, m-ary search
trees and median-of-(2¢+1) trees. Furthermore, Berzunza (2020) has proven the existence of a giant
percolation cluster for appropriate regimes of such genealogical trees via a similar relationship with
a general branching process with mutations. However, the branching processes with mutations in
Berzunza (2020) is in general not Markovian due to the nature of the Crump-Mode-Jagers processes;
see Jagers (1975). This makes the idea of Berzunza (2015) difficult to implement since there the
Markov property is crucial. We thus have to use here a fairly different route.

The method used here is inspired in the original technique developed by Janson (2004) to study the
number of cuts needed to isolate the root of complete binary trees with the cutting-down procedure
of Meir and Moon (1970). Holmgren (2010b, 2011) has successfully extended this method to study
the same quantity as in Janson (2004) for split trees. Informally speaking, we approximate Gn
(resp. Gy,) by the sum of the “sizes” of the percolation clusters of the sub-trees rooted at vertices
that are at a distance around Inlnn from the root. There are approximately b™ ™" clusters, but we
only consider those that are still connected to the root of Ty" after performing percolation for the
regime p,, as in (1.8). The number of balls (or number of vertices) between the root of 75" and the
the vertices at height Inlnn is equal to O(Inn) and thus they do not contribute to the fluctuations
of Gy, (resp. Gy). We then analyse carefully the “sizes” of percolation clusters at distances close
to Inlnn from the root, and essentially, we view Gn (resp. Gy,) as a sum of independent random
variables. This will allow us to apply a classical limit theorem for the convergence of triangular
arrays to get our main result. Therefore, we conclude that most of the random fluctuations can be
explained by the “sizes” of percolation clusters at distances close to InInn from the root of T,,° and
that they are still connected to the root. Indeed, this phenomenon has also been observed by Bertoin
(2014a, Section 3) who studied the fluctuations of the number of vertices at height Inlnn which
has been disconnected from the root in b-regular trees after performing supercritical percolation.
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In this setting, the fluctuations are described by a Lévy process without negative jumps that also
appears in Janson (2004).

The rest of this paper is organized as follows: We start by proving Lemma 1.8 and Lemma 1.9 in
Section 2. In Section 3, we then focus on the proof of Theorem 1.10 and Theorem 1.12. Section 4
is devoted to the proof of Theorem 1.11 which follows essentially from Theorem 1.10. In Section 5,
we briefly point out that the present approach also applies to study the fluctuations of the size of
the giant cluster for percolation on regular trees. The appendices provide details on some technical
results that are used in the proofs of the main result but that we decided to postpone for a better
understanding of our approach. In particular, Appendix A is dedicated to investigate the asymptotic
behaviour of distances between uniformly chosen vertices and uniformly chosen balls in 7},” which
may be of independent interest.

2. Proof of Lemma 1.8 and Lemma 1.9

Lemma 1.8 and Lemma 1.9 are a merely consequence of the results of Bertoin (2013) after mild
modifications.

Proof of Lemma 1.8: The result follows from exactly the same argument as the proof of Bertoin
(2013, Corollary 1 and Proposition 1) by using Lemma A.2, Corollary A.6 in Appendix A and
by taking into account that the size is defined as the number of balls instead of the number of
vertices. g

Proof of Lemma 1.9: The result follows from Bertoin (2013, Corollary 1). Note that conditions
(Hy) and (H},), for k = 1,2, in Bertoin (2013, Corollary 1) are verified in Lemma A.3 and Corollary

A6 in Appendix A. Therefore, in the percolation regime (1.8), we have that lim, oo NG, =€ #,
in probability. On the other hand, Conditions | and 2 imply that lim,,,~, N/n = «, in probability.
This establishes (1.9) in Lemma 1.9. The uniqueness of the giant component follows from Bertoin
(2013, Proposition 1) by noticing that the condition there is satisfied as a consequence of Lemma
A.3 and Corollary A.6 in Appendix A, that is,

1
lim —(dy(u1),dp(ur,u2)) = (1/p,2/p),  in probability,

n—oo lnn

where ui,up are two i.i.d. uniform random vertices in T, dn(u1) denotes the height of u; and
dp(u1,us2) is the number of edges of T3P which are needed to connect the root and the vertices u;
and wus. O

3. Proof of Theorem 1.10

This section is devoted to the proofs of Theorem 1.10 and Theorem 1.12 along the lines explained
at the end of Section 1.2. The starting point is Lemma 3.1 where we estimate the number of balls of
the percolation clusters of sub trees rooted at vertices that are around height Inlnn. We continue
with Lemmas 3.2, 3.3 and 3.4 that allow us to approximate G, as essentially a sum of independent
random variables. Finally, we establish Theorem 3.5 that shows that the conditions of Kallenberg
(2002, Theorem 15.28), a classical limit theorem for triangular arrays, are fulfilled which allow us
to conclude with the proof of Theorem 1.10.

For a vertex v € T,,” that is at height d,,(v) = j, it is not difficult to see from the definition of
random split trees in Section 1.1 that conditioning on the split vectors, we have

J J
binomial (n, H ka) — 87 <st My <st binomial <n, H vak> + s17, (3.1)
k=1 k=1
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where <y denotes stochastically dominated by and (W, k =1,...,7) are i.i.d. random variables
on [0, 1] given by the split vectors associated with the vertices in the unique path from v to the root;
This property has been used by Devroye (1999) and Holmgren (2012). In particular W, ; = Vi in
distribution. We deduce the following important estimates.

J
Elny) <n [ EWyi] + 515 = nb™ + 517, (3.2)
=1

where we have used E[W,, ;] = E[Vi] = 1/b. Moreover,

n? gnQHE[W (H W k] H ) +231jnHE Wy i) + 5352 (3.3)
k=1 k=1

k=1

Note that E[W7,] = E[V{?] < 1/b.

We use the notation logyz = Inz/Inb for the logarithm with base b of > 0, and we write
my,, = |Blog,Inn| for some constant 8 > —2/(1 + log, E[V{}]). We further assume that n is large
enough such that 0 < m,, <Inn. For 1 <i < b™», let v; be a vertex in T}, at height m,, and let n;
be the number of balls stored at the sub-tree rooted at v;. In particular, for an arbitrary k > 0,

E[n?] = n*E™ V2] + o(n®In"*n). (3.4)

We denote by C’m the number of balls of the sub-tree of T)¥ rooted at v; after Bernoulli bond-

percolation with parameter p,. Clearly, (C’nl, 1<i< bm") are conditionally independent random

variables given (n;, 1 < i < b™). We write Ey, [Cy,.] = E[C,,:|n4], i.e., it is the conditional expected
value of C, ; given n,.

We use the notation A, = B,, + op(f(n)), where A, and B,, are two sequences of real random
variables and f : N — (0, 00) a function, to indicate that (A, — By)/f(n) — 0 in probability.

Lemma 3.1. Suppose that Condition 1 is fulfilled. For 1 < ¢ < ™", we have that

N _elmng 22 — 2o’ nlnng _ehng niw(lnn;) _cln n;
Enl[cn,z] =n;e ~ Inn — e K lnn _C<7€ p Inn _|_0< )

23 Inn Inn Inn

where w : R — R is the function in (1.3).

Proof: For 1 <1i < b™, let T; be the sub-tree of T};" rooted at the vertex v; at height m,,. Let b;
be an uniformly chosen ball in T;. Let D, (b;) be the height of b; in the sub-tree T;. We use the
following observation made by Bertoin (2013, Proof of Theorem 1),

E,. [n;lén,i} =E, {pf"i(bi)} . (3.5)

In words, the left-hand side can be interpreted as the probability that b; belongs to the percola-
tion cluster containing the root of T;, i.e., v;, while the right-hand side can be interpreted as the
probability that no edge has been removed in the path between b; and v;.

We assume for a while that

By, [p27%]

Inn; 1 ; 1 1 ; 2
=By [pn" (14 (Dm(bi) - > np, + 3 (Dm(bi) — ) In® pn
7 2 1

By our assumption (1.8) in the percolation parameter,

1 Inny _clnng 2 lnn; _echn 1
e ro() RSB (1)
nn nn nn
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We have used that Inn; < Inn. Then it follows from Lemma A.2 (i)-(ii) in Appendix A and a
couple of lines of calculations that

D, (bi) _elmng 22 —?o?Inn; _ehng w(nn;) _chn 1
Eni pnl =€ p lnn e“lnn_C7€ p lnn +O .

23 In?n Inn Inn

Therefore, the result in Lemma 3.1 follows from the identity (3.5) and the above estimation.
Now, we focus on establishing (3.6). From the inequality

. ) Inn; l i 1 1 i 2
pfl) i (bi) — <1 + (Dn,-(bz‘) B n: > Inp,, + 3 (Dni(bi) _ Ilun ) ln2pn

we conclude that it is enough to show that

'(pnl.(bn - IHM”Z) Iy 3] iy <1n1n)

in order to obtain (3.6). But this follows from Lemma A.2 (iii) in Appendix A and (3.7). O

E,,

Let n,; be the total number of edges on the branch from v; to the root which have been deleted
after percolation with parameter p,. The random variable 7, ; has the binomial distribution with
parameters (my, 1 —py). But the random variables (7, ;,1 < i < ™) are not independent. On the
other hand, 7, ; = 0 if and only if the vertex v; is still connected to the root.

Lemma 3.2. Suppose that Condition 1 is fulfilled. We have for 3 > —2/(1 + log, E[V{?]) that

bmn

G = ;En Cril g0y + 00 (1)

Proof: We denote by CA'mg the number of balls in the vertices of T,," at height less or equal to m,, — 1
that are connected to the root after percolation with parameter p,. Then, it should be plain that

pmn
G’)’L = TL,O + Z Cn7lﬂ{nn,z:0}
i=1

A~

The sequences of random variables (7,1 < i < ™) and (Cy;,1 < i < b™") are independent.
Furthermore, the sequence of random variables (7,1 < i < ™) and (n;,1 < i < b™") are also
independent. Let F,, be the o-field generated by (7,1 < i < b™") and (n;,1 <7 < ™). Note
also that E[C’n,]]-"n] = E,, [CA‘M] By conditioning on the o-field F,, and taking expectation, we
obtain that

bmn 2
E (én - én,l) - Z Enz [Onj]]l{??n,i:(]}) =E
i=1

% E"z‘ |:(On,l - Em [én,l])2:| ]l{nn,z:O}]
i=1
b

_ ; E [(Cn —E,, [On,i])Q} P (o = 0).

Since P(1,; = 0) < 1 and E[(Cp; — E,,,[Cri])?] < 2E[n?], because C,; < ny, we deduce that

pmn 2 pmn
E (Gn —Cno— Y _En, [én,i]n{wo}) <2) E[nj].
=1

=1
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Since 8 > —2/(1 + log, E[V%]), we obtain from the estimate (3.4) that

bmn 2 2
~ ~ A n
E || Gn—Cno—> En[Cuilly, i0}> =0 <2> :
( i=1 In®n

The above implies together with Chebyshev’s inequality that

bmn

G = Ano+ZEm "Z]ﬂ{ﬁnz—0}+0p<1:n>

Finally, the statement follows easily after noticing that 0 < Ch 0< prntl = o (hm) g

Next, we combine Lemma 3.1 and 3.2.

Lemma 3.3. Suppose that Condition 1 is fulfilled. We have for 3 > —2/(1 + log, E[V{]) that

bmn bmn pmn

_clnny _e nyw(lnn;
= e E g e o 3
i=1
u? — cto? —e ( n )
— € h—Fop[— ).
2u3 Inn P \lnn

where w : R — R is the function in (1.3).

Proof: The two sequences of random variables (1,,1 < i < b™") and (n;,1 < i < ™) are
independent. Recall that the random variable 7, ; has the binomial distribution with parameters
(mp,1 — p,). Hence

L=P ;i =0) =Py >1)=1-py" =0 (mlnn) : (3.8)

Inn

Since Zf:; n; < n and P(n,; = 0) < 1, we obtain that

E

pmn pmn
nl n
E (A n ’L - .
P Inn {"” ’_0}] Inn Z nilP (i = 0) < Inn

Thus Lemma 3.1 and Lemma 3.2 imply that

A 2.2 2 2
g cpT—Ccon ]-n n; nZW(].n nz) _clnng n
Gn = ; <n'5 - 2:“’3 1n2n —C lnn e ulnn ]]-{nn 2_0} + Op (m) . (39)

By the estimation (3.8) and the fact that Zf:f n; < n, we get that

bmn bmn

pmn
nilnn; _chng nilnn; _chng n
E ; 1n2n e T Inn ]1{7]117,—0} Z; 1n2n e wlnn ] < hanEnZ T}nZZ]_)—O(lnn)
and
E 3 niwo(In ;) Llfm]l — niw(lnn;) _elhn bmnE >
> e g - SR | < TS BlndE 2 )

o).
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for some constant K > 0 such that |w(z)| < K for # € R; recall that @ in (1.3) is a continuous
function with period d > 0. The previous two estimates together with Markov’s inequality imply

that
pmn
n;lnn; _gllnﬂ]l
L nn
: : lnﬂn e ! {nnsz}
i=1
and
pmn
niw(lnni) _¢lnng
E — ¢ plnn ]l . —
Inn {1, =0}
=1

For large enough k > 1,

pmn

i=1

xz

Then, by using the inequality |e™

- n;lnn; _gllnnz ( n )
nn — 3.10
Z m?n T \n /) (310)
o w(lnn;) Inn n
: Ve Tn — 3.11
; Inn €’ top (lnn) ( )

—mn(k—1 _ n

—e Y| < |x —yl for x,y € Ry, we have that

pmn a0 . pmn
aneiﬁlnn _ n;e # <——IE Zni(lnn—lnni)]
i=1 i=1 ] pinn L:l
e L[S i tun— g n
nn Z':lnl nn —1Inng) L, S pp-kmny 0 i
nlnlnn

where we have used that Zl-’ff n; < n in order to obtain the last estimation. The above implies

pmn pmn
clnn; n
nie wTn = ek n; + o ( ) 3.13
lnnz ! nnz ‘ PNlnn ( )
Similarly, we deduce from (3.8) and (3.12)
bmn cInn; bmn c bmn c Inn; bmn
ZniefE T Z”ie*pﬂ{nn,izl} E ane pIan — n;e » ] P (nn1 > 1)
i=1 i=1 i=1 i=1
(&7)
= 0 —_— y
Inn
mn nZ 1n nz o In ng b’mn n
E e_un"—— nie n|| = (—)
; In%n ‘ Inn
and
E gf niw(lnn;) _eln Igf niw(lnn;) _c ( n )
————Fe w#hn — ——e #|| =0|l—).
— Inn = Inn Inn
As a consequence, the previous three estimates and the Markov’s inequality imply that
pmn s pmn n
ane i Tnn ]l{nn >1) = e u an]l{m”>1} + op (]nn) (3.14)
bmn nlnn Inn; bmn
3 i — < BT =
Z 1z p = e Zm%—op (l n) (3.15)

i=1
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and
pmn pron
niw(nn;) _eln _c n;w(lnn;) ( n )
nn — - . 1
; nn ¢ M; Inn +op Inn (3.16)

Plugging the estimations (3.10), (3.11), (3.13), (3.14), (3.15) and (3.16) into the expression in
(3.9) yields that

bmn bmn
clnn;

A _c —
Gp=—e n g nily, >13 + g n;e khn
=1 =1

bmn bmn
Au? —c?o? _c 1 _e n;w(Inn;) n
-3 € F— n; — ce HE 7—1—01,(—);
2u Inn 4 - Inn Inn
1= 1=

note also that 1y, >13 =1—1y, .—o;. Finally, our claim in Lemma 3.3 follows by showing that

pmn

1 n n
o an = + op (M) . (3.17)

1=

Note that Ef:f n; = n — C(n), where C'(n) denotes the number of balls of the vertices of TSP at

distance less or equal to m, — 1 from the root. Since 0 < C(n) < max(s,so)b™t! = o(n), we
deduce (3.17). O

We refine the result of Lemma 3.3.

Lemma 3.4. Suppose that Condition 1 is fulfilled. We have for 3 > —2/(1 + log, E[V{?]) that

N _c _clnny
Gp=—e * E NyEy + E nye # nn

1<dn (v)<mn dn(v)=mn
_e nyw(lnn,) Au?—c2o? _c n ( n )
e’ Z Inn 2u3 c Hlnn+0p Inn/"
dn(v)=mn

where w : R — R is the function in (1.3) and (gy,1 < dn(v) < my,) is a sequence of i.i.d. Bernoulli
random variables with parameter 1 — py,.

Proof: Our claim follows from Lemma 3.3 by showing that

pmn
_c _c n
e ~ Zniﬂ{ﬂn,izl} =€ + Z NyEy + Op (m) . (318)
=1 1<dn (v)<mn

Recall that the sequences of random variables (7,1 < i < ™) and (n;,1 < i < b™") are
independent. It should be obvious that

pmn pmn
E|e & Znin{wzl}] =1 —ppm)e n Y Eni. (3.19)

i=1 i=1
Next consider the vertices v;0,v;1,...,Vim, = v; along the path from the root v;o of TP to
the vertex v; at height m,. For j = 1,...,m,, we associate to each consecutive pair of vertices

(vij—1,vij) the edge that is between them (where v;; is a vertex at height j on T,"). Define the
event F; ; = {the edge (vi,j_l, Ui,j) has been removed after percolation} and write gij = 1g, ;. So,
(€ij,1 < j <my) is a sequence of i.i.d. Bernoulli random variables with parameter 1 — p,, and

Mn
Mn,i = Z&‘,j- (3.20)
j=1
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Then
c b c b
E|le & anm] =mu(1—pp)e ZE [n] . (3.21)
i=1 =1
Since

bmn bmn

S A _c

e n E nill{,]n’izl} <e n E NiMn,i,
i=1 i=1

we deduce from (3.19) and (3.21) that

pmn pmn pmn
_c _c £ n
B e ) it = Znﬂ{}] < (ma(1=pa) = (1= p7™) e “;E[m]:0<m)’

where we have used that Zi’:f n; < n and our assumption (1.8). Therefore, the identity (3.20)
implies that

bmn b my,
_c _c n
e ~ E ni]l{nnyi21} =€ + E E Nni&; 5 + Op (m) . (322)
=1 i=1 j=1

Finally, let P(v;) denote the unique path from the root v; o of 7" to v;, i.e., the unique sequence

of vertices v;0,vi1,. .., Vim, = vi. For v =v;; € P(v;) \ {vio}, write €, instead of ; ;. Note that
bmnomy, pmn
EDISIEFELED DD DENEE D DD DI
=1 j=1 =1 veP(v;)\{vi,o} 1<dp(v)<myn  :weP(v;)\{vi,0}
_e n

=e » NyEy + O (—) 3.23

Z P NInn /Y (3:23)

1§dn(7})§mn

because n, — sb™n < Zi:UEP(Ui)\{Ui,O} n; < ny.
Therefore, the estimation (3.18) follows by combining (3.22) and (3.23). O

Following the idea of Janson (2004) and subsequently used by Holmgren (2010b, 2011) (where

the number of random cuts required to isolate the root of a tree was studied), we express G,, as a
sum of triangular arrays. We write

_el
& =¢ * nnnvav, for v e T:P such that d, < my, (3.24)
n

where (g4,1 < d,(v) < my,) is a sequence of i.i.d. Bernoulli random variables with parameter 1 — p,.
We also write &) := —a,,/n for i € N, where

Inn _cliny _e nyw(lnny)
Oy = —— E nye #hn —ce » E _—

n n
dn (U):mn dn (’U):mn

Au? —cto? .
zr2 " T

e wlnn— SeFInlnn + ce_ﬁw(lnn) — ce_ﬁqﬁ <ln (9_1e_ﬁ lnn>> —
0 2u3

for any constant § > 0. By normalizing Gn, Lemma 3.1 gives that

<n_lén - e_ﬁ) Inn — cu_le_ﬁ Inlnn + ce & <w(1n n)— ¢ (ln <9_le_ﬁ In n)))

= - Z fv_Z£'§+OP(1)'
=1

1<d,, ('U)Smn
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Recall that the cardinalities (n,,1 < d,(v) < m,,) are not independent random variables and thus
the sequence (&,,1 < dp(v) < my,) U (&,7 € N) is not a triangular array. However, conditional on
Fim,,, the o-field generated by (n,,1 < d,(v) < m,,), the sequence (§,,1 < dy,(v) < my,)U(,i € N)
is a triangular array where (¢/,7 € N) is a deterministic sequence.

Finally, the proofs of Theorem 1.10 and Theorem 1.12 are going to be completed via a classical
theorem for convergence of sums of triangular arrays to infinitely divisible distributions; see e.g.
Kallenberg (2002, Theorem 15.28). In this direction, we need the following result. For the sake of
simplicity, we introduce the following notation. For any constants 6,z > 0,

An,l = Z ]P)(Sv > w‘fmn)y An,Q = Z E [§v1{§v§9}|fmn] — Qlp,
1<dn (v)<mp, 1<dn (v)<mp,
and Amg = Z VCLT’ (§v1{£US0}|an) .
1<dn (v)<my

For 8 > 0 and x > 0, we also define the function

Ox
1—e*

T lo—z ' Inb—2lc/p|—zotc/p

Yo(x) =1—
such that 19(0) = 0.

Theorem 3.5. Recall that m,, = |flogylnn|. Suppose that Condition I holds. Furthermore, if
In V; is lattice with span d defined in (1./), we also assume that Condition 3 holds for some o € [0,1).
For any constant 6 > 0 and large enough B, the following statements hold as n — oo,
(i) sup P (& > x| Fm,) 2250, for every x > 0.
1<dy (v)<mp,
(ii) For every x >0,

e ﬁ% if InVp is non-lattice,
d__cdle=d™ Inz—d~le/uj=de it 1nV; s lattice.

Ap L v(z,00)) 1= {

9 2_ .2 . 2. .3 .
(iif) An,2E>( T ;Zg Ho T i +ln9+¢6(d)> %e "

(iv) Ans 2 60 (1+1y(d)) ge*ﬁ.

The proof of this theorem is rather technical and postponed until the Appendix B.
Proof of Theorem 1.10: We apply Kallenberg (2002, Theorem 15.28) with the constants
2cu+cu2—002—u02+u3> _e

—e ©
2p f

a=0 and b:<

to the sequence (Zn = Zlgdn(u)gmn o+ &n> 1) conditioned on F,,,. We observe that

ap/n — 0 as n — oo. Thus, Theorem 3.5 (i) implies that conditioned on F,,, the variables (§,,1 <

dn(v) < my)U(E,7> 1) form a null array. Theorem 3.5 (ii) shows that v(dz) = cu~te nx2, for

x > 0. Hence
9 c 1 (&
/ 2*v(dz) = cpte #h  and / zv(dz) = —cp e wInd for 6> 0.
0 0
Thus the right-hand side of Theorem 3.5 (iii) and (iv) can be written as

1 0
b—/ zv(dz) and a—i—/ z*v(dz), for 6 >0,
[4 0
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respectively. Therefore Kallenberg (2002, Theorem 15.28) implies that there is the convergence

in distribution Z, 9 W conditioned on Fm,,, where W has a weakly 1-stable distribution with
characteristic function given by

E[eitW] = exp <ibt +/O ( itx -1 - Zt%ﬂ{x<1}) ( )) .

This expression can be simplified to show that W is equal in distribution to

Cei <Z+ln<;> L=t —’y+1>,

I 2u?
where v is the Euler constant and the variable Z has the continuous Luria-Delbriick distribution;
see, e.g., Feller (1971, Section XVIIL.3). Finally, note that the conditioning does not affect the

distribution of W. Then it follows that the convergence Z, 9 W holds also unconditioned; We
refer to Holmgren (2010b, pages 407-409) for a formal proof of this fact where a general argument
is provided for a sequence with a similar structure as (Z,,n > 1). Therefore, the proof of Theorem
1.10 is completed. ]

Proof of Theorem 1.12: It follows along the lines of the proof of Theorem 1.10. Details are left to
the reader. g

4. Proof of Theorem 1.11

In this section, we deduce Theorem 1.11 from Theorem 1.10 by showing that -Gy, and l‘fﬁlG
are close enough as n — oo. We start by recalling some notation from Section 5 Remember that
we write m,, = |Slog,Inn]|, for some constant § > 0, and that we assume that n is large enough
such that 0 < m,, < Inn. For 1 < i < b™», recall also that we let v; be a vertex in 7;;" at height
m, and we let n; be the number of balls stored at the sub-tree rooted at v;. We further let N; be
the (random) number of vertices at the sub-tree rooted at v;.

We denote by Cj,; the number of vertices of the sub-tree of TP rooted at v; after percolation
with parameter p,. Clearly, (C);,1 < i < ™») are conditionally independent random variables
given (n;,1 < i < b™). Write E,,,[C), 5] == E[Cy i|ns], i.e., it is the conditional expected value of
Ch,i given n;. We have the following estimation of C,, ; that corresponds to Lemma 3.1.

Lemma 4.1. Suppose that Condition 1 and 2 are fulfilled. For 1 < ¢ < d™", we have that

_clhnng Au? —cto?n;lnn; _chn n; _clnng n;
Ey, [Cri] = ange™ 5 o — a=H ¢RI o (1),
2u In2n Inn Inn

where ¢ € R is the constant in (1.5).

Proof: For 1 <i < d™, let T; be the sub-tree of T)," rooted at the vertex v; at height m,. Let u;
be a vertex in 7; with the uniform distribution on the set of vertices of the sub-tree T;. Let dy, (u;)
be the height of w;. Recall the observation made by Bertoin (2013, Proof of Theorem 1),

Ep, [N, Cns] = B, [pr 7] (4.1)

In words, the left-hand side can be interpreted as the probability that u; belongs to the percolation
cluster containing the root of Tj, i.e., v;, while the right-hand side can be interpreted as the prob-
ability that no edge has been removed in the path between u; and v;. Then a similar computation
as in the proof of Lemma 3.1 together with Lemma A.3 (i)-(iii) in Appendix A shows that

2.2 2.2
dn, (u;) clng  c*p® —cfo%Ilnn; _elmni ¢ 1 _clony 1
E ] |: 7 ] —e T uInn — e pwlnn — 2 _____ o plnn ol — . 42
ni [Pr 2u3 In?n alnn * Inn (42)
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On the other hand, we note that Cj,; < N;. Hence Condition 2 and Remark 1.6 imply that
|En, [N, Cnyi] — En, [E; NN Cri]| < B INGIE[[N; — En, [Ni]]] = 0 (In "' ) .

n
By making use of Condition 2 one more time, we deduce that
E,, [N;lCm} = oz_lEni [nflCn,i] +o0 (hﬂ_1 n) . (4.3)
Therefore, our claim follows from the combination of (4.1), (4.2) and (4.3). O

Recall that 7, ; denotes the total number of edges on the branch from v; to the root which has
been deleted after percolation with parameter p,. The next result is analogous of Lemma 3.2.

Lemma 4.2. Suppose that Condition 1 and 2 holds. We have for 3 > —2/(log, E[V?] + 1) that

bmn

n
G = ;Eni [Crillgy,, =0y + 0p (H) '
Proof: The proof follows from a very similar argument as the proof of Lemma 3.2. O

Finally, we show that -G, and %Gn possess the same asymptotic behaviour.

Lemma 4.3. Suppose that Condition 1 and 2 holds. We have for 3 > —2/(1 +log, E[V?] + 1) that
N _ _cn n
Gp = aGp + cals — Ca Ve “n Tow <m> .
where ¢ € R is defined in (1.5) and ¢ € R is the constant value of the function w in (1.3) when
d=0.
Proof: We deduce from Lemma 4.1, Lemma 4.2 and equation (3.9) that

pmn

~ - . 1 . _glnni
anaan—mz(< ni _W<nn>> R 1 0y + 0p ()
i=1

alnn Inn Inn

By Condition 2, the random variable In V; is non-lattice and thus the function w is a constant equal
to ¢. Hence

bmn
clnn;

_ - —1 U T o Inn L
Gpn = aGy — ca(fa ™ =) ; nnt " Ly, =0y +0p (1nn) :

Furthermore, the estimations (3.11), (3.13) and (3.17) allow us to deduce that

bmn
n; _c Inn; _cn n
—e nlnly _n=e n— 4o (—)
ZZ; Inn {1, =0} Inn +op Inn
Therefore, the result follows clearly by combining the previous two estimates. O

We are now in the position to prove Theorem 1.11.
Proof of Theorem 1.11: By normalizing GG,,, Lemma 4.3 gives that
(n_lGn — ae_ﬁ) Inn — %e_i Inlnn
=« (n_lén - e_ﬁ) Inn — %e_ﬁ Inlnn + ca(s — Coz_l)e_i + op(1).

Therefore, the result in Theorem 1.11 follows from a simple application of Theorem 1.10. O
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5. Percolation on b-regular trees

In this section, we point out that the approach developed in the proof of Theorem 1.10 can be
also applied to study percolation on other classes of trees. We focus here on the case of rooted
complete regular b-ary trees 7,°® with height h € N and b > 2 a fixed integer (i.e., each vertex
has exactly out-degree b). We note that there are b* vertices at distance k = 0,1,...,h from the
root and a total of nj, = (V"1 —1)/(b — 1) vertices. We perform Bernoulli bond percolation with
parameter

Ph = e—c/h’
where ¢ > 0 is fixed. Indeed, this choice of the percolation parameter corresponds precisely to the
supercritical regime, i.e., there exists a (unique) giant cluster such that limy_ n,;leeg =e % in
probability, where G} denotes the size (i.e., the number of vertices) of the cluster that contains
the root. We refer to Bertoin (2013, Section 3) for details. We are interested in the fluctuations of
G;Leg. We introduce for every p € [0,1) and = > 0,

_ p—ptlo—log, z|+1

This function decreases as © — oo and it can be viewed as the tail of a measure A, on (0,00).
Furthermore, this measure fulfils the integral condition |, © <>O)(l A z?)A,(dx) < co. This enables us

to introduce a Lévy process without negative jumps L, = (L,(t))¢>0 with Laplace exponent
VU, (a) = / (e =1+ axlyzeqy)Ay(dr), for a > 0.
(0,00)

Bertoin (2014a, Theorem 3.1) has proven that the fluctuations of the number of vertices at height
h which has been disconnected from the root after percolation are described by L,. Indeed, L, also
appears in relation with limit theorems for the number of random records on a complete binary
tree; see Janson (2004).

We state the following analogue of Theorem 1.11.

Theorem 5.1. In the regime where h — oo with {logy h} — p € [0,1), we have that

G,® —c —c d —c c
(nhh—e >h—ce logy h — —e (Lp(c)—i—cp—b_l).

The proof strategy is the similar as the one used in the proof of Theorem 1.10. We write
my, = 2|logy, h| and assume that h is large enough such that 0 < my, < h. For 1 < i < ™ let v;
be the b vertices at height my,. Note that the number of vertices of the sub-tree of T;* rooted at
v; is given by nj; = (b"~™»*1 —1)/(b — 1). Denote by Cj,; the number of vertices of the sub-tree
of T, ,Zeg rooted at v; after percolation with parameter py,. Clearly, (Cp;,1 < i < ™) is a sequence
of i.i.d. random variables.

Lemma 5.2. For 1 <i < b, we have that
E[Ch;] = nne ¢ + nh7ih_1(b — 1)_166_C + nh,imhh_lce_c + O(nh,ih_l).

Proof: For 1 <4 < b™», let Tj,; be the sub-tree of T}ieg rooted at the vertex v;. Let u; denote a
uniform chosen vertex in 7}, ; and write dp, (u;) for its height in T}, ;. Note that P(dp(u;) = k) = bkng%,

for k € {0,1,...,h —my}. By the key observation made by Bertoin (2013, Proof of Theorem 1),
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we have that

. h—my, ) bh_mh hem) h—mp, »
E [n’:;Chﬂ} =F [e—ch dh(w)} — Z e—ch kp(dh(ui) _ k:) _ o o Z ech kb_k
k=0 ’ k=0

B hemy (b ch .
TR <b—1+h(b—1)2+o(h ))‘

Recall that ny,; = (b"~™»+1 —1)/(b—1). Therefore, after some simple computations we obtain that

h—my,

E [n,;;ch,i] = (T4 e(b— 1) hY) 4 o(h™Y)

from which our claim follows. O

Let 7y, ; be the total number of edges on the branch from v; to the root which have been deleted
after percolation with parameter pj,. Note that the random variable )y, ; has the binomial distribution
with parameters (myp,1 — pp). But the random variables (1,1 < i < b™") are not independent.

reg

On the other hand, 1, ; = 0 if and only if the vertex v; is still connected to the root of T} ™.
Lemma 5.3. We have that
b™h

Gy = —npe”° Z ]l{nh,izl} +npe ¢+ nph b — 1) tee™ 4 npmphee ™ + o (nph ).
i=1

Proof: We denote by Cj, o the number of vertices of the tree 7, at height less or equal to m), — 1
that are connected to the root after percolation with parameter py. Then, it should be plain that
b™h

G;‘leg frnd C]’L,O + Z Ch’z]l{nh,z:(]}
=1

b™n) are independent.
b™r) and then taking

The sequences of random variables (np;,1 < i@ < b™") and (Ch 4,1 <
By conditioning first on the value of the random variables (7,1 < i
expectation, we obtain that

b™h i
E (Gl}“beg _ Ch,O — Z E [Ch,i] ]l{ﬂh,io}) =k

b™h

= ZE [(Ch,z' — E[C}m’])z} P (nh,i = ()) )
=1

IAIA

b™h

Y E [(Ch,i - E[Ch,z'])ﬂ ﬂ{nh,io}]
i=1

On the one hand, P(n,; = 0) < 1. On the other hand, Bertoin (2013, Section 3) has proven in
Bertoin (2013, Proof of Corollary 1) that E[(Cp,; — E[Cy])?] = o(n} ;). Thus,

b™h 2 bR
E <G;zeg —Cho — EE [Chi] ]1{77}1,7;0}> = 2 O(n%m) = o(nih™?).
=1

i=1
The above estimate and Chebyshev’s inequality imply that
b™h

G® = Cro+E[Cra] ) 1, oy +op(nah™)
=1

since (Chi,1 < i < ™) is a sequence of i.i.d. random variables. Moreover, we notice that 0 <
Cho < b™ 1 = o(n,h~1). Hence
b™h

Gzeg = E[Ch1] Z ﬂ{nh,iZO} + Op(nhhfl), (5.1)
=1
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We note that

b™h b™Mh
Z ﬂ{nh,FU} = b — Z 11{%,1'21}' (5.2)
i=1 i=1

Finally, our claim follows by combining (5.2) and Lemma 5.2 into (5.1). 0

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1: From Lemma 5.3 we deduce that

Gree
(h - e_c> h — ce”“logy, h

N
n 1h b™Mh c
= _T,hffc Z ]l{nhinI} + ce”|logy h] — ce”“{log, h} + 5o 1676 +0p(1).
i=1
Since n;, 'y = b~ + o(b~™*) and
bk bk
_ -1
E Z]l{nh,izl}] - ZP(%Z‘ >1)=b"(1-e emnh );
i=1 i=1
we conclude by the Markov inequality that
Gres
(h - e_c> h — ce”“logy, h
N
b"h
c
= —hb Mhe ¢ Z ]l{nhinI} + ce ¢|logy h] — ce”“{logy, h} + - 1670 +0p(1).
i=1

Our claim follows by Bertoin (2014a, Corollary 3.4) that establishes the convergence in distribution
b™h

“m d
hb~mn Zn{%m} — cllogy h| 5 L,(c),
i=1

in the regime where h — oo with {log; h} — p € [0,1). O

Remark 5.4. One could have finished the proof of Theorem 5.1 along the same lines as for Theorem
1.10, i.e., by using a classical limit result for triangular arrays. But for the sake of avoiding repetition,
we decided to directly apply a result proven by Bertoin (2014a) which is enough for our purpose.

Appendix A. Distances in split trees

The purpose of this section is to establish some general results on the distribution of the distances
between uniform chosen vertices and uniformly chosen balls in T},° when n — oo. The results can
be seen as a complement (or extension) of those of Devroye (1999) and Holmgren (2012). Let Hy,
be the height of T},°, i.e., the maximal distance between the root and any leaf in T,,°. We deduce
the following moment estimate for H,. For y € R, recall that [y]| denotes the least integer greater
than or equal to y. Similarly, |y| denotes the greatest integer less than or equal to y

Lemma A.1. If Condition I, then sup,>; E[H}]In""n < oo, for all v > 0.
Proof: We claim that for all » > 0 there exists ¢, > 0 such that
ILm n'P(H, > (3s1 +4)|c¢,Inn]) =0. (A1)

Then, the bound H, < n implies that
E[H;] < (3s1 +4)c, In" n+ n"P(H, > (351 +4)|¢, Inn])
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which combined with (A.1) allows us to conclude with the proof of Lemma A.1. Therefore, it only
remains to prove the claim in (A.1). Devroye (1999) has shown that for integers 0 < k' < k and
I = k'(s1 + 1) such that s1&" < [, and real numbers ¢,¢' > 0, we have that

P(H, >k + 31) < 2b™F + b (ne) b 'm(t)* + b*(s1(k — k' + 1)e)! b®*/im(t")¥, (A.2)
where m(t) = E[V}] for t > 0; see proof of Devroye (1999, Theorem 1) for details. Then consider
the estimate in (A.2) with k =k = |¢, Inn] and | = k¥/(s1 + 1). Then choose ¢,t' > 0 large enough
such that bm(t) < 1 and bm(t') < 1. This is possible because P(V; = 1) = 0 by Condition 1, and

thus, m(t) — 0 as t — oo; see Devroye (1999, Lemma 1). Finally, (A.1) follows immediately by
taking ¢, > max(r/Inb, —(r +t)/In(bm(t)), —r/In(bm(t))). O

For each fixed n € N, let b; be a uniformly distributed ball on the set {1,...,n} of balls in T,,".
Recall that we denote by D,,(b1) the height (or depth) of the ball by in T3,", i.e., the number of edges
of T5P which are between the root and the vertex where the ball b; is stored.

Lemma A.2. Assume that Condition 1 is fulfilled.

(i) E[Dp(b1)] = g Inn 4+ w(Inn) + o(1), where @ : R — R denotes the function in (1.3).

(ii) E[(Dyp(b1) — 1lnn)32] ,u 303 Inn+ o(lnn).

(iii) E }D b1) -t lnn’ | = O(In2 n).
)

(iv 1m D, ( )(ln n)~t = 1/p, in probability.

Proof: We observe that E[D,,(b1)] = n'E[>_I_; Dy(i)] = n'E [¥(T,°)]. Then (i) follows immedi-
ately from the result in (1.3). Turning our attention to the proof of (11), we write

E[(Du(br) = 5~ nn)?] = n~'E[ S (Dali) - i~ mn)?] (A.3)
i=1
By Holmgren (2012, Proposition 1.1), Dy (j) <st Dn(j’) for j < j'. Moreover, D;(j) < Dy(j), for
n > j, since a ball with label j only move downward during the splitting process when new balls
are added to the tree. Furthermore, it follows from Holmgren (2012, Theorem 1.3) that

E [(Dn(4) — ptin n)Q] = pu30%Inn+o(lnn), uniformly for [n In! n]<j<n.  (A4)

Since Dy (j) can be stochastically dominated from above and below by D, (n) and D;(j), for 1 <
7 < n, respectively, we deduce that

E [(Da(j) = 1~ um)?] < E[(Du(n) — p~ lnn)?] +E [(D;(G) — " Inm)?
<E [(Dn(n) — pt lnn)z] +4E [(D;(j) — pt lnj)z} + 4472 |Inj — Inn|?
= o(In?n), (A.5)
uniformly for [n In—2 n] <j< [n In—? n}; We have used the inequality |z — y|? < 4a? + 4y? for
x,y > 0. On the other hand, Lemma A.1 implies that
E [(Dn(j) — p~ ' Inn)?] <4E [HZ] +4p % In*n = o(In’ n) (A.6)

uniformly for 1 < j < [nIn"?n|. Then the combination (A.3), (A1), (A.5) and (A.6) imply (ii).
We now prove (iii). We observe that

E||Dav:) = ™ mnf*] = n7 B[ 37 [Dai) — ' ] (A7)
i=1
We also observe that

E [‘Dn(]) — ! lnnﬂ <E [’Dn(n) — lnn‘g] +E [}Dj(j) — ! lnnﬂ

<E [\Dn(n) — 1nn\3] +8E [\Dj(j) ! 1njﬂ 48~ lnj — Inn|?,
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for 1 < j < n; we have used the inequality |z — y|> < 823 + 8y3 for ,5 > 0. From Holmgren (2012,
equation (3.62)) we deduce that

E UDH(]) —ut lnn‘g] =0 (ln% n) , uniformly for [n In—? n] <j<n. (A.8)

Observe that E [}Dn(]) — ! lnnﬂ < 8E [Hf{] + 8u 3 1n? n, uniformly for 1 < j < {n In—?2 n]
Then Lemma A.1l implies that

E [‘Dn(j) — lnnﬂ =0 (ln3 n), uniformly for 1<j<[n In—2 n]. (A.9)

Therefore, (iii) follows from (A.7), (A.8) and (A.9).
The point (iv) follows immediately from (ii) and a standard application of Chebyshev’s inequality.
(]

We turn our attention to the height of a random chosen vertex in T,°. For each fixed n € N,
let u; be a uniformly distributed vertex on the random split tree T,,” with n balls. Recall that we
denote by d,,(u1) the height of the vertex u; in T,,", i.e., the minimal number of edges of T,,* which
are needed to connect the root and uq.

Lemma A.3. Assume that Conditions 1 and 2 are fulfilled.
(i) Recall that ¢ € R is the constant in Condition 2. Then E[d,(u1)] = p~ ' Inn + Ca™ + o(1).
(ii) We also have E[(d,(u1) — p ' Inn)?] = p=36%Inn + o(lnn).
(iii) Furthermore, for 6 > 1/2 — €, E[|dy(u1) — lnn‘g] = O(ln%'HS n), where ¢ > 0 is the
constant that appears in Condition 2.

(iv) As a consequence, we conclude that li_)m dp(uy)(nn) =t = 1/p, in probability.
n—oo

Proof: Observe that

Eldy(w1)] = E % S d(u)| = E[lN]IE ()] + E [(;f - [1N]> T(T;p)] .

u€TyP

It should be clear that (i) follows from Condition 2 and the result in (1.5) by showing that

E [(; - [1N]> T(Tgp)} — o(1). (A.10)

Therefore, we focus on the proof of (A.10).
Note that

¥~ | O = e | I < Eg

1 1
E[N] 7
u€TyP

where H,, denotes the height of T;,”. An application of the Cauchy—Schwarz inequality shows that

B | (5 - g ) TED)] < B INIVar ()22 = o)

where in the last step we used Remark 1.6, Condition 2 and Lemma A.1.
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We turn our attention to the proof of (ii). Note that

1

Bl(da(w) — g nn)?] =B |+ 3 (da(w) — o~ Inn)?

u€TRP
= E[lN]E Z (dp(u) — p~Linn)?

ueTyP
FE (=) S (da(w) — g )
N EN]) £, nil) T4 nn

Holmgren (2010a, Corollary 2.1) has shown that

E Z (dp(u) — ptInn)?| = anp™3c%Inn + o(nlnn).
u€THP

Then (ii) follows from Condition 2 and Remark 1.6 by providing that
1.1 Z (dp(u) — p~tInn)?| = o(Inn)
N [N] u€TR? ' .

This is proved from similar arguments as in the proof of (A.10). The details are omitted.
We continue with the proof of (iii). We have that

1
E [|dp(u1) —p ' Inn’] = E N Z |dp(u) — p~Hnn?

u€TypP

= IE[lN]E Z |dn(u) — pnnf3

u€eTR?
+E IS Z |dp(u) — p~tnn?
N  E[N] " ‘
=
Suppose that we have proven that
1
E - Z dp(u) —ptInnP| =0 <1n%'M n) , (A.11)

weTP

for 6 > 1/2 — e. Then (iii) follows from Condition 2 and by showing that

o1 _ ! 3 1p—53-0., _ _
(N ]E[N]> Z|dn(u) pw o Innl? | In"27n=0(1), for 6>1/2—c¢.

u€TyP

This can be proved by using similar arguments as in the proof of (A.10) and the details are omitted.
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Finally, we check that (A.11) holds. For § > 1/2 — ¢ and C > 0, we notice that

E Z |, (u) — p~HnnP1

1,0
dn(uw)—p~1Inn|>In2*3 n}
S {lan-= 11

<SE | (Hy+p In’n) Y 1

1,6
g {\dn(u)—ufllnn|>ln§+§ n}
ucin

<8(C*+ (P n)E | D

ueTyP

On the one hand, Holmgren (2012, Theorem 1.2) has shown that

1 SniP(H, > Clnn).
{‘dn(u)—p‘*llnn|>ln%+%n} + 3n ( n = HTL)

(€4 ) ) | 3

u€THP

3
1 1.5 =0 <n1n§+6 n)
{|dn(u)ﬁu_1 Inn|>n2*t3 n}

(The sum inside the expectation is what Holmgren (2012, Theorem 1.2) calls the number of bad

vertices). On the other hand, by (A.1), we can choose C' > 0 such that 8n*P(H, > Clnn) =
o(nln%+5 n). Hence,

_ -1 3 _ 316 )
B2 lduw) —pnnl 1{\dn<uw—unn|>ln%+gn} o (nini*n). (A-12)

u€TyP

We also note that

E Z |dp(u) — p~Inn21
ueTypP
which combined with (A.12) implies (A.11).
The point (iv) follows immediately from (ii) and a standard application of Chebyshev’s inequality.
O

} =0 (nln%‘L‘S n) ,

1,96
{\dn(u)—pfl Inn|<In2T3 n

Recall the labelling of the balls induced by the split tree generating algorithm explained in Section
1.1. Let v and v’ be the vertices in T,,” where the balls labelled j and j’ are located, respectively.
We call the vertex v A v’ at which the paths in T,,° from the vertices v and v’ to the root intersect
the last common ancestor of the balls with labels j and j’. For simplicity, we denote by j A j’ a last
common ancestor of the balls j and j' (notice that j A 7’ is not necessary unique). Let D, (j A j')
be the height of j A j* when all n balls have been inserted.

Lemma A.4. Assume that Condition 1 is fulfilled. For n € N fized, let by and by denote two
independent uniformly distributed random ball labels in T,,". Let h : N — R be some function such
that lim,, o h(n) = co. We have that D, (b1 A by)h(n)~! — 0, as n — oo, in probability.

Proof: For ¢ > 0, note that D,,(b; Aby) > dh(n) when both balls by and by lie in the same sub-tree
and the height of the last common ancestor related to this sub-tree has to be greater than dh(n).
For 1 < i < b9 et v; be a vertex in T5” at height [dh(n)] and let n; be the number of balls
stored at the sub-tree rooted at v;; note that those balls have depth greater than dh(n). Since by
and by denote two independent uniformly distributed random ball in 75,°, we have that

B[oh(n)] ploh(n)]

B(Du(by Abs) > h(n)) <E | 3 (%)2 —n? Y B[ (A.13)
=1 i=1
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On the other hand, Condition | and the inequality by Holmgren (2011, equation (1.10)) for subtrees
sizes in split-trees (we refer to the estimation (3.3) for a formal proof) imply that

E [n,ﬂ = n2R[0h()] [Vﬂ +o(n?In"%n), (A.14)

for an arbitrary & > 0 and where E[V{?] < 1/b. Then, (A.14) combined with (A.13) implies our
claim. O

Let v and v/ be two vertices in the split tree T5,". We denote by d,, (v A v') the height of the last
common ancestor v A v’ of the vertices v and v’ in the tree Tpr.

Lemma A.5. Assume that Conditions 1 and 2 are fulfilled. For n € N fized, let u1 and uy denote
two independent uniformly distributed random vertices in Ty". Let h : N — R, be some function
with 1im,, o0 h(n) = co. We have that d,(u1 Aug)h(n)~! — 0, as n — oo, in probability.

Proof: We follow a similar argument as in the proof Lemma A.4. For § > 0, note that d,,(u; Aug) >
dh(n) when both vertices lie in the same sub-tree and the height of the last common ancestor related
to this sub-tree has to be greater than dh(n). For 1 <i < bwh("ﬂ, let v; be a vertex in T5," at height
[0h(n)] and let N; be the number of vertices of the sub-tree rooted at v;. Since u; and ug are two
independent uniformly distributed random vertices in 7},", we have that

[proh(n) N 2
P(dp(ur A uz) > 6h(n)) < E z; <N>
r bf6h<nﬂ ploh(n)] 9
N2 N
-k NZ| +E - : Al
N2E2 Z + ; <E[N]> (A.15)

We analyse the first term at the right-hand side of (A.15). Note that wah(nﬂ

Condition 2 and Remark 1.6 imply that

NZ-2 < N?2. Then

bmh(nﬂ

2 2 ar
E NNZEIZE Z N? ngou). (A.16)

We now focus in the second term at the right-hand side of (A.15). Note that Condition 2 and
Remark 1.6 imply that E[N?] = E [Var(N;|n;) +E*[N;|n;]] = O(E[n?]), where we have used the
well-known formula Var(N;) = E[Var(N;|n;)] + Var(E[N;|n;]). Hence the previous estimate, the
inequality (A.14) and Condition 2 allow us to conclude that

ORI\ 2
E ‘ = o(1). Al
> (1) | =o (A17)
Finally, our claim follows by applying (A.16) and (A.17) into (A.15). O

We complete this section by stating a corollary of the previous lemmas. Let u; and ug be two
independent uniformly chosen vertices in T,,°. We write d,(u1,us) for the number of edges of 75"
which are needed to connect the root, u; and wus. Similarly, let b; and by be two independent
uniformly chosen balls in T,,°. We write D,, (b1, b2) for the number of edges of T),” which are needed
to connect the root, and vertices where the balls b; and by are stored.

Corollary A.6. Assume that Condition 1 is fulfilled. We have that Dy (b1,b2)(Inn)~! — 2/pu,
as n — oo, in probability. If we further assume that Condition 2 is also satisfied. We have that
dn(b1,b2)(Inn)~t — 2/u, as n — oo, in probability.
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Proof: We note that D, (b1,b2) = Dy(b1) + Dp(b2) — Dy (b1 A b2), where D, (b1) has the same
distribution as D,,(b2). Therefore, the first result is a direct consequence of Lemma A.2 and Lemma
A.4. The proof of the second claim follows from a similar argument by using Lemma A.3 and
Lemma A.5. g

Appendix B. Proof of Theorem 3.5

In this section, we prove Theorem 3.5 which is an important ingredient in the proof of Theorem
1.10. For 1 < i < my,, we denote by F; the o-field generated by (n.,,d,(v) < i). Recall from the
beginning of Section 3 that for a vertex v € T5," that is at height d,,(v) = 4, we write (W, k =
1,...,17) for a sequence of i.i.d. random variables on [0, 1] given by the split vectors associated with
the vertices on the unique path from v to the root. We denote by G; the o-field generated by
(Wyp,k=1,...,i) : dp(v) = ). Recall the notation €, in (3.24) and write

7
_clnn
Ny =N Wy, and &, =€ i NyEyp- B.1
kl;[l - (B.1)
Note that G; is equivalent to the o-field generated by (7, d,(v) < 7).

We present now some crucial lemmas that are used in the proof of Theorem 3.5. Recall the
notation m,, = |Blog,Inn| for § > 0. Furthermore, through this section we assume that j is large
enough. For the sake of simplicity, we introduce the following notation. For any constants 6, x > 0,

1 _el .
ol = S e h i e i 3 Pa(niy), ALy = Y P2 algm,),
n b

ndn(v)—mn dn(v)=mny 1<dp (v)<mnp
n2 = Z E [€U1{5U§0}|gmni| and ng = Z Var (gv]l{évge}wmn) .
lgdn(v)gmn lgdn(v)gmn

Recall also the notation A, ;, for i = 1,2,3, in the statement of Theorem 3.5.

Lemma B.1. Suppose that Condition 1 holds. Furthermore, if InVy is lattice with span d defined
in (1.4), we also assume that Condition 3 holds for some o € [0,1). We have that
(1) Ang =A%, +o0p(1).

i) Y, El&lgznlFn.] = Ao+ op(1).

1<dn (v)<mn
.. Inn _clnny nyw(lnn,)
(111) T Z Nye * Inn — ce M Z % — a'/n + Op (1)
dn (v)=my dn(v)=mny

(iv) Apz = A;L73 + 0p(1).

Lemma B.2. Suppose that Condition 1 holds. Furthermore, if InVy is lattice with span d defined
in (1.4), we also assume that Condition 3 holds for some g € [0,1). We have that

(i) E[A}, 1] = v([z,00)) + o(1) for every x > 0.

2¢c — 0% + p? _c c _c
.. / o . —1 _ _
(ii) E[A} o] = <an + o +1Inb — po <ln (9 e »ln n>> + 1g(d) — Inln n> ,ue n+
o(1).
(iii) E[a),] = e # Inn+ce #my, —ce rw(lnn) + o(1).

. N c _e
(iv) E[A7, 3] = 0 (1 + vo(d)) ﬁe “+o(l).
For any constants 6,z > 0 and 3 large enough, we define m/, := L% log, Inn| and we write

Az,l = Z P(gv > 2|Gm, ), Z,2 = Z E [gv]l{évgg}‘gmn - O‘%

m!l, <dpn(v)<mn m! <dn(v)<mn
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and

{r;,3 = Z Var (év]l{gvge}|gmn) .
m%édn(v)gmn
Lemma B.3. Suppose that Condition 1 holds. Furthermore, if InV; is lattice with span d defined in
(1./), we also assume that Condition 3 holds for some g € [0,1). We have that Var (E [Ag’i gmng =

o(1), fori=1,2,3.
Lemma B.4. Suppose that Condition 1 holds. Furthermore, if In Vi is lattice with span d defined in
(1./), we also assume that Condition 3 holds for some o € [0,1). We have that E [Var (Agﬂ. gm,nﬂ =
o(1), fori=1,2,3.

Proof of Theorem 3.5: For v € T,," such that 1 < d,(v) < m,, observe that

P, > o|Fm,) = P (€U > ges M

Inn n,

fmn> =Pl ey S (B.2)

Inn ny — ]-nn
for > 0. Thus,

lim sup P (& > z|Fm,) =0, almost surely,
70 1<dn (v) <

for every x > 0, which proves (i).
We deduce from Lemma B.1 that A, 1 = A} | + 0p(1),

Apg = ;72—04;4—6 #Inn+ —e #Inlnn —ce #w(lnn)

L e CIGi)) et

and Ay 3 = A;L73 + 0p(1). Furthermore, Lemma B.2 shows that the expected value of the previous
quantities converge to the right-hand sides of Theorem 3.5 (ii), (iii) and (iv). We complete the proof
of Theorem 3.5 by showing that

Var(A}, 1) = o(1) forevery x>0, Var(Aj,—a,)=o0(1) and Var(A; ;) =o(1). (B.3)

Then an application of the Chebyshev’s inequality implies Theorem 3.5 (ii), (iii) and (iv).
Thus, we prove (B.3). A similar argument as in the proof of Lemma B.1 implies that

w1 =401 +0(l), Al,—a,=A%,+0(1) and A} 5= A7 5+ o0(1).

Recall the well-known variance formula Var(X) = E[Var(X|G)] + Var(E[X|G]), where X is a
random variable and G is a sub-o-field. Consequently, a combination of the variance formula with
g = gm,n, Lemma B.3 and Lemma B.4 show (B.3). This concludes our proof. O

Finally, it only remains to prove Lemmas B.1, B.2, B.3 and B.4. Their proofs are close to those
of Lemmas 2.5, 2.6, 2.7 and 2.8 in Holmgren (2011), respectively. However, they are not exactly the
same due to the nature of the problem. Therefore, we have decided to give only complete proofs of
Lemmas B.1 and B.2, where the main differences appear and moreover, the key estimations for the
proofs of Lemmas B.3 and B.4 are developed. Then, to avoid unnecessary repetitions, the interested
reader can verify that Lemmas B.3 and B.4 follows along the lines of the proofs of Lemma 2.7 and
2.8 in Holmgren (2011) (see also Holmgren (2010c, Lemmas 2.7 and 2.8)) together with estimations
used in the proof of Lemma B.2.
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B.1. Proof of Lemma B.1. Recall the definition of (7,,1 < d,(v) < my,) in (B.1). The following
result shows that n, is close to n,,.

Proposition B.5. Suppose that Condition 1 holds. For 0 < i < m,,, letv € T),X such that dp(v) = 1.
For large enough n, we have that P (|n, — fy| > n®%) < n=019

Proof: See Holmgren (2012, Lemma 1.1) (which holds also in the lattice case). O
Recall the definition of (€,,1 < dyn(v) < my) in (B.1). It is not difficult to deduce that

P (£ > alGm, ) = (1= pn) 1, poE>0 (B.4)

Proof of Lemma B.1: We first show (i) for the non-lattice case. The lattice case follows from exactly
the same argument. From (B.2), (B.4) and the triangle inequality, we notice that

E [|An71 - A 1 _pn Z Z H {nv>xeﬁ } {nu>$€“7

Zld(v Inn

Mn
c en cemn
:I—E g ]P’(nvzxeul , Ny < xEr >
nn nn

; . Inn
=1 dp(v)=1

Mn
c cn cn
+lnnz Z 'P<nv<xeﬂlnn,n02xeﬂlnn).
=1 dp(v)=1

Denote the first term on the right-hand side by I} and the second term by I2. We first deal with
I} and show that I! = o(1). For &; € (0, 1), we observe that

c e n
I}Lgmz Z'P<nv2xeulnn,nv<51xeul )
=1 dp(v)=1
P cn cn
lnn;d(z): P(dlxeulnngnv<xeulnn> (B.5)
=1d,(v)=1

If d,,(v) =i for 1 <i < m,, the relationship (3.1) implies that

cn cn
]P’(nv > gpen My < O1xer )
Inn’ Inn

< ]P’ blnomlal(n Ny /n) > xen l:n

cn
— 811, My < O1xEr )

<b1nom1al <n, (51$€i
In

1 e n
> xer
n Inn

1 cd c(l1—=96
>—:Eeu11n Z$eu(1)71—81z'>

nn nn Inn

Ci(Inn (B.6)

for t > 0 and some constant C; > 0; where we have used Chebyshev’s inequality and the fact that
the variance of a binomial(m, q) is mg(1 — q), for the last inequality. On the other hand, Lemma
1.7 (i) implies that

(blnomlal <n, 511‘eﬁ ]

lim —— Z Z P (51.%6% "< Py < en o ) = (07" - l)c,u,_lx_le_ﬁ.
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By combining the previous limit and the estimate (13.6) into (3.5), we obtain that

limsup I} = (67" — Dep™ ‘o le n.
n—o0

By the arbitrariness of d; € (0,1), we deduce that I! = o(1). We complete the proof of (i) by
showing that I2 = o(1). For 65 > 1, we observe that

2 < cn )
>
I; < ln E g P (nv < xen lnn , Ny > Ooxer o

i=1 d (v)=i
C cn cn
+ Inn Z Z ,P (xeu Inn < Ay < dpzer lnn) '
=1 dp(v)=1

But one can show similarly that I2 = o(1); details are left to the reader. Then, an application of
the Markov’s inequality combined with the previous estimates concludes the proof of (i).
We next establish (ii). Observe that

c

Inn
E [Svﬂ{gvge}“rmn] = (1 _pn)Te ,unv]]_ ne<
and
B2 =[Sl o). | = (1= p) 5 Bl oy
Then triangle inequality implies that

EH > E[gvﬂ{fvﬁe}‘fmn]_A’/n,QH

1<dp (v)<mnp
mn
S XD E[n“]l v<oek 2t ﬁ”]l{ﬁmoeﬁ:n}]
=1 dp(v)=1
c mn
SEEYS Y B[l o]
i=1 dy (v)=i e
c -
+—e » Z Z E [ﬁv ]l{ <0eﬁﬁ} - {nv<eeﬁﬁ} ] .
=1 dp(v)=1
On the one hand, Proposition B.5 implies that
Mn
i=1 dp - am i=1 dy, (v)=i

On the other hand, a similar computation as in the proof of point (i) shows that

€ _e & . —
Y 3 B[t s )~

Thus, a combination of the previous estimates with the Markov inequality shows (ii).
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We continue with the proof of (iii). An application of the triangle inequality implies that

Inn _clnny _e nywo(lnny) ,
E||l— E nye #mn —ce k g — -,

n
dn(v)=mn dn(v)=mn
Inn_ . _elny  _clniy c _e . R
< —b"E [ nye #n —f e knn } + —e #b™E[|n,w(Inny) — nyw(Inng)|]. (B.7)
n n
By using Proposition B.5, a similar argument as in the proof of point (ii) shows that
| _clnny _clnny
ﬂbmnE |: Nye H Inn _ﬁve p Inn ]
n
Inn m . R _clnny _clnniy
< = (B [y — ] +E [y o0 B — 7B ||) = o(1). (B.8)
n

On the other hand, the triangle inequality and Proposition B.5 imply that
E[|nyw(lnn,) — nyw(Inn,)|] < E[w(lnn,) [n, — ny|] + E 7y |[w(lnn,) — w(In,)|]
= E [y |w(Inn,) — w(Infy)|] + o(nb~™"),
where we have used that w is a continuous d-periodic function, with d defined in (1.4), and thus it
is bounded. Note that

E [fiy | (Inny) — w(Iniy)|] = E [n o (Inny) — w(Infy)| 11{‘1%_%@5/3}]

+E [n |w(Inny) — w(Infy)| 1 (B.9)

{\nv—ﬁv\>ﬁ3/3}] ‘
It is not difficult to see that in the event {|n, — 7,| < a2/ 3}, we can make |Ilnn, — Inn,| arbitrary
small by taking n large enough. Hence the continuity of the function w allows us to deduce that

+o(nb~™). (B.10)

E[n, |[w(lnn,) — w(lnn,)|] = E [ﬁv |w(Inny) — w(lnmn,)| ]l{‘n s |>ﬁ2/3}}

Recall that a binomial random variable with parameters (n, ¢) has expected value ng and variance

ng(1 — q). Following the same reasoning as in the proof of Proposition B.5, we deduce from an
application of (3.1) and the conditional version of Chebyshev’s inequality that

E [ﬁvﬂ{\nmvmz“}} = 4E[72/3] = o(nb~"m). (B.11)

By recalling that the function w is continuous and thus bounded, the estimations (B3.9), (B.10) and
(B.11) imply that

b E [|nyww(Inn,) — nyw(lnng)|] = o(n). (B.12)
Therefore, the combination of (B.8) and (B.12) into (B.7) implies

Inn _cluny _e nyw(lnny)
E - Z nye #hn —ce n Z % —al ||l =o(1)
dn (v)=mny, dn(v)=mny

which together with the Markov inequality proves (iii).
Finally, (iv) follows from a similar argument as in the proof of (ii) by using Proposition B.5. O

B.2. Proof of Lemma B.2. We observe that (n,,d,(v) = i) is a sequence of identically distributed
random variables, for 1 < i < m,,. Moreover, the distribution of n, for v € T;,* such that d, (v) =i
is determined by the sequence (W, ,k = 1,...,4) of i.i.d. random variables on [0, 1] given by the
split vectors associated with the vertices on the unique path from v to the root. We introduce the
notation Y, ; == — >, _; InW, ;. We sometimes omit the vertex index of (W, k =1,...,4) and
we just write (W, k =1,...,7) when it is free of ambiguity. Similarly, we write Y; instead of Y, ;.
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Proof of Lemma B.2: Recall our assumption (1.8) in the percolation parameter, i.e., p, = 1—¢/Inn,
where ¢ > 0 is fixed. We first show (i) in the non-lattice case. From the identity (B.1), we see that

E[;,l]_u—pn)gfla[z fof L s }} (l—pn)Zb’IP’<Y<ln( eulnn))

1<
nn gy
1=

By Lemma 1.7, we obtain that
Zbi (Y <In ( L™ 1nn)> = (' +o0(1)) z e i nn = /,fle*ﬁxfl Inn+ o(lnn). (B.13)
i=1

Thus (i) follows from (B.13) by providing that

(1—pp) Z b'P (Y < ln( lemn lnn)> =o(1). (B.14)

i=mn+1
Choose an arbitrary ¢t > 0. By an application of the Markov inequality and the fact that (Wy, k =
1,...,7) are i.i.d. random variables, we obtain that
P(Y; <) =P (e*tYi > e*&) < m(t)ie®, (B.15)

for 6 > 0, where we define m(t) := E[V{] for ¢t > 0. Then,

(1 —pp) Z biP (Y < ln( lemu lnn>) < cm_te_ﬁ(lnn)t_1 i (m(t)b)". (B.16)

i=mn+1 i=mn+1

Thus our claim (B.14) follows after some computations by taking ¢ > 0 such that bm(t) < 1 (this is
possible by Condition 1) and 8 > max((1 — t)/log,(bm(t)), —2/(1 + log, E[V{])).
In the lattice case, we see that (B.13) becomes

Zb’}P’ (Y <ln( le u]nn>> = (Zl—led+0(1)) dld~'In(z=le” F Inn)|

_d 1 4t im e ) 4{d ninn} |—d{d~ ntnn} 1, +o(lnn)
uwl—ed ’

and the results follows exactly as in the non-lattice case.
We next establish (ii) only in the non-lattice case. The lattice case is similar. Observe that

1 e
B = B0 E SR T autg )

=1 dn(v)=i

Mn
e ENCBE | .
=ce # ZbE |:€ ]I{YiZln(@lel‘lnn)}:| .
By noticing that E[e~Y!] = b~%, we use integration by parts to obtain that

E[A], o] = ce” #mn——sz (Y<ln(0 e #lnn)>

Inn

. ln(é)_le " lnn) Mn
—ce » / e * Z b'P(Y; < 2)dz
0 i=1

. c . . ln<9 lemn lnn) mn
=ce rmy,— —€e r—ce r / e ? Zb”‘IP’(Yi < z)dz+o(1),
0 i=1
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where we have used (B.13) and (B.14), with £ > 0 such that bm(t) < 1 and f > max((1 —
t)/ logy, (bm(t)), —2/(1 + log, E[V])), in order to get the last equality.
On the other hand, we deduce from (B.16) that

ln(@‘leiﬁ lnn) > c > . c
/ e ) VP (Y; < z)dz <07k (lnn) ( > (m(t)b)’) In (9*167 lnn> = o(1),
0

i=mn—+1 i=mn+1

when ¢ > 0 such that bm(t) < 1 (this is possible by Condition 1) and § > max(—t/log,(bm(t)), (1 —
1)/ Togy (bm(1)), ~2/(1 + log, E[VP])). Hence

< . . ln(e le™h lnn) >
E[A} o] = ce” #my, — —e n —ce n / e * Y HP(Y; < 2)dz + o(1).
’ e 0 P

By the result in (1.7), we know that

n _167£ nn >
/01 (9 3! >6*Z (Z bP(Y; < 2) - Mlez> Qs — 022; w2 S (ln ( P lnn)) + o(1),
=1

where ¢ : R — R is the d-periodic continuous function in (1.7). Therefore,

_e 2c? _c
E[A! 5] = ce” vmy, + < ;UZ+C'LL T = ce ugb(ln (9716 Hlnn))
’ u
c _c c _c
+—e #lnf — —e #lnlnn+o(1)

u M

which proves point (ii).
We continue with the proof of (iii). Recall that m(t) = E[V{] for ¢ > 0. From the definition of

Ny in (B.1), we deduce that

—c 1 Mn _c Mn Mn
Elal] =™ e #m <1 — Zlnn) Inn—ce wb"E H Wiw (hln + Zank>]
k=1 k=1
_c c 1 mn _c
=b""e Hm(l—) Inn —ce ww(lnn),
plnn
since w is d-periodic, with d defined in (1.4), and In W), € dZ. We notice that m(1) = E[V;] = 1/b
and m/(1) = E[V1In V] = —u/b. Then a simple Taylor’s expansion calculation shows that
R N Y G
plnn) b blnn bln’n

which implies that

Elc/,] = e i Inn+ce imy, —ce rw(lnn) + o(1),

and completes the proof of (iii).
We finally show (iv) only in the non-lattice case. The lattice case follows from exactly the same
argument. Note that

2

1
E[A}, 5] = I;Qn(l Pn)pne ZE Z ﬁg]l{mgeeﬁli}

dn(v)=t

= ce_zﬁ(hl n)pn Zl VE [6_2m1{ﬁ21n<9_165 hm)ﬁ ‘
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By integration by parts, we obtain that

Clgjin 2 b'P (YZ <In <9_1e_5 In n))

o0

E[A%,s] ==

+2ce 2k (Inn)p, /

Mn
“EN CVP(Y; < 2)d
ln(G—leiﬁ lnn> ‘ ; ( ‘o Z> :

= c,u_le_ﬁe +o(1),
where we have used (B.13) and (B.14), with ¢ > 0 such that bm(t) < 1 and

B > max(—t/log,(bm(t)), (1 — t)/ log,(bm(t)), =2/(1 + log, E[V{"])),
to get the last equality. This concludes the proof of (iv). O
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