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Abstract. A split tree of cardinality n is constructed by distributing n “balls” in a subset of
vertices of an infinite tree which encompasses many types of random trees such as m-ary search
trees, quad trees, median-of-(2k + 1) trees, fringe-balanced trees, digital search trees and random
simplex trees. In this work, we study Bernoulli bond percolation on arbitrary split trees of large but
finite cardinality n. We show for appropriate percolation regimes that depend on the cardinality
n of the split tree that there exists a unique giant cluster, the fluctuations of the size of the giant
cluster as n → ∞ are described by an infinitely divisible distribution that belongs to the class of
stable (asymmetric) Cauchy laws. This work generalizes the results for the random m-ary recursive
trees by Berzunza (2015). Our approach is based on a remarkable decomposition of the size of the
giant percolation cluster as a sum of essentially independent random variables which may be useful
for studying percolation on other trees with logarithmic height; for instance in this work we study
also the case of regular trees.

1. Introduction

Consider a tree Tn of large but finite size n ∈ N and perform Bernoulli bond-percolation with
parameter pn ∈ [0, 1] that depends on the size of the graph. This means that we remove each edge in
Tn with probability 1−pn, independently of the other edges, inducing a partition of the set of vertices
into connected clusters. In particular, we are interested in the supercritical percolation regime, in
the sense that with high probability, there exists a giant cluster, that is of size comparable to that
of the entire tree. Bertoin (2013) established for several families of trees with n vertices that the
supercritical regime corresponds to percolation parameters of the form 1− pn = c/`(n) + o(1/`(n))
as n→∞, where c > 0 is fixed and `(n) is an estimate of the height of a typical vertex in the tree
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structure1. More precisely, Bertoin (2013) showed that under the previous regime the size Γn of the
cluster containing the root satisfies limn→∞ n

−1Γn = Γ(c) in law, for some random variable Γ(c) 6≡ 0.
This includes, important families of random trees with logarithmic height, such as random recursive
trees, preferential attachment trees, binary search trees where it is well-known that `(n) = lnn; see
Drmota (2009), Durrett (2010, Section 4.4). In those cases the random variable Γ(c) is a constant;
see Bertoin (2014b), Bertoin and Uribe Bravo (2015), Berzunza (2015). A different example is the
Cayley tree where `(n) =

√
n and Γ(c) is not a constant; see Pitman (1999).

More recently, some authors have considered analysing the fluctuations of the size of the largest
percolation cluster as n→∞ for different families of trees with logarithmic height; see Schweinsberg
(2012) and Bertoin (2014a) for random recursive trees, Berzunza (2015) form-ary random increasing
trees (these include binary search trees) and preferential attachment trees. The motivation stems
from the feature that the size of the giant cluster resulting from supercritical bond percolation on
those trees has non-Gaussian fluctuations. Instead, they are described by an infinitely divisible
distribution that belongs to the class of stable (asymmetric) Cauchy laws. This contrasts with
analogous results on other random graphs where the asymptotic normality of the size of the giant
clusters on supercritical percolation is established. We refer for instance to the works of Stepanov
(1970), Bollobás and Riordan (2012) and Seierstad (2013).

The main purpose of this work is to investigate analogously the case of random split trees which
were introduced by Devroye (1999). The class of random split trees includes many families of
trees that are frequently used in algorithm analysis, e.g., binary search trees (Hoare (1962)), m-ary
search trees (Pyke (1965)), quad trees (Finkel and Bentley (1974)), median-of-(2k+1) trees (Walker
and Wood (1976)), fringe-balanced trees (Devroye (1993)), digital search trees (Coffman and Eve
(1970)) and random simplex trees (Devroye (1999, Example 5)). Informally, a random split tree T sp

n

of “size” (or cardinality) n is constructed as follows. Consider a rooted infinite b-ary tree with b ∈ N
and where each vertex is a bucket of finite capacity s ∈ N. We place n balls at the root, and the
balls individually trickle down the tree in a random fashion until no bucket is above capacity. Each
vertex draws a split vector V = (V1, . . . , Vb) from a common distribution, where Vi describes the
probability that a ball passing through the vertex continues to the i-th child. A precise description
of this algorithm is given in Section 1.1. Finally, any vertex u such that the sub-tree rooted as u
contains no balls is then removed, and we consider the resulting tree T sp

n . An important peculiarity
of the split tree T sp

n is that the number of vertices is random in general which makes the study
of split trees usually challenging. It must also be pointed out that later we assume that b < ∞.
However, we believe that our approach can be applied to cases when b = ∞ with a little extra
effort. The case b =∞ includes uniform recursive trees and preferential attachment trees for which
recently Janson (2019) has shown that they can be viewed as special split trees.

Loosely speaking, our main result shows that in the supercritical percolation regime the size
of the giant cluster has also non-Gaussian fluctuations where the “size” of T sp

n can be defined as
either the number of vertices or the number of balls. We then show that the supercritical regime
corresponds to 1−pn = c/ lnn with c > 0 fixed which agrees with the fact that split trees belong to
the family of trees with logarithmic height; see Devroye (1999). Essentially, this is Bertoin (2013)
criterion. Then, our main contribution establishes that the fluctuations of the “size” (either number
of vertices or balls) of the giant cluster are described by an infinitely divisible distribution, the
so-called continuous Luria-Delbrück law. Finally, we show that the approach developed in this work
may be useful for studying percolation on other classes of trees, such as for instance regular trees
(see Section 5 below).

We next introduce formally the family of random split trees and relevant background, which will
enable us to state our main result in Section 1.2.

1For two sequences of real numbers (An)n≥1 and (Bn)n≥1 such that Bn > 0, we write An = o(Bn) if
limn→∞An/Bn = 0. We also write An = O(Bn) if lim supn→∞ |An|/Bn < ∞
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1.1. Random split trees. In this section, we introduce the split tree model with parameters b, s, s0,
s1,V and n introduced by Devroye (1999). Some of the parameters are the branch factor b ∈ N, the
vertex capacity s ∈ N, and the number of balls (or cardinality) n ∈ N. The additional integers s0

and s1 are needed to describe the ball distribution process. They satisfy the inequalities

0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (1.1)

The so-called random split vector V = (V1, . . . , Vb) is a random non-negative vector with
∑b

i=1 Vi = 1
and Vi ≥ 0, for i = 1, . . . , b.

Consider an infinite rooted b-ary tree T, i.e., every vertex has b children. We view each vertex of
u ∈ T as a bucket with capacity s and assign to it an independent copy Vu = (Vu,1, . . . , Vu,b) of the
random split vector V. The split tree T sp

n is constructed by distributing n balls among the vertices
of T. For a vertex u, let nu be the number of balls stored in the sub-tree rooted at u. The tree T sp

n

is then defined as the largest sub-tree of T such that nu > 0 for all u ∈ T sp
n . Let u1, . . . , ub be the

child vertices of u. Conditioning on nu and Vu, if nu ≤ s, then nui = 0 for all i = 1, . . . , b; if nu > s,
then the cardinalities (nu1 , . . . , nub) of the b sub-trees rooted at u1, . . . , ub are distributed as

Mult(nu − s0 − bs1, Vu,1, . . . , Vu,b) + (s1, . . . , s1),

where Mult denotes the multinomial distribution, and b, s, s0, s1 are integers satisfying (1.1).
It would be convenient to recall one more equivalent description of T sp

n where one inserts data
items into an initially empty data structure T. Let C(u) denote the number of balls in vertex u,
initially setting C(u) = 0 for all u. We call u a leaf if C(u) > 0 and C(v) = 0 for all children v of u,
and internal if C(v) > 0 for some strict descendant v of u. Then T sp

n is constructed recursively by
distributing n balls one at time to generate a subset of vertices of T. The balls are labelled using
the set {1, 2, . . . , n} in the order of insertion. The j-th ball is added by the following procedure.

(1) Insert j to the root.
(2) While j is at an internal vertex u ∈ T, choose child i with probability Vu,i and move j to

child i.
(3) If j is at a leaf u with C(u) < s, then j stays at u and C(u) increases by 1. If j is at a leaf

with C(u) = s, then the balls at u are distributed among u and its children as follows. We
select s0 ≤ s of the balls uniformly at random to stay at u. Among the remaining s+ 1− s0

balls, we uniformly at random distribute s1 balls to each of the b children of u. Each of the
remaining s+ 1− s0 − bs1 balls is placed at a child vertex chosen independently at random
according to the split vector assigned to u. This splitting process is repeated for any child
which receives more than s balls.

We stop once all n balls have been placed in T and obtain T sp
n by deleting all vertices u ∈ T such

that the sub-tree rooted at u contains no balls; an internal vertex of T sp
n contains exactly s0 balls,

while a leaf contains a random number in {1, ..., s}. This description will be used in Appendix A.

Remark 1.1. The number of vertices N of T sp
n is a random variable in general although the number

of balls n is deterministic. This is one of the main challenges in the study of split trees.

Remark 1.2. Depending on the choice of the parameters, several important data structures may be
modelled. For instance, the binary search trees where b = 2, s = s0 = 1, s1 = 0 and V is distributed
as (U, 1 − U) for U a random variable uniform on [0, 1]. In this case N = n. Some other relevant
(and more complicated) examples of split trees are m-ary search trees, median-of-(2k + 1) trees,
quad trees, simplex trees; see the original work of Devroye (1999) for details.

Remark 1.3. We can and will assume without loss of generality that the components of the split
vector V are identically distributed by the random permutations explained by Devroye (1999). In
particular, E[V1] = 1/b.
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Two quantities deeply related to the structure of split trees are

µ := bE[−V1 lnV1] and σ2 := bE[V1 ln2 V1]− µ2. (1.2)

Note that µ ∈ (0, ln b) and σ < ∞. They were introduced first by Devroye (1999) to study the
height of T sp

n as the number of balls increases.
In the study of split trees, the following condition is often assumed as this is satisfied by all types

of split trees used in applications:

Condition 1. Assume that P(V1 = 1) = P(V1 = 0) = 0.

In the present work, we use the so-called total path length of T sp
n defined by Ψ(T sp

n ) :=
∑n

i=1Dn(i),
where Dn(j) denotes the height (or depth) of the ball labeled j when all n balls have been inserted
in T sp

n . Broutin and Holmgren (2012, Theorem 3.1) have shown that under Condition 1,

E[Ψ(T sp
n )] = µ−1n lnn+$(lnn)n+ o(n), (1.3)

where $ : R→ R is a continuous periodic function of period

d := sup{a ≥ 0 : P(lnV1 ∈ aZ) = 1}. (1.4)

In particular, if the random variable lnV1 is non-lattice2, then d = 0 and the function$ is a constant
and we write ς ≡ $.

We point out that the proof of Broutin and Holmgren (2012, Theorem 3.1) is missing some
details for the case when lnV1 is lattice. The issue there is that the convergence (24) in Broutin
and Holmgren (2012) only holds when the distribution of lnV1 is non-lattice. Nevertheless, a close
look to the proof of Broutin and Holmgren (2012, Lemma 4.2) and Lemma 1.7 (ii) below show that
the result by Broutin and Holmgren (2012, Theorem 3.1) is correct also in the lattice case.

Remark 1.4. In binary search trees the function $ equals to 2γ− 4 where γ is the Euler’s constant;
see Hibbard (1962). A similar result has been proven for random m-ary search trees (Mahmoud
(1986)), quad trees (Neininger and Rüschendorf (1999)), the random median of a (2k + 1)-tree
(Rösler (2001)), tries, and Patricia tries (Bourdon (2001)).

An alternative notion of path length is the sum of all the heights of the vertices in T sp
n , i.e.,

Υ(T sp
n ) :=

∑
u∈T sp

n
dn(u), where dn(u) denotes the height of the vertex u ∈ T sp

n . Recall that the
height of a vertex is defined as the minimal number of edges of T sp

n which are needed to connect it
to the root.

Condition 2. Suppose that lnV1 is non-lattice. Furthermore, for some α > 0 and ε > 0, E[N ] =
αn+O(n(lnn)−1−ε).

Assuming that Condition 2 holds, Broutin and Holmgren (2012, Corollary 5.1) showed that

E[Υ(T sp
n )] = αµ−1n lnn+ ζn+ o(n), for some constant ζ ∈ R. (1.5)

Remark 1.5. Holmgren (2012, Theorem 1.1) showed that if lnV1 is non-lattice, i.e., d = 0, then
there exists a constant α > 0 such that E[N ] = αn + o(n) and furthermore V ar(N) = o(n2).
However, this result is not enough to deduce (1.5) from (1.3) and the extra control in E[N ] is
needed; see Broutin and Holmgren (2012, Section 5.1). On the one hand, Condition 2 is satisfied in
many interesting cases. For instance, it holds for m-ary search trees (Mahmoud and Pittel (1989)).
Moreover, Flajolet et al. (2010) showed that for most tries (where s = 1 and s0 = 0 and as long as
lnV1 is non-lattice) Condition 2 holds. On the other hand, there are some special cases of random
split trees that do not satisfy Condition 2. For instance, tries with a fixed split vector (1/b, . . . , 1/b),
in which case lnV1 is lattice with d = b.

2The random variable lnV1 is non-lattice when there is not a ∈ R such that lnV1 ∈ aZ almost surely. The constant
d is called the span of the lattice when d > 0 and lnV1 is non-lattice when d = 0.
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Remark 1.6. One can use Condition 2 to improve the result by Holmgren (2012, Theorem 1.1) and
obtain that V ar(N) = o(n2 ln−2−2ε n). We refer to Holmgren (2012, Theorem 1.1) and Holmgren
(2012, Remark 3.1) for a proof.

Finally, we recall and extend some results by Holmgren (2012, Section 2) and Broutin and Holm-
gren (2012, Section 4.2) related to the application of renewal theory in the study of split-trees. For
k ≥ 1, set Sk :=

∑k
j=1− lnV ′j where (V ′j , j ≥ 1) is a sequence of i.i.d. copies of V1. Following the

presentation by Holmgren (2012) (or Broutin and Holmgren (2012, Section 4.2)), for k ≥ 1 and
t ∈ R, let ϑk(t) := bkP(S1 ≤ t) and define the renewal function

U(t) =

∞∑
k=1

ϑk(t).

Observe that U(t) = 0, for t < 0. For t ∈ R, let ϑ(t) = ϑ1(t) and observe that U satisfies the
following renewal equation

U(t) = ϑ(t) + (U ∗ dϑ)(t), where (U ∗ dϑ)(t) =

∫ t

0
U(t− z)dϑ(z), for t ≥ 0. (1.6)

Lemma 1.7. Suppose that Condition 1 holds. The renewal function U satisfies the following.
(i) If lnV1 is non-lattice, then

U(t) =

(
1

µ
+ o(1)

)
et, as t→∞.

(ii) If the distribution of lnV1 is lattice with span d defined in (1.4), then

U(dbtc) =

(
d

µ

1

1− e−d
+ o(1)

)
edbtc, as t→∞.

Proof : Part (i) follows from Holmgren (2012, Lemma 2.1). To prove part (ii), we use the lattice
version of the key renewal theorem. Observe that dϑ(t) is not a probability measure. Following
Holmgren (2012) (or Broutin and Holmgren (2012, Section 4.2)), one can define another (“tilted”)
measure dω(t) = e−tdϑ(t) which indeed is a probability measure. Furthermore, dω(t) is lattice with
period d. The renewal equation (1.6) can then be written as

Û(t) = ϑ̂(t) + (Û ∗ dω)(t), where Û(t) = e−tU(t) and ϑ̂(t) = e−tϑ(t),

for t ≥ 0. On the other hand,
∑∞

k=0 ϑ̂(kd) = (1 − e−d)−1. Therefore, (ii) follows from Asmussen
(2003, Proposition 4.1, Chapter V). �

In Broutin and Holmgren (2012, Section 4.2), the second-order behaviour of the renewal function
U is also studied. More precisely, Broutin and Holmgren (2012, Lemma 4.2) establishes that under
Condition 1 (and even for degenerate V1) one has that∫ t

0
e−z

(
U(z)− µ−1ez

)
dz =

σ2 − µ2

2µ2
− µ−1 + φ(t) + o(1), as t→∞, (1.7)

where φ : R → R is a continuous d-periodic function with d defined in (1.4). Moreover, if d = 0
then φ ≡ 0; see Holmgren (2012, Corollary 2.2) for the non-lattice case.

1.2. Main results. In this section, we present the main results of this work. Let T sp
n be a split tree

with n balls. We then perform Bernoulli bond percolation with parameter

pn = 1− c

lnn
, (1.8)
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where c > 0 is fixed. We write Ĝn for the size, i.e., the number of balls, of the percolation cluster that
contains the root. Our first result shows that this choice of the percolation parameter corresponds
precisely to the supercritical regime we are interested in.

Lemma 1.8. Suppose that Condition 1 holds. In the regime (1.8), we have that

lim
n→∞

n−1Ĝn = e
− c
µ , in probability.

Moreover, the root cluster is the unique giant component, i.e., limn→∞ n
−1Ĝ2nd

n = 0 in probability,
where Ĝ2nd

n denotes the number of balls of the second largest percolation cluster.

Alternatively, let Gn be the number of vertices in the root cluster. Then we have the similar
result:

Lemma 1.9. Suppose that Conditions 1 and 2 hold. In the regime (1.8), we have that

lim
n→∞

n−1Gn = αe
− c
µ , in probability, (1.9)

where α > 0 is the constant in Condition 2. Moreover, the root cluster is the unique giant component,
i.e., limn→∞ n

−1G2nd
n = 0 in probability, where G2nd

n denotes the number of vertices of the second
largest percolation cluster.

Lemma 1.8 and Lemma 1.9 are a consequence of the results of Bertoin (2013) which provides
a simple characterization of tree families and percolation regimes which yield giant clusters; their
proofs are given in Section 2. Lemma 1.8 and Lemma 1.9 can be viewed as the law of large numbers
for the “size” of the giant cluster, and it is then natural to investigate the fluctuations of Ĝn and Gn.
To give a precise statement, recall that a real-valued random variable Z has the so-called continuous
Luria-Delbrück law3 when its characteristic function is given by

E
[
eitZ

]
= exp

(
−π

2
|t| − it ln |t|

)
, t ∈ R.

This distribution arises in limit theorems for sums of positive i.i.d. random variables in the domain
of attraction of a completely asymmetric Cauchy process; see e.g., Geluk and de Haan (2000). In
the context of percolation on large trees, it was observed first by Schweinsberg (2012) (see also
Bertoin (2014a) for an alternative approach) in relation with the fluctuations of the size (number of
vertices) of the giant cluster for supercritical percolation on random recursive trees. More precisely,
let T rec

n be a random recursive tree with n vertices and denote by Grec
n the size (number of vertices)

of the largest percolation cluster after performing percolation with parameter pn as in (1.8); In
Bertoin (2014b), it has been proven that this yields also to the supercritical regime in T rec

n , i.e.,
limn→∞ n

−1Grec
n = e−c in probability. Then,(

n−1Grec
n − e−c

)
lnn− ce−c ln lnn

d−→ −ce−c(Z + ln c),

where d−→ means convergence in distribution as n→∞. More recently, Berzunza (2015) has shown
for preferential attachment trees and m-ary random increasing trees (the latter includes the case
of binary search trees) that the fluctuations of the size of the giant component in the percolation
regime (1.8) are also described by the continuous Luria-Delbrück distribution.

On the other hand, the continuous Luria-Delbrück distribution has been further observed in
several weak limit theorems for the number of cuts required to isolate the root of a tree; see the
original work of Meir and Moon (1970). For random recursive tree (Drmota et al. (2009), Iksanov and
Möhle (2007)), random binary search tree (Holmgren (2010b)) and split trees (Holmgren (2011)).

3The name of this distribution had its origin in a series of classic experiments in evolutionary biology pioneered
by Luria and Delbrück (1943) in order to study “random mutation” versus “directed adaptation” in the context of
bacteria becoming resistant to a previously lethal agent. We refer also to Möhle (2005).
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We refer to Cai et al. (2019) and Cai and Holmgren (2019) for a generalization of the Meir and
Moon cutting model where similar results appear.

We now state the central results of this work.

Theorem 1.10. Suppose that Condition 1 holds and that lnV1 is non-lattice. As n→∞, there is
the convergence in distribution(
Ĝn
n
− e−

c
µ

)
lnn− c

µ
e
− c
µ ln lnn

d−→ − c
µ
e
− c
µ

(
Z + ln

(
c

µ

)
+ ςµ+

(µ2 − σ2)(c+ µ)

2µ2
− γ + 1

)
,

where µ and σ2 are the constants defined in (1.2), $ ≡ ς (a constant) is defined in (1.3), γ is the
Euler constant and the variable Z has the continuous Luria-Delbrück distribution.

Similarly, we obtain that the fluctuations of Gn are also described by Z.

Theorem 1.11. Suppose that Condition 1 and 2 hold. As n → ∞, there is the convergence in
distribution(
Gn
n
− αe−

c
µ

)
lnn− cα

µ
e
− c
µ ln lnn

d−→ −cα
µ
e
− c
µ

(
Z + ln

(
c

µ

)
+
ζµ

α
+

(µ2 − σ2)(c+ µ)

2µ2
− γ + 1

)
,

where µ and σ2 are the constants defined in (1.2), α is defined in Condition 2, ζ is defined in (1.5),
γ is the Euler constant and the variable Z has the continuous Luria-Delbrück distribution.

We also show that Theorem 1.10 can essentially be extended to the case when lnV1 is lattice.
Consider the following additional condition. Write y = byc + {y} for the decomposition of a real
number y as the sum of its integer and fractional parts.

Condition 3. Let T sp
n be a split tree with cardinality n and span d > 0 defined in (1.4). Furthermore,

suppose that {d−1 ln lnn} → % ∈ [0, 1), as n→∞.

We introduce for every % ∈ [0, 1) and c, d, x > 0,

Ξ̄c,d% (x) =
c

µ

d

1− e−d
edb%−d

−1 lnx−d−1c/µc−d%,

where µ is the constant defined in (1.2). The function Ξ̄c,d% decreases as x→∞ and it can be viewed
as the tail of a measure Ξc,d% on (0,∞). Note also that this measure fulfils the integral condition∫

(0,∞)(1 ∧ x
2)Ξc,d% (dx) < ∞. This enables us to introduce a Lévy process without negative jumps

Zc,d% = (Zc,d% (t))t≥0 with Laplace exponent

Φc,d
% (a) =

∫
(0,∞)

(e−ax − 1 + ax1{x<1})Ξ
c,d
% (dx),

i.e., E[e−aZ
c,d
% (t)] = etΦ

c,d
% (a), for a ≥ 0.

Theorem 1.12. Suppose that Condition 1 holds and that T sp
n satisfies Condition 3. For any constant

θ > 0, as n→∞, there is the convergence in distribution(
Ĝn
n
− e−

c
µ

)
lnn− c

µ
e
− c
µ ln lnn+ ce

− c
µ

(
$(lnn)− φ

(
ln
(
θ−1e

− c
µ lnn

)))
d−→ −Zc,d% (1)− c

µ
e
− c
µ

(
c

µ
+

(µ2 − σ2)(c+ µ)

2µ2

)
,

where µ and σ2 are the constants defined in (1.2), $ is the function defined in (1.3), φ is the
function defined in (1.7), % is defined in Condition 3 and γ is the Euler constant.
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Remark 1.13. Following Bertoin (2013), we point out that Lemmas 1.8 and 1.9 still hold whenever
the percolation parameter satisfies pn = 1 − c ln−1 n + o(ln−1 n), where c > 0 is fixed, which still
falls in the supercritical regime; see Bertoin (2013, Theorem 1). However, to obtain similar results
to those in Theorems 1.10, 1.11 and 1.12 one needs to know more information of the o(ln−1 n) term.

The constants appearing in our main results can be computed explicitly for some types of trees.
For example, if T bst

n is a binary search tree with n vertices (recall Remark 1.2), then N = n, α = 1,
µ = 1/2, σ2 = 1/4, ζ = ς = 2γ−4 and φ ≡ 0; see for example Hibbard (1962). Moreover, the result
in Theorem 1.10 (or Theorem 1.11) applied to T bst

n coincides with Berzunza (2015, Theorem 1.1).
The value of the constant can also be computed, for instance, for quad trees or for m-ary search
trees; we refer to Neininger and Rüschendorf (1999) and Mahmoud (1986), respectively, for details.

The approach used by Schweinsberg (2012) for recursive trees relies on its connection with the
Bolthausen-Sznitman coalescent found by Goldschmidt and Martin (2005) and the estimation of
the rate of decrease of the number of blocks in such coalescent process. The alternative approach of
Bertoin (2014a) makes use of the special properties of recursive trees (namely the splitting property)
and more specifically of a coupling due to Iksanov and Möhle (2007) connecting the Meir and
Moon (1970) algorithm for the isolation of the root with a certain random walk in the domain of
attraction of the completely asymmetric Cauchy process. This clearly fails for split-trees. On the
other hand, the basic idea of Berzunza (2015) for the case of m-ary random increasing trees and
preferential attachment trees is based in the close relation of these trees with Markovian branching
processes and the dynamical incorporation of percolation as neutral mutations. Roughly speaking,
this yields to the analysis of the asymptotic behaviour of branching processes subject to rare neutral
mutations. The relationship between percolation on trees and branching process with mutations
was first observed by Bertoin and Uribe Bravo (2015). Recently, Holmgren and Janson (2017) have
shown that some kinds of split trees (but not all) can be related to genealogical trees of general
age-dependent branching processes (or Crump-Mode-Jagers processes), for instance, m-ary search
trees and median-of-(2`+1) trees. Furthermore, Berzunza (2020) has proven the existence of a giant
percolation cluster for appropriate regimes of such genealogical trees via a similar relationship with
a general branching process with mutations. However, the branching processes with mutations in
Berzunza (2020) is in general not Markovian due to the nature of the Crump-Mode-Jagers processes;
see Jagers (1975). This makes the idea of Berzunza (2015) difficult to implement since there the
Markov property is crucial. We thus have to use here a fairly different route.

The method used here is inspired in the original technique developed by Janson (2004) to study the
number of cuts needed to isolate the root of complete binary trees with the cutting-down procedure
of Meir and Moon (1970). Holmgren (2010b, 2011) has successfully extended this method to study
the same quantity as in Janson (2004) for split trees. Informally speaking, we approximate Ĝn
(resp. Gn) by the sum of the “sizes” of the percolation clusters of the sub-trees rooted at vertices
that are at a distance around ln lnn from the root. There are approximately bln lnn clusters, but we
only consider those that are still connected to the root of T sp

n after performing percolation for the
regime pn as in (1.8). The number of balls (or number of vertices) between the root of T sp

n and the
the vertices at height ln lnn is equal to O(lnn) and thus they do not contribute to the fluctuations
of Ĝn (resp. Gn). We then analyse carefully the “sizes” of percolation clusters at distances close
to ln lnn from the root, and essentially, we view Ĝn (resp. Gn) as a sum of independent random
variables. This will allow us to apply a classical limit theorem for the convergence of triangular
arrays to get our main result. Therefore, we conclude that most of the random fluctuations can be
explained by the “sizes” of percolation clusters at distances close to ln lnn from the root of T sp

n and
that they are still connected to the root. Indeed, this phenomenon has also been observed by Bertoin
(2014a, Section 3) who studied the fluctuations of the number of vertices at height ln lnn which
has been disconnected from the root in b-regular trees after performing supercritical percolation.
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In this setting, the fluctuations are described by a Lévy process without negative jumps that also
appears in Janson (2004).

The rest of this paper is organized as follows: We start by proving Lemma 1.8 and Lemma 1.9 in
Section 2. In Section 3, we then focus on the proof of Theorem 1.10 and Theorem 1.12. Section 4
is devoted to the proof of Theorem 1.11 which follows essentially from Theorem 1.10. In Section 5,
we briefly point out that the present approach also applies to study the fluctuations of the size of
the giant cluster for percolation on regular trees. The appendices provide details on some technical
results that are used in the proofs of the main result but that we decided to postpone for a better
understanding of our approach. In particular, Appendix A is dedicated to investigate the asymptotic
behaviour of distances between uniformly chosen vertices and uniformly chosen balls in T sp

n which
may be of independent interest.

2. Proof of Lemma 1.8 and Lemma 1.9

Lemma 1.8 and Lemma 1.9 are a merely consequence of the results of Bertoin (2013) after mild
modifications.

Proof of Lemma 1.8: The result follows from exactly the same argument as the proof of Bertoin
(2013, Corollary 1 and Proposition 1) by using Lemma A.2, Corollary A.6 in Appendix A and
by taking into account that the size is defined as the number of balls instead of the number of
vertices. �

Proof of Lemma 1.9: The result follows from Bertoin (2013, Corollary 1). Note that conditions
(Hk) and (H′k), for k = 1, 2, in Bertoin (2013, Corollary 1) are verified in Lemma A.3 and Corollary
A.6 in Appendix A. Therefore, in the percolation regime (1.8), we have that limn→∞N

−1Gn = e
− c
µ ,

in probability. On the other hand, Conditions 1 and 2 imply that limn→∞N/n = α, in probability.
This establishes (1.9) in Lemma 1.9. The uniqueness of the giant component follows from Bertoin
(2013, Proposition 1) by noticing that the condition there is satisfied as a consequence of Lemma
A.3 and Corollary A.6 in Appendix A, that is,

lim
n→∞

1

lnn
(dn(u1), dn(u1, u2)) = (1/µ, 2/µ) , in probability,

where u1, u2 are two i.i.d. uniform random vertices in T sp
n , dn(u1) denotes the height of u1 and

dn(u1, u2) is the number of edges of T sp
n which are needed to connect the root and the vertices u1

and u2. �

3. Proof of Theorem 1.10

This section is devoted to the proofs of Theorem 1.10 and Theorem 1.12 along the lines explained
at the end of Section 1.2. The starting point is Lemma 3.1 where we estimate the number of balls of
the percolation clusters of sub trees rooted at vertices that are around height ln lnn. We continue
with Lemmas 3.2, 3.3 and 3.4 that allow us to approximate Ĝn as essentially a sum of independent
random variables. Finally, we establish Theorem 3.5 that shows that the conditions of Kallenberg
(2002, Theorem 15.28), a classical limit theorem for triangular arrays, are fulfilled which allow us
to conclude with the proof of Theorem 1.10.

For a vertex v ∈ T sp
n that is at height dn(v) = j, it is not difficult to see from the definition of

random split trees in Section 1.1 that conditioning on the split vectors, we have

binomial

(
n,

j∏
k=1

Wv,k

)
− sj ≤st nv ≤st binomial

(
n,

j∏
k=1

Wv,k

)
+ s1j, (3.1)
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where ≤st denotes stochastically dominated by and (Wv,k, k = 1, . . . , j) are i.i.d. random variables
on [0, 1] given by the split vectors associated with the vertices in the unique path from v to the root;
This property has been used by Devroye (1999) and Holmgren (2012). In particular Wv,k = V1 in
distribution. We deduce the following important estimates.

E[nv] ≤ n
j∏

k=1

E[Wv,k] + s1j = nb−j + s1j, (3.2)

where we have used E[Wv,k] = E[V1] = 1/b. Moreover,

E[n2
v] ≤ n2

j∏
k=1

E[W 2
v,k] + n

(
j∏

k=1

E[Wv,k]−
j∏

k=1

E[W 2
v,k]

)
+ 2s1jn

j∏
k=1

E[Wv,k] + s2
1j

2. (3.3)

Note that E[W 2
v,k] = E[V 2

1 ] < 1/b.
We use the notation logb x = lnx/ ln b for the logarithm with base b of x > 0, and we write

mn = bβ logb lnnc for some constant β > −2/(1 + logb E[V 2
1 ]). We further assume that n is large

enough such that 0 < mn < lnn. For 1 ≤ i ≤ bmn , let vi be a vertex in T sp
n at height mn and let ni

be the number of balls stored at the sub-tree rooted at vi. In particular, for an arbitrary k ≥ 0,

E[n2
i ] = n2Emn [V 2

1 ] + o(n2 ln−k n). (3.4)

We denote by Ĉn,i the number of balls of the sub-tree of T sp
n rooted at vi after Bernoulli bond-

percolation with parameter pn. Clearly, (Ĉn,i, 1 ≤ i ≤ bmn) are conditionally independent random
variables given (ni, 1 ≤ i ≤ bmn). We write Eni [Ĉn,i] := E[Ĉn,i|ni], i.e., it is the conditional expected
value of Ĉn,i given ni.

We use the notation An = Bn + op(f(n)), where An and Bn are two sequences of real random
variables and f : N→ (0,∞) a function, to indicate that (An −Bn)/f(n)→ 0 in probability.

Lemma 3.1. Suppose that Condition 1 is fulfilled. For 1 ≤ i ≤ bmn, we have that

Eni [Ĉn,i] = nie
− c
µ

lnni
lnn − c2µ2 − c2σ2

2µ3

ni lnni

ln2 n
e
− c
µ

lnni
lnn − cni$(lnni)

lnn
e
− c
µ

lnni
lnn + o

( ni
lnn

)
,

where $ : R→ R is the function in (1.3).

Proof : For 1 ≤ i ≤ bmn , let Ti be the sub-tree of T sp
n rooted at the vertex vi at height mn. Let bi

be an uniformly chosen ball in Ti. Let Dni(bi) be the height of bi in the sub-tree Ti. We use the
following observation made by Bertoin (2013, Proof of Theorem 1),

Eni
[
n−1
i Ĉn,i

]
= Eni

[
p
Dni (bi)
n

]
. (3.5)

In words, the left-hand side can be interpreted as the probability that bi belongs to the percola-
tion cluster containing the root of Ti, i.e., vi, while the right-hand side can be interpreted as the
probability that no edge has been removed in the path between bi and vi.

We assume for a while that

Eni
[
p
Dni (bi)
n

]
= Eni

[
p

lnni
µ

n

(
1 +

(
Dni(bi)−

lnni
µ

)
ln pn +

1

2

(
Dni(bi)−

lnni
µ

)2

ln2 pn

)]
+ o

(
1

lnn

)
.

(3.6)

By our assumption (1.8) in the percolation parameter,

ln pn = − c

lnn
+ o

(
1

lnn

)
and p

lnni
µ

n = e
− c
µ

lnni
lnn − c2

2µ

lnni

ln2 n
e
− c
µ

lnni
lnn + o

(
1

lnn

)
. (3.7)
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We have used that lnni ≤ lnn. Then it follows from Lemma A.2 (i)-(ii) in Appendix A and a
couple of lines of calculations that

Eni
[
p
Dni (bi)
n

]
= e
− c
µ

lnni
lnn − c2µ2 − c2σ2

2µ3

lnni

ln2 n
e
− c
µ

lnni
lnn − c$(lnni)

lnn
e
− c
µ

lnni
lnn + o

(
1

lnn

)
.

Therefore, the result in Lemma 3.1 follows from the identity (3.5) and the above estimation.
Now, we focus on establishing (3.6). From the inequality∣∣∣∣∣pDni (bi)n − p

lnni
µ

n

(
1 +

(
Dni(bi)−

lnni
µ

)
ln pn +

1

2

(
Dni(bi)−

lnni
µ

)2

ln2 pn

)∣∣∣∣∣
≤
∣∣∣∣(Dni(bi)−

lnni
µ

)
ln pn

∣∣∣∣3 ,
we conclude that it is enough to show that

Eni

[∣∣∣∣(Dni(bi)−
lnni
µ

)
ln pn

∣∣∣∣3
]

= o

(
1

lnn

)
in order to obtain (3.6). But this follows from Lemma A.2 (iii) in Appendix A and (3.7). �

Let ηn,i be the total number of edges on the branch from vi to the root which have been deleted
after percolation with parameter pn. The random variable ηn,i has the binomial distribution with
parameters (mn, 1− pn). But the random variables (ηn,i, 1 ≤ i ≤ bmn) are not independent. On the
other hand, ηn,i = 0 if and only if the vertex vi is still connected to the root.

Lemma 3.2. Suppose that Condition 1 is fulfilled. We have for β > −2/(1 + logb E[V 2
1 ]) that

Ĝn =

bmn∑
i=1

Eni [Ĉn,i]1{ηn,i=0} + op

( n

lnn

)
.

Proof : We denote by Ĉn,0 the number of balls in the vertices of T sp
n at height less or equal to mn−1

that are connected to the root after percolation with parameter pn. Then, it should be plain that

Ĝn = Ĉn,0 +

bmn∑
i=1

Ĉn,i1{ηn,i=0}.

The sequences of random variables (ηn,i, 1 ≤ i ≤ bmn) and (Ĉn,i, 1 ≤ i ≤ bmn) are independent.
Furthermore, the sequence of random variables (ηn,i, 1 ≤ i ≤ bmn) and (ni, 1 ≤ i ≤ bmn) are also
independent. Let Fn be the σ-field generated by (ηn,i, 1 ≤ i ≤ bmn) and (ni, 1 ≤ i ≤ bmn). Note
also that E[Ĉn,i|Fn] = Eni [Ĉn,i]. By conditioning on the σ-field Fn and taking expectation, we
obtain that

E

(Ĝn − Ĉn,0 − bmn∑
i=1

Eni [Ĉn,i]1{ηn,i=0}

)2
 = E

[
bmn∑
i=1

Eni
[(
Ĉn,i − Eni [Ĉn,i]

)2
]
1{ηn,i=0}

]

=
bmn∑
i=1

E
[(
Ĉn,i − Eni [Ĉn,i]

)2
]
P (ηn,i = 0) .

Since P(ηn,i = 0) ≤ 1 and E[(Ĉn,i − Eni [Ĉn,i])2] ≤ 2E[n2
i ], because Ĉn,i ≤ ni, we deduce that

E

(Ĝn − Ĉn,0 − bmn∑
i=1

Eni [Ĉn,i]1{ηn,i=0}

)2
 ≤ 2

bmn∑
i=1

E[n2
i ].
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Since β > −2/(1 + logb E[V 2
1 ]), we obtain from the estimate (3.4) that

E

(Ĝn − Ĉn,0 − bmn∑
i=1

Eni [Ĉn,i]1{ηn,i=0}

)2
 = o

(
n2

ln2 n

)
.

The above implies together with Chebyshev’s inequality that

Ĝn = Ĉn,0 +
bmn∑
i=1

Eni [Ĉn,i]1{ηn,i=0} + op

( n

lnn

)
.

Finally, the statement follows easily after noticing that 0 ≤ Ĉn,0 < bmn+1 = o
(
n

lnn

)
. �

Next, we combine Lemma 3.1 and 3.2.

Lemma 3.3. Suppose that Condition 1 is fulfilled. We have for β > −2/(1 + logb E[V 2
1 ]) that

Ĝn = −e−
c
µ

bmn∑
i=1

ni1{ηn,i≥1} +

bmn∑
i=1

nie
− c
µ

lnni
lnn − ce−

c
µ

bmn∑
i=1

ni$(lnni)

lnn

− c2µ2 − c2σ2

2µ3
e
− c
µ
n

lnn
+ op

( n

lnn

)
.

where $ : R→ R is the function in (1.3).

Proof : The two sequences of random variables (ηn,i, 1 ≤ i ≤ bmn) and (ni, 1 ≤ i ≤ bmn) are
independent. Recall that the random variable ηn,i has the binomial distribution with parameters
(mn, 1− pn). Hence

1− P (ηn,i = 0) = P (ηn,i ≥ 1) = 1− pmnn = O

(
ln lnn

lnn

)
. (3.8)

Since
∑bmn

i=1 ni ≤ n and P(ηn,i = 0) ≤ 1, we obtain that

E

[
bmn∑
i=1

ni
lnn

1{ηn,i=0}

]
=

1

lnn

bmn∑
i=1

E[ni]P (ηn,i = 0) ≤ n

lnn
.

Thus Lemma 3.1 and Lemma 3.2 imply that

Ĝn =
bmn∑
i=1

(
ni −

c2µ2 − c2σ2

2µ3

ni lnni

ln2 n
− cni$(lnni)

lnn

)
e
− c
µ

lnni
lnn 1{ηn,i=0} + op

( n

lnn

)
. (3.9)

By the estimation (3.8) and the fact that
∑bmn

i=1 ni ≤ n, we get that

E

[∣∣∣∣∣
bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn 1{ηn,i=0} −

bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn

∣∣∣∣∣
]
≤ 1

lnn

bmn∑
i=1

E[ni]P (ηn,i ≥ 1) = o
( n

lnn

)
and

E

[∣∣∣∣∣
bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn 1{ηn,i=0} −

bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn

∣∣∣∣∣
]
≤ K

lnn

bmn∑
i=1

E[ni]P (ηn,i ≥ 1)

= o
( n

lnn

)
,
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for some constant K > 0 such that |$(x)| ≤ K for x ∈ R; recall that $ in (1.3) is a continuous
function with period d ≥ 0. The previous two estimates together with Markov’s inequality imply
that

bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn 1{ηn,i=0} =

bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn + op

( n

lnn

)
, (3.10)

and
bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn 1{ηn,i=0} =

bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn + op

( n

lnn

)
. (3.11)

For large enough k ≥ 1,
bmn∑
i=1

ni1{ni≤nb−kmn} ≤ b
−mn(k−1)n = o

(
n

lnk−1 n

)
.

Then, by using the inequality |e−x − e−y| ≤ |x− y| for x, y ∈ R+, we have that

E

[∣∣∣∣∣
bmn∑
i=1

nie
− c
µ

lnni
lnn −

bmn∑
i=1

nie
− c
µ

∣∣∣∣∣
]
≤ c

µ

1

lnn
E

[
bmn∑
i=1

ni(lnn− lnni)

]

=
c

µ

1

lnn
E

[
bmn∑
i=1

ni(lnn− lnni)1{ni>nb−kmn}

]
+ o

(
n

lnk−1 n

)
= O

(
n ln lnn

lnn

)
, (3.12)

where we have used that
∑bmn

i=1 ni ≤ n in order to obtain the last estimation. The above implies

1

lnn

bmn∑
i=1

nie
− c
µ

lnni
lnn = e

− c
µ

1

lnn

bmn∑
i=1

ni + op

( n

lnn

)
. (3.13)

Similarly, we deduce from (3.8) and (3.12)

E

[∣∣∣∣∣
bmn∑
i=1

nie
− c
µ

lnni
lnn 1{ηn,i≥1} −

bmn∑
i=1

nie
− c
µ1{ηn,i≥1}

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣
bmn∑
i=1

nie
− c
µ

lnni
lnn −

bmn∑
i=1

nie
− c
µ

∣∣∣∣∣
]
P (ηn,1 ≥ 1)

= o
( n

lnn

)
,

E

[∣∣∣∣∣
bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn − 1

lnn

bmn∑
i=1

nie
− c
µ

∣∣∣∣∣
]

= o
( n

lnn

)
and

E

[∣∣∣∣∣
bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn −

bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

∣∣∣∣∣
]

= o
( n

lnn

)
.

As a consequence, the previous three estimates and the Markov’s inequality imply that
bmn∑
i=1

nie
− c
µ

lnni
lnn 1{ηn,i≥1} = e

− c
µ

bmn∑
i=1

ni1{ηn,i≥1} + op

( n

lnn

)
, (3.14)

bmn∑
i=1

ni lnni

ln2 n
e
− c
µ

lnni
lnn = e

− c
µ

1

lnn

bmn∑
i=1

ni + op

( n

lnn

)
, (3.15)
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and
bmn∑
i=1

ni$(lnni)

lnn
e
− c
µ

lnni
lnn = e

− c
µ

bmn∑
i=1

ni$(lnni)

lnn
+ op

( n

lnn

)
. (3.16)

Plugging the estimations (3.10), (3.11), (3.13), (3.14), (3.15) and (3.16) into the expression in
(3.9) yields that

Ĝn = −e−
c
µ

bmn∑
i=1

ni1{ηn,i≥1} +
bmn∑
i=1

nie
− c
µ

lnni
lnn

− c2µ2 − c2σ2

2µ3
e
− c
µ

1

lnn

bmn∑
i=1

ni − ce−
c
µ

bmn∑
i=1

ni$(lnni)

lnn
+ op

( n

lnn

)
;

note also that 1{ηn,i≥1} = 1− 1{ηn,i=0}. Finally, our claim in Lemma 3.3 follows by showing that

1

lnn

bmn∑
i=1

ni =
n

lnn
+ op

( n

lnn

)
. (3.17)

Note that
∑bmn

i=1 ni = n − Ĉ(n), where Ĉ(n) denotes the number of balls of the vertices of T sp
n at

distance less or equal to mn − 1 from the root. Since 0 ≤ Ĉ(n) < max(s, s0)bmn+1 = o(n), we
deduce (3.17). �

We refine the result of Lemma 3.3.

Lemma 3.4. Suppose that Condition 1 is fulfilled. We have for β > −2/(1 + logb E[V 2
1 ]) that

Ĝn = −e−
c
µ

∑
1≤dn(v)≤mn

nvεv +
∑

dn(v)=mn

nve
− c
µ

lnnv
lnn

− ce−
c
µ

∑
dn(v)=mn

nv$(lnnv)

lnn
− c2µ2 − c2σ2

2µ3
e
− c
µ
n

lnn
+ op

( n

lnn

)
.

where $ : R→ R is the function in (1.3) and (εv, 1 ≤ dn(v) ≤ mn) is a sequence of i.i.d. Bernoulli
random variables with parameter 1− pn.

Proof : Our claim follows from Lemma 3.3 by showing that

e
− c
µ

bmn∑
i=1

ni1{ηn,i≥1} = e
− c
µ

∑
1≤dn(v)≤mn

nvεv + op

( n

lnn

)
. (3.18)

Recall that the sequences of random variables (ηn,i, 1 ≤ i ≤ bmn) and (ni, 1 ≤ i ≤ bmn) are
independent. It should be obvious that

E

[
e
− c
µ

bmn∑
i=1

ni1{ηn,i≥1}

]
= (1− pmnn ) e

− c
µ

bmn∑
i=1

E [ni] . (3.19)

Next consider the vertices vi,0, vi,1, . . . , vi,mn = vi along the path from the root vi,0 of T sp
n to

the vertex vi at height mn. For j = 1, . . . ,mn, we associate to each consecutive pair of vertices
(vi,j−1, vi,j) the edge that is between them (where vi,j is a vertex at height j on T sp

n ). Define the
event Ei,j := {the edge (vi,j−1, vi,j) has been removed after percolation} and write εi,j := 1Ei,j . So,
(εi,j , 1 ≤ j ≤ mn) is a sequence of i.i.d. Bernoulli random variables with parameter 1− pn and

ηn,i =

mn∑
j=1

εi,j . (3.20)
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Then

E

[
e
− c
µ

bmn∑
i=1

niηn,i

]
= mn (1− pn) e

− c
µ

bmn∑
i=1

E [ni] . (3.21)

Since

e
− c
µ

bmn∑
i=1

ni1{ηn,i≥1} ≤ e
− c
µ

bmn∑
i=1

niηn,i,

we deduce from (3.19) and (3.21) that

E

[
e
− c
µ

bmn∑
i=1

niηn,i − e−
c
µ

bmn∑
i=1

ni1{ηn,i≥1}

]
≤ (mn(1− pn)− (1− pmnn )) e

− c
µ

bmn∑
i=1

E[ni] = o
( n

lnn

)
,

where we have used that
∑bmn

i=1 ni ≤ n and our assumption (1.8). Therefore, the identity (3.20)
implies that

e
− c
µ

bmn∑
i=1

ni1{ηn,i≥1} = e
− c
µ

bmn∑
i=1

mn∑
j=1

niεi,j + op

( n

lnn

)
. (3.22)

Finally, let P (vi) denote the unique path from the root vi,0 of T sp
n to vi, i.e., the unique sequence

of vertices vi,0, vi,1, . . . , vi,mn = vi. For v = vi,j ∈ P (vi) \ {vi,0}, write εv instead of εi,j . Note that

e
− c
µ

bmn∑
i=1

mn∑
j=1

niεi,j = e
− c
µ

bmn∑
i=1

ni
∑

v∈P (vi)\{vi,0}

εv = e
− c
µ

∑
1≤dn(v)≤mn

εv
∑

i:v∈P (vi)\{vi,0}

ni

= e
− c
µ

∑
1≤dn(v)≤mn

nvεv + op

( n

lnn

)
, (3.23)

because nv − sbmn ≤
∑

i:v∈P (vi)\{vi,0} ni ≤ nv.
Therefore, the estimation (3.18) follows by combining (3.22) and (3.23). �

Following the idea of Janson (2004) and subsequently used by Holmgren (2010b, 2011) (where
the number of random cuts required to isolate the root of a tree was studied), we express Ĝn as a
sum of triangular arrays. We write

ξv := e
− c
µ

lnn

n
nvεv, for v ∈ T sp

n such that dn ≤ mn, (3.24)

where (εv, 1 ≤ dn(v) ≤ mn) is a sequence of i.i.d. Bernoulli random variables with parameter 1−pn.
We also write ξ′i := −αn/n for i ∈ N, where

αn :=
lnn

n

∑
dn(v)=mn

nve
− c
µ

lnnv
lnn − ce−

c
µ

∑
dn(v)=mn

nv$(lnnv)

n

− e−
c
µ lnn− c

µ
e
− c
µ ln lnn+ ce

− c
µ$(lnn)− ce−

c
µφ
(

ln
(
θ−1e

− c
µ lnn

))
− c2µ2 − c2σ2

2µ3
e
− c
µ

for any constant θ > 0. By normalizing Ĝn, Lemma 3.4 gives that(
n−1Ĝn − e−

c
µ

)
lnn− cµ−1e

− c
µ ln lnn+ ce

− c
µ

(
$(lnn)− φ

(
ln
(
θ−1e

− c
µ lnn

)))
= −

∑
1≤dn(v)≤mn

ξv −
n∑
i=1

ξ′i + op(1).
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Recall that the cardinalities (nv, 1 ≤ dn(v) ≤ mn) are not independent random variables and thus
the sequence (ξv, 1 ≤ dn(v) ≤ mn) ∪ (ξ′i, i ∈ N) is not a triangular array. However, conditional on
Fmn , the σ-field generated by (nv, 1 ≤ dn(v) ≤ mn), the sequence (ξv, 1 ≤ dn(v) ≤ mn)∪ (ξ′i, i ∈ N)
is a triangular array where (ξ′i, i ∈ N) is a deterministic sequence.

Finally, the proofs of Theorem 1.10 and Theorem 1.12 are going to be completed via a classical
theorem for convergence of sums of triangular arrays to infinitely divisible distributions; see e.g.
Kallenberg (2002, Theorem 15.28). In this direction, we need the following result. For the sake of
simplicity, we introduce the following notation. For any constants θ, x > 0,

∆n,1 :=
∑

1≤dn(v)≤mn

P(ξv ≥ x|Fmn), ∆n,2 :=
∑

1≤dn(v)≤mn

E
[
ξv1{ξv≤θ}|Fmn

]
− αn,

and ∆n,3 :=
∑

1≤dn(v)≤mn

V ar
(
ξv1{ξv≤θ}|Fmn

)
.

For θ > 0 and x ≥ 0, we also define the function

ψθ(x) = 1− θx

1− e−x
exb%−x

−1 ln θ−x−1c/µc−x%+c/µ

such that ψθ(0) = 0.

Theorem 3.5. Recall that mn = bβ logb lnnc. Suppose that Condition 1 holds. Furthermore, if
lnV1 is lattice with span d defined in (1.4), we also assume that Condition 3 holds for some % ∈ [0, 1).
For any constant θ > 0 and large enough β, the following statements hold as n→∞,

(i) sup
1≤dn(v)≤mn

P (ξv ≥ x|Fmn)
a.s.−−→ 0, for every x > 0.

(ii) For every x > 0,

∆n,1
P−→ ν([x,∞)) :=

{
c
µe
− c
µ 1
x if lnV1 is non-lattice,

c
µ

d
1−e−d e

db%−d−1 lnx−d−1c/µc−d% if lnV1 is lattice.

(iii) ∆n,2
P−→
(

2cµ+ cµ2 − cσ2 − µσ2 + µ3

2µ2
+ ln θ + ψθ(d)

)
c

µ
e
− c
µ .

(iv) ∆n,3
P−→ θ (1 + ψθ(d))

c

µ
e
− c
µ .

The proof of this theorem is rather technical and postponed until the Appendix B.

Proof of Theorem 1.10: We apply Kallenberg (2002, Theorem 15.28) with the constants

a = 0 and b =

(
2cµ+ cµ2 − cσ2 − µσ2 + µ3

2µ2

)
c

µ
e
− c
µ

to the sequence
(
Zn :=

∑
1≤dn(v)≤mn ξv +

∑n
i=1 ξ

′
i, n ≥ 1

)
conditioned on Fmn . We observe that

αn/n→ 0 as n→∞. Thus, Theorem 3.5 (i) implies that conditioned on Fmn the variables (ξv, 1 ≤
dn(v) ≤ mn) ∪ (ξ′i, i ≥ 1) form a null array. Theorem 3.5 (ii) shows that ν(dx) = cµ−1e

− c
µx−2, for

x > 0. Hence∫ θ

0
x2ν(dx) = cµ−1e

− c
µ θ and

∫ 1

θ
xν(dx) = −cµ−1e

− c
µ ln θ for θ > 0.

Thus the right-hand side of Theorem 3.5 (iii) and (iv) can be written as

b−
∫ 1

θ
xν(dx) and a+

∫ θ

0
x2ν(dx), for θ > 0,
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respectively. Therefore Kallenberg (2002, Theorem 15.28) implies that there is the convergence
in distribution Zn

d−→ W conditioned on Fmn , where W has a weakly 1-stable distribution with
characteristic function given by

E[eitW ] = exp

(
ibt+

∫ ∞
0

(
eitx − 1− itx1{x<1}

)
ν(dx)

)
.

This expression can be simplified to show that W is equal in distribution to

c

µ
e
− c
µ

(
Z + ln

(
c

µ

)
+

(µ2 − σ2)(c+ µ)

2µ2
− γ + 1

)
,

where γ is the Euler constant and the variable Z has the continuous Luria-Delbrück distribution;
see, e.g., Feller (1971, Section XVII.3). Finally, note that the conditioning does not affect the
distribution of W . Then it follows that the convergence Zn

d−→ W holds also unconditioned; We
refer to Holmgren (2010b, pages 407-409) for a formal proof of this fact where a general argument
is provided for a sequence with a similar structure as (Zn, n ≥ 1). Therefore, the proof of Theorem
1.10 is completed. �

Proof of Theorem 1.12: It follows along the lines of the proof of Theorem 1.10. Details are left to
the reader. �

4. Proof of Theorem 1.11

In this section, we deduce Theorem 1.11 from Theorem 1.10 by showing that n
lnnGn and αn

lnnĜn
are close enough as n → ∞. We start by recalling some notation from Section 3. Remember that
we write mn = bβ logb lnnc, for some constant β > 0, and that we assume that n is large enough
such that 0 < mn < lnn. For 1 ≤ i ≤ bmn , recall also that we let vi be a vertex in T sp

n at height
mn and we let ni be the number of balls stored at the sub-tree rooted at vi. We further let Ni be
the (random) number of vertices at the sub-tree rooted at vi.

We denote by Cn,i the number of vertices of the sub-tree of T sp
n rooted at vi after percolation

with parameter pn. Clearly, (Cn,i, 1 ≤ i ≤ bmn) are conditionally independent random variables
given (ni, 1 ≤ i ≤ bmn). Write Eni [Cn,i] := E[Cn,i|ni], i.e., it is the conditional expected value of
Cn,i given ni. We have the following estimation of Cn,i that corresponds to Lemma 3.1.

Lemma 4.1. Suppose that Condition 1 and 2 are fulfilled. For 1 ≤ i ≤ dmn, we have that

Eni [Cn,i] = αnie
− c
µ

lnni
lnn − αc

2µ2 − c2σ2

2µ3

ni lnni

ln2 n
e
− c
µ

lnni
lnn − cζ ni

lnn
e
− c
µ

lnni
lnn + o

( ni
lnn

)
,

where ζ ∈ R is the constant in (1.5).

Proof : For 1 ≤ i ≤ dmn , let Ti be the sub-tree of T sp
n rooted at the vertex vi at height mn. Let ui

be a vertex in Ti with the uniform distribution on the set of vertices of the sub-tree Ti. Let dni(ui)
be the height of ui. Recall the observation made by Bertoin (2013, Proof of Theorem 1),

Eni
[
N−1
i Cn,i

]
= Eni

[
p
dni (ui)
n

]
. (4.1)

In words, the left-hand side can be interpreted as the probability that ui belongs to the percolation
cluster containing the root of Ti, i.e., vi, while the right-hand side can be interpreted as the prob-
ability that no edge has been removed in the path between ui and vi. Then a similar computation
as in the proof of Lemma 3.1 together with Lemma A.3 (i)-(iii) in Appendix A shows that

Eni
[
p
dni (ui)
n

]
= e
− c
µ

lnni
lnn − c2µ2 − c2σ2

2µ3

lnni

ln2 n
e
− c
µ

lnni
lnn − cζ

α

1

lnn
e
− c
µ

lnni
lnn + o

(
1

lnn

)
. (4.2)
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On the other hand, we note that Cn,i ≤ Ni. Hence Condition 2 and Remark 1.6 imply that∣∣Eni [N−1
i Cn,i

]
− Eni

[
E−1
ni [Ni]Cn,i

]∣∣ ≤ E−1
ni [Ni]E [|Ni − Eni [Ni]|] = o

(
ln−1 n

)
.

By making use of Condition 2 one more time, we deduce that

Eni
[
N−1
i Cn,i

]
= α−1Eni

[
n−1
i Cn,i

]
+ o

(
ln−1 n

)
. (4.3)

Therefore, our claim follows from the combination of (4.1), (4.2) and (4.3). �

Recall that ηn,i denotes the total number of edges on the branch from vi to the root which has
been deleted after percolation with parameter pn. The next result is analogous of Lemma 3.2.

Lemma 4.2. Suppose that Condition 1 and 2 holds. We have for β > −2/(logb E[V 2
1 ] + 1) that

Gn =
bmn∑
i=1

Eni [Cn,i]1{ηn,i=0} + op

( n

lnn

)
.

Proof : The proof follows from a very similar argument as the proof of Lemma 3.2. �

Finally, we show that n
lnnGn and αn

lnnĜn possess the same asymptotic behaviour.

Lemma 4.3. Suppose that Condition 1 and 2 holds. We have for β > −2/(1 + logb E[V 2
1 ] + 1) that

Gn = αĜn + cα(ς − ζα−1)e
− c
µ
n

lnn
+ op

( n

lnn

)
.

where ζ ∈ R is defined in (1.5) and ς ∈ R is the constant value of the function $ in (1.3) when
d = 0.

Proof : We deduce from Lemma 4.1, Lemma 4.2 and equation (3.9) that

Gn = αĜn − cα
bmn∑
i=1

(
ζ

α

ni
lnn
− ni$(lnni)

lnn

)
e
− c
µ

lnni
lnn 1{ηn,i=0} + op

( n

lnn

)
.

By Condition 2, the random variable lnV1 is non-lattice and thus the function $ is a constant equal
to ς. Hence

Gn = αĜn − cα(ζα−1 − ς)
bmn∑
i=1

ni
lnn

e
− c
µ

lnni
lnn 1{ηn,i=0} + op

( n

lnn

)
.

Furthermore, the estimations (3.11), (3.13) and (3.17) allow us to deduce that

bmn∑
i=1

ni
lnn

e
− c
µ

lnni
lnn 1{ηn,i=0} = e

− c
µ
n

lnn
+ op

( n

lnn

)
.

Therefore, the result follows clearly by combining the previous two estimates. �

We are now in the position to prove Theorem 1.11.

Proof of Theorem 1.11: By normalizing Gn, Lemma 4.3 gives that(
n−1Gn − αe−

c
µ

)
lnn− cα

µ
e
− c
µ ln lnn

= α
(
n−1Ĝn − e−

c
µ

)
lnn− cα

µ
e
− c
µ ln lnn+ cα(ς − ζα−1)e

− c
µ + op(1).

Therefore, the result in Theorem 1.11 follows from a simple application of Theorem 1.10. �
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5. Percolation on b-regular trees

In this section, we point out that the approach developed in the proof of Theorem 1.10 can be
also applied to study percolation on other classes of trees. We focus here on the case of rooted
complete regular b-ary trees T reg

h with height h ∈ N and b ≥ 2 a fixed integer (i.e., each vertex
has exactly out-degree b). We note that there are bk vertices at distance k = 0, 1, . . . , h from the
root and a total of nh = (bh+1 − 1)/(b − 1) vertices. We perform Bernoulli bond percolation with
parameter

ph = e−c/h,

where c > 0 is fixed. Indeed, this choice of the percolation parameter corresponds precisely to the
supercritical regime, i.e., there exists a (unique) giant cluster such that limh→∞ n

−1
h Greg

h = e−c, in
probability, where Greg

h denotes the size (i.e., the number of vertices) of the cluster that contains
the root. We refer to Bertoin (2013, Section 3) for details. We are interested in the fluctuations of
Greg
h . We introduce for every ρ ∈ [0, 1) and x > 0,

Λ̄ρ(x) =
b−ρ+bρ−logb xc+1

b− 1
.

This function decreases as x → ∞ and it can be viewed as the tail of a measure Λρ on (0,∞).
Furthermore, this measure fulfils the integral condition

∫
(0,∞)(1 ∧ x

2)Λρ(dx) <∞. This enables us
to introduce a Lévy process without negative jumps Lρ = (Lρ(t))t≥0 with Laplace exponent

Ψρ(a) =

∫
(0,∞)

(e−ax − 1 + ax1{x<1})Λρ(dx), for a ≥ 0.

Bertoin (2014a, Theorem 3.1) has proven that the fluctuations of the number of vertices at height
h which has been disconnected from the root after percolation are described by Lρ. Indeed, Lρ also
appears in relation with limit theorems for the number of random records on a complete binary
tree; see Janson (2004).

We state the following analogue of Theorem 1.11.

Theorem 5.1. In the regime where h→∞ with {logb h} → ρ ∈ [0, 1), we have that(
Greg
h

nh
− e−c

)
h− ce−c logb h

d−→ −e−c
(
Lρ(c) + cρ− c

b− 1

)
.

The proof strategy is the similar as the one used in the proof of Theorem 1.10. We write
mh = 2blogb hc and assume that h is large enough such that 0 < mh < h. For 1 ≤ i ≤ bmh , let vi
be the bmh vertices at height mh. Note that the number of vertices of the sub-tree of T reg

h rooted at
vi is given by nh,i = (bh−mh+1 − 1)/(b − 1). Denote by Ch,i the number of vertices of the sub-tree
of T reg

h rooted at vi after percolation with parameter ph. Clearly, (Ch,i, 1 ≤ i ≤ bmh) is a sequence
of i.i.d. random variables.

Lemma 5.2. For 1 ≤ i ≤ bmh, we have that

E[Ch,i] = nh,ie
−c + nh,ih

−1(b− 1)−1ce−c + nh,imhh
−1ce−c + o(nh,ih

−1).

Proof : For 1 ≤ i ≤ bmh , let Th,i be the sub-tree of T reg
h rooted at the vertex vi. Let ui denote a

uniform chosen vertex in Th,i and write dh(ui) for its height in Th,i. Note that P(dh(ui) = k) = bkn−1
h,i ,

for k ∈ {0, 1, . . . , h −mh}. By the key observation made by Bertoin (2013, Proof of Theorem 1),
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we have that

E
[
n−1
h,iCh,i

]
= E

[
e−ch

−1dh(ui)
]

=

h−mh∑
k=0

e−ch
−1kP(dh(ui) = k) =

bh−mh

nh,i
e−c

h−mh
h

h−mh∑
k=0

ech
−1kb−k

=
bh−mh

nh,i
e−c

h−mh
h

(
b

b− 1
+

cb

h(b− 1)2
+ o(h−1)

)
.

Recall that nh,i = (bh−mh+1−1)/(b−1). Therefore, after some simple computations we obtain that

E
[
n−1
h,iCh,i

]
= e−c

h−mh
h
(
1 + c(b− 1)−1h−1

)
+ o(h−1)

from which our claim follows. �

Let ηh,i be the total number of edges on the branch from vi to the root which have been deleted
after percolation with parameter ph. Note that the random variable ηh,i has the binomial distribution
with parameters (mh, 1 − ph). But the random variables (ηh,i, 1 ≤ i ≤ bmh) are not independent.
On the other hand, ηh,i = 0 if and only if the vertex vi is still connected to the root of T reg

h .

Lemma 5.3. We have that

Greg
h = −nh,1e−c

bmh∑
i=1

1{ηh,i≥1} + nhe
−c + nhh

−1(b− 1)−1ce−c + nhmhh
−1ce−c + op(nhh

−1).

Proof : We denote by Ch,0 the number of vertices of the tree T reg
h at height less or equal to mh − 1

that are connected to the root after percolation with parameter ph. Then, it should be plain that

Greg
h = Ch,0 +

bmh∑
i=1

Ch,i1{ηh,i=0}.

The sequences of random variables (ηh,i, 1 ≤ i ≤ bmh) and (Ch,i, 1 ≤ i ≤ bmh) are independent.
By conditioning first on the value of the random variables (ηh,i, 1 ≤ i ≤ bmh) and then taking
expectation, we obtain that

E

(Greg
h − Ch,0 −

bmh∑
i=1

E [Ch,i]1{ηh,i=0}

)2
 = E

[
bmh∑
i=1

E
[
(Ch,i − E[Ch,i])

2
]
1{ηh,i=0}

]

=
bmh∑
i=1

E
[
(Ch,i − E[Ch,i])

2
]
P (ηh,i = 0) .

On the one hand, P(ηh,i = 0) ≤ 1. On the other hand, Bertoin (2013, Section 3) has proven in
Bertoin (2013, Proof of Corollary 1) that E[(Ch,i − E[Ch,i])

2] = o(n2
h,i). Thus,

E

(Greg
h − Ch,0 −

bmh∑
i=1

E [Ch,i]1{ηh,i=0}

)2
 =

bmh∑
i=1

o(n2
h,i) = o(n2

hh
−2).

The above estimate and Chebyshev’s inequality imply that

Greg
h = Ch,0 + E[Ch,1]

bmh∑
i=1

1{ηh,i=0} + op(nhh
−1)

since (Ch,i, 1 ≤ i ≤ bmh) is a sequence of i.i.d. random variables. Moreover, we notice that 0 ≤
Ch,0 < bmh+1 = o(nhh

−1). Hence

Greg
h = E[Ch,1]

bmh∑
i=1

1{ηh,i=0} + op(nhh
−1). (5.1)
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We note that
bmh∑
i=1

1{ηh,i=0} = bmh −
bmh∑
i=1

1{ηh,i≥1}. (5.2)

Finally, our claim follows by combining (5.2) and Lemma 5.2 into (5.1). �

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1: From Lemma 5.3 we deduce that(
Greg
h

nh
− e−c

)
h− ce−c logb h

= −
nh,1h

nh
e−c

bmh∑
i=1

1{ηh,i≥1} + ce−cblogb hc − ce−c{logb h}+
c

b− 1
e−c + op(1).

Since n−1
h nh,1 = b−mh + o(b−mh) and

E

[
bmh∑
i=1

1{ηh,i≥1}

]
=

bmh∑
i=1

P (ηh,i ≥ 1) = bmh(1− e−cmhh−1
),

we conclude by the Markov inequality that(
Greg
h

nh
− e−c

)
h− ce−c logb h

= −hb−mhe−c
bmh∑
i=1

1{ηh,i≥1} + ce−cblogb hc − ce−c{logb h}+
c

b− 1
e−c + op(1).

Our claim follows by Bertoin (2014a, Corollary 3.4) that establishes the convergence in distribution

hb−mh
bmh∑
i=1

1{ηh,i≥1} − cblogb hc
d−→ Lρ(c),

in the regime where h→∞ with {logb h} → ρ ∈ [0, 1). �

Remark 5.4. One could have finished the proof of Theorem 5.1 along the same lines as for Theorem
1.10, i.e., by using a classical limit result for triangular arrays. But for the sake of avoiding repetition,
we decided to directly apply a result proven by Bertoin (2014a) which is enough for our purpose.

Appendix A. Distances in split trees

The purpose of this section is to establish some general results on the distribution of the distances
between uniform chosen vertices and uniformly chosen balls in T sp

n when n → ∞. The results can
be seen as a complement (or extension) of those of Devroye (1999) and Holmgren (2012). Let Hn

be the height of T sp
n , i.e., the maximal distance between the root and any leaf in T sp

n . We deduce
the following moment estimate for Hn. For y ∈ R, recall that dye denotes the least integer greater
than or equal to y. Similarly, byc denotes the greatest integer less than or equal to y

Lemma A.1. If Condition 1, then supn≥1 E[Hr
n] ln−r n <∞, for all r > 0.

Proof : We claim that for all r > 0 there exists cr > 0 such that

lim
n→∞

nrP(Hn ≥ (3s1 + 4)bcr lnnc) = 0. (A.1)

Then, the bound Hn ≤ n implies that

E[Hr
n] ≤ (3s1 + 4)cr lnr n+ nrP(Hn ≥ (3s1 + 4)bcr lnnc)
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which combined with (A.1) allows us to conclude with the proof of Lemma A.1. Therefore, it only
remains to prove the claim in (A.1). Devroye (1999) has shown that for integers 0 ≤ k′ ≤ k and
l = k′(s1 + 1) such that s1k

′ < l, and real numbers t, t′ > 0, we have that

P(Hn ≥ k + 3l) ≤ 2b−k + bk(ne)tb2kt/lm(t)k + bk(s1(k − k′ + 1)e)t
′
b2kt

′/lm(t′)k
′
, (A.2)

where m(t) = E[V t
1 ] for t > 0; see proof of Devroye (1999, Theorem 1) for details. Then consider

the estimate in (A.2) with k = k′ = bcr lnnc and l = k′(s1 + 1). Then choose t, t′ ≥ 0 large enough
such that bm(t) < 1 and bm(t′) < 1. This is possible because P(V1 = 1) = 0 by Condition 1, and
thus, m(t) → 0 as t → ∞; see Devroye (1999, Lemma 1). Finally, (A.1) follows immediately by
taking cr > max(r/ ln b,−(r + t)/ ln(bm(t)),−r/ ln(bm(t′))). �

For each fixed n ∈ N, let b1 be a uniformly distributed ball on the set {1, . . . , n} of balls in T sp
n .

Recall that we denote by Dn(b1) the height (or depth) of the ball b1 in T sp
n , i.e., the number of edges

of T sp
n which are between the root and the vertex where the ball b1 is stored.

Lemma A.2. Assume that Condition 1 is fulfilled.
(i) E[Dn(b1)] = µ−1 lnn+$(lnn) + o(1), where $ : R→ R denotes the function in (1.3).
(ii) E[(Dn(b1)− µ−1 lnn)2] = µ−3σ2 lnn+ o(lnn).
(iii) E[

∣∣Dn(b1)− µ−1 lnn
∣∣3] = O(ln

3
2 n).

(iv) lim
n→∞

Dn(b1)(lnn)−1 = 1/µ, in probability.

Proof : We observe that E[Dn(b1)] = n−1E[
∑n

i=1Dn(i)] = n−1E [Ψ(T sp
n )]. Then (i) follows immedi-

ately from the result in (1.3). Turning our attention to the proof of (ii), we write

E[(Dn(b1)− µ−1 lnn)2] = n−1E
[ n∑
i=1

(Dn(i)− µ−1 lnn)2
]
. (A.3)

By Holmgren (2012, Proposition 1.1), Dn(j) ≤st Dn(j′) for j ≤ j′. Moreover, Dj(j) ≤ Dn(j), for
n ≥ j, since a ball with label j only move downward during the splitting process when new balls
are added to the tree. Furthermore, it follows from Holmgren (2012, Theorem 1.3) that

E
[
(Dn(j)− µ−1 lnn)2

]
= µ−3σ2 lnn+ o(lnn), uniformly for

⌈
n ln−1 n

⌉
≤ j ≤ n. (A.4)

Since Dn(j) can be stochastically dominated from above and below by Dn(n) and Dj(j), for 1 ≤
j ≤ n, respectively, we deduce that

E
[
(Dn(j)− µ−1 lnn)2

]
≤ E

[
(Dn(n)− µ−1 lnn)2

]
+ E

[
(Dj(j)− µ−1 lnn)2

]
≤ E

[
(Dn(n)− µ−1 lnn)2

]
+ 4E

[
(Dj(j)− µ−1 ln j)2

]
+ 4µ−2 |ln j − lnn|2

= o(ln2 n), (A.5)

uniformly for
⌈
n ln−2 n

⌉
≤ j <

⌈
n ln−1 n

⌉
; We have used the inequality |x − y|2 ≤ 4x2 + 4y2 for

x, y ≥ 0. On the other hand, Lemma A.1 implies that

E
[
(Dn(j)− µ−1 lnn)2

]
≤ 4E

[
H2
n

]
+ 4µ−2 ln2 n = o(ln3 n) (A.6)

uniformly for 1 ≤ j <
⌈
n ln−2 n

⌉
. Then the combination (A.3), (A.4), (A.5) and (A.6) imply (ii).

We now prove (iii). We observe that

E
[∣∣Dn(b1)− µ−1 lnn

∣∣3] = n−1E
[ n∑
i=1

∣∣Dn(i)− µ−1 lnn
∣∣3 ]. (A.7)

We also observe that

E
[∣∣Dn(j)− µ−1 lnn

∣∣3] ≤ E
[∣∣Dn(n)− µ−1 lnn

∣∣3]+ E
[∣∣Dj(j)− µ−1 lnn

∣∣3]
≤ E

[∣∣Dn(n)− µ−1 lnn
∣∣3]+ 8E

[∣∣Dj(j)− µ−1 ln j
∣∣3]+ 8µ−3 |ln j − lnn|3 ,
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for 1 ≤ j ≤ n; we have used the inequality |x− y|3 ≤ 8x3 + 8y3 for x, y ≥ 0. From Holmgren (2012,
equation (3.62)) we deduce that

E
[∣∣Dn(j)− µ−1 lnn

∣∣3] = O
(

ln
3
2 n
)
, uniformly for

⌈
n ln−2 n

⌉
≤ j ≤ n. (A.8)

Observe that E
[∣∣Dn(j)− µ−1 lnn

∣∣3] ≤ 8E
[
H3
n

]
+ 8µ−3 ln3 n, uniformly for 1 ≤ j <

⌈
n ln−2 n

⌉
.

Then Lemma A.1 implies that

E
[∣∣Dn(j)− µ−1 lnn

∣∣3] = O
(
ln3 n

)
, uniformly for 1 ≤ j <

⌈
n ln−2 n

⌉
. (A.9)

Therefore, (iii) follows from (A.7), (A.8) and (A.9).
The point (iv) follows immediately from (ii) and a standard application of Chebyshev’s inequality.

�

We turn our attention to the height of a random chosen vertex in T sp
n . For each fixed n ∈ N,

let u1 be a uniformly distributed vertex on the random split tree T sp
n with n balls. Recall that we

denote by dn(u1) the height of the vertex u1 in T sp
n , i.e., the minimal number of edges of T sp

n which
are needed to connect the root and u1.

Lemma A.3. Assume that Conditions 1 and 2 are fulfilled.

(i) Recall that ζ ∈ R is the constant in Condition 2. Then E[dn(u1)] = µ−1 lnn+ ζα−1 + o(1).
(ii) We also have E[(dn(u1)− µ−1 lnn)2] = µ−3σ2 lnn+ o(lnn).
(iii) Furthermore, for δ > 1/2 − ε, E[

∣∣dn(u1)− µ−1 lnn
∣∣3] = O(ln

3
2

+δ n), where ε > 0 is the
constant that appears in Condition 2.

(iv) As a consequence, we conclude that lim
n→∞

dn(u1)(lnn)−1 = 1/µ, in probability.

Proof : Observe that

E[dn(u1)] = E

 1

N

∑
u∈T sp

n

dn(u)

 =
1

E[N ]
E [Υ(T sp

n )] + E
[(

1

N
− 1

E[N ]

)
Υ(T sp

n )

]
.

It should be clear that (i) follows from Condition 2 and the result in (1.5) by showing that

E
[(

1

N
− 1

E[N ]

)
Υ(T sp

n )

]
= o(1). (A.10)

Therefore, we focus on the proof of (A.10).
Note that ∣∣∣∣ 1

N
− 1

E[N ]

∣∣∣∣Υ(T sp
n ) =

∣∣∣∣N − E[N ]

NE[N ]

∣∣∣∣ ∑
u∈T sp

n

dn(u) ≤ |N − E[N ]|Hn

E[N ]
,

where Hn denotes the height of T sp
n . An application of the Cauchy–Schwarz inequality shows that

E
[(

1

N
− 1

E[N ]

)
Υ(T sp

n )

]
≤ E−1[N ](V ar(N))

1
2E1/2[H2

n] = o(1),

where in the last step we used Remark 1.6, Condition 2 and Lemma A.1.



688 Gabriel Berzunza Ojeda, Xing Shi Cai and Cecilia Holmgren

We turn our attention to the proof of (ii). Note that

E[(dn(u1)− µ−1 lnn)2] = E

 1

N

∑
u∈T sp

n

(dn(u)− µ−1 lnn)2


=

1

E[N ]
E

 ∑
u∈T sp

n

(dn(u)− µ−1 lnn)2


+ E

( 1

N
− 1

E[N ]

) ∑
u∈T sp

n

(dn(u)− µ−1 lnn)2

 .
Holmgren (2010a, Corollary 2.1) has shown that

E

 ∑
u∈T sp

n

(dn(u)− µ−1 lnn)2

 = αnµ−3σ2 lnn+ o(n lnn).

Then (ii) follows from Condition 2 and Remark 1.6 by providing that

E

( 1

N
− 1

E[N ]

) ∑
u∈T sp

n

(dn(u)− µ−1 lnn)2

 = o(lnn).

This is proved from similar arguments as in the proof of (A.10). The details are omitted.
We continue with the proof of (iii). We have that

E
[
|dn(u1)− µ−1 lnn|3

]
= E

 1

N

∑
u∈T sp

n

|dn(u)− µ−1 lnn|3


=
1

E[N ]
E

 ∑
u∈T sp

n

|dn(u)− µ−1 lnn|3


+ E

( 1

N
− 1

E[N ]

) ∑
u∈T sp

n

|dn(u)− µ−1 lnn|3
 .

Suppose that we have proven that

E

 1

n

∑
u∈T sp

n

|dn(u)− µ−1 lnn|3
 = O

(
ln

3
2

+δ n
)
, (A.11)

for δ > 1/2− ε. Then (iii) follows from Condition 2 and by showing that

E

( 1

N
− 1

E[N ]

) ∑
u∈T sp

n

|dn(u)− µ−1 lnn|3
 ln−

3
2
−δ n = o(1), for δ > 1/2− ε.

This can be proved by using similar arguments as in the proof of (A.10) and the details are omitted.



The fluctuations of the giant cluster for percolation on random split trees 689

Finally, we check that (A.11) holds. For δ > 1/2− ε and C > 0, we notice that

E

 ∑
u∈T sp

n

|dn(u)− µ−1 lnn|31{
|dn(u)−µ−1 lnn|>ln

1
2+ δ3 n

}


≤ 8E

(H3
n + µ−3 ln3 n

) ∑
u∈T sp

n

1{
|dn(u)−µ−1 lnn|>ln

1
2+ δ3 n

}


≤ 8(C3 + µ−3)(ln3 n)E

 ∑
u∈T sp

n

1{
|dn(u)−µ−1 lnn|>ln

1
2+ δ3 n

}
+ 8n4P(Hn ≥ C lnn).

On the one hand, Holmgren (2012, Theorem 1.2) has shown that

(C3 + µ−3)(ln3 n)E

 ∑
u∈T sp

n

1{
|dn(u)−µ−1 lnn|>ln

1
2+ δ3 n

}
 = o

(
n ln

3
2

+δ n
)

(The sum inside the expectation is what Holmgren (2012, Theorem 1.2) calls the number of bad
vertices). On the other hand, by (A.1), we can choose C > 0 such that 8n4P(Hn ≥ C lnn) =

o(n ln
3
2

+δ n). Hence,

E

 ∑
u∈T sp

n

|dn(u)− µ−1 lnn|31{
|dn(u)−µ−1 lnn|>ln

1
2+ δ3 n

}
 = o

(
n ln

3
2

+δ n
)
. (A.12)

We also note that

E

 ∑
u∈T sp

n

|dn(u)− µ−1 lnn|31{
|dn(u)−µ−1 lnn|≤ln

1
2+ δ3 n

}
 = O

(
n ln

3
2

+δ n
)
,

which combined with (A.12) implies (A.11).
The point (iv) follows immediately from (ii) and a standard application of Chebyshev’s inequality.

�

Recall the labelling of the balls induced by the split tree generating algorithm explained in Section
1.1. Let v and v′ be the vertices in T sp

n where the balls labelled j and j′ are located, respectively.
We call the vertex v ∧ v′ at which the paths in T sp

n from the vertices v and v′ to the root intersect
the last common ancestor of the balls with labels j and j′. For simplicity, we denote by j ∧ j′ a last
common ancestor of the balls j and j′ (notice that j ∧ j′ is not necessary unique). Let Dn(j ∧ j′)
be the height of j ∧ j′ when all n balls have been inserted.

Lemma A.4. Assume that Condition 1 is fulfilled. For n ∈ N fixed, let b1 and b2 denote two
independent uniformly distributed random ball labels in T sp

n . Let h : N→ R+ be some function such
that limn→∞ h(n) =∞. We have that Dn(b1 ∧ b2)h(n)−1 → 0, as n→∞, in probability.

Proof : For δ > 0, note that Dn(b1 ∧ b2) ≥ δh(n) when both balls b1 and b2 lie in the same sub-tree
and the height of the last common ancestor related to this sub-tree has to be greater than δh(n).
For 1 ≤ i ≤ bdδh(n)e, let vi be a vertex in T sp

n at height dδh(n)e and let ni be the number of balls
stored at the sub-tree rooted at vi; note that those balls have depth greater than δh(n). Since b1
and b2 denote two independent uniformly distributed random ball in T sp

n , we have that

P(Dn(b1 ∧ b2) ≥ δh(n)) ≤ E

bdδh(n)e∑
i=1

(ni
n

)2

 = n−2
bdδh(n)e∑
i=1

E
[
n2
i

]
. (A.13)
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On the other hand, Condition 1 and the inequality by Holmgren (2011, equation (1.10)) for subtrees
sizes in split-trees (we refer to the estimation (3.3) for a formal proof) imply that

E
[
n2
i

]
= n2Edδh(n)e [V 2

1

]
+ o(n2 ln−k n), (A.14)

for an arbitrary k ≥ 0 and where E[V 2
1 ] < 1/b. Then, (A.14) combined with (A.13) implies our

claim. �

Let v and v′ be two vertices in the split tree T sp
n . We denote by dn(v ∧ v′) the height of the last

common ancestor v ∧ v′ of the vertices v and v′ in the tree T sp
n .

Lemma A.5. Assume that Conditions 1 and 2 are fulfilled. For n ∈ N fixed, let u1 and u2 denote
two independent uniformly distributed random vertices in T sp

n . Let h : N → R+ be some function
with limn→∞ h(n) =∞. We have that dn(u1 ∧ u2)h(n)−1 → 0, as n→∞, in probability.

Proof : We follow a similar argument as in the proof Lemma A.4. For δ > 0, note that dn(u1∧u2) ≥
δh(n) when both vertices lie in the same sub-tree and the height of the last common ancestor related
to this sub-tree has to be greater than δh(n). For 1 ≤ i ≤ bdδh(n)e, let vi be a vertex in T sp

n at height
dδh(n)e and let Ni be the number of vertices of the sub-tree rooted at vi. Since u1 and u2 are two
independent uniformly distributed random vertices in T sp

n , we have that

P(dn(u1 ∧ u2) ≥ δh(n)) ≤ E

bdδh(n)e∑
i=1

(
Ni

N

)2


= E

N2 − E2[N ]

N2E2[N ]

bdδh(n)e∑
i=1

N2
i

+ E

bdδh(n)e∑
i=1

(
Ni

E[N ]

)2
 . (A.15)

We analyse the first term at the right-hand side of (A.15). Note that
∑bdδh(n)e

i=1 N2
i ≤ N2. Then

Condition 2 and Remark 1.6 imply that

E

N2 − E2[N ]

N2E2[N ]

bdδh(n)e∑
i=1

N2
i

 ≤ V ar(N)

E2[N ]
= o(1). (A.16)

We now focus in the second term at the right-hand side of (A.15). Note that Condition 2 and
Remark 1.6 imply that E[N2

i ] = E
[
V ar(Ni|ni) + E2[Ni|ni]

]
= O(E[n2

i ]), where we have used the
well-known formula V ar(Ni) = E[V ar(Ni|ni)] + V ar(E[Ni|ni]). Hence the previous estimate, the
inequality (A.14) and Condition 2 allow us to conclude that

E

bdδh(n)e∑
i=1

(
Ni

E[N ]

)2
 = o(1). (A.17)

Finally, our claim follows by applying (A.16) and (A.17) into (A.15). �

We complete this section by stating a corollary of the previous lemmas. Let u1 and u2 be two
independent uniformly chosen vertices in T sp

n . We write dn(u1, u2) for the number of edges of T sp
n

which are needed to connect the root, u1 and u2. Similarly, let b1 and b2 be two independent
uniformly chosen balls in T sp

n . We write Dn(b1, b2) for the number of edges of T sp
n which are needed

to connect the root, and vertices where the balls b1 and b2 are stored.

Corollary A.6. Assume that Condition 1 is fulfilled. We have that Dn(b1, b2)(lnn)−1 → 2/µ,
as n → ∞, in probability. If we further assume that Condition 2 is also satisfied. We have that
dn(b1, b2)(lnn)−1 → 2/µ, as n→∞, in probability.
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Proof : We note that Dn(b1, b2) = Dn(b1) + Dn(b2) − Dn(b1 ∧ b2), where Dn(b1) has the same
distribution as Dn(b2). Therefore, the first result is a direct consequence of Lemma A.2 and Lemma
A.4. The proof of the second claim follows from a similar argument by using Lemma A.3 and
Lemma A.5. �

Appendix B. Proof of Theorem 3.5

In this section, we prove Theorem 3.5 which is an important ingredient in the proof of Theorem
1.10. For 1 ≤ i ≤ mn, we denote by Fi the σ-field generated by (nv, dn(v) ≤ i). Recall from the
beginning of Section 3 that for a vertex v ∈ T sp

n that is at height dn(v) = i, we write (Wv,k, k =
1, . . . , i) for a sequence of i.i.d. random variables on [0, 1] given by the split vectors associated with
the vertices on the unique path from v to the root. We denote by Gi the σ-field generated by
((Wv,k, k = 1, . . . , i) : dn(v) = i). Recall the notation εv in (3.24) and write

n̂v := n

i∏
k=1

Wv,k, and ξ̂v := e
− c
µ

lnn

n
n̂vεv. (B.1)

Note that Gi is equivalent to the σ-field generated by (n̂v, dn(v) ≤ i).
We present now some crucial lemmas that are used in the proof of Theorem 3.5. Recall the

notation mn = bβ logb lnnc for β > 0. Furthermore, through this section we assume that β is large
enough. For the sake of simplicity, we introduce the following notation. For any constants θ, x > 0,

α′n :=
lnn

n

∑
dn(v)=mn

n̂ve
− c
µ

ln n̂v
lnn − ce−

c
µ

∑
dn(v)=mn

n̂v
n
$(ln n̂v), ∆′n,1 :=

∑
1≤dn(v)≤mn

P(ξ̂v ≥ x|Gmn),

∆′n,2 :=
∑

1≤dn(v)≤mn

E
[
ξ̂v1{ξ̂v≤θ}|Gmn

]
and ∆′n,3 :=

∑
1≤dn(v)≤mn

V ar
(
ξ̂v1{ξ̂v≤θ}|Gmn

)
.

Recall also the notation ∆n,i, for i = 1, 2, 3, in the statement of Theorem 3.5.

Lemma B.1. Suppose that Condition 1 holds. Furthermore, if lnV1 is lattice with span d defined
in (1.4), we also assume that Condition 3 holds for some % ∈ [0, 1). We have that

(i) ∆n,1 = ∆′n,1 + op(1).
(ii)

∑
1≤dn(v)≤mn

E
[
ξv1{ξv≤θ}|Fmn

]
= ∆′n,2 + op(1).

(iii)
lnn

n

∑
dn(v)=mn

nve
− c
µ

lnnv
lnn − ce−

c
µ

∑
dn(v)=mn

nv$(lnnv)

n
= α′n + op (1).

(iv) ∆n,3 = ∆′n,3 + op(1).

Lemma B.2. Suppose that Condition 1 holds. Furthermore, if lnV1 is lattice with span d defined
in (1.4), we also assume that Condition 3 holds for some % ∈ [0, 1). We have that

(i) E[∆′n,1] = ν([x,∞)) + o(1) for every x > 0.

(ii) E[∆′n,2] =

(
µmn +

2c− σ2 + µ2

2µ
+ ln θ − µφ

(
ln
(
θ−1e

− c
µ lnn

))
+ ψθ(d)− ln lnn

)
c

µ
e
− c
µ +

o(1).
(iii) E[α′n] = e

− c
µ lnn+ ce

− c
µmn − ce−

c
µ$(lnn) + o(1).

(iv) E[∆′n,3] = θ (1 + ψθ(d))
c

µ
e
− c
µ + o(1).

For any constants θ, x > 0 and β large enough, we define m′n := b1
2 logb lnnc and we write

∆′′n,1 :=
∑

m′n≤dn(v)≤mn

P(ξ̂v ≥ x|Gmn), ∆′′n,2 :=
∑

m′n≤dn(v)≤mn

E
[
ξ̂v1{ξ̂v≤θ}|Gmn

]
− α′n
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and

∆′′n,3 :=
∑

m′n≤dn(v)≤mn

V ar
(
ξ̂v1{ξ̂v≤θ}|Gmn

)
.

Lemma B.3. Suppose that Condition 1 holds. Furthermore, if lnV1 is lattice with span d defined in
(1.4), we also assume that Condition 3 holds for some % ∈ [0, 1). We have that V ar

(
E
[
∆′′n,i

∣∣∣Gm′n])=

o(1), for i = 1, 2, 3.

Lemma B.4. Suppose that Condition 1 holds. Furthermore, if lnV1 is lattice with span d defined in
(1.4), we also assume that Condition 3 holds for some % ∈ [0, 1). We have that E

[
V ar

(
∆′′n,i

∣∣∣Gm′n)]=

o(1), for i = 1, 2, 3.

Proof of Theorem 3.5: For v ∈ T sp
n such that 1 ≤ dn(v) ≤ mn, observe that

P (ξv ≥ x|Fmn) = P
(
εv ≥ xe

c
µ
n

lnn

1

nv

∣∣∣Fmn) = (1− pn)1{
xe

c
µ n

lnn
1
nv
≤1
} ≤ c

lnn
, (B.2)

for x > 0. Thus,

lim
n→∞

sup
1≤dn(v)≤mn

P (ξv ≥ x|Fmn) = 0, almost surely,

for every x > 0, which proves (i).
We deduce from Lemma B.1 that ∆n,1 = ∆′n,1 + op(1),

∆n,2 = ∆′n,2 − α′n + e
− c
µ lnn+

c

µ
e
− c
µ ln lnn− ce−

c
µ$(lnn)

+

(
cµ2 − cσ2

2µ2
+ µφ

(
ln
(
θ−1e

− c
µ lnn

))) c

µ
e
− c
µ + op(1)

and ∆n,3 = ∆′n,3 + op(1). Furthermore, Lemma B.2 shows that the expected value of the previous
quantities converge to the right-hand sides of Theorem 3.5 (ii), (iii) and (iv). We complete the proof
of Theorem 3.5 by showing that

V ar(∆′n,1) = o(1) for every x > 0, V ar(∆′n,2 − α′n) = o(1) and V ar(∆′n,3) = o(1). (B.3)

Then an application of the Chebyshev’s inequality implies Theorem 3.5 (ii), (iii) and (iv).
Thus, we prove (B.3). A similar argument as in the proof of Lemma B.1 implies that

∆′n,1 = ∆′′n,1 + o(1), ∆′n,2 − α′n = ∆′′n,2 + o(1) and ∆′n,3 = ∆′′n,3 + o(1).

Recall the well-known variance formula V ar(X) = E[V ar(X|G)] + V ar(E[X|G]), where X is a
random variable and G is a sub-σ-field. Consequently, a combination of the variance formula with
G = Gm′n , Lemma B.3 and Lemma B.4 show (B.3). This concludes our proof. �

Finally, it only remains to prove Lemmas B.1, B.2, B.3 and B.4. Their proofs are close to those
of Lemmas 2.5, 2.6, 2.7 and 2.8 in Holmgren (2011), respectively. However, they are not exactly the
same due to the nature of the problem. Therefore, we have decided to give only complete proofs of
Lemmas B.1 and B.2, where the main differences appear and moreover, the key estimations for the
proofs of Lemmas B.3 and B.4 are developed. Then, to avoid unnecessary repetitions, the interested
reader can verify that Lemmas B.3 and B.4 follows along the lines of the proofs of Lemma 2.7 and
2.8 in Holmgren (2011) (see also Holmgren (2010c, Lemmas 2.7 and 2.8)) together with estimations
used in the proof of Lemma B.2.
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B.1. Proof of Lemma B.1. Recall the definition of (n̂v, 1 ≤ dn(v) ≤ mn) in (B.1). The following
result shows that nv is close to n̂v.

Proposition B.5. Suppose that Condition 1 holds. For 0 ≤ i ≤ mn, let v ∈ T sp
n such that dn(v) = i.

For large enough n, we have that P
(
|nv − n̂v| > n0.6

)
≤ n−0.19.

Proof : See Holmgren (2012, Lemma 1.1) (which holds also in the lattice case). �

Recall the definition of (ξ̂v, 1 ≤ dn(v) ≤ mn) in (B.1). It is not difficult to deduce that

P
(
ξ̂v ≥ x|Gmn

)
= (1− pn)1{

xe
c
µ n

lnn
1
n̂v
≤1
}, x > 0. (B.4)

Proof of Lemma B.1: We first show (i) for the non-lattice case. The lattice case follows from exactly
the same argument. From (B.2), (B.4) and the triangle inequality, we notice that

E
[
|∆n,1 −∆′n,1|

]
≤ (1− pn)

mn∑
i=1

∑
dn(v)=i

E
[∣∣∣∣1{nv≥xe cµ n

lnn

} − 1{
n̂v≥xe

c
µ n

lnn

}∣∣∣∣]

=
c

lnn

mn∑
i=1

∑
dn(v)=i

P
(
nv ≥ xe

c
µ
n

lnn
, n̂v < xe

c
µ
n

lnn

)

+
c

lnn

mn∑
i=1

∑
dn(v)=i

P
(
nv < xe

c
µ
n

lnn
, n̂v ≥ xe

c
µ
n

lnn

)
.

Denote the first term on the right-hand side by I1
n and the second term by I2

n. We first deal with
I1
n and show that I1

n = o(1). For δ1 ∈ (0, 1), we observe that

I1
n ≤

c

lnn

mn∑
i=1

∑
dn(v)=i

P
(
nv ≥ xe

c
µ
n

lnn
, n̂v < δ1xe

c
µ
n

lnn

)

+
c

lnn

∞∑
i=1

∑
dn(v)=i

P
(
δ1xe

c
µ
n

lnn
≤ n̂v < xe

c
µ
n

lnn

)
. (B.5)

If dn(v) = i for 1 ≤ i ≤ mn, the relationship (3.1) implies that

P
(
nv ≥ xe

c
µ
n

lnn
,n̂v < δ1xe

c
µ
n

lnn

)
≤ P

(
binomial(n, n̂v/n) ≥ xe

c
µ
n

lnn
− s1i, n̂v < δ1xe

c
µ
n

lnn

)
≤ P

(
binomial

(
n, δ1xe

c
µ

1

lnn

)
≥ xe

c
µ
n

lnn
− s1i

)
= P

(
binomial

(
n, δ1xe

c
µ

1

lnn

)
− xe

c
µ
δ1n

lnn
≥ xe

c
µ

(1− δ1)n

lnn
− s1i

)
≤ C1(lnn)/n, (B.6)

for t ≥ 0 and some constant C1 > 0; where we have used Chebyshev’s inequality and the fact that
the variance of a binomial(m, q) is mq(1 − q), for the last inequality. On the other hand, Lemma
1.7 (i) implies that

lim
n→∞

c

lnn

∞∑
i=1

∑
dn(v)=i

P
(
δ1xe

c
µ
n

lnn
≤ n̂v < xe

c
µ
n

lnn

)
= (δ−1

1 − 1)cµ−1x−1e
− c
µ .
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By combining the previous limit and the estimate (B.6) into (B.5), we obtain that

lim sup
n→∞

I1
n = (δ−1

1 − 1)cµ−1x−1e
− c
µ .

By the arbitrariness of δ1 ∈ (0, 1), we deduce that I1
n = o(1). We complete the proof of (i) by

showing that I2
n = o(1). For δ2 > 1, we observe that

I2
n ≤

c

lnn

mn∑
i=1

∑
dn(v)=i

P
(
nv < xe

c
µ
n

lnn
, n̂v ≥ δ2xe

c
µ
n

lnn

)

+
c

lnn

∞∑
i=1

∑
dn(v)=i

P
(
xe

c
µ
n

lnn
≤ n̂v < δ2xe

c
µ
n

lnn

)
.

But one can show similarly that I2
n = o(1); details are left to the reader. Then, an application of

the Markov’s inequality combined with the previous estimates concludes the proof of (i).
We next establish (ii). Observe that

E
[
ξv1{ξv≤θ}|Fmn

]
= (1− pn)

lnn

n
e
− c
µnv1{

nv≤θe
c
µ n

lnn

}
and

∆′n,2 = E
[
ξ̂v1{ξ̂v≤θ}|Gmn

]
= (1− pn)

lnn

n
e
− c
µ n̂v1{

n̂v≤θe
c
µ n

lnn

}.
Then triangle inequality implies that

E
[∣∣∣ ∑

1≤dn(v)≤mn

E
[
ξv1{ξv≤θ}|Fmn

]
−∆′n,2

∣∣∣]

≤ c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E
[∣∣∣∣nv1{nv≤θe cµ n

lnn

} − n̂v1{
n̂v≤θe

c
µ n

lnn

}∣∣∣∣]

≤ c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E
[
|nv − n̂v|1{

nv≤θe
c
µ n

lnn

}]

+
c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E
[
n̂v

∣∣∣∣1{nv≤θe cµ n
lnn

} − 1{
n̂v≤θe

c
µ n

lnn

}∣∣∣∣] .
On the one hand, Proposition B.5 implies that

c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E
[
|nv − n̂v|1{

nv≤θe
c
µ n

lnn

}] ≤ c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E [|nv − n̂v|] = o(1).

On the other hand, a similar computation as in the proof of point (i) shows that

c

n
e
− c
µ

mn∑
i=1

∑
dn(v)=i

E
[
n̂v

∣∣∣∣1{nv≤θe cµ n
lnn

} − 1{
n̂v≤θe

c
µ n

lnn

}∣∣∣∣] = o(1).

Thus, a combination of the previous estimates with the Markov inequality shows (ii).
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We continue with the proof of (iii). An application of the triangle inequality implies that

E

∣∣∣∣∣∣ lnnn
∑

dn(v)=mn

nve
− c
µ

lnnv
lnn − ce−

c
µ

∑
dn(v)=mn

nv$(lnnv)

n
− α′n

∣∣∣∣∣∣


≤ lnn

n
bmnE

[∣∣∣nve− c
µ

lnnv
lnn − n̂ve−

c
µ

ln n̂v
lnn

∣∣∣]+
c

n
e
− c
µ bmnE [|nv$(lnnv)− n̂v$(ln n̂v)|] . (B.7)

By using Proposition B.5, a similar argument as in the proof of point (ii) shows that
lnn

n
bmnE

[∣∣∣nve− c
µ

lnnv
lnn − n̂ve−

c
µ

ln n̂v
lnn

∣∣∣]
≤ lnn

n
bmn

(
E [|nv − n̂v|] + E

[
n̂v

∣∣∣e− c
µ

lnnv
lnn − e−

c
µ

ln n̂v
lnn

∣∣∣]) = o(1). (B.8)

On the other hand, the triangle inequality and Proposition B.5 imply that

E [|nv$(lnnv)− n̂v$(ln n̂v)|] ≤ E [$(lnnv) |nv − n̂v|] + E [n̂v |$(lnnv)−$(ln n̂v)|]
= E [n̂v |$(lnnv)−$(ln n̂v)|] + o(nb−mn),

where we have used that $ is a continuous d-periodic function, with d defined in (1.4), and thus it
is bounded. Note that

E [n̂v |$(lnnv)−$(ln n̂v)|] = E
[
n̂v |$(lnnv)−$(ln n̂v)|1{|nv−n̂v |≤n̂2/3

v }

]
+ E

[
n̂v |$(lnnv)−$(ln n̂v)|1{|nv−n̂v |>n̂2/3

v }

]
. (B.9)

It is not difficult to see that in the event {|nv − n̂v| < n̂
2/3
v }, we can make | lnnv − ln n̂v| arbitrary

small by taking n large enough. Hence the continuity of the function $ allows us to deduce that

E [n̂v |$(lnnv)−$(ln n̂v)|] = E
[
n̂v |$(lnnv)−$(ln n̂v)|1{|nv−n̂v |>n̂2/3

v }

]
+ o(nb−mn). (B.10)

Recall that a binomial random variable with parameters (n, q) has expected value nq and variance
nq(1 − q). Following the same reasoning as in the proof of Proposition B.5, we deduce from an
application of (3.1) and the conditional version of Chebyshev’s inequality that

E
[
n̂v1{|nv−n̂v |>n̂2/3

v }

]
= 4E[n̂2/3

v ] = o(nb−mn). (B.11)

By recalling that the function $ is continuous and thus bounded, the estimations (B.9), (B.10) and
(B.11) imply that

bmnE [|nv$(lnnv)− n̂v$(ln n̂v)|] = o(n). (B.12)

Therefore, the combination of (B.8) and (B.12) into (B.7) implies

E

∣∣∣∣∣∣ lnnn
∑

dn(v)=mn

nve
− c
µ

lnnv
lnn − ce−

c
µ

∑
dn(v)=mn

nv$(lnnv)

n
− α′n

∣∣∣∣∣∣
 = o(1)

which together with the Markov inequality proves (iii).
Finally, (iv) follows from a similar argument as in the proof of (ii) by using Proposition B.5. �

B.2. Proof of Lemma B.2. We observe that (nv, dn(v) = i) is a sequence of identically distributed
random variables, for 1 ≤ i ≤ mn. Moreover, the distribution of nv for v ∈ T sp

n such that dn(v) = i
is determined by the sequence (Wv,k, k = 1, . . . , i) of i.i.d. random variables on [0, 1] given by the
split vectors associated with the vertices on the unique path from v to the root. We introduce the
notation Yv,i := −

∑i
k=1 lnWv,k. We sometimes omit the vertex index of (Wv,k, k = 1, . . . , i) and

we just write (Wk, k = 1, . . . , i) when it is free of ambiguity. Similarly, we write Yi instead of Yv,i.
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Proof of Lemma B.2: Recall our assumption (1.8) in the percolation parameter, i.e., pn = 1−c/ lnn,
where c > 0 is fixed. We first show (i) in the non-lattice case. From the identity (B.4), we see that

E
[
∆′n,1

]
= (1− pn)

mn∑
i=1

E
[ ∑
dn(v)=i

1{
xe

c
µ n

lnn
1
n̂v
≤1
}] = (1− pn)

mn∑
i=1

biP
(
Yi ≤ ln

(
x−1e

− c
µ lnn

))
.

By Lemma 1.7, we obtain that
∞∑
i=1

biP
(
Yi ≤ ln

(
x−1e

− c
µ lnn

))
=
(
µ−1 + o(1)

)
x−1e

− c
µ lnn = µ−1e

− c
µx−1 lnn+ o(lnn). (B.13)

Thus (i) follows from (B.13) by providing that

(1− pn)

∞∑
i=mn+1

biP
(
Yi ≤ ln

(
x−1e

− c
µ lnn

))
= o(1). (B.14)

Choose an arbitrary t > 0. By an application of the Markov inequality and the fact that (Wk, k =
1, . . . , i) are i.i.d. random variables, we obtain that

P (Yi ≤ δ) = P
(
e−tYi ≥ e−δt

)
≤ m(t)ieδt, (B.15)

for δ > 0, where we define m(t) := E[V t
1 ] for t > 0. Then,

(1− pn)

∞∑
i=mn+1

biP
(
Yi ≤ ln

(
x−1e

− c
µ lnn

))
≤ cx−te−

c
µ (lnn)t−1

∞∑
i=mn+1

(m(t)b)i. (B.16)

Thus our claim (B.14) follows after some computations by taking t > 0 such that bm(t) < 1 (this is
possible by Condition 1) and β > max((1− t)/ logb(bm(t)),−2/(1 + logb E[V 2

1 ])).
In the lattice case, we see that (B.13) becomes
∞∑
i=1

biP
(
Yi ≤ ln

(
x−1e

− c
µ lnn

))
=

(
d

µ

1

1− e−d
+ o(1)

)
edbd

−1 ln(x−1e
− cµ lnn)c

=
d

µ

1

1− e−d
edbd

−1 ln(x−1e
− cµ )+{d−1 ln lnn}c−d{d−1 ln lnn} lnn+ o(lnn),

and the results follows exactly as in the non-lattice case.
We next establish (ii) only in the non-lattice case. The lattice case is similar. Observe that

E[∆′n,2] =
lnn

n
(1− pn)e

− c
µ

mn∑
i=1

E
[ ∑
dn(v)=i

n̂v1{
n̂v≤θe

c
µ n

lnn

}]

= ce
− c
µ

mn∑
i=1

biE
[
e−Yi1{

Yi≥ln
(
θ−1e

− cµ lnn
)}] .

By noticing that E[e−Yi ] = b−i, we use integration by parts to obtain that

E[∆′n,2] = ce
− c
µmn −

cθ

lnn

mn∑
i=1

biP
(
Yi ≤ ln

(
θ−1e

− c
µ lnn

))

− ce−
c
µ

∫ ln
(
θ−1e

− cµ lnn
)

0
e−z

mn∑
i=1

biP(Yi ≤ z)dz

= ce
− c
µmn −

c

µ
e
− c
µ − ce−

c
µ

∫ ln
(
θ−1e

− cµ lnn
)

0
e−z

mn∑
i=1

biP(Yi ≤ z)dz + o(1),
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where we have used (B.13) and (B.14), with t > 0 such that bm(t) < 1 and β > max((1 −
t)/ logb(bm(t)),−2/(1 + logb E[V 2

1 ])), in order to get the last equality.
On the other hand, we deduce from (B.16) that∫ ln
(
θ−1e

− cµ lnn
)

0
e−z

∞∑
i=mn+1

biP (Yi ≤ z) dz ≤ θ−te−
c
µ (lnn)t

( ∞∑
i=mn+1

(m(t)b)i

)
ln
(
θ−1e

− c
µ lnn

)
= o(1),

when t > 0 such that bm(t) < 1 (this is possible by Condition 1) and β > max(−t/ logb(bm(t)), (1−
t)/ logb(bm(t)),−2/(1 + logb E[V 2

1 ])). Hence

E[∆′n,2] = ce
− c
µmn −

c

µ
e
− c
µ − ce−

c
µ

∫ ln
(
θ−1e

− cµ lnn
)

0
e−z

∞∑
i=1

biP(Yi ≤ z)dz + o(1).

By the result in (1.7), we know that∫ ln
(
θ−1e

− cµ lnn
)

0
e−z

( ∞∑
i=1

biP(Yi ≤ z)− µ−1ez

)
dz =

σ2 − µ2

2µ2
− µ−1 + φ

(
ln
(
θ−1e

− c
µ lnn

))
+ o(1),

where φ : R→ R is the d-periodic continuous function in (1.7). Therefore,

E[∆′n,2] = ce
− c
µmn +

2c2 − cσ2 + cµ2

2µ2
e
− c
µ − ce−

c
µφ
(

ln
(
θ−1e

− c
µ lnn

))
+
c

µ
e
− c
µ ln θ − c

µ
e
− c
µ ln lnn+ o(1)

which proves point (ii).
We continue with the proof of (iii). Recall that m(t) = E[V t

1 ] for t > 0. From the definition of
n̂v in (B.1), we deduce that

E[α′n] = bmne
− c
µm

(
1− c

µ

1

lnn

)mn
lnn− ce−

c
µ bmnE

[
mn∏
k=1

Wk$

(
lnn+

mn∑
k=1

lnWk

)]

= bmne
− c
µm

(
1− c

µ

1

lnn

)mn
lnn− ce−

c
µ$(lnn),

since $ is d-periodic, with d defined in (1.4), and lnWk ∈ dZ. We notice that m(1) = E[V1] = 1/b
and m′(1) = E[V1 lnV1] = −µ/b. Then a simple Taylor’s expansion calculation shows that

m

(
1− c

µ

1

lnn

)
=

1

b
+

c

b lnn
+ o

(
1

b ln2 n

)
which implies that

E[α′n] = e
− c
µ lnn+ ce

− c
µmn − ce−

c
µ$(lnn) + o(1),

and completes the proof of (iii).
We finally show (iv) only in the non-lattice case. The lattice case follows from exactly the same

argument. Note that

E[∆′n,3] =
ln2 n

n2
(1− pn)pne

−2 c
µ

mn∑
i=1

E

 ∑
dn(v)=i

n̂2
v1
{
n̂v≤θe

c
µ n

lnn

}


= ce
−2 c

µ (lnn)pn

mn∑
i=1

biE
[
e−2Yi1{

Yi≥ln
(
θ−1e

− cµ lnn
)}] .
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By integration by parts, we obtain that

E[∆′n,3] = −cθ
2pn

lnn

mn∑
i=1

biP
(
Yi ≤ ln

(
θ−1e

− c
µ lnn

))
+ 2ce

−2 c
µ (lnn)pn

∫ ∞
ln
(
θ−1e

− cµ lnn
) e−2z

mn∑
i=1

biP(Yi ≤ z)dz

= cµ−1e
− c
µ θ + o(1),

where we have used (B.13) and (B.14), with t > 0 such that bm(t) < 1 and

β > max(−t/ logb(bm(t)), (1− t)/ logb(bm(t)),−2/(1 + logb E[V 2
1 ])),

to get the last equality. This concludes the proof of (iv). �
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