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Abstract. In this paper we study the two-sided level set of the two-dimensional discrete Gaussian
free field (GFF), where a site is open if the absolute value of the GFF at this site is at most λ for
a fixed parameter λ > 0. For the GFF on a box of size N with Dirichlet boundary conditions, we
show that there exists ε > 0 such that with probability tending to 1 as N →∞, all the open paths
whose Euclidean diameters are of order N have lengths larger than N1+ε.

1. Introduction

The discrete Gaussian free field (GFF) on Zd is a Gaussian random field with mean zero and
covariance given by the Green function of the simple random walk. For d ≥ 3, the (one-sided) level
set (consisting of open sites, i.e., sites with GFF values exceeding h) percolation of the GFF has been
extensively studied, and it has been shown that a non-trivial phase transition exists. More precisely,
there exists a critical level h∗(d) ∈ (0,∞) such that the level set has a unique infinite open cluster
for h < h∗(d) and has only finite open clusters for h > h∗(d) (see Bricmont et al., 1987; Rodriguez
and Sznitman, 2013; Drewitz and Rodriguez, 2015; Drewitz et al., 2018 for a non-exhaustive list of
references).

Since the Green function blows up in two dimensions, we instead consider the GFF on a box
VN ⊂ Z2 of side length 2N . As an analogue of the existence of an infinite open cluster in higher
dimensions, one can investigate the macroscopic connectivity property for the level set on VN .
It was shown in Ding and Li (2018) that for any level h, there are open paths connecting the
boundaries of a macroscopic annulus (i.e., the two boundaries are at distance of order N) with
non-vanishing probability as N →∞. Another interesting yet challenging question for percolation
models is on the chemical distance, the intrinsic distance on the graph defined by open clusters.
For many percolation models, physicists predicted that there exists an exponent dmin (called the
chemical distance exponent) such that the chemical distance is comparable to the Euclidean distance
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Figure 1.1. φ(λ,N) is the probability of existence of λ-open paths in VN/2 w.r.t.
the GFF on VN connecting the left and the right boundaries of VN/2.

to the power of dmin (see Havlin and Nossal, 1984; Herrmann and Stanley, 1988; Schrenk et al.,
2013). Such chemical distance exponents have been studied in many percolation models, including
the Bernoulli percolation models (see Aizenman and Burchard, 1999; Damron et al., 2017, 2021;
Antal and Pisztora, 1996; Garet and Marchand, 2007) and the supercritical percolation models
with long-range correlations on Zd for d ≥ 3 (see Drewitz et al., 2014). As for the level set of
the two-dimensional GFF, it was shown in Ding and Li (2018); Ding and Wirth (2020) that the
geodesics under the chemical distance have lengths O(N(logN)1/4), implying that the chemical
distance exponent is equal to 1.

In this paper, we investigate the two-sided level set of the two-dimensional GFF, where a site is
open if its GFF value is in [−λ, λ]. While it remains a challenge to show that for some fixed large
λ with non-vanishing probability as N → ∞ there exists a macroscopic path (i.e, a path with two
ends at Euclidean distance of order N) in the two-sided level set, we believe that this is true by
the simulation results1 (see Figure 1.1). With this belief, the question on the chemical distance is
meaningful and interesting, and we will show (see Theorem 1.1 below) that with probability tending
to 1 as N →∞, open macroscopic paths, shall they exist, have lengths larger than N1+ε for some
ε > 0. Therefore, the chemical distance exponent is strictly larger than 1, which is drastically
different from that of the (one-sided) level set.

Next, we will define our model more precisely, and then state our main result. For each positive
integer N , let VN be the box of side length 2N centered at the origin, i.e., VN := [−N,N ]2 ∩ Z2.
Denote by {ηVN (x) : x ∈ VN} the GFF on VN with Dirichlet boundary conditions. Concretely, it is
a mean-zero Gaussian process with covariance given by

EηVN (x)ηVN (y) = GN (x, y) for x, y ∈ VN ,

where GN (x, y) := Ex
∑τ−1

n=0 1{Sn=y} is the Green function of the 2D simple random walk {Sn :
n = 0, 1, 2, · · · }, and τ is the hitting time to the boundary ∂VN := {x ∈ VN : there exists y ∈
Z2 \ VN such that y is a neighbor of x}. Let λ be positive and fixed. A site x ∈ VN is called
λ-open if

∣∣ηVN (x)
∣∣ ≤ λ. Define the two-sided level set Λλ,N as the collection of λ-open sites in

1 The GFF on VN is numerically generated by using the codes in https://github.com/sswatson/
GaussianFreeFields.jl. Then, we use the built-in function measurements.label in python to compute φ(λ,N).
For each λ = 0.2, 0.21, · · · , 1.2 and each N = 100, 500, 1000, the experiments are conducted 50 times to find φ(λ,N),
respectively.

https://github.com/sswatson/GaussianFreeFields.jl
https://github.com/sswatson/GaussianFreeFields.jl
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VN/2 := [−N/2, N/2]2 ∩ Z2, that is

Λλ,N := {x ∈ VN/2 : |ηVN (x)| ≤ λ}. (1.1)

Suppose that P is a path in Z2, i.e., a sequence of sites z0, z1, · · · , zn with ‖zi − zi−1‖ = 1 for
i = 1, · · · , n, where ‖ · ‖ denotes the Euclidean distance. We say that P is λ-open if so are all zi’s.
Denote by |P | := n the length of P , by ‖P‖ := ‖zn − z0‖ the distance between the endpoints of P .
For κ, ε > 0, let Pκ,εN be the family of macroscopic paths in VN/2 with lengths at most N1+ε, i.e.,

Pκ,εN =
{
P : P is a path in VN/2 satisfying ‖P‖ ≥ κN and |P | ≤ N1+ε

}
. (1.2)

Our main result is the following theorem.

Theorem 1.1. For each λ > 0, there exists ε = ε(λ) > 0 such that for every κ ∈ (0, 1),

lim
N→∞

P
(
P is λ-open for some P ∈ Pκ,εN

)
= 0.

Remark 1.2. Actually, we have obtained the following more quantitative result (see Proposi-
tion 4.4), which in particular implies that all open macroscopic paths have super-linear lengths even
when λ = λN grows in N as long as λN ≤ c

√
log logN for some constant c > 0. It remains an

interesting question to determine the tight bound for λN at which all macroscopic λN -open paths
have super-linear lengths.

Remark 1.3. Theorem 1.1 also holds with VN/2 being replaced with VδN = [−δN, δN ]2 ∩ Z2 for
δ ∈ (0, 1).

1.1. Notation conventions. For x = (x1, x2), y = (y1, y2) ∈ R2, denote

‖x− y‖ :=
√
|x1 − y1|2 + |x2 − y2|2 and |x− y|∞ := |x1 − y1| ∨ |x2 − y2|,

where a ∨ b := max{a, b}. Denote d(x,B) := infy∈B ‖x − y‖, d(B1, B2) := infx∈B1 d(x,B2),
d∞(x,B) := infy∈B |x− y|∞ and d∞(B1, B2) := infx∈B1 d∞(x,B2).

A site is a point in Z2. In this paper, only boxes with sides parallel to the axes are involved. If
B is a box in R2 and B ∩ Z2 6= ∅, we denote by zB the lower left corner of B ∩ Z2. For x ∈ R2 and
` > 0, denote by B(x, `) the ball of radius ` centered at x, and by B∞(x, `) the box in R2 of side
length 2` centered at x, i.e.,

B(x, `) := {y ∈ R2 : ‖x− y‖ ≤ `}, B∞(x, `) := {y ∈ R2 : |x− y|∞ ≤ `}.
Denote by V`(x) the set of sites in B∞(x, `/2), i.e.,

V`(x) := B∞(x, `/2) ∩ Z2,

which is a box in Z2 of side length at most `.
Suppose that P is a path (in Z2), i.e., a sequence of sites z0, z1, · · · , zn with ‖zi − zi−1‖ = 1,

i = 1, · · · , n such that for 1 ≤ i ≤ n− 1, zi 6= zj for all j 6= i. Denote the endpoints, the end-to-end
distance and the length of P respectively by

xP := z0, yP := zn; ‖P‖ := ‖zn − z0‖, |P | := n.

By sub-path of P , we mean a path with sites on P .
Let λ be positive and fixed. We will use a dyadic number K = 2k (for some positive integer k)

as the scale parameter, which will be eventually chosen to depend on λ. Let κ be a fixed number
in (0, 1). For a ≥ 1, let bac be the greatest integer less equal to a, and denote [a] := {1, · · · , bac}.
Let m = b 1

k log2(κN)c − 1, which is the unique positive integer such that

Km+1 ≤ κN < Km+2. (1.3)

We will let N →∞, equivalently, m→∞. Let c, c′, c′′, C1, C2, · · · be positive universal constants.
Furthermore, let C be a specific positive universal constant such that all the results in Section 2.2
hold for K ≥ C.
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1.2. Outline of the proof. Our proof strategy is based on a multi-scale analysis, which is a classic
and powerful method in percolation theory; see for instance Chayes (1996); Orzechowski (1998);
Sznitman (2015); Ding and Zhang (2019). As a typical instance when applying multi-scale analysis,
the actual implementation is quite non-trivial and the main challenge is to design a proper induction
procedure. We will next present a brief outline of our induction procedure by describing the content
in each of the subsequent sections.

In Section 2, after reviewing some basic and standard facts about the GFF (see Section 2.1),
we will review the following tree structure associated to a path as constructed in Ding and Zhang
(2019) (see Section 2.2). For j ≥ 1 and a path P in scale Kj (i.e., ‖P‖ is comparable to Kj), a tree
TP of depth j is constructed in association with P , where the root corresponds to the path P and
nodes at level r (for r ≥ 1) in TP correspond to disjoint sub-paths of P in scale Kj−r. In addition,
the parent/child relation of nodes in TP corresponds to path/child-path relation (see Figure 2.2).
In each scale, we will consider the notion of tame/untamed paths, where roughly tame paths are
like straight lines and untamed paths are like curves (see Definition 2.9). Then, a crucial property
is that for all P ∈ Pκ,εN (recall (1.2) for its definition), the untamed nodes, i.e., nodes correspond to
untamed sub-paths, are rare in TP (see Lemma 2.10).

In Section 3, we will deal with the initial step of the induction. We first bound the probability of
the existence of an open crossing through a parallelogram (with aspect ratio 16) in the long direction,
by relating such a crossing to a contour separating boundaries of an annulus (see Figure 3.4) via
a standard path gluing argument. Since a tame path crosses through a parallelogram with aspect
ratio of order K (from which we can extract order

√
K well-separated parallelograms with aspect

ratio 16), the probability of the existence of a tame and open path in any scale is at most e−0.01
√
K

(see Proposition 3.2).
In Section 4, we will implement the induction analysis (analogous to Lemma 4.4 in Ding and

Zhang, 2019). For r ≥ 0, let YP,r be the fraction of tame and open nodes (i.e., nodes corresponding
to tame and open sub-paths) at level r in TP . For r = 0, YP,r can be controlled by the aforemen-
tioned e−0.01

√
K decay in Proposition 3.2. For r ≥ 1, let P (i)’s be the child-paths of P , and we have

the recursive relation that YP,r is the average of YP (i),r−1’s (see (4.15)). Assuming good control
for YP (i),r−1, we can then apply a large deviation analysis and recursively obtain good control for
YP,r. One subtlety is that, our ultimate goal is to obtain a uniform control for all P ∈ Pκ,εN , and
as a result in the preceding recursive analysis we need to apply a union bound in every step, which
can be absorbed into our probability decay obtained from large deviation analysis (see Proposi-
tion 4.2 and Proposition 4.3, noting that ξ’s therein bound Y ’s by (4.2) and (4.3)). Combined with
Lemma 2.10, it yields that with high probability, for all P ∈ Pκ,εN , there exists a non-open sub-path
of P (correspondingly, a non-open node in TP ). This implies Theorem 1.1. In the actual proof,
there are additional technical complications such as the fluctuations of the harmonic functions (de-
fined in Lemma 2.2) that emerge in every step of the induction, which are assumed to be flat in
the preceding discussion. In order to address this, we will employ standard regularity estimates for
GFF with some carefully chosen parameters (see (4.4) and (4.5)).

2. Preliminaries

In Section 2.1, we will give some basic facts about the GFF. In Section 2.2, we will introduce some
notations and results in Ding and Zhang (2019), which are needed in this paper. In Section 2.3, we
will define some families of paths.

2.1. Properties of the GFF. Let B ⊆ Z2 be finite and non-empty. Denote by {ηB(x) : x ∈ B} the
GFF on B with Dirichlet boundary conditions, i.e., a mean-zero Gaussian process with covariance
given by

EηB(x)ηB(y) = GB(x, y) for x, y ∈ B,
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where GB(x, y) := Ex
∑τ−1

n=0 1{Sn=y} is the Green function of the 2D simple random walk {Sn : n =
0, 1, 2, · · · }, and τ is the hitting time to the boundary ∂B = {x ∈ B : ‖x − y‖ = 1 for some y ∈
Z2 \B}. Without loss of generality, ηB(x) := 0 for all x ∈ Z2 \B.

Fix χ = 1
10 . If B ⊆ Z2 is a box of side length L, define the box

Bχ := {z ∈ B : d∞(z, ∂B) > χL}.

Lemma 2.1 (Equation (4) in Ding and Zhang, 2019). Suppose that B ⊆ Z2 is a box of side length
L. There is a universal constant C1 > 0 such that∣∣∣E(ηB(x)ηB(y)

)
− 2

π
log

L

|x− y|∞ ∨ 1

∣∣∣ ≤ C1 for all x, y ∈ Bχ.

Lemma 2.2 (Markov Property). Let D be a finite subset of Z2, and B ⊆ D. Let ηD be the GFF
on D. Denote

HB(x) := E
(
ηD(x)

∣∣ σ{ηD(z) : z ∈ Bc ∪ ∂B}
)
.

Then HB is harmonic on B, with HB|∂B = ηD|∂B. Moreover, the field

ηB := ηD −HB

is a version of the GFF on B, which is independent of HB. In other words, ηD = ηB ⊕HB is an
orthogonal decomposition.

A proof of the above lemma can be found in the proof of Lemma 3.1 in Biskup (2020), and the
following lemma is a direct consequence of Lemma 3.10 in Bramson et al. (2016).

Lemma 2.3. In addition to the assumptions in Lemma 2.2, assume furthermore that B is a box of
side length L. Then,

E
(
HB(x)−HB(y)

)2 ≤ C2
|x− y|∞

L
for all x, y ∈ Bχ,

where C2 > 0 is a universal constant.

The next two results are about general Gaussian fields (i.e., not necessarily GFFs), which will be
used to prove Lemma 2.6.

Lemma 2.4 (Dudley’s inequality, Lemma 4.1 in Adler, 1990). Let U ⊆ Z2 be a box of side length
` and {Gw : w ∈ U} be a mean zero Gaussian field satisfying

E(Gx −Gy)2 ≤ |x− y|∞/` for all x, y ∈ U.

Then Emaxx∈U Gx ≤ C3, where C3 > 0 is a universal constant.

Lemma 2.5 (Borell-Tsirelson inequality, Lemma 7.1 in Talagrand, 2014). Let {Gx : x ∈ A} be a
centered Gaussian field on a finite index set A. Then,

P
(∣∣∣max

x∈A
Gx − Emax

x∈A
Gx

∣∣∣ ≥ a) ≤ 2e−
a2

2σ2 for all a > 0,

where σ2 = maxx∈A Var(Gx).

Lemma 2.6. In addition to the assumptions in Lemma 2.3, assume furthermore that U is a box of
side length ` in Bχ. Then, there exists a universal constant C4 > 0 such that the following holds.
Suppose ε ≥ C4

√
`
L . Then, for all z ∈ U ,

P
(∣∣HB(x)−HB(z)

∣∣ ≥ ε for some x ∈ U
)
≤ 4 exp

{
− ε2L

8C2`

}
.
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Proof : Note that U ⊆ Bχ ⊆ B ⊆ D. Fix z ∈ U . For x ∈ U , denote Gx := HB(x) − HB(z). By
Lemma 2.3,

E(Gx −Gy)2 ≤ C2
|y − x|∞

L
≤ C2`

L
· |y − x|∞

`
for all x, y ∈ U.

Combined with Lemma 2.4, it yields that Emaxx∈U Gx ≤ C4
2

√
`
L , where C4 := 2C3

√
C2. Conse-

quently, by the symmetry of the Gaussian distribution,

P
(
|Gx| ≥ ε for some x ∈ U

)
≤ 2P

(
Gx ≥ ε for some x ∈ U

)
≤ 2P

(
max
x∈U

Gx − Emax
x∈U

Gx ≥
ε

2

)
≤ 4 exp

{
− ε2

8σ2

}
,

where σ2 = maxx∈U Var(Gx), and in the second inequality we have used the assumption ε ≥ C4

√
`
L .

Furthermore, by Lemma 2.3, σ2 ≤ C2`
L . Combining it with the above formula, we complete the proof

of Lemma 2.6. �

The proof of the following lemma is similar to that of Lemma 1 in Ding and Li (2018), thus is
omitted.

Lemma 2.7. Let `1 > 0, `2 ≥ `1 + 2 and z ∈ Z2. Suppose V`1(z) ⊆ D ⊆ V`2(z). Then, for all
x ∈ ∂V`1(z), ∑

y∈∂V`1 (z)

GD(x, y) ≤
∑

y∈∂V`1 (z)

GV`2 (z)(x, y) ≤ 2(`2 − `1).

2.2. The tree structure associated with a path. In this section, we will introduce the concepts of
child-paths and associated trees constructed in Section 3 of Ding and Zhang (2019). All is about
the geometric structure of a deterministic path, where probability is not involved.

Suppose that P is a path from x to y. Recall ‖P‖ := ‖x − y‖ and xP := x. Recall that B(x, `)
is a ball centered at x and of radius `. For j ≥ 1, let SLj be a family of paths, defined as follows:

SLj :=
{
P : 1 ≤ ‖P‖/Kj ≤ 1 + 1/K and P ⊆ B(xP , ‖P‖)

}
. (2.1)

Denote SL0 := Z2, where a site is regarded as a path with length 0. A path P is said to be in scale
Kj if P ∈ SLj .

Recall that κ is positive and fixed, and that m is the unique positive integer such that Km+1 ≤
κN < Km+2. In this construction, we will only need to consider SLj for j ≤ m − 1. For each
path P in SLj (for j ∈ [m − 1]) or P with ‖P‖ ≥ κN , in Section 3 of Ding and Zhang (2019)
the authors extracted a collection of disjoint sub-paths {P (i) : 1 ≤ i ≤ dP } for some dP ≥ 1, and
these sub-paths are referred to as child-paths of P . Note that the child-paths of P are in SLm−1 if
‖P‖ ≥ κN ; and are in SLj−1 if P ∈ SLj .

With definitions above at hand, we are now ready to associate each path P in scale Kj with a tree
TP of depth j in a recursive manner for j = 1, . . . ,m− 1 (see Figure 2.2). As the base construction
for P ∈ SL1, we identify P as the root and identify each child-path of P as a leaf, yielding a tree
of depth 1 which is the desired TP . For 2 ≤ j ≤ m− 1, we suppose that each Q ∈ SLj−1 has been
associated with a tree TQ of depth j − 1, and we consider P ∈ SLj . Let P be identified as the
root, denoted by ρ, and the child-paths P (i)’s be respectively identified as children of ρ, which are
denoted by ui’s. By attaching the root of TP (i) to the node ui, one obtains the tree TP of depth j.
Note that each node u in TP is identified as a sub-path of P , which is denoted by P u. Furthermore,
if u is at level r in TP , P u is in scale Kj−r. Similarly, a path P with ‖P‖ ≥ κN is associated with
a tree TP of depth m, noting that the child-paths P (i)’s are in scale Km−1 and thus are associated
with trees TP (i) ’s of depth m− 1.
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(a) Path P .

𝑃 ! =𝑃"!

𝑃 #
𝑃 $

𝑃 %

(b) Child-paths of P : P (1), · · · , P (4).

𝑃!

𝑃"

(c) Child-paths of P (i)’s.

𝑣

𝜌

𝑢! 𝑢" 𝑢# 𝑢$

𝑢

: the root

(d) The tree TP associated with P .

Figure 2.2. K = 4. The root ρ is identified as the path P , say in scale Kj . The
nodes ui’s correspond to child-paths P (i)’s of P , shown in (b). u and v are two
specific nodes at level 2, with P u and P v (in scale Kj−2) being pointed out in (c).

For integer r ≥ 0, define a collection of boxes of side length Kr as follows:

BDr :=
{[
aKr − 1/2, (a+ 1)Kr − 1/2

]
×
[
bKr − 1/2, (b+ 1)Kr − 1/2

]
: a, b ∈ Z

}
.

Note that the boundaries of boxes in BDr do not intersect with Z2. Thus, {(B ∩ Z2) : B ∈ BDr}
forms a partition of Z2.

Proposition 2.8 (Proposition 3.1 in Ding and Zhang, 2019). There is a universal constant C such
that the following holds for all K ≥ C, and j = 2, · · · ,m− 1. For P ∈ SLj, one has dP ≥ K, and
that each box in BDj−1 is visited by at most 12 child-paths of P .

Suppose j ≥ 1, and P is a path from xP to yP in scale Kj . Let E(P ) be an ellipse, whose focuses
are xP and yP , and whose ratio of width to height is K to 1. Let Ẽ(P ) be a modification of E(P ),
which we need for technical reasons (that will become clearer later). Concretely,

E(P ) :=
{
z ∈ R2 : ‖xP − z‖+ ‖yP − z‖ ≤ (1 + 2K−2)‖P‖

}
,

and Ẽ(P ) := {z ∈ R2 : d(z, E(P )) ≤ 4Kj−1}.
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Definition 2.9. A path P is said to be tame if P ⊆ Ẽ(P ), and untamed otherwise.

In each scale, a tame path is roughly a straight line, and, on the contrary an untamed path is
in spirit a curve (for example, in (b) of Figure 2.2, P (1), P (3) and P (4) are tame, while P (2) is
untamed). Note that untamed nodes, i.e., nodes corresponding to untamed sub-paths, have more
children (see u2 in (d) of Figure 2.2). Therefore, untamed nodes will bring in more leaves, which
correspond to different sites in P . Thus, the fraction of untamed nodes can be bounded by the
length of P . To this end, let θP be the unit uniform flow on TP from the root ρ to the leaves, i.e.,
θP (ρ) = 1 and θP (v) = 1

du
θP (u) if v is one of the du many children of u. For δ ∈ (0, 1) and K = 2k,

define a family of paths as follows:

Pκ,δ,KN :=
{
P : P is a path in VN/2, ‖P‖ ≥ κN and |P | ≤ N1+ δ

K2k

}
. (2.2)

Lemma 2.10 (Proposition 3.6 in Ding and Zhang, 2019). For κ, δ ∈ (0, 1) and K ≥ C. There
exists C ′ = C ′(κ, δ) > 0 such that for N ≥ eC′K5 and P ∈ Pκ,δ,KN ,∑

u:1≤L(u)≤m−1

θP (u)1{u is untamed} ≤ 2δm,

where L(u) is the level of u in the associated tree TP .

2.3. Families of paths. Recall that BDr consists of disjoint boxes of side length Kr. For j ≥ 1, let
ENDj be a family of boxes, defined as

END1 :=
{
{z} : z ∈ VN/2

}
,

ENDj :=
{
B : B ∈ BDj−2 and B ∩ VN/2 6= ∅

}
for all j ≥ 2.

(2.3)

Boxes in ENDj have side length Kj−2, thus are regarded as “points” in scale Kj . They play the
role of endpoints of paths in scale Kj , and are called end-boxes.

For j ≥ 1 and B ∈ ENDj , denote by Pj(B) paths in scale Kj started from the end-box B, and
by Tj(B) the tame ones, i.e.,

Pj(B) := {P ∈ SLj : xP ∈ B}, Tj(B) := {P ∈ Pj(B) : P is tame}. (2.4)

For a pair of end-boxes B,B′ ∈ ENDj , let Tj(B,B′) be the family of tame paths from B to B′, i.e.,

Tj(B,B
′) := {P ∈ SLj : xP ∈ B, yP ∈ B′, and P is tame}.

3. Tame paths are unlikely to be open

In this section, we will estimate the probability of existence of tame and open paths started from a
fixed end-box (see Proposition 3.2). Recall that a site x ∈ VN/2 is said to be λ-open if

∣∣ηVN (x)
∣∣ ≤ λ.

Definition 3.1. For V ⊆ VN and α ∈ R, we say a site x ∈ V is (V, λ, α)-open if |ηV (x) + α| ≤ λ.
A path P ⊆ V is said to be (V, λ, α)-open if so is every site in P .

Recall that ENDj is the family of end-boxes of side length Kj−2, defined in (2.3). For an end-box
B ∈ ENDj , Tj(B) is the family of tame paths in scale Kj started from B. Denote by zB the lower
left corner of B ∩ Z2. Recall that V`(x) := B∞(x, `/2) ∩ Z2 is a box of side length `, defined in
Section 1.1.

Proposition 3.2. There exists a universal constant c > 0 such that the following holds for all λ ≥ 1

and K ≥ K̂0(λ) := ecλ
2. Suppose that j ∈ [m − 1], B ∈ ENDj, and α ∈ R. Then, for any box V

satisfying V4Kj (zB) ⊆ V ⊆ VN ,

P
(
P is (V, λ, α)-open for some P ∈ Tj(B)

)
≤ e−0.01

√
K .



Chemical distance exponent 737

𝜃

(𝑎 + 𝑙, 𝑏 + ℎ + 𝑤)

(𝑎 + 𝑙, 𝑏 + ℎ)

(𝑎, 𝑏 + 𝑤)

(𝑎, 𝑏)
𝑙

𝑤

Figure 3.3. D and its crossing.

In Section 3.1, we will show that with positive probability, a good parallelogram (defined above
Lemma 3.3) with aspect ratio O(1) has no open crossings (see Lemma 3.3). In Section 3.2, we will
first investigate tame paths from B to another end-box B′, i.e., paths in Tj(B,B′). We will adjust
the modified ellipse Ẽ(P ) (defined above Definition 2.9) for all P ∈ Tj(B,B′) to a parallelogram
D with aspect ratio of order K, and then extract

√
K/8 disjoint good parallelograms Di’s from D

(see Figure 3.6). Then, we will show that with probability not exceeding e−0.015
√
K there exists a

(V, λ, α)-open path in Tj(B,B′) (see Lemma 3.4). Finally, we obtain Proposition 3.2 by the union
bound, where B′ is taken over all possible end-boxes.

3.1. Good parallelograms. In this section, we consider a closed parallelogram D with corners (a, b),
(a+ l, b+ h), (a+ l, b+ h+ w) and (a, b+ w), where

a, l ∈ Z; b, w, h ∈ R2; l > h ≥ 0; and l ≥ w ≥ 10

(Here 10 is a somewhat arbitrary choice). We call l and w respectively the length and width of D.
By crossing of such a parallelogram D, we mean a path in D connecting its two short sides (see
Figure 3.3). Define the crossing event as follows:

A(D,V, λ, α) := {there exists a (V, λ, α)-open crossing of D}. (3.1)

Denote θ = arctan h
l . Define the anchor of D as follows:

v0 :=
(⌊a+ h+ l − 7w sin2 θ

2

⌋
,
⌊b+ h− l + 7w sin θ cos θ

2

⌋)
.

Note that θ ∈ [0, π4 ] and v0 ∈ Z2. We say that D is good if

l = 16w.

The proof of the following lemma is similar to that of Proposition 4 in Ding and Li (2018).

Lemma 3.3. There exists a universal constant c′ > 0 such that the following hold. Suppose λ ≥ 1

and L/w ≥ ec′λ2. Then, for each good parallelogram D with width w and anchor v0, and α ∈ R, we
have

P
(
A
(
D,VL(v0), λ, α

))
≤ 7

8
. (3.2)

Proof : For j = 0, 1, 2, 3, denote by Dj the rotation (counterclockwise) of D around the anchor
v0, with the angle of rotation being equal to j × π

2 radians, respectively. Since D is good, by the
definition of v0,

⋃3
i=0Di forms an annulus centered at v0, lying in V4l(v0), and surrounding V2w(v0).

We denote this annulus by R (see Figure 3.4). Abbreviate V := VL(v0) and Aj := A
(
Dj , V, λ, α

)
.

Then,

on the event
⋂3
j=0Aj , there is a (V, λ, α)-open contour in R,



738 Yifan Gao and Fuxi Zhang

𝑉!"(𝑣#)

𝑣#

𝐷 = 𝐷#

𝐷$

𝐷!

𝐷%

𝑉&'(𝑣#)

𝑤

Figure 3.4. R is the (green) annulus. (Red) curves are open crossings of Di’s.

where by contour, we mean a path with two endpoints coinciding. We use C to stand for a contour.
Denote by C the collection of all contours in R, equipped with the partial order: C1 � C2 if
C∗1 ⊆ C∗2, where C∗ consists of sites surrounded by C. Let C consist of all open contours in R,
which can be regarded as a random subset of C. Then, there exists a unique maximal open contour
in C , which is denoted by C. Then, it suffices to show

P
(
C 6= ∅

)
≤ 1

2
. (3.3)

Indeed, assuming (3.3), we have

P
(
C 6= ∅

)
≥ P

(
∩3
j=0 Aj

)
= 1− P

(
∪3
j=0 Acj

)
≥ 1−

3∑
j=0

P(Acj) = 1− 4(1− P(A0)),

where we have used the fact P(Aj) = P(A0) by rotation invariance. Consequently, we have P (A0) ≤
7
8 , i.e., Lemma 3.3 holds.
Next, we will show (3.3). Denote

X :=
1

|∂V2w(v0)|
∑

x∈∂V2w(v0)

(
ηV (x) + α

)
.

Let c′ ≥ πC1 + log 2, where C1 is defined in Lemma 2.1. By the assumption L/w ≥ ec
′λ2 and

Lemma 2.1,

EηV (x)ηV (y) ≥ 2

π
log
( L

2w

)
− C1 ≥

1

π
log
( L

2w

)
for all x, y ∈ ∂V2w(v0).

It follows that
Var(X) ≥ 1

π
log
( L

2w

)
. (3.4)

For a deterministic contour C lying in the annulus R, let Ĉ = (V \C∗) ∪C consist of sites outside
C (including the boundary C). Denote F

Ĉ
:= σ

{
ηV (x) : x ∈ Ĉ

}
and Y := X −E

(
X
∣∣ F

Ĉ

)
. Recall

` = 16w since D is a good parallelogram. By taking D, `1 and `2 in Lemma 2.7 respectively as C∗,
2w and 4l, one has

∑
y∈∂V2w(v0)GC∗(x, y) ≤ 2(4l − 2w). Consequently,

Var(Y ) =
1

|∂V2w(v0)|2
∑

x,y∈∂V2w(v0)

GC∗(x, y) ≤ 16. (3.5)
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Note that for each x ∈ ∂V2w(v0),

E
(
ηV (x)

∣∣ F
Ĉ

)
=
∑
y∈C

Px(Sτ = y) · ηV (y), (3.6)

where {Sn} is the simple random walk started from x, and τ is the hitting time to C. Recalling
that C is the maximal, i.e., the outermost, open contour in C , one has {C = C} ∈ F

Ĉ
. On the

event {C = C}, we have |ηV (y) + α| ≤ λ for all y ∈ C. Combined with (3.6), it yields that for all
x ∈ ∂V2w(v0), ∣∣E(ηV (x) + α

∣∣ F
Ĉ

)∣∣ ≤∑
y∈C

Px(Sτ = y) ·
∣∣ηV (y) + α

∣∣ ≤ λ.
This implies

∣∣E(X ∣∣ F
Ĉ

)∣∣ ≤ λ. Consequently, |X| =
∣∣E(X ∣∣ F

Ĉ

)
+ Y

∣∣ ≤ 2λ provided |Y | ≤ λ.
Noting that Y and F

Ĉ
are independent, we have

P
(
|X| ≤ 2λ

∣∣ C = C
)
≥ P

(
|Y | ≤ λ

∣∣ C = C
)

= P
(
|Y | ≤ λ

)
.

It follows that

P
(
C 6= ∅

)
=
∑
C∈C

P
(
C = C

)
=
∑
C∈C

P(|X| ≤ 2λ, C = C)

P(|X| ≤ 2λ | C = C)
≤ P(|X| ≤ 2λ)

P(|Y | ≤ λ)
. (3.7)

Let φσ2 be the probability density function of N(0, σ2). By (3.4) and (3.5), for λ ≥ 1,

P(|X| ≤ 2λ) ≤ 4λφσ2
1
(0), P(|Y | ≤ λ) ≥ P(|Y | ≤ 1) ≥ 2φ16(1),

where σ2
1 := 1

π log
(
L

2w

)
. These, combined with (3.7), imply that for all λ ≥ 1,

P
(
C 6= ∅

)
≤

4λφσ2
1
(0)

2φ16(1)
≤
√

2

φ16(1)
· λ√

c′λ2 − log 2
.

where we have used the assumption L/w ≥ ec
′λ2 . Finally, pick a large constant c′ such that

c′ ≥ πC1 +log 2 and the right hand side above is less than 1
2 . Then, we obtain (3.3). This completes

the proof of Lemma 3.3. �

3.2. Proof of Proposition 3.2. Recall that ENDj consists of boxes of side length Kj−2, defined
in (2.3), and Tj(B,B′) consists of tame paths in scale Kj from B to B′, for B,B′ ∈ ENDj . The
essential ingredient of Proposition 3.2 is the following lemma.

Lemma 3.4. Under the same assumptions of Proposition 3.2, for all B′ ∈ ENDj such that
Tj(B,B

′) 6= ∅,
P
(
P is (V, λ, α)-open for some P ∈ Tj(B,B′)

)
≤ e−0.015

√
K .

Assuming Lemma 3.4, we can obtain Proposition 3.2 via the union bound.

Proof of Proposition 3.2, assuming Lemma 3.4: Note that for B ∈ ENDj , one can find at most K5

boxes B′’s in ENDj such that Tj(B,B′) 6= ∅. By the union bound, for K ≥ K̂0(λ),

P
(
P is (V, λ, α)-open for some P ∈ Tj(B)

)
≤ K5e−0.015

√
K ≤ e−0.01

√
K .

This completes the proof of Proposition 3.2. �

Next, we will concentrate on proving Lemma 3.4. In the rest of this section, we will assume
that j ∈ [m− 1], B and B′ are two fixed end-boxes such that Tj(B,B′) 6= ∅, V is an arbitrary set
satisfying V4Kj (zB) ⊆ V ⊆ VN , where zB is the lower left corner of B ∩ Z2, and α is an arbitrary
real number. Note that ⋃

P∈Tj(B,B′)

⊆ V4Kj (zB) ⊆ V.
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𝐵
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Figure 3.5. The parallelogram D covers the modified ellipse Ẽ(P ) (except the area
around the ends) for all P ∈ Tj(B,B′).

Let (x, y), (x′, y′) ∈ R2 be the lower left corners of B and B′, respectively. Without loss of generality,
suppose that x′ − x ≥ y′ − y ≥ 0. Then, it is not hard to check that the following geometric facts
hold for all K ≥ 232.
(G1) We can find a parallelogram D with width w = 20Kj−1 and length Kj/4 such that the

following holds. Each path P in Tj(B,B
′), i.e., a tame path in scale Kj from B to B′,

contains a crossing of D (see Figure 3.5);
(G2) We can extract good parallelograms Di’s, i ∈ [

√
K/8] from D, with width w := 20Kj−1 and

length l = 16w such that the following holds. Denote by vi the anchor of Di, L := Kj−1/2,
Ui := VL(vi). Then, Ui’s are disjoint, and Di ⊆ V4l(vi) ⊆ Ui for each i (see Figure 3.6).

(G3) Let U :=
⋃
i∈[
√
K/8] Ui. Then, U ⊆ V4Kj (zB) ⊆ V .

By (G1),
{P is (V, λ, α)-open for some P ∈ Tj(B,B′)} ⊆ A

(
D,V, λ, α

)
, (3.8)

where A
(
D,V, λ, α

)
is the crossing event defined in (3.1).

We now decompose the GFF ηV into independent GFFs on boxes Ui’s and an independent
harmonic function. Precisely, define

F∂ := σ{ηV (z) : z ∈ (V \ U) ∪ ∂U},

H∂(z) := E
(
ηV (z)

∣∣ F∂), ηUi(z) := ηV (z)−H∂(z) for all z ∈ Ui.
By the Markov property (Lemma 2.2),

ηUi = {ηUi(z) : z ∈ Ui}

is a version of the GFF on Ui for each i ∈ [
√
K/8]. Moreover, ηUi ’s are mutually independent since

Ui’s are disjoint by (G2), and they are also independent of H∂ .
Denote

ε0 := 100
√
C2,

where C2 is defined in Lemma 2.3. Let E0 be the event that fluctuations of the harmonic function
H∂ are not small, defined as

E0 :=
⋃

i∈[
√
K/8]

E0,i, where E0,i :=
{∣∣H∂(z)−H∂(vi)

∣∣ ≥ ε0 for some z ∈ Di

}
. (3.9)

Lemma 3.5. Let K ≥ C5 := (2 ∨ C3)32 (recalling that C3 is defined in Lemma 2.4). Then,
P
(
E0

)
≤ e−0.5

√
K .

Proof : Recall w = 20Kj−1, l = 16w, and L = Kj−1/2 by (G2). Recall that C4 := 2C3

√
C2, which

is defined in the proof of Lemma 2.6. By the assumption K ≥ C5, we have C4

√
4l
L ≤ ε0. Setting
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Figure 3.6. D (defined in (G1)) is the parallelogram in red, with aspect ratio of
order K. Ui’s are the boxes in blue. The hard parallelograms are Di’s, with aspect
ratio of order 1.

` = 4l and ε = ε0 in Lemma 2.6, we have

P
(
E0,i

)
≤ P

(∣∣H∂(z)−H∂(vi)
∣∣ ≥ ε0 for some z ∈ V4l(vi)

)
≤ 4 exp

{
− ε2

0L

32C2l

}
≤ e−0.9

√
K ,

where we have used the fact thatDi ⊆ V4l(vi) ⊆ Ui by (G2) in the first inequality, andK ≥ C5 ≥ 232

in the last inequality. By the union bound, P
(
E0

)
≤ 1

8

√
Ke−0.9

√
K ≤ e−0.5

√
K , completing the

proof. �

Proof of Lemma 3.4: Suppose that λ ≥ 1, j ∈ [m − 1], B,B′ ∈ ENDj such that Tj(B,B′) 6=
∅, V4Kj (zB) ⊆ V ⊆ VN , and α ∈ R. Let D be the parallelogram defined in (G1). Let A =
A
(
D,V, λ, α

)
, which is the crossing event defined in (3.1). By (3.8), to prove Lemma 3.4, it suffices

to show that
P
(
A
)
≤ e−0.015

√
K . (3.10)

Recall w = 20Kj−1 and L = Kj−1/2 by (G2). Let c be a constant such that for all λ ≥ 1,

K̂0(λ) := ecλ
2 ≥ 400e2c′(λ+ε0)2 ∨ C5 ∨ C, (3.11)

where c′, C, C5, ε0 are respectively defined in Lemma 3.3, Proposition 2.8, Lemma 3.5, and
above (3.9). For K ≥ K̂0(λ), we have L/w ≥ ec

′(λ+ε0)2 . Then, by (G2) and Lemma 3.3, for
each α,

P
(
A(Di, Ui, λ+ ε0, α)

)
≤ 7

8
for all i. (3.12)

Note that for z ∈ Di,

ηV (z) = ηUi(z) +H∂(z) =
(
ηUi(z) +H∂(vi)

)
+
(
H∂(z)−H∂(vi)

)
.

By the triangle inequality, on the event {|H∂(z) − H∂(vi)| ≤ ε0 for all z ∈ Di},
∣∣ηV (z) + α

∣∣ ≤ λ

implies
∣∣ηUi(z) + α+H∂(vi)

∣∣ ≤ λ+ ε0 for each z ∈ Di. Denote

Ai := A
(
Di, Ui, λ+ ε0, α+H∂(vi)

)
.
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Then, on the event Ec0 ,

A ⊆
⋂

i∈[
√
K/8]

A
(
Di, V, λ, α

)
⊆

⋂
i∈[
√
K/8]

Ai.

Therefore,

P
(
A
)
≤ P

( ⋂
i∈[
√
K/8]

Ai
)

+ P
(
E0

)
,

where P
(
E0

)
≤ e−0.5

√
K by Lemma 3.5. Recall that F∂ is the sigma-algebra outside U , defined

below (3.8). Since Ai’s are conditionally independent given F∂ ,

P
( ⋂
i∈[
√
K/8]

Ai
)

= EP
( ⋂
i∈[
√
K/8]

Ai
∣∣∣∣ F∂) = E

( ∏
i∈[
√
K/8]

P
(
Ai
∣∣ F∂)).

By (3.12), P
(
Ai
∣∣ F∂) ≤ 7

8 for all i, where H∂(vi)’s are regarded as constants for being measurable
with respect to F∂ . Collecting the above arguments, we conclude that for allK ≥ K̂0(λ) ≥ C5 ≥ 232,

P
(
A
)
≤
(7

8

)b√K/8c
+ e−0.5

√
K ≤ e−0.015

√
K .

Thus, (3.10) holds, which completes the proof of Lemma 3.4. �

4. Multi-scale analysis on the hierarchical structure of the path

Recall that SLj consists of paths P with ‖P‖ being of order Kj (see (2.1)), where ‖P‖ is the
Euclidean distance of the two ends of P . Recall that for P in scale Kj , i.e., P ∈ SLj , a tree TP of
depth j is associated with P (see Section 2.2). The root ρ of TP corresponds to P , and a node u at
level r = L(u) of TP corresponds to a sub-path P u in scale Kj−r. Moreover, the node u is said to
be tame/open if so is P u.

Next, we will estimate the quantity of nodes in TP which are both tame and open. The results
are stated in Propositions 4.2 and 4.3, which will be respectively proved in Sections 4.1 and 4.2. On
the one hand, for paths in Pκ,δ,KN , untamed nodes are rare in the associated trees (see Lemma 2.10).
On the other hand, Propositions 4.2 and 4.3 give upper bounds on the quantity of tame and open
nodes. Combining them, we obtain Proposition 4.4. We will prove Theorem 1.1 by assuming
Proposition 4.4, and defer the proof of Proposition 4.4 to Section 4.3.

Let j ∈ [m−1], and B ∈ ENDj , which is a box of side length Kj−2 (see (2.3)). Recall that Pj(B)
consists of paths in scale Kj started from B (defined in (2.4)). Suppose 0 ≤ r ≤ j − 1. Let TP,r be
the collection of nodes at level r. For each u ∈ TP,r, there is a unique end-box in ENDj−r, denoted
by Bu, containing the starting site of P u. Let A be the collection of all real functions ᾱ defined on
end-boxes, i.e.,

ᾱ :
⋃

i∈[m−1]

ENDi 7−→ R.

Suppose ᾱ ∈ A . For all P ∈ Pj(B), ᾱ induces a function on TP :

u 7→ ᾱu := ᾱ
(
Bu
)
, for all u ∈ TP . (4.1)

Let θP be the unit uniform flow on TP from the root ρ to the leaves (the definition is just before
(2.2)). Recall that a path P is (V, λ, α)-open if |ηV (x) + α| ≤ λ for all x ∈ P (see Definition 3.1).
A node u is said to be (V, λ, α)-open if so is P u. Suppose λ > 0, ᾱ ∈ A , j ∈ [m− 1], 0 ≤ r ≤ j − 1,
and B ∈ ENDj . Let V be a box such that V4Kj (zB) ⊆ V ⊆ VN , where zB is the lower left corner
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of B ∩ Z2. For P ∈ Pj(B), the fraction of tame and open nodes, i.e., the total flow through such
nodes, at level r is defined as

YP,r,λ,ᾱ :=
∑
u∈TP,r

θP (u)1{u is tame and (V,λ,ᾱu)-open}, (4.2)

which is bounded by
ξr,λ,ᾱ,j,B := max

{
YP,r,λ,ᾱ : P ∈ Pj(B)

}
. (4.3)

Note that ᾱρ ≡ ᾱ(B), which is a constant for all trees associated with paths in Pj(B). Thus, in the
specific case r = 0,

ξ0,λ,ᾱ,j,B = 1{P is (V,λ,ᾱρ)-open for some P∈Tj(B)}.

Then, Proposition 3.2 can be repeated in terms of the unit uniform flow as follows.

Corollary 4.1. Suppose λ ≥ 1, K ≥ K̂0(λ) := ecλ
2, j ∈ [m− 1], B ∈ ENDj, V4Kj (zB) ⊆ V ⊆ VN ,

and ᾱ ∈ A . Then,
P(ξ0,λ,ᾱ,j,B > 0) ≤ e−0.01

√
K .

Next, we will investigate the case r ≥ 1. Recall that C2 is defined in Lemma 2.3. Define

ε0 = 100
√
C2, ε1 = 8

√
C2, and β = 2−9, εr+1 = 4

√
C2β

r/2 for all r ≥ 1, (4.4)

which will be used to bound the fluctuations of the harmonic functions. Define recursively

K̂r(λ) := K̂r−1(λ+ εr) = K̂0

(
λ+

r∑
i=1

εi

)
for all r ≥ 1.

Furthermore, we denote
cr = (βK)r for all r ≥ 1,

which will be used in the exponents in the upper bounds of probabilities. Denote

∆1 =
9 logK

βK1/8
; ∆r+1 =

log(1 + 2cr) + 9β−1 logK

cr
for all r ≥ 1.

Define recursively
δ0 = 0, δ1 = 1/2; δr+1 = δr + ∆r for all r ≥ 1, (4.5)

which will be used to bound the fraction of tame and open nodes. We will prove the following
Propositions 4.2, 4.3 and 4.4 in Sections 4.1, 4.2, and 4.3, respectively.

Proposition 4.2. Suppose 2 ≤ j ≤ m− 1. Then, for λ ≥ 1, K ≥ K̂1(λ), B ∈ ENDj, V4Kj (zB) ⊆
V ⊆ VN , and ᾱ ∈ A , we have

P(ξ1,λ,ᾱ,j,B > δ) ≤ e−K1/8
for all δ ≥ δ1 :=

1

2
.

Proposition 4.3. Suppose 2 ≤ r < j ≤ m − 1. Then, for λ ≥ 1, K ≥ K̂r(λ), B ∈ ENDj,
V4Kj (zB) ⊆ V ⊆ VN , and ᾱ ∈ A , we have

P(ξr,λ,ᾱ,j,B > δ) ≤ 2e−cr−1(δ−δr) for all δ > δr.

Proposition 4.4. For all κ ∈ (0, 1), there exists a = a(κ) > 0 such that for all λ ≥ 1,

P
(
P is λ-open for some P ∈ Pκ,exp{−aλ2}

N

)
≤ e−

(
logN

aλ2
−aλ2

)
,

for all N ≥ exp{eaλ2}.

Assuming Proposition 4.4, we will show Theorem 1.1.
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Proof of Theorem 1.1, assuming Proposition 4.4: For λ > 0, ε > 0, define

Eλ,ε,N :=
{
P is λ-open for some P ∈ Pκ,εN

}
.

For λ ≥ 1, letting ε = ελ := e−aλ
2 , by Proposition 4.4, P(Eλ,ε,N ) → 0 as N → ∞. For λ ∈ (0, 1],

letting ε = e−a, noting that Eλ,ε,N ⊆ E1,ε1,N , we also have P(Eλ,ε,N ) → 0 as N → ∞. Thus, we
have completed the proof of Theorem 1.1. �

4.1. Proof of Proposition 4.2. We will apply a large deviation analysis on YP,1,λ,ᾱ (see Lemma 4.5),
noting that YP,1,λ,ᾱ is the fraction of tame and open child-paths of P . This section is organized as
follows. We will first introduce notations and show preliminary results. Next, we will show lemmas
for preparation. Finally, we will prove Proposition 4.2.

Assume 2 ≤ j ≤ m − 1, B ∈ ENDj , V is a box such that V4Kj (zB) ⊆ V ⊆ VN , and ᾱ ∈ A .
Recall that Pj(B) consists of paths in scale Kj started from B. Suppose P has d child-paths
P (1), · · · , P (d), which are in SLj−1. Suppose P (i) is started from an end-box Bi in ENDj−1. Recall
that each end-box in ENDj−1 is of side length Kj−3 for j ≥ 3, and consists of a single site for j = 2

(see (2.3)). By Proposition 2.8, each B̃ in BDj−1 contains at most 12 end-boxes in the sequence
S := {Bi}i∈[d]. Denote by END

(d)
j−1(B) such sequences, and for each S, denote by Pj,S(B) paths

whose d child-paths respectively started from Bi’s, i.e.,

Pj,S(B) :=
{
P ∈ SLj : P is started from B, and has d child-paths

such that P (i) ∈ Pj−1(Bi) for all i ∈ [d]
}
,

(4.6)

END
(d)
j−1(B) :=

{
S : Bi ∈ ENDj−1 for each i ∈ [d]; Pj,S(B) 6= ∅;

and #{i : Bi ⊆ B̃} ≤ 12 for each B̃ ∈ BDj−1

}
,

where # stands for the cardinality of a set. Then,

Pj(B) ⊆
⋃
d≥K

⋃
S∈END

(d)
j−1(B)

Pj,S(B). (4.7)

Consequently, it boils down to analyzing properties of paths in Pj,S(B).
Next, we will assume that d ≥ K and S := {Bi}i∈[d] ∈ END

(d)
j−1(B) for the rest of this section.

Abbreviate
zi := zBi and Ui := VKj−7/8(zi) for all i ∈ [d] (4.8)

Note that Ui ⊆ V4Kj (zB) ⊆ V for all i ∈ [d] (see Figure 4.7). Suppose P ∈ Pj,S(B). By (4.6),
P (i) ∈ Pj−1(Bi) ⊆ SLj−1 for all i ∈ [d]. By the definition of SLj−1 (see (2.1)), P (i) ⊆ V4Kj−1(zi).
Therefore, we conclude

P (i) ⊆ V4Kj−1(zi) ⊆ Ui ⊆ V4Kj (zB) ⊆ V for all i ∈ [d].

Let Hi be the conditional expectation of ηV given σ{ηV (z) : z ∈ U ci ∪ ∂Ui}. By the Markov
property (Lemma 2.2), ηUi := ηV −Hi is a version of GFF on Ui for each i ∈ [d]. For all x ∈ P (i),
we write

ηV (x) =
(
ηUi(x) +Hi(zi)

)
+
(
Hi(x)−Hi(zi)

)
.

Recall that ε1 = 8
√
C2 is defined in (4.4). Denote by ÊS the event that fluctuations of some Hi is

not small, i.e.,

ÊS :=
⋃
i∈[d]

{∣∣Hi(x)−Hi(zi)
∣∣ ≥ ε1 for some x ∈ V4Kj−1(zi)

}
. (4.9)
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Figure 4.7. The solid boxes are end-boxes. P ∈ SLj , which is the curve in (a).
The child-paths P (i)’s are in scale Kj−1, and are distinguished from each other with
different colors in (b). In (c), we zoom in the local of a specific Ui, which is a box of
side length Kj−7/8.

Assume ÊcS occurs. Denote αi := ᾱ(Bi), recalling (4.1) for the definition of ᾱ. By the triangle
inequality, if P (i) is (V, λ, αi)-open, it is (Ui, λ + ε1, αi + Hi(zi))-open. Hence, the following event
Ei occurs.

Ei := {there exists a tame and (Ui, λ+ ε1, αi +Hi(zi))-open path in Pj−1(Bi)}.

Recall that YP,1,λ,ᾱ is the fraction of tame and (V, λ, ᾱu)-open nodes at level 1, defined in (4.2).
Consequently, on the event ÊcS , for all P ∈ Pj,S(B), we have

YP,1,λ,ᾱ =
1

d

d∑
i=1

1{P (i) is tame and (V,λ,αi)-open} ≤
1

d

d∑
i=1

ζi,

where ζi := 1Ei is the indicator function of Ei. Denote

ζ1,S := max
{
YP,1,λ,ᾱ : P ∈ Pj,S(B)

}
,

and we have

ζ1,S ≤
1

d

d∑
i=1

ζi, on the event ÊcS .

Consequently, for all δ > 0 and S ∈ END
(d)
j−1(B),

P
(
{ζ1,S > δ} ∩ ÊcS

)
≤ P

(
1

d

d∑
i=1

ζi > δ

)
. (4.10)

The proof of the following lemma is based on a large deviation analysis, similar to that of Lemma
4.4 in Ding and Zhang (2019).

Lemma 4.5. Suppose λ ≥ 1, K ≥ K̂1(λ) and d ≥ K. Then, for each S := {Bi}i∈[d] ∈ END
(d)
j−1(B),

we have

P
(

1

d

d∑
i=1

ζi > δ

)
≤ e−10−4K1/4δd for all δ ≥ δ1 =

1

2
.
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Proof : Let βK = (48K1/4)−1. We will divide Bi’s into β−1
K groups in the following procedure, such

that Ui’s in each group are disjoint (see (4.8) for definition of Ui’s). Recall that Bi is a box of side
length Kj−3 for j ≥ 3, and consists a single site for j = 2. Recall that Ui is the box of side length
Kj−7/8 centered at zi = zBi . Thus, if d∞(Bi, Bi′) ≥ 1.5Kj−7/8, then d∞(Ui, Ui′) ≥ Kj−1. First,
we will divide BDKj−1 into 4K1/4 = (2Kj−7/8/Kj−1)2 families G̃s’s, where G̃1 consists of boxes
respectively containing (2aKj−7/8, 2bKj−7/8), a, b ∈ Z and other G̃s’s are its shifts. Let

Gs :=
{
Bi : i ∈ [d], and Bi ⊆ B̃ for some B̃ ∈ G̃s

}
.

Then, by Proposition 2.8, we can divide each Gs into 12 groups Gs,t, t ∈ [12], such that for each s, t,
a box in G̃s contains at most one Bi in Gs,t. Thus, Ui’s in each group Gs,t are disjoint.

Let Us,t =
⋃
i:Bi∈Gs,t Ui. Define the sigma-algebra

Fs,t := σ
{
ηV (x) : x ∈ (V \ Us,t) ∪ ∂Us,t

}
.

Then, conditioned on Fs,t, ζi’s in each group Gs,t are mutually independent. Denote

Ws,t :=
∏

Bi∈Gs,t

eaβK(ζi−δ),

where δ ≥ δ1 = 1
2 and a is a positive number to be set. Then, we have

EW 1/βK
s,t = E

∏
Bi∈Gs,t

ea(ζi−δ) = E
∏

Bi∈Gs,t

E
(
ea(ζi−δ)

∣∣∣ Fs,t).
Next, we will estimate E

(
ea(ζi−δ)

∣∣ Fs,t). Let g(K) = e−0.01
√
K . Since K ≥ K̂1(λ) = K̂0(λ+ ε1), by

Corollary 4.1, ζi is a Bernoulli random variable with P(ζi = 1 | Fs,t) ≤ g(K). Consequently,

E
(
ea(ζi−δ)

∣∣∣ Fs,t) ≤ ea(1−δ)g(K) + e−aδ ≤ 2g(K)δ,

where in the last inequality we set a = log
(

δ
1−δg(K)−1

)
. By the Cauchy-Schwarz inequality,

EeaβK
∑d
i=1(ζi−δ) = E

4K1/4∏
s=1

12∏
t=1

Ws,t ≤
4K1/4∏
s=1

12∏
t=1

(
EW 1/βK

s,t

)βK
.

Collecting the above results, we conclude that

P
(

1

d

d∑
i=1

ζi > δ

)
≤ EeaβK

∑d
i=1(ζi−δ) ≤

4K1/4∏
s=1

12∏
t=1

∏
Bi∈Gs,t

(
2g(K)δ

)βK
≤
(
2g(K)δ

)βKd ≤ e−10−4K1/4δd.

This completes the proof of Lemma 4.5. �

Recall that C5 = (2 ∨ C3)32 is defined in Lemma 3.5. The following lemma is a deterministic
geometric fact.

Lemma 4.6. Suppose K ≥ C5, j ∈ [2,m− 1] ∩ Z and B ∈ ENDj. Let {B′t : 1 ≤ t ≤ T} consist of
boxes in BDj−3 that intersect with some path in Pj(B). Then, T ≤ K7.

Proof : Suppose P ∈ Pj(B), and it is started at xP . By the definition of SLj (see (2.1)),

Kj ≤ ‖P‖ ≤ Kj +Kj−1, P ⊆ B(xP , ‖P‖), and ‖xP − zB‖∞ ≤ Kj−2.

If B′ ∈ BDj−3 intersects with a path in Pj(B), one has B′ ⊆ B∞(zB,K
j +Kj−1 +Kj−2 +Kj−3).

Note that boxes in BDj−3 are non-overlapping. For K ≥ C5 ≥ 232, we have T ≤
(

2Kj

Kj−3

)2 ≤ K7. �
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Recall that ÊS is the event that fluctuations of some Hi is not small, defined in (4.9). Define the
event

E1 :=
⋃
d≥K

⋃
S∈END

(d)
j−1(B)

ÊS . (4.11)

Next, we will estimate P(E1). Recall that C5 = (2 ∨ C3)32 is defined in Lemma 3.5.

Lemma 4.7. Suppose j ∈ [2,m− 1] ∩ Z, B ∈ ENDj, and K ≥ C5. Then, P
(
E1

)
≤ e−1.5K1/8

.

Proof : The proof is analogous to that of Lemma 3.5. Let {B′t : t ∈ [T ]} be those boxes given in
Lemma 4.6. For each B′t, abbreviate z′t = zB′t and Wt = VKj−7/8(z′t). Let H ′t be the conditional
expectation of ηV given ηV

∣∣
Wt∪∂Wt

. By Lemma 2.6, for K ≥ C5 and t ∈ [T ], we have P(E1,t) ≤
4e−2K1/8 , where

E1,t :=
{∣∣H ′t(x)−H ′t(z′t)

∣∣ ≥ ε1 for some x ∈ V4Kj−1(z′t)
}
.

Note that
E1 ⊆

⋃
t∈[T ]

E1,t,

and T ≤ K7. We conclude
P(E1) ≤ 4K7e−2K1/8 ≤ e−1.5K1/8

,

which completes the proof. �

Finally, we will prove Proposition 4.2, by combining the above results .

Proof of Proposition 4.2: Suppose λ ≥ 1, K ≥ K̂1(λ), j ∈ [2,m − 1] ∩ Z, B ∈ ENDj , V4Kj (zB) ⊆
V ⊆ VN , and ᾱ ∈ A . By the decomposition of paths (see (4.7)),

P
(
ξ1,λ,ᾱ,j,B > δ

)
≤
∞∑
d=K

∑
S∈END

(d)
j−1(B)

P
(
{ζ1,S > δ} ∩ ÊcS

)
+ P

(
E1

)
, (4.12)

where ξ1,λ,ᾱ,j,B and ζ1,S are defined in (4.3) and above (4.10), respectively. By Lemma 4.6, there
are at most K7d sequences in END

(d)
j−1(B). Combining (4.12), (4.10), Lemma 4.5 and Lemma 4.7,

and using the union bound, we conclude that for δ ≥ 1
2 ,

P(ξ1,λ,ᾱ,j,B > δ) ≤
∞∑
d=K

K7de−10−4K1/4δd + e−1.5K1/8 ≤ e−K1/8
.

This completes the proof of Proposition 4.2. �

4.2. Proof of Proposition 4.3. The framework of this section is similar to that of the previous section,
which deals with the specific case r = 1. In this section, we will apply an induction analysis on r, by
using the recursive relation of YP,r,λ,ᾱ’s (see (4.15)). The proof is similar to that of Proposition 4.2,
but suitable adjustments need to be made.

Assume 2 ≤ r < j ≤ m − 1, B ∈ ENDj , V4Kj (zB) ⊆ V ⊆ VN , and ᾱ ∈ A in this section. Let
S := {Bi}i∈[d], which is a sequence of end-boxes of side length Kj−3. Compared with (4.8), we
adjust the side length of Ui here, and define

zi := zBi and Ui := V4Kj−1(zi) for all i ∈ [d]. (4.13)

Note that Ui ⊆ V for all i. Let Hi be the conditional expectation of ηV given ηV
∣∣
Uci ∪∂Ui

. Recall

that β = 2−9 and εr+1 = 4
√
C4β

r/2 are defined in (4.4). Define the events

Êr,S :=
⋃
i∈[d]

Er,i, and Er :=
⋃
d≥K

⋃
S∈END

(d)
j−1(B)

Êr,S for all r ≥ 2, (4.14)
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where
Er,i :=

{
there exists a box B̃ ∈ ENDj−r such that B̃ ⊆ V3Kj−1(zi)
and

∣∣Hi(x)−Hi(zB̃)
∣∣ ≥ εr for some x ∈ V4Kj−r(zB̃)

}
.

Note that if B̃ ⊆ V3Kj−1(zi) then V4Kj−r(zB̃) ⊆ Ui for all r ≥ 2 (recall (4.13)). Here, Êr,s and Er
play the roles of ÊS defined in (4.9) and E1 defined in (4.11), respectively.

Suppose P ∈ Pj,S(B). Then, the i-th child-path P (i) of P is started from Bi. Suppose u ∈
TP (i),r−1, i.e., u is a node at level r−1 in TP (i) , and thus at level r in TP . Then, P u is in scale Kj−r.
Recall that Bu is the unique box in ENDj−r containing the starting site of P u, and zu := zBu . Since
P u is a sub-path of P (i) and P (i) is started from Bi, we have

Bu ⊆ V3Kj−1(zi) ⊆ Ui, and P u ⊆ V4Kj−r(zu) ⊆ Ui.
For all x ∈ P u, we write

ηV (x) =
(
ηUi(x) +Hi(zu)

)
+ (Hi(x)−Hi(zu)).

By the triangle inequality, on the event Ecr,i, u is (Ui, λ+εr, ᾱu+Hi(zu))-open if it is (V, λ, ᾱu)-open.
Recall that YP,r,λ,ᾱ is the fraction of tame and (V, λ, ᾱu)-open nodes in TP , defined in (4.2). Then,

YP,r,λ,ᾱ =
1

d

d∑
i=1

YP (i),r−1,λ,ᾱ. (4.15)

Furthermore, define
ζr,S := max

{
YP,r,λ,ᾱ : P ∈ Pj,S(B)

}
,

ζi,r−1,λ+εr,j−1 := max
Q∈Pj−1(Bi)

∑
u∈TQ,r−1

θQ(u)1{u is tame and (Ui,λ+εr,ᾱu+Hi(zu))-open}. (4.16)

Here, ζr,S and ζi,r−1,λ+εr,j−1 play the roles of ζ1,S and ζi (defined above (4.10)) in the previous
proof, respectively. Then, we have

P
(
{ζr,S > δ} ∩ Êcr,S

)
≤ P

(
1

d

d∑
i=1

ζi,r−1,λ+εr,j−1 > δ

)
, (4.17)

which is analogous to (4.10).
The proof of the following Lemma 4.8 is quite analogous to that of Lemma 4.7, thus is omitted.

Lemma 4.8. Let r ∈ [2,m − 2] ∩ Z, j ∈ [r + 1,m − 1] ∩ Z, B ∈ ENDj and K ≥ C5. Then,
P(Er) ≤ e−cr−1 .

Next, we will show Proposition 4.3. The idea of the proof is essentially similar to that of
Lemma 4.5, while the whole proof is much more complicated here.

Proof of Proposition 4.3: We will prove that the following statements (i) and (ii) hold for all 2 ≤
r < j ≤ m− 1.

(i) Suppose λ ≥ 1, K ≥ K̂r(λ), B ∈ ENDj , V4Kj (zB) ⊆ V ⊆ VN , and ᾱ ∈ A . Then,

P(ξr,λ,ᾱ,j,B > δ) ≤ 2e−cr−1(δ−δr) for all δ > δr.

(ii) Suppose λ ≥ 1, K ≥ K̂r+1(λ), B ∈ ENDj+1, d ≥ K, {Bi}i∈[d] ∈ END
(d)
j (B), and ᾱ ∈ A .

Recall (4.16) for the definition of ζi,r,λ+εr+1,j . Then,

P
(

1

d

d∑
i=1

ζi,r,λ+εr+1,j > δ

)
≤
(
K−9e−βcr−1(δ−δr+1)

)d
for all δ > δr+1. (4.18)

In Step 1, we will show that (i) implies (ii) for the same r. In Step 2, we will show (i) for r being
replaced with r+1 and all j ∈ [r+2,m−1]∩Z, provided that (ii) holds for all j ∈ [r+1,m−1]∩Z.
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In Step 3, we will show (i) holds for r = 2 and j ∈ [3,m − 1] ∩ Z, which serves as the induction’s
basis.
Step 1. Suppose (i) holds. We will prove (ii). The proof is analogous to that of Lemma 4.5.

Concretely, we can divide {Bi}i∈[d] into 432(< 29 = β−1) groups Gt’s such that Ui’s in each group
are disjoint, where Ui = V4Kj−1(zi) (see (4.13)). Denote Ũt =

⋃
i:Bi∈Gt Ui. Then, define the sigma-

algebra
Ft := σ

{
ηV (x) : x ∈ (V \ Ũt) ∪ ∂Ũt

}
,

which plays the role of Fs,t in the proof of Lemma 4.5. Abbreviate ζi = ζi,r,λ+εr+1,j .
For each i ∈ [d], applying (i) to λ+ εr+1, we have for all K ≥ K̂r+1(λ) := K̂r(λ+ εr+1),

P(ζi > δ | Ft) ≤ 2e−cr−1(δ−δr) for all δ > δr. (4.19)

It follows that
E
(
ecr−1(ζi−δ)

∣∣∣ Ft) ≤ (1 + 2cr−1)e−cr−1(δ−δr).

By replacing 2g(K) in the proof of Lemma 4.5 with the right hand side in the above inequality, in
an analogous way, we conclude that

P
(

1

d

d∑
i=1

ζi > δ

)
≤
(

(1 + 2cr−1)e−cr−1(δ−δr)
)βd

for all δ > δr.

For δ > δr+1, we split δ − δr into (δ − δr+1) + ∆r on the right hand side of the above inequality,
where ∆r is defined above (4.5). Then, we obtain (4.18), finishing the first step.
Step 2. Assuming that (ii) holds for all j ∈ [r+1,m−1]∩Z, we will show (i) for r being replaced

with r+ 1 and all j ∈ [r+ 2,m− 1]∩Z. Note that r+ 2 ≤ j ≤ m− 1 implies r+ 1 ≤ j− 1 ≤ m− 2.
For K ≥ K̂r+1(λ), we apply (ii) to j − 1, and have

P
(

1

d

d∑
i=1

ζi,r,λ+εr+1,j−1 > δ

)
≤
(
K−9e−βcr−1(δ−δr+1)

)d
for all δ > δr+1.

Combining it with (4.17) and Lemma 4.8, we obtain that for all δ > δr+1,

P
(
ξr+1,λ,ᾱ,j,B > δ

)
≤
∞∑
d=K

∑
S∈END

(d)
j−1(B)

P
(
{ζr+1,S > δ} ∩ Êcr+1,S

)
+ P

(
Er+1

)

≤
∞∑
d=K

K7d
(
K−9e−βcr−1(δ−δr+1)

)d
+ e−cr ≤ 2e−cr(δ−δr+1),

via an argument similar to (4.12). This finishes Step 2.
Step 3. Applying Proposition 4.2 to λ+ ε2 and K ≥ K̂2(λ) = K̂1(λ+ ε2), we obtain that

P(ζi,1,λ+ε2,j−1 > δ | Ft) ≤ exp{−K1/8} for all δ ≥ δ1.

By a reasoning similar to Step 1, where (4.19) is replaced with the above formula, we obtain (i) for
r = 2 and j ∈ [3,m− 1] ∩ Z. This finishes Step 3.

As observed above, this completes the proof of Proposition 4.3. �

4.3. Proof of Proposition 4.4. In this section, we will suppose that λ ≥ 1, δ ∈ (0, 1), K := 2k ≥ C,
N ≥ eC′K5 , where C ′ = C ′(κ, δ) is defined in Lemma 2.10. Recall

Pκ,δ,KN =
{
P : P is a path in VN/2, ‖P‖ ≥ κN and |P | ≤ N1+ δ

K2k

}
,

defined in (2.2). Suppose P ∈ Pκ,δ,KN . By the tree construction in Section 2.2, one can extract dP
child-paths P (i)’s from P , which are in SLm−1.
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Furthermore, P is identified as the root of the associated tree TP (refer to the beginning of
Section 2.2 for the construction of associated trees). For u ∈ TP (i) , one has Li(u) = L(u)− 1, where
L(u) and Li(u) are respectively the levels of u with respect to TP and TP (i) . Let θP and θP (i) be the
unit uniform flows on TP and TP (i) , respectively(see the paragraph just above (2.2) for the definition
of such flows). By Lemma 2.10,

dP∑
i=1

∑
u:0≤Li(u)≤m−2

1

dP
θP (i)(u)1{u is untamed} =

∑
u:1≤L(u)≤m−1

θP (u)1{u is untamed} ≤ 2δm.

This implies that there exists i0 ∈ [dP ] such that∑
u:0≤Li0 (u)≤m−2

θP (i0)(u)1{u is untamed} ≤ 2δm.

Next, we will assume that P is λ-open for the rest of the proof. Then, it requires to investigate
the fraction of tame and open nodes in the tree T

P̃
associated with a path P̃ in scale Km−1, where

P̃ actually stands for P (i0). Suppose B ∈ ENDm−1 and P̃ ∈ Pm−1(B), which is a path in scale
Km−1. Recall that v ∈ VN is λ-open if

∣∣ηVN (v)
∣∣ ≤ λ, i.e., v is (VN , λ, 0)-open. Set V = VN , ᾱ ≡ 0,

j = m−1 and P = P̃ in (4.2) and (4.3) specifically. Then, the variables YP,r,λ,ā and ξr,λ,ᾱ,j,B therein
have the following specific expressions:

Ỹ
P̃ ,r,λ

:=
∑

u∈T
P̃ ,r

θ
P̃

(u)1{u is tame and λ-open},

ξ̃r,λ,B := max
{
Ỹ
P̃ ,r,λ

: P̃ ∈ Pm−1(B)
}
.

By Proposition 4.3, for all λ ≥ 1, 2 ≤ r ≤ m− 2, K ≥ K̂r(λ),

P
(
ξ̃r,λ,B > δ

)
≤ 2e−cr−1(δ−δr) for all δ > δr+1, (4.20)

where δr and cr are respectively defined in and above (4.5).
Denote by Bi0 be the unique box in ENDm−1 from which P (i0) is started. Then, we have

m− 1 =
∑

u:0≤Li0 (u)≤m−2

θP (i0)(u)1{u is λ-open}

=

m−2∑
r=0

ỸP (i0),r,λ +
∑

u:0≤Li0 (u)≤m−2

θP (i0)(u)1{u is untamed} ≤
m−2∑
r=0

ξ̃r,λ,Bi0 + 2δm.

By the above inequality,

P
(
P is λ-open for some P ∈ Pκ,δ,KN

)
≤P
(m−2∑

r=0

ξ̃r,λ,B ≥ m− 1− 2δm for some B ∈ ENDm−1

)
. (4.21)

Recall K̂0(λ) = ecλ
2 (see (3.11)), and that εr’s and K̂r(λ) = K̂0(λ +

∑r
i=1 εi) are respectively

defined in and below (4.4). Then, noting that
∑∞

i=1 εi <∞ and K̂0(λ) is increasing in λ, one has

K̂∞(λ) := K̂0

(
λ+

∞∑
i=1

εi

)
<∞.

Recall (4.5) and see the paragraph just above it for the definitions of δr’s, cr’s and ∆r’s. Furthermore,
for all δ > 0, there exists b = b(δ) > c such that for all λ ≥ 1,

K̃(λ, δ) := ebλ
2 ≥ K̂∞(λ),
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and
∞∑
r=1

∆r =
9 logK

βK1/8
+

∞∑
r=1

log(1 + 2cr) + 9β−1 logK

cr
≤ δ.

Next, we will assume K ≥ K̃(λ, δ) for the rest of the proof. It follows that δr ≤ 1
2 + δ for all

r ≥ 0. Next, we will set δ ∈ ( 1
32 ,

3
32) and assume m ≥ 32. Then,

m−2∑
r=0

(
δr +

1

2r+2
(1− 8δ)m

)
< m− 1− 2δm.

Note that at most (K6/κ)2 different boxes lie in ENDm−1, since κN < Km+2 by (1.3). Consequently,
by the union bound,

P
(m−2∑

r=0

ξ̃r,λ,B ≥ m− 1− 2δm for some B ∈ ENDm−1

)
≤ K12

κ2

m−2∑
r=0

pm,r, (4.22)

where

pm,r := max
B∈ENDm−1

P
(
ξ̃r,λ,B > δr +

1

2r+2
(1− 8δ)m

)
.

For r = 0, 1, we have 1
2r+2 (1− 8δ)m ≥ 1, which implies pm,r = 0. By (4.20), for 2 ≤ r ≤ m− 2, we

have

pm,r ≤ 2 exp

{
− 1

8
(1− 8δ)

(βK
2

)r−1
m

}
.

Furthermore, βK/2 ≥ 222, and thus 1
8

(βK
2

)r−1 ≥ r for all r ≥ 2. Therefore,
m−2∑
r=0

pm,r ≤ 2

m−2∑
r=2

e−(1−8δ)mr ≤ 2

e(1−8δ)m − 1
. (4.23)

Take constants δ′ := 1
16 and b′ = b′(κ) such that for all λ ≥ 1,

K0 := eb
′λ2 ≥ K̃(λ, δ′) ∨ C ′(κ, δ′) ∨ (8κ−2).

Denote a := 100 × b′. For N ≥ exp{eaλ2}, one has logN ≥ C ′(κ, δ′)K5
0 . Consequently, the

above assumption m ≥ 32 is satisfied. Combining (4.21), (4.22) and (4.23), we obtain that for
N ≥ exp{eaλ2},

P
(
P is λ-open for some P ∈ Pκ,δ

′,K0

N

)
≤K

12
0

κ2
4e−

m
4 ≤ 4

√
eκ−2−(4b′λ2)−1

e12b′λ2N−(4b′λ2)−1

≤8κ−2e−
(

logN

4b′λ2
−12b′λ2

)
≤ e−

(
logN

aλ2
−aλ2

)
.

Finally, set ε := δ′

K2
0 log2K0

. Noting ε = (16 log2 e)
−1λ−2e−2b′λ2 ≥ e−aλ

2 , we have Pκ,εN ⊆ Pκ,δ
′,K0

N

(see (1.2) for the definition of Pκ,εN ). It follows that

P
(
P is λ-open for some P ∈ Pκ,εN

)
≤ e−

(
logN

aλ2
−aλ2

)
,

completing the proof of Proposition 4.4.
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