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Abstract. In this article, we prove that k-dimensional spherical integrals are asymptotically equiv-
alent to the product of 1-dimensional spherical integrals. This allows us to generalize several large
deviations principles known before only in a one-dimensional case. For example, we prove the uni-
versality of the large deviations principle for the law of k extreme eigenvalues of Wigner matrices
(resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian
entries, as well as derive large deviations principles for the distribution of extreme eigenvalues of
Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.

1. Introduction

Spherical integrals are integrals over the unitary or orthogonal group which can be seen as natural
Fourier (or Laplace transforms) over matrices. As such, they play a central role in random matrix
theory. They can for instance be used to express the density of the distribution of random matrices
see Coquereaux et al. (2020) and Zuber (2018). In the unitary case (and more generally when one
integrates over a compact, connected, semisimple Lie group), Harish-Chandra (1956) and Itzykson
and Zuber (1980) derived formulas for such integrals. However, these formulas do not allow to
estimate in general their asymptotics as the dimension goes to infinity because they are given in
terms of a determinant, so a signed sum of diverging terms. It is however crucial to estimate such
asymptotics in random matrix theory to prove laws of large numbers for some matrix models or
large deviations principles, see Guionnet and Husson (2020); Husson (2020); Belinschi et al. (2020);
Collins et al. (2009); Guionnet and Maurel-Segala (2006). These asymptotics also permit to see
the R-transform as the limit of spherical integrals, and thus as a natural Laplace transform in
the space of matrices as shown in Guionnet and Maïda (2005). This representation was recently
generalized to the S-transform in Potters and Mergny (2020), see also Benaych-Georges (2011) for
the rectangular R-transform. Spherical integrals depend generically on two Hermitian matrices; in
the sequel, one will have full dimension N whereas the other will have dimension k smaller or equal
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to N . In the case of a one dimensional spherical integral (k = 1) which amounts to computing
the Laplace transform of the matrix evaluated in the direction of a uniformly distributed vector
on the sphere, these asymptotics were derived in Guionnet and Maïda (2005) (see also Gorin and
Panova (2015)). The case where the matrix has a full rank (k = N) was addressed in Guionnet
and Zeitouni (2002). In the case where the exponent is small enough, and the spherical integral
is k-dimensional, with k much smaller than the dimension, the spherical integrals were shown to
be equivalent to a product of one dimensional spherical integrals when k is finite in Guionnet
and Maïda (2005), or going to infinity in a mesoscopic regime where k grows like a power of the
dimension Collins and Śniady (2007); Huang (2019). In this article, we show that when k is finite,
this property remains true for all ranges of parameters. In the small parameter range, the limit
of spherical integrals only depends on the limit of the empirical measure of the eigenvalues and
not of the outliers, whereas it was shown in Guionnet and Maïda (2005, Theorem 6) that for large
parameters the limit of one dimensional spherical integrals also depends on the largest eigenvalue.
For general parameters, we prove that the limit of k-dimensional spherical integrals is equivalent to
the product of one dimensional integrals which are evaluated at the successive largest eigenvalues.
For instance, as foreseen in Maïda et al. (2007), the limit of a 2-dimensional spherical integral
depends on the two largest outliers in the large parameters regime, and not only on the top one.
As a consequence, k-dimensional spherical integrals allow us to study the universality of the large
deviations for the joint distribution of k extreme eigenvalues of Wigner matrices with sharp sub-
Gaussian entries, hence generalizing the results of Guionnet and Husson (2020) to finitely many
extreme eigenvalues. Similarly, we extend to finitely many extreme eigenvalues the universality of
large deviations for Wishart matrices obtained in Guionnet and Husson (2020) and for matrices
with general variance profile studied in Husson (2020) with sharp sub-Gaussian tails. We also
prove large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices
with a finite dimensional perturbation. This generalizes the one-dimensional case derived in Maïda
(2007). The large deviations rate functions of these large deviations principles simply decompose
as the sum of the one dimensional rate functions.

The approach of this paper differs from the arguments used in Guionnet and Maïda (2005) in the
one-dimensional case, which relied heavily on the representation of the uniform law on the sphere in
terms of Gaussian variables. Instead, it is based on considering first spherical integrals of matrices
with finitely many different eigenvalues. In this case, the uniform law on the sphere can be easily
described by Beta-distributions allowing to use Laplace’s principle and rate functions can be more
simply described as maxima over real numbers, see Section 3. We then generalize our results to
matrices with a continuous spectrum by density, see Section 4. Applications to large deviations
principles for the law of the extreme eigenvalues of random matrices are given in Section 5.

2. Statement of the results

We denote R+ = {x ∈ R : x ≥ 0} the set of non-negative real numbers. We consider a N × N
Hermitian matrix XN such that the empirical measure of its eigenvalues

µ̂XN = 1
N

N∑
i=1

δλi

converges towards a probability measure µ with support with rightmost point rµ and leftmost point
lµ which are assumed to be finite. Let k, ` be two integer numbers. Let λN1 ≥ λN2 ≥ · · · ≥ λNk ≥ rµ
be the k largest outliers of XN , λN−1 ≤ · · · ≤ λN−` ≤ lµ be the ` smallest outliers of XN . Here, each
eigenvalue has multiplicity one (but they can be equal). Assume that there exists λ1 ≥ λ2 ≥ · · · ≥
λk > rµ > lµ > λ−` ≥ λ−`+1 ≥ · · · ≥ λ−1 so that

lim
N→∞

λNi = λi > rµ for i ∈ [1, k], lim
N→∞

λN−i = λ−i < lµ for i ∈ [1, `]
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The main result of our paper is the following asymptotics for the k+` dimensional spherical integral
of XN . Denote by (ei)−`≤i≤k

i 6=0
a family of k + ` orthonormal eigenvectors following the uniform law

on the sphere with radius one, taken with complex coordinates if β = 2 and real coordinates if
β = 1.

Proposition 2.1. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1. Then

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−l
i6=0

θi〈ei,XNei〉
)]

= β

2
( k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.

Here, J(µ, 0, λ) = 0. For θ > 0, J(µ, θ, λ) = K
(
µ, θ, λ, v(µ, θ, λ)

)
with

K(µ, θ, λ, v) = θλ+ (v − λ)Gµ(v)− log θ −
∫

log |v − x|dµ(x)− 1

and

v(µ, θ, λ) =
{
λ if Gµ(λ) ≤ θ,
G−1
µ (θ) if Gµ(λ) > θ.

.

Gµ denotes the Cauchy-Stieltjes transform of µ given, for z outside the support of µ, by Gµ(z) =∫
(z − x)−1dµ(x).
For θ < 0, if we denote by µ− the push-forward of µ by x 7→ −x, µ−(x ∈ .) = µ(−x ∈ .),

J(µ, θ, λ) = J(µ−,−θ,−λ).

This key proposition is proved in Section 3 in the case of a spectrum with finitely many different
points and in Section 4 in the general case. The convergence of finite rank spherical integral was
already derived in Gorin and Panova (2015, Theorem 3.7 and Corollary 3.11) but in cases where
there are no outliers. As a first application, we generalize the universality of the large deviations
of the largest eigenvalue for Wigner matrices with sharp sub-Gaussian tails proved by Guionnet
and Husson (2020) to the k-th extreme eigenvalues. We consider a Wigner matrix XN with entries(
Xij√
N

)
1≤i,j≤N

where (Xij)i≤j are independent centered variables such that

E[|Xij |2] = 1, i < j and E[|Xii|2] = 21β=1 (2.1)

where β = 1 if the entries are real, and β = 2 if they are complex. In the complex case we assume
that the real and the imaginary part of Xij , 1 ≤ i < j ≤ N, are independent. We moreover assume
that the Xij have sharp sub-Gaussian tails in the sense that

E[exp(<(aXij))] ≤ exp(1
2E[<(āXij)2]) (2.2)

for any complex number a. Note that in the case where the Xij are real, it is enough to take a real
and the real part can be removed. We finally make the following concentration assumption.

Assumption 2.2. We say that XN concentrates if the spectral radius of XN , ||XN ||, as well
as the empirical measure µ̂XN of its eigenvalues satisfy the following properties. First, ‖XN‖ is
exponentially tight at the scale N :

lim
K→+∞

lim sup
N→+∞

1
N

logP
(
||XN || > K

)
= −∞. (2.3)
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Moreover, the empirical distribution of the eigenvalues µ̂XN concentrates at the scale N : There
exists a probability measure π such that

lim sup
N→+∞

1
N

logP
(
d(µ̂XN , π) > ε(N)

)
= −∞, (2.4)

for some ε(N) goes to zero as N goes to infinity. Here, d is a distance compatible with the weak
topology.

In our previous paper Guionnet and Husson (2020) we took ε(N) = N−κ. This hypothesis was
needed to ensure the continuity of spherical integrals according to Maïda (2007). However, part of
the consequences of our new approach is that spherical integrals enjoy better continuity properties,
see the Appendix 6. Assumption 2.2 is satisfied by all the matrix models we shall consider below
(Wigner, Wishart and variance profile) as soon as the entries satisfy log-Sobolev inequality with
uniformly bounded constant or are bounded (see Anderson et al. (2010) and the Appendix in
Guionnet and Husson (2020)). Examples of entries satisfying all our hypotheses (including (2.2))
are Rademacher variables or uniform variables. We prove the following universality of the large
deviations for the extreme eigenvalues of XN :

Theorem 2.3. Let XN = (Xij√
N

)i,j be a N × N Hermitian matrix where (Xi,j)i≤j are centered
independent entries satisfying (2.1) and (2.2), as well as such that XN satisfies Assumption 2.2. Let
λN1 ≥ λN2 ≥ · · · ≥ λNN be the N eigenvalues of XN . Let k, ` be fixed integer numbers. Then the law of
λ̄N = (λN1 , λN2 , . . . , λNk , λNN−`+1, . . . , λ

N
N ) satisfies a large deviations principle in the scale N and with

good rate function I(x1, . . . , xk, x−`, . . . , x−1) which is infinite unless x̄ = (x1, . . . , xk, x−`, . . . , x−1)
satisfies

x1 ≥ x2 ≥ · · · ≥ xk ≥ 2 ≥ −2 ≥ x−` ≥ x−`+1 ≥ · · · ≥ x−1

and is then given by

I(x1, . . . , xk, x−`, . . . , x−1) = β

2
( k∑
i=1

∫ xi

2

√
t2 − 4dt+

∑̀
i=1

∫ −x−i
2

√
t2 − 4dt

)
.

First note that if XN satisfies Assumption 2.2, we must take π to be equal to the semi-circle law,
defined by

σ(dx) = 1
2π
√

4− x21|x|≤2dx.

Indeed, we know the semi-circle law is the almost sure limit of the empirical measure of the eigen-
values since Wigner (1955), see also Anderson et al. (2010). The proof of this theorem is given
in Section 5.1. This result is well known in the Gaussian case for the case k = 1, see Anderson
et al. (2010, Section 2.6.2) and Ben Arous et al. (2001). The case of more general k but Gaussian
entries is a straightforward generalization, see e.g. Biroli and Guionnet (2020). The case of sharp
sub-Gaussian entries and k = 1 was proven in Guionnet and Husson (2020, Theorem 1.4 and The-
orem 1.5). This result can also be generalized to Wishart matrices. We consider GL,M a L ×M
random matrix and set N = L + M . We define the Wishart matrix WL,M = 1

MGL,MG∗L,M . If
L/M goes to α ≤ 1, it is well known that the spectral measure of WM,L converges towards the
Pastur-Marchenko distribution

dπα(x) = 1
2παx

√
(λ+ − x)(x− λ−)dx .

where λ± = (1±
√
α)2. Then we have the following :

Theorem 2.4. Let GL,M = (Xij) 1≤i≤L
1≤j≤M

be a L×M matrix where (Xi,j)i,j are centered independent
entries satisfying (2.1) and (2.2), as well as such that WL,M satisfies Assumption 2.2 (with π = πα).
Let k ≥ 0 and λN1 ≥ ... ≥ λNk be the k largest eigenvalues of WL,M . Assume that there exists
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α ∈ (0, 1] so that limN→∞ L/M = α. Then (λN1 , ..., λNk ) satisfies a large deviations principle in the
scale N with good rate function J(x1, ..., xk) which is infinite unless x1 ≥ ... ≥ xk ≥ λ+ and :

J(x1, ..., xk) = β

4(1 + α)

k∑
i=1

∫ xi

λ+

√
(y − λ−)(y − λ+)

y
dy

As in the Wigner case, as soon as the entries satisfy a log-Sobolev inequality or are compactly
supported, the empirical measure converges towards the Pastur-Marchenko distribution with prob-
ability larger than any exponential and the norm of Wishart matrices stays bounded, yielding a
property similar to Assumption 2.2 for WL,M . Note that the article Guionnet and Husson (2020)
initially had the stronger assumption that L/M − α = O(N−κ) for some κ > 0 but there again,
using the new continuity properties of this paper, see Theorem 6.1, we can relax this hypothesis.
This theorem is proved in Section 5.2.

This result can be further extended to Wigner matrices with variance profiles. Those matrices
are built by letting Xσ

N (i, j) = σN (i, j)Xi,j√
N

where :

• either there exists p ∈ N, α1(N), ..., αp(N) > 0 such that
∑p

1 αi(N) = N and limαi(N)/N =
αi > 0, and (σi,j)i,j ∈Mp,p(R+), σ = σT , such that :

σN (i, j) =
p∑

k,l=1
σk,l1IkN×I

l
N

(i, j)

where I1
N = J1, α1(N)K and Ii+1

N = J
∑i
j=1 αj(N) + 1,

∑i+1
j=1 αj(N)K. This case will be called

the piecewise constant case with parameters σ and α.
• or σN (i, j) = σ(i/N, j/N) where σ is a continuous symmetric positive function of [0, 1]2.
This case will be called the continuous case.

We will also make the following assumption on the variance profiles :

Assumption 2.5.
• In the piecewise constant case, we assume that the quadratic form ψ 7→

∑p
i,j σ

2
i,jψiψj is

negative on the subspace V ect(1, ..., 1)⊥.
• In the continuous case, we assume that the function ψ 7→

∫
σ2(x, y)dψ(x)dψ(y) is concave

on the set P([0, 1]) of probability measures on [0, 1].

When this Assumption, as well as Assumption 2.2 and (2.2), are verified, the almost sure con-
vergence of the empirical measure of the eigenvalues towards a limiting profile µσ is guaranteed
and one of the authors of this article proved in Husson (2020) that the largest eigenvalue of Xσ

N

satisfies a large deviations principle with a good rate function J (1)
σ . It is defined as follows. Let rσ

be the rightmost point of the support of the limit µσ of the empirical measure of XN . Then J (1)
σ

is defined for x ≥ rσ as :

J (1)
σ (x) = β

2 sup
θ≥0

[J(θ, x, µσ)− Fσ(θ)] (2.5)

In the piecewise constant case, Fσ is defined for θ ≥ 0 by:

Fσ(θ) = max∑p

i=1 ψi=1

ψ∈(R+)p

[θ2

2
∑

1≤i,j≤p
σ2
i,jψiψj −

p∑
i=1

αi log(ψi/αi)
]

In the continuous one, Fσ is defined for θ ≥ 0 by:

Fσ(θ) = max
µ∈P[0,1]

[θ2

2

∫
σ(x, y)dµ(x)dµ(y)− I(Leb||µ)

]
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where I is the Kullback-Leibler divergence and Leb the Lebesgue measure on [0, 1]. For x below
the leftmost point lσ of the support of µσ, we set J (1)

σ (x) = J
(1)
σ (−x). In this article we generalize

this result to the k-th largest eigenvalues and prove the following theorem :

Theorem 2.6. Let Xσ
N = (σN (i,j)Xij√

N
)i,j be a N ×N Hermitian matrix where (Xi,j)i≤j are centered

independent entries satisfying (2.1) and (2.2), as well as such that Xσ
N satisfies Assumption 2.2 with

π = µσ and σ verifies Assumption 2.5. Let k ≥ 0 and λN1 ≥ ... ≥ λNk be the k largest eigenvalues of
Xσ
N . Then (λN1 , ..., λNk ) satisfies a large deviations principle in the scale N with good rate function

J
(k)
σ (x1, ..., xk) which is infinite unless x1 ≥ ... ≥ xk ≥ rσ and in this case equals:

J (k)
σ (x1, ..., xk) =

k∑
i=1

J (1)
σ (xi)

where J (1)
σ is the large deviations rate function given in (2.5).

This result was proved in the case k = 1, ` = 0 in Guionnet and Maïda (2005, Theorem 6). We
outline the proof of Theorem 2.6 in Section 5.3.

Let us now consider XN to be a GOE/GUE matrix, that is a N × N Hermitian matrix with
centered real/complex Gaussian entries satisfying (2.1). Let ` and k be two integer numbers and
let (e1, . . . ek, e−1, . . . , e−`) be orthonormal vectors following the uniform law on the sphere. Maïda
(2007) showed that the largest eigenvalue of a Gaussian Wigner matrix perturbed by a rank one
matrix satisfy a large deviations principle. In this article we generalize this result to the k-th
largest eigenvalues and ` smallest eigenvalues when the Gaussian matrix is perturbed by a finite
rank matrix with k non-negative eigenvalues and ` non-positive eigenvalues.

Proposition 2.7. Let XN be a GUE (β = 2) or GOE (β = 1) matrix. Let `, k be two finite integer
numbers. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1 and define

Xθ
N = XN +

∑
−`≤i≤k
i 6=0

θieie
∗
i .

Let λN,θ1 ≥ λN,θ2 ≥ · · · ≥ λN,θN be the eigenvalues of Xθ
N . Then, the distribution of

(λN,θ1 , . . . , λN,θk , λN,θN−`+1, . . . , λ
N,θ
N ) satisfies a large deviations principle in the scale N and with good

rate function which is infinite unless
x1 ≥ x2 ≥ · · · ≥ xk ≥ 2 ≥ −2 ≥ x−` ≥ · · · ≥ x−1

and is given then by β
∑
−`≤i≤k
i 6=0

Iθi(xi). Here, with I(x) = 1
4x

2 −
∫

log |x− y|dσ(y), we have set

Iθ(x) = I(x)− 1
2J(σ, θ, x)− inf

y
(I(y)− 1

2J(σ, θ, y)) .

This Proposition is proved in Section 5.4. A similar result holds for finite rank perturbation
of Gaussian Wishart matrices. Indeed, let us consider a L ×M matrix GL,M with i.i.d standard
Gaussian matrices with covariance 1, set N = M + L, and assume without loss of generality that
M ≥ L. We consider the Wishart matrix

Wγ
N = 1

M
Σ1/2
L GL,MG∗L,MΣ1/2

L

where ΣL is a L × L covariance matrix given by IL +
∑k
i=1 γieie

∗
i for some fixed γi > −1. Here

(ei, 1 ≤ i ≤ k) are k orthonormal vectors. It is well known that when L/M goes to α ∈ [0, 1], the
empirical measure of the eigenvalues of Wγ

N goes to the Pastur-Marchenko distribution.
Large deviations for the extreme eigenvalues in the case γi = 0 are well known, and similar to

the Gaussian case, see Anderson et al. (2010); Dean and Majumdar (2006). The rate function
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governing the large deviations in the scale N for the smallest eigenvalue is infinite outside [0, λ−]
and is given for y ∈ [0, λ−] by Iα(y) defined by

Iα(y) = β

4(1 + α)(y − (1− α) log y − 2α
∫

log |y − t|dπα(y)− C)

= β

4(1 + α)

∫ λ−

y

1
t

√
(t− λ+)(t− λ−)dt

where C is the infimum of y − (1− α) log y − 2α
∫

log |y − t|dπα(y). The same result holds for the
largest eigenvalue where the rate function is infinite on [0, λ+) and otherwise given by Iα which for
y ∈ [λ+,∞) equals to

Iα(y) = β

4(1 + α)

∫ y

λ+

1
t

√
(t− λ+)(t− λ−)dt .

We have the following analogue to Proposition 2.7.

Proposition 2.8. Let `, k be two finite integer numbers. Let γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0 ≥ γ−` ≥ · · · ≥
γ−1 > −1. Let λN,γ1 ≥ λN,γ2 ≥ · · · ≥ λN,γM be the eigenvalues of Wγ

N in decreasing order. Then, the
law of (λN,γ1 , . . . , λN,γk , λN,γM−`+1, . . . , λ

N,γ
M ) satisfies a large deviations principle in the scale N and

with good rate function which is infinite unless
x1 ≥ x2 ≥ · · · ≥ xk ≥ λ+ ≥ λ− ≥ x−` ≥ · · · ≥ x−1 ≥ 0

and is given otherwise by
∑k

i=−`
i 6=0

Iγi,α(xi) where we have set

Iγ,α(x) = Iα(x)− β

2 J(πα,
γ

1− γ , x)− inf
y

(Iα(y)− β

2 J(πα,
γ

1− γ , y))

This result is proved in Section 5.5. We finally notice that since our results hold for any number
of eigenvalues, they capture as well the large deviations for the point processes of the outliers. For
instance, if we let Ai = [ai, bi] be intervals above the bulk, bi < ai+1 < bi+1, if we denote I the
large deviation rate function for any of the above models, the probability that there are ni outliers
in the set Ai has probability of order exp{−N

∑
i ni infAi I}.

Acknowledgements We are very grateful to Mylène Maïda and Marc Potters for preliminary
discussions about the questions addressed in this paper, as well as to the anonymous referees for
their comments which allowed to improve the presentation of our results.

3. Limiting spherical integral in the discrete case

Throughout this section, we restrict ourselves to the case where XN has finitely many different
eigenvalues :

XN = diag
(
η−m1+1, ..., η−m1+1︸ ︷︷ ︸

N−m1+1

, η−m1+2, ..., η−m1+2︸ ︷︷ ︸
N−m1+2

, ..., ηp+m2 , ..., ηp+m2︸ ︷︷ ︸
Np+m2

)
, (3.1)

where (ηi)1−m1≤i≤p+m2 is a p + m1 + m2-tuple of real numbers such that η−m1+1 < ... < η1 <
· · · < ηp < ηp+1 < · · · < ηp+m2 . Moreover, ηi has multiplicity Ni where (Ni)1−m1≤i≤p+m2 is a
p + m1 + m2-tuple of integer numbers such that

∑p+m2
i=−m1+1Ni = N . We assume that Ni/N goes

to a positive limit αi for i ∈ {1, p} and to zero for i ∈ {1 −m1, . . . , 0} ∪ {p + 1, . . . , p + m2}, the
later representing the outliers of XN . m1,m2, p are independent of N (with the convention that if
αi = 0, αi logαi = 0 and log 0 = −∞). In the previous notations, the eigenvalues of XN are given
by λN1 ≥ λN2 ≥ · · · ≥ λNN with λNi = ηp+m2 for i ∈ Ip+m2 = [1, Np+m2 ] and for i ≥ Np+m2 + 1,

λNi = ηj , i ∈ Ij = [Np+m2 + · · ·+Nj+1 + 1, Np+m2 + · · ·+Nj ] (3.2)
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Remark 3.1. We notice that if the sequences Ni are fixed, the spherical integrals are β/2-Lipschitz
in the p+m1 +m2-tuple (ηi)−m1+1≤i≤p+m2 with the norm ||.||∞ .

3.1. Limiting 1-d spherical integral. We start by giving a new proof of Guionnet and Maïda (2005,
Theorem 6) giving the asymptotics of spherical integrals in the one dimensional case, in the case
of matrices with p + m1 + m2 different eigenvalues with multiplicity as above. This proof will be
extended to the higher dimensional setting in the next subsection.

Proposition 3.2. Let θ ≥ 0 and XN be given by (3.1). Then, if e follows the uniform law on the
sphere SN−1 of radius one, we have

lim
N→∞

1
N

logE
[

exp
(βN

2 θ〈e,XNe〉
)]

= β

2 sup
γi≥0∑p+m2

i=1−m1
γi=1

{
θ

p+m2∑
i=−m1+1

ηiγi +
p∑
i=1

αi log γi
αi

}

Proof : We have the following formula :

〈e,XNe〉 =
p+m2∑

i=−m1+1
ηiγ

N
i

where we have denoted γNj =
∑
i∈Ij |ui|

2 with ui = 〈vi, e〉 if vi is the eigenvector for the i-th
eigenvalue of XN . In other words, γNj is the `2-norm of the projection of e onto the eigenspace
of ηj . The vector γN follows a Dirichlet law of parameters β

2 (N1−m1 , . . . , Np+m2), that is the
distribution on Σ = {x ∈ [0, 1]m1+m2+p :

∑m2+p
i=1−m1

xi = 1} given by γN1−m1 = 1−
∑p+m2
i=2−m1

γNi and

dPNN(γ) = 1
ZNα

1∑p+m2
i=2−m1

γi≤1(1−
p+m2∑
i=2−m1

γi)
β
2N1−m1−1

p+m2∏
j=2−m1

γ
β
2Ni−1
j 1γj≥0dγj . (3.3)

From this explicit formula of the density, we deduce the following large deviations principle

Theorem 3.3. Assume that Ni/N converges towards αi for all i, with αi = 0 for i /∈ [1, p]. Then,
the law of γN satisfies a large deviations principle with scale N and good rate function Iα given for
x ∈ Σ by

Iα(x1−m1 , ..., xp+m2) = −β2

p∑
i=1

αi log xi
αi
.

The proof is a direct consequence of Laplace’s method. We deduce Proposition 3.2 from Theorem
3.3 by Varadhan’s lemma. �

Lemma 3.4. Let (αi)1≤i≤p ∈ (R+)p such that
∑p
i=1 αi = 1. For θ ≥ 0 and η = (η1−m1 < · · · <

ηp+m2), the function J given by

J(θ, η) := sup
γi≥0∑
γi=1

{
θ

p+m2∑
i=−m1+1

ηiγi +
p∑
i=1

αi log γi
αi

}

only depends on ηp+m2 , θ and µ =
∑p
i=1 αiδηi. For θ = 0, J(0, η) vanishes and for θ > 0, it is given

by:
J(θ, η) = J(µ, θ, ηp+m2) = K

(
µ, θ, ηp+m2 , v(µ, θ, ηp+m2)

)
with

K(µ, θ, λ, v) = θλ+ (v − λ)Gµ(v)− log |θ| −
∫

log |v − x|dµ(x)− 1
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and

v(µ, θ, λ) =
{
λ if Gµ(λ) ≤ θ,
G−1
µ (θ) if Gµ(λ) > θ.

.

Proof : J(θ, η) is the supremum over Σ = {x ∈ (R+)p+m1+m2 :
∑p+m2
i=1−m1

xi = 1} of the function

Ip+m2
θ,η (γ) := θ

p+m2∑
i=−m1+1

ηiγi +
p∑
i=1

αi log γi
αi
. (3.4)

Observe that Ip+m2
θ,η is continuous except when the γi vanishes but then is equal to −∞. Hence,

since Σ is compact the supremum is achieved. The entropic term in Ip+m2
θ,η does not depend on

(γi, i < 1 or i > p), and the first term increases when we take these terms equal to zero except
γm2+p. Hence, the maximum is taken at γi = 0 for i < 1 or i ∈ [p+ 1, p+m2 − 1]. Then, putting
γp+m2 = 1−

∑p
i=1 γi we see that we need to maximize

Iθ,η(γ) = θηp+m2 +
{
θ

p∑
i=1

(ηi − ηp+m2)γi +
p∑
i=1

αi log γi
αi

}
over (γi)1≤i≤p ∈ (R+)p,

∑p
i=1 γ1 ≤ 1. Note here that we can assume without loss of generality that

γi > 0, 1 ≤ i ≤ p. We see that the critical point of Iθ,η is

γ∗i = αi
θ(ηp+m2 − ηi)

, 1 ≤ i ≤ p, γ∗p+m2 = 1−
p∑
i=1

γ∗i = 1− 1
θ
Gµ(ηp+m2)

provided
∑p
i=1 γ

∗
i = 1

θGµ(ηp+m2) ≤ 1. For θ < Gµ(ηp+m2), the supremum is achieved at

γ∗∗i = αi

θ(G−1
µ (θ)− ηi)

, 1 ≤ i ≤ p,

so that γ∗∗p+m2 = 0. This gives the announced formula. �

3.2. Limiting 2-d spherical integral. We next consider the 2-dimensional case with non negative
parameters θ1 and θ2 and show that it only depends on the two largest eigenvalues of XN as
follows. Let (e, f) denote two orthonormal vectors following the uniform law in the sphere. We
then have the following proposition.

Proposition 3.5. Let θ1 ≥ θ2 ≥ 0. Then, if Np+m2 = 1,

lim
N→∞

1
N

logE
[

exp
(βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, ηp+m2−1)) .

If Nm+p2 ≥ 2,

lim
N→∞

1
N

logE
[

exp
(βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, ηm+p2)) .

Proof : We first assume that Np+m2 = 1. We can write :

E
[

exp
(
N
β

2
(
θ1〈e,XNe〉+ θ2〈f,XNf〉

))]
= E

[
exp

(
N
β

2 θ1〈e,XNe〉
)
E
[

exp
(
N
β

2 θ2〈f,X(e)
N f〉

)∣∣∣∣e]]
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where X(e)
N = Pe⊥XNPe⊥ if Pe⊥ = I − ee∗ is the orthogonal projection onto the ortho-complement

of e. We can see X(e)
N as a (N − 1) × (N − 1) matrix living in V ect(e)⊥. Its largest eigenvalue

χ belongs to [ηp+m2−1, ηp+m2 ]. Writing that the corresponding eigenvector v ∈ V ect(e)⊥ satisfies
X(e)
N v = χv and 〈e, v〉 = 0, we find that

χ = χ(γN (e)) (3.5)
where

γNi (e) =
∑
j∈Ii
|〈vj , e〉|2 (3.6)

with vj the jth eigenvector of XN and we remind that the Ii are defined in (3.4). χ(.) is the
function on Σ with values in [ηp+m2−1, ηp+m2 ] given by the solution of the equation

p+m2∑
i=1−m1

xi
χ(x)− ηi

= 0 (3.7)

if there is a solution in this interval. If there is no solution (which can happen only if xp+m2 = 0
or xp+m2−1 = 0) then χ(x) = ηp+m2 if the rational function is positive on this interval and χ(x) =
ηp+m2−1 if it is negative. Note that χ is a continuous function on Σ.

Moreover, the spectral measure of X(e)
N converges towards µ, the limiting spectral measure of

XN by Weyl’s interlacing property. Therefore, on the event where γN (e) converges towards some
κ ∈ Σ, and since the empirical measure of X(e)

N converges toward the same limit that the empirical
measure of XN , we have

lim
N→∞

1
N − 1 logE[eθ2N

β
2 〈f,XNf〉|e] = β

2 J(µ, θ2, χ(κ)).

Moreover, the right hand side depends continuously on κ (since J is continuous in χ and χ in κ).
We can also easily see that the convergence above is uniform in κ. We now can apply the fact that
the law of γN (e) = (γNi (e))p+m2

i=1−m1
follows a large deviations principle, see Theorem 3.3, to conclude

by Varadhan’s lemma that

lim 1
N

logE[exp
(
N
β

2
(
θ1〈e,XNe〉+ θ2〈f,XNf〉

))
]

= β

2 sup
γ∈Σ

(
J(µ, θ2, χ(γ)) +

p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi
)

Since J is bounded and due to the continuity in γ of the function we optimize, we can change the
domain of the supremum to (R+,∗)p+m1+m2 where R+,∗ = (0,∞). We next complete the proof by
computing the right hand side and showing it equals the sum of the two limiting spherical integrals
as stated.

We first denote by γ̃i := γi|χ − ηi|−1 with χ = χ(γ). By definition we have γ̃i > 0, χ ∈
(ηp+m2−1, ηp+m2) and (3.7) holds so that

γ̃p+m2 =
p+m2−1∑
i=1−m1

γ̃i,
p+m2−1∑
i=1−m1

(χ− ηi)γ̃i + (ηp+m2 − χ)γ̃p+m2 = 1

This simplifies into the condition

γ̃p+m2 =
p+m2−1∑
i=1−m1

γ̃i, ηp+m2 γ̃p+m2 −
p+m2−1∑
i=1−m1

ηiγ̃i = 1 (3.8)

which is independent of χ. We thus first take the supremum over χ ∈ [ηp+m2−1, ηp+m2 ] of
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I(χ, γ̃) = J(µ, θ2, χ) +
p∑
i=1

αi log[|ηi − χ|
γ̃i
αi

]− θ1(χ− ηp+m2)ηp+m2 γ̃p+m2

+
p+m2−1∑
i=1−m1

θ1(χ− ηi)ηiγ̃i

= H(χ) +
p∑
i=1

αi log γ̃i
αi

+ θ1η
2
p+m2 γ̃p+m2 −

p+m2−1∑
i=1−m1

θ1η
2
i γ̃i

with

H(χ) = J(µ, θ2, χ) +
p∑
i=1

αi log |ηi − χ| − χθ1. (3.9)

Recall the formula for J from Lemma 3.4. When θ2 ≤ Gµ(χ), that is χ ≤ G−1
µ (θ2), J does not

depend on χ and the function H increases till G−1
µ (θ1) and decreases afterwards. When θ2 ≥ Gµ(χ),

that is χ ≥ G−1(θ2), Lemma 3.4 gives

H(χ) = θ2χ−
p∑
i=1

αi log(χ− ηi)− log θ2 − 1 +
p∑
i=1

αi log |ηi − χ| − χθ1

= χ(θ2 − θ1)− log θ2 − 1

which is decreasing since θ1 > θ2. Therefore, H increases till G−1
µ (θ1) and decreases afterwards. As

a consequence,

max
χ∈[ηp+m2−1,ηp+m2 ]

H(χ) =


H(ηp+m2−1) if G−1

µ (θ1) ≤ ηp+m2−1,

H(G−1
µ (θ1)) if G−1

µ (θ1) ∈ [ηp+m2−1, ηm+p2 ],
H(ηp+m2) if G−1

µ (θ1) > ηp+m2 .

. (3.10)

Let us also optimize on γ̃ satisfying (3.8) the function

L(γ̃) =
p∑
i=1

αi log[ γ̃i
αi

] + θ1η
2
p+m2 γ̃p+m2 −

p+m2−1∑
i=1−m1

θ1η
2
i γ̃i .

Replacing γ̃p+m2 by
∑p+m2−1
i=1−m1

γ̃i we get

L(γ̃) =
p∑
i=1

αi log[ γ̃i
αi

] + θ1

p+m2−1∑
i=1−m1

(η2
p+m2 − η

2
i )γ̃i

with by (3.8),
∑

(ηp+m2 − ηi)γ̃i = 1. We may again do the change of variables γ̄i = (ηp+m2 − ηi)γ̃i
which are non-negative and with sum equal to one by (3.8). We get by (3.8)

L(γ̃) =
p∑
i=1

αi log[ γ̄i
αi(ηp+m2 − ηi)

] + θ1

p+m2−1∑
i=1−m1

(ηp+m2 + ηi)γ̄i

=
p∑
i=1

αi log[ γ̄i
αi(ηp+m2 − ηi)

] + θ1

p+m2−1∑
i=1−m1

ηiγ̄i + θ1ηp+m2

= Ip+m2−1
θ1,η

(γ̄) +
p∑
i=1

αi log[ 1
(ηp+m2 − ηi)

] + θ1ηp+m2
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where Ip+m2−1
θ1,η

is defined as in (3.4) with largest outlier ηp+m2−1. Its maximum is J(µ, θ1, ηp+m2−1).
We thus get

maxL =
p∑
i=1

αi log[ 1
(ηp+m2 − ηi)

] + θ1ηp+m2 + J(µ, θ1, ηp+m2−1)

We finally compute max I(χ, γ̃) = maxL(γ̃) + maxH(χ).
• For G−1(θ1) ≤ ηp+m2−1 ≤ ηp+m2 , we check that J(µ, θ1, ηp+m2) equals

J(µ, θ1, ηp+m2−1) +
∑

αi log |ηi − ηp+m2−1|
|ηi − ηp+m2 |

+ θ1(ηp+m2 − ηp+m2−1) (3.11)

so that by (3.10) we find

max I = J(µ, θ1, ηp+m2) + J(µ, θ2, ηp+m2−1) .

• For G−1
µ (θ1) ∈ [ηp+m2−1, ηm+p2 ], J(µ, θ2, G

−1
µ (θ1)) = J(µ, θ2, G

−1
µ (θ2)) = J(µ, θ2, ηp+m2−1)

since θ1 > θ2 and ηp+m2−1 < G−1
µ (θ1) < G−1

µ (θ2). Moreover as θ1 > Gµ(ηp+m2),

maxL = J(µ, θ1, ηp+m2) + J(µ, θ1, ηm2+p−1) + log θ1 + 1

which again does not depend on ηm2+p−1. Hence

max I = J(µ, θ2, ηp+m2−1) +
∑

αi log |ηi −G−1
µ (θ1)| − θ1G

−1
µ (θ1)

+ J(µ, θ1, ηp+m2) + J(µ, θ1, G
−1(θ1)) + log θ1 + 1

= J(µ, θ2, ηp+m2−1) + J(µ, θ1, ηp+m2)

• For G−1
µ (θ1) > ηm+p2 , we compute

max I = J(µ, θ2, ηp+m2) + J(µ, θ1, ηp+m2−1)
= J(µ, θ2, ηp+m2−1) + J(µ, θ1, ηp+m2)

since θ2 < θ1 < Gµ(ηp+m2) < G(ηp+m2−1) so that the above supremum does not depend on
the outliers.

In the case where Np+m2 ≥ 2, we have χ = ηp+m2 by Weyl interlacing property and therefore
it does not depend on the choice of γ. The result follows immediately after conditioning as in the
proof above. �

A similar (but easier) argument shows that

Proposition 3.6. Let θ1 ≥ 0 ≥ θ2. Then,

lim
N→∞

1
N

logE
[

exp
(βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, η1−m1)) .

Here J is extended to negative values of θ2 by putting

J(µ, θ2, η1−m1) = J(µ−,−θ2,−η1−m1)

if µ−(x ∈ .) = µ(−x ∈ .).
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3.3. Limiting k-d spherical integrals. We now consider more general k-dimensional spherical inte-
grals with k ≥ 2. In the sequel we let λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 be the limit of the k largest
outliers of XN , and λ−1 ≤ · · · ≤ λ−` ≤ 0 be the limit of the ` smallest outliers of XN . We
assume they all have multiplicity one (but they can be equal, allowing for outliers with any fi-
nite multiplicity). With the previous notations, λi = ηp+m2 for i ∈ [1, Np+m2 ], λi = ηp+m2−1 for
i ∈ [Np+m2 + 1, Np+m2 +Np+m2−1].

Proposition 3.7. Fix two integer numbers k and `. Let (e1, . . . ek, e−1, . . . e−`) be k+` orthonormal
vectors following the uniform law in the sphere and assume that the sequence XN has the form
described at the beginning of this section. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1. Then

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

= β

2
( k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.

Proof : For the sake of simplicity we will assume the outliers λ1, ..., λk and λ−1, ..., λ−` are distinct.
The general case can be deduced by equi-continuity of the spherical integral. We will prove this
proposition by induction over k + `. We know it is true for k + ` ≤ 2 by the previous section. By
symmetry we can assume the proposition true for (`, k − 1) and it is enough to show it still holds
for (`, k). Thus we set ηp+m2−i+1 = λi for i ∈ [1, k], and η−m1+i = λ−i and we assume Np+m2−i = 1
for i ∈ [1, k] and N−m1+i = 1 for i ∈ [1, `]. We proceed as in the 2-dimensional case by conditioning
on the vector e1 and so we have :

E
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

=

E
[

exp
(βN

2 θ1〈e1,XNe1〉
)
E
[

exp
(βN

2

k∑
i=−`,i6=0
i6=1

θi〈ei,X(e1)
N ei〉

)∣∣∣e1
]]

As previously, the eigenvalues of X(e1)
N (seen as a N −1×N −1 matrix) are interlaced with those

of XN . Thus if we denote χj the j-th largest eigenvalue of X(e1)
N , χj = χj(γN (e)) where χj(x) is

the unique solution in the interval [ηp+m2−j , ηp+m2−j+1] of the equation :
p+m2∑
i=1−m1

xi
χj(x)− ηi

= 0 (3.12)

for j ∈ [1, k−1]. γN (e) is defined as in (3.6) The same equation holds for the ` smallest eigenvalues
below the bulk : if we denote χ−j the j-th smallest eigenvalue of X(e)

N , it is solution of the same
equation in [η−m1+j , η−m1+j+1]. Observe that unless γNi (e) vanishes, χi(γN (e)) can not be equal
to ηi. So, if we denote for i = −m1 + l + 1, ..., p+m2 − k, δi the solution of the same interlacing
equation in [ηi, ηi+1], up to diagonalisation, X(e1)

N has the following form :

X(e1)
N = diag(χ−1, ..., χ−l, η−m1+l+1︸ ︷︷ ︸

N−m1+l+1−1

, δ−m1+l+1, η−m1+l+2︸ ︷︷ ︸
N−m1+l+2−1

, ..., ηp+m2−k︸ ︷︷ ︸
Np+m2−k−1

, δp+m2−k, χk−1, ..., χ1)

where the δj and the χi are continuous functions of γ(e). We deduce by induction and using the
continuity in Remark 3.1 that on the event where γN (e1) converges toward κ :
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lim
N→∞

1
N − 1 logE

[
exp

(βN
2

k∑
i=−`,i 6=0,1

θi〈ei,X(e1)
N ei〉

)∣∣∣e1
]

= β

2

k∑
i=−`,i 6=0,1

J(µ, θi, χi(κ))

Then, using again that γN satisfies a large deviations principle we can deduce from Varadhan’s
Lemma that :

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

(3.13)

= β

2 sup
γ∈(R+)p+m1+m2 ,

∑
γi=1

{ −1∑
i=−`

J(µ, θi, χi(γ)) +
k∑
i=2

J(µ, θi, χi−1(γ))

+
p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi

}
By continuity, taking this supremum only on the set of γ summing up to 1 and such that γi > 0

does not change its value. Notice that for such γ we have for all i and j χi(γ) 6= ηj . We set
I−j =]η−m1+j , η−m1+j+1[ for j = 1, ..., ` and Ij =]ηm2+p−j , ηm2+p−j+1[ for j = 1, ..., k − 1 and we
define :

D =
{

(χ, γ) ∈
k−1∏

j=−`,j 6=0
Ij × (R+,∗)m1+m2+p :

∑
i

γi = 1,
∑
i

γi
χj − ηi

= 0, ∀j ∈ [−`, k − 1] \ {0}
}

Therefore we have :

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

(3.14)

= β

2 sup
(χ,γ)∈D

{ −1∑
i=−`

J(µ, θi, χi) +
k∑
i=2

J(µ, θi, χi−1) +
p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi

}
We next show that the above right hand side matches the announced formula. For i = −m1 +
`, ...,m2 + p− k, we set :

γ̄i =
∏`
j=1(η−m1+j − ηi)

∏k−1
j=1(ηm2+p−j+1 − ηi)∏`

j=1(χ−j − ηi)
∏k−1
j=1(χj − ηi)

γi

We have that if γi > 0 for all i then γ̄i > 0 for all i and γ̄i vanishes at the outliers. We want to
prove that this definition provides a one to one correspondance between the set D of parameters
(χ, γ) and the set D̄ parameters (χ, γ̄) defined as follows :

D̄ =
{

(χ, γ̄) ∈
k−1∏

j=−`,j 6=0
Ij × (R+,∗)m1+m2+p−k−`+1,

∑
i

γ̄i = 1
}

Note that γ̄ lives a priori in a set of k + ` − 1 dimension smaller but γ was satisfying k + ` − 1
additional equations. First, let us prove that if (χ, γ) ∈ D the γ̄′is sum up to 1. We let for a real
number X, F to be the rational function

F (X) =
∏`
j=1(η−m1+j −X)

∏k−1
j=1(ηm2+p−j+1 −X)∏`

j=1(χ−j −X)
∏k−1
j=1(χj −X)

so that γ̄i = F (ηi)γi for i ∈ [−m1 + `+ 1,m2 + p− k + 1] and F (ηi) = 0 for the other values of i.
Let us decompose F in partial fractions : as it goes to one at infinity, we find
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F (X) = 1 +
k−1∑

j=−`,j 6=0

aj
χj −X

for some real numbers aj . Then, since F (ηi) = 0 for i 6= −m1 + 1 + `, ...,m2 + p− k + 1 we have :
m2+p−k+1∑
i=−m1+`+1

γ̄i =
m2+p∑

i=−m1+1
F (ηi)γi

=
m2+p∑

i=−m1+1
γi +

k−1∑
j=−`,j 6=0

aj

m2+p∑
i=−m1+1

γi
χj − ηi

= 1
where we used the interlacing relations. Therefore, since when χ is fixed the function γ 7→ γ̄ is
an affine map between the affine subspace E of Rp+m1+m2 defined by the k + ` − 1 interlacing
relations and the condition of sum one and the affine subspace F of Rp+m1+m2−k−`+1 defined by
the condition of sum one. Since these spaces have the same dimension, to conclude we only need
to prove that this map is injective and that for all γ ∈ E, γ̄i > 0 for all i implies γi > 0 for all i.
To prove injectivity first notice that γi = F (ηi)−1γ̄i for i ∈ [−m1 + `+ 1,m2 + p− k + 1]. We next
show how to reconstruct γi for i ∈ [−m1 + `+ 1,m2 + p− k + 1]c. To this end, for j = 1, ..., k− 1,
we let Gj(X) = F (X)

(ηp+m2−j+1−X) and for j = 1, ..., `, we let G−j(X) = F (X)
(η−m1+j−X) . Let us first

reconstruct γi for i ∈ [m2 + p − k + 2,m2 + p] (the case where i ∈ [−m1 + 1,−m1 + l] is similar).
Then again decomposing Gj in partial fractions, we have

Gj(X) =
k−1∑

j′=−`,j′ 6=0

bj′

χj′ −X

for some real numbers bj . Again by the interlacing relations
p+m2∑

i=−m1+1
Gj(ηi)γi = 0 .

But we can also write :
p+m2∑

i=−m1+1
Gj(ηi)γi =

p+m2−k∑
i=−m1+`

γ̄i
ηp+m2−j+1 − ηi

+Gj(ηp+m2−j+1)γp+m2−j+1

so that we deduce for j = 1, ..., k − 1

γp+m2−j+1 = −
( p+m2−k+1∑

i=−m1=`

γ̄i
ηp+m2−j+1 − ηi

)
/Gj(ηp+m2−j+1) .

As a consequence, the map γ 7→ γ̄ is injective. Furthermore if γ̄i > 0 for all i, then γj > 0 since
Gj(ηj) < 0. The same remains true for j negative. Therefore we have that the change of variables
from (χ, γ) ∈ D to (χ, γ̄) ∈ D̄ is one to one. But before changing variables, let us compare

∑
ηiγi

and
∑
ηiγ̄i. We use the following decomposition :

XF (X) = X + S +
k−1∑

j=−`,j 6=0

cj
χj −X

for some real numbers cj and where

S =
k−1∑

j=−`,j 6=0
χj −

∑̀
j=1

η−m1+j −
k−1∑
j=1

ηm2+p−j+1 .
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We deduce that
m2+p−k+1∑
−m1+l

ηiγ̄i =
m2+p∑
−m1+1

ηiF (ηi)γi =
m2+p∑
−m1+1

ηiγi + S

where we used again the interlacing relationships and the fact that the γi’s sum up to 1. Coming
back to (3.13), we have to take the supremum of the following function I for (χ, γ̄) ∈ D̄:

I(γ̄, χ) =
k−1∑
j=1

[
J(µ, θj+1, χj) +

p∑
i=1

αi log |χj − ηi| −
p∑
i=1

αi log |ηm2+p−j+1 − ηi|
]

+
−1∑
j=−`

[
J(µ, θj , χj) +

p∑
i=1

αi log |χj − ηi| −
p∑
i=1

αi log |η−m1−j − ηi|
]

+
p∑
i=1

αi log γ̄i
αi

+ θ1
( p+m2∑
i=−m1+1

ηiγ̄i −
k−1∑

j=−`,j 6=0
χj +

∑̀
j=1

η−m1+j +
k−1∑
j=1

ηm2+p−j+1
)

Therefore we have :

I(γ̄, χ) =
k−1∑
i=1

H(χi, θi+1) +
−1∑
i=−`

H(χi, θi) +
p∑
i=1

αi log γ̄i
αi

+ θ1

p+m2−k+1∑
i=m1−`

ηiγ̄i

−
k−1∑
j=1

p∑
i=1

αi log |ηm2+p−j+1 − ηi| −
−1∑
j=−`

p∑
i=1

αi log |η−m1−j − ηi|

+θ1
∑̀
j=1

η−m1+j+θ1

k−1∑
j=1

ηm2+p−j+1

where we set :

H(χ, θ) = J(µ, θ, χ) +
p∑
i=1

αi log |χ− ηi| − χθ1 .

The supremum over γ̄ and χ are now decoupled and the χi belongs to ]η−m1+i, η−m1+i+1[ if i ∈
[−`,−1] and ]ηp+m2−i+1, ηp+m2−i+2[ if i ∈ [1, k]. As in the two-dimensional case we can compute
for i = 2, ..., k,

sup
χ∈]ηp+m2−i+1,ηp+m2−i+2[

H(χ, θi) =


H(ηp+m2−i+1, θi) if G−1

µ (θ1) ≤ ηp+m2−i+1,

H(G−1
µ (θ1), θi) if G−1

µ (θ1) ∈ [ηp+m2−i+1, ηm+p2−i+2],
H(ηp+m2−i+2, θi) if G−1

µ (θ1) > ηp+m2−i+2.

.

Moreover, for i = 1, ..., `, H(χ, θ−i) is a decreasing function of χ since θ−i is negative and so

sup
χ∈]η−m1+i,η−m1+i+1[

H(χ, θ−i) = H(η−m1+i, θ−i) .

It remains to optimize the sum of the third and fourth term in I(γ̄, χ). But this sum is equal to
Ip+m2−k+1
θ1,ηp+m2−k+1

(γ̄), see (3.4). Thus, taking the supremum for γ̄i > 0 and
∑
γ̄i = 1 gives

J(µ, θ1, ηp+m2−k+1).
To conclude, we need to look at the position of G−1

µ (θ1) relatively to the k largest outliers. Let
us denote Hi = maxH(., θi) for i < 0 and Hi = maxH(., θi+1) for i > 0. We have
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sup I =
k−1∑
j=1

(
Hj −

∑
αi log |ηi − ηp+m2−j+1|+ θ1ηp+m2−j+1

)

+
∑̀
j=1

(
H−j −

∑
αi log |ηi − η−m1+j |+ θ1η−m1+j

)
+ J(µ, θ1, ηp+m2−k+1)

Here we will treat the case where G−1
µ (θ1) ∈ [ηp+m2−k+1, ηp+m2 ] which is the most complex one.

First of all, since for j = 1, ..., ` H−j = H(η−m1+j , θ−j), we have that in the second sum, the
term of index j is indeed equal to J(µ, θ−j , η−m1+j). If j′ is the index such that, G−1

µ (θ1) ∈
[ηp+m2−j′ , ηp+m2−j′+1] then for j < j′, Hj = H(ηp+m2−j , θj+1) and the term of index j of the first
sum is :

J(µ, θj+1, ηp+m2−j) +
∑

αi log |ηp+m2−j − ηi|
|ηp+m2−j+1 − ηi|

+ θ1(ηp+m2−j − ηp+m2−j+1)

The term of index j′ is equal to :

J(µ, θj+1, G
−1
µ (θ1)) +

∑
i

αi log
|G−1

µ (θ1)− ηi|
|ηp+m1−j′+1 − ηi|

+ θ1(ηp+m2−j′ −G−1
µ (θ1))

And the terms j > j′ are equal to J(µ, θj+1, ηp+m2−j+1). Since θj+1 ≤ θ1, G−1
µ (θj+1) ≥ G−1

µ (θ1),
so we have that for j > j′

J(µ, θj+1, ηp+m2−j+1) = J(µ, θj+1, ηp+m2−j) and J(µ, θj′+1, G
−1
µ (θ1)) = J(µ, θj′+1, ηp+m2−j′)

Therefore the whole sum can be simplified as follows :

max I =
k−1∑
j=1

J(µ, θj+1, ηp+m2−j) +
∑̀
j=1

J(µ, θ−j , η−m1+j) +
∑
i

αi log
|G−1

µ (θ1)− ηi|
|ηp+m2 − ηi|

+ θ1(ηp+m2 −G−1
µ (θ1)) + J(µ, θ1, ηp+m2−k+1)

Then we notice that J(µ, θ1, ηp+m2−k+1) = J(µ, θ1, G
−1
µ (θ1)) and conclude since :

J(µ, θ1, ηp+m2) = J(µ, θ1, G
−1
µ (θ1)) +

∑
i

αi log
|G−1

µ (θ1)− ηi|
|ηp+m2 − ηi|

+ θ1(ηp+m2 −G−1
µ (θ1)) .

�

4. Diffuse spectrum

We consider in this section the general case where XN is a Hermitian matrix such that

µ̂XN = 1
N

N∑
i=1

δλi

converges towards a probability measure µ with support with rightmost point rµ and leftmost point
lµ which are assumed to be finite. Let λN1 ≥ λN2 ≥ · · · ≥ λNk ≥ rµ be the k largest outliers of XN ,
λNN ≤ · · · ≤ λNN−`+1 ≤ lµ be the smallest outliers of XN . They all are assumed to have multiplicity
one (but are possibly equal). Assume that there exists real numbers λ1 ≥ λ2 · · · ≥ λk ≥ rµ > lµ ≥
λ−` ≥ λ1−` ≥ · · · ≥ λ−1 such that

lim
N→∞

λNi = λi for i ∈ [1, k], lim
N→∞

λNN−i+1 = λ−i for i ∈ [1, `] . (4.1)
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We are going to prove Proposition 2.1.

Proposition 4.1. Fix two integer numbers k, ` and assume that (XN ) is a sequence of matrices
whose empirical measure µ̂XN converges weakly towards some compactly supported measure µ on R
and the convergence of its outliers (4.1). Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1. Then

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

= β

2
( k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.

Observe that if all the θi’s are non-negative (resp. non-positive), we do not need to assume
the convergence of the smallest (resp. largest) eigenvalues of XN to derive the convergence of the
spherical integral but our argument requires that they are uniformly bounded.

Proof : We first remark that we can assume XN diagonal without loss of generality. In a first step, we
assume that the partition function Fµ(x) = µ((−∞, x]) of µ is continuous. We fix ε > 0 . We let Xε

N
be the diagonal matrix with eigenvalues k+` eigenvalues equal to (λ1 ≥ λ2 ≥ · · ·λk ≥ λ−` ≥ · · ·λ−1)
and N − k − ` other eigenvalues given for i ∈ [k + 1, N − `] by

λN,εi = bε−1(λNi − λ−`)cε+ λ−` .

Then the eigenvalue λ−`+jε has multiplicity nε,Nj = µ̂XN ([λ−`+jε, λ−`+(j+1)ε)) for Xε
N (up to a

finite correction bounded by k when j is close to N). nε,Nj /N converges towards µ([λ−` + jε, λ−` +
(j + 1)ε]) since we assumed the partition function of µ to be continuous. Hence, Xε

N satisfies
the hypotheses of Proposition 3.7. Moreover, by definition, we know that for N large enough (so
that the outliers are at distance smaller than ε from their limit) the spectral norm ‖XN −Xε

N‖ of
XN −Xε

N is bounded from above by ε Therefore,

∣∣∣ 1
N

log
E
[

exp
(
βN
2
∑k
i=−`,i 6=0 θi〈ei,XNei〉

)]
E
[

exp
(
βN
2
∑k
i=−`,i 6=0 θi〈ei,Xε

Nei〉
)]∣∣∣ ≤ β

2
∑
|θi|ε .

On the other hand, Proposition 3.7 implies

lim
N→∞

1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,Xε
Nei〉

)]
= β

2
( k∑
i=−`,i 6=0

J(µε, θi, λi)
)

with µε =
∑
j µ([λ−` + jε, λ−` + (j + 1)ε])δλ−`+jε. By continuity of µ → J(µ, θi, λi), see Maïda

(2007) or the Appendix (Theorem 6.1), and the weak convergence of µε towards µ, the conclusion
follows.

Finally, to remove the condition that µ has a continuous partition function we note that we can
always add a small matrix to XN and its contribution will go to zero as its norm goes to zero after
N goes to infinity. We again assume XN diagonal and replace it by the diagonal matrix with the
same outliers and in the bulk the entries are added independent uniform variables with uniform
distribution on [0, ε]. Again Xε

N −XN has norm bounded by ε. Moreover, the spectral measure of
Xε
N converges towards µ ∗ 1[0,ε]du/ε whose partition function is continuous. Hence, we can apply

our result to this new matrix and then let ε go to zero to conclude. �
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5. Applications to large deviations for the extreme eigenvalues of random matrices

5.1. Universality of the large deviations for the k + ` extreme eigenvalues of Wigner matrices with
sharp sub-Gaussian entries. In this section, we prove Theorem 2.3 and to simplify take without
loss of generality ` = k. The proof follows the ideas of Guionnet and Husson (2020) quite closely:
we simply sketch the main arguments and changes. First note that it is enough to prove a weak
large deviations principle thanks to our assumption which insures that exponential tightness holds.
Moreover. let λ̄N = (λ1, . . . , λk, λN−k+1, . . . , λN ) be the 2k extreme eigenvalues of XN . To get a
weak large deviations upper bound, we proceed as in Guionnet and Husson (2020, Corollary 1.16)
and we tilt the measure by spherical integrals as above : if (ei)−k≤i≤k follows the uniform law
on the set of 2k orthonormal vectors on the sphere (θ0 = 0 and e0 = 0 is added to shorten the
notations), θi are real numbers of the same sign than i ∈ [−k, k] to be chosen later, we write

P
(
‖λ̄N − x̄‖2 ≤ ε

)
≤ EXN

[
1‖λ̄N−x̄‖2≤ε

Ee
[

exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]
Ee
[

exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]]

≤ e−N
β
2 F (x̄,θ̄)+o(ε)NEXNEe

[
exp

(βN
2

k∑
i=−k

θi〈ei,XNei〉
)]

where

F (x̄, θ̄) =
k∑

i=−k
J(σ, θi, xi) .

We used in the second line that by Theorem 6.2, the spherical integrals are uniformly continuous
and are asymptotically given by F (x̄, θ̄), and our assumption that the spectral measure of XN

converges towards the semi-circle law σ faster than any exponential. Here o(ε) goes to zero when
ε does. We also used the bound

EXN

[
1‖λ̄N−x̄‖2≤εEe

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]]
EXN

[
Ee
[

exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]] ≤ 1 (5.1)

We next compute the expectation of the spherical integral by using that our entries are sharp
sub-Gaussian as in the proof of Guionnet and Husson (2020, Lemma 3.2) :

EXN

[
Ee
[

exp
(βN

2

k∑
i=−k

θi〈ei,XNei〉
)]]

≤ Ee[exp{β4N
k∑

i=−k

∑
k≤j

21k 6=j |
∑

θiei(k)ei(j)|2}] = exp{β4

k∑
j=−k

θ2
j}

We hence get the upper bound

lim sup
ε→0

lim sup
N→∞

1
N

logP
(
‖λ̄N − x̄‖2 ≤ ε

)
≤ −β2 sup

θi

{
k∑

j=−k

θ2
j

2 − F (x̄, θ̄)}

where we take the supremum over non-negative θi for i ∈ [1, k] and non-positive θi’s for i ∈ [−k,−1].
Finally we observe that the supremum decouples and recall from Guionnet and Husson (2020,
Section 4.1) that the supremum over each θi of θ2

i /2− J(σ, θi, xi) gives
∫ |xi|

2
√
t2 − 4dt. To get the

lower bound, we need to show that there exists θ̄ = (θ−k, . . . , θ−1, θ1, . . . , θk) such that (5.1) is
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almost an equality in the sense that for every ε > 0

lim inf
N→∞

1
N

log
EXN

[
1‖λ̄N−x̄‖2≤εEe

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]]
EXN

[
Ee
[

exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]] ≥ 0 (5.2)

and

lim inf
N→∞

1
N

logEXN

[
Ee
[

exp
(βN

2

k∑
i=−k

θi〈ei,XNei〉
)]]
≥ β

2

k∑
j=−k

θ2
j . (5.3)

In both cases we use the fact that under the uniform measure, the vectors ei are delocalised with
overwhelming probability, namely if V κ

N = ∩1≤i≤k{‖ei‖∞ ≤ N−1/4−κ} then P(V κ
N ) goes to one for

any κ ∈ (0, 1/4). Therefore, to prove (5.3) we notice that

EXN

[
Ee
[

exp
(βN

2

k∑
i=−k

θi〈ei,XNei〉
)]]

≥ Ee
[
1e∈V κN

∏
i≤j

E[exp{β2N21i6=j
∑
r

θr<(er(i)ēr(j)Xij)}]
]

≥ exp{N β

2

k∑
r=−k

θ2
j +O(N1−2κ)}P(V κ

N )

where we used that
∑
r θrer(i)ēr(j) is of order at most N−1/2−2κ on V κ

N so that we can expand the
Laplace transform of the entries around the origin. This proves (5.3). To prove (5.2) we notice that
it is enough to show that for N large enough

inf
ē∈V εN

EXN

[
1‖λ̄N−x̄‖2≤ε exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]
EXN

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)] ≥ 1
2 .

But under the law tilted by exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)
, XN still has independent entries. We

can compute their mean and covariance under the tilted law and using again that
∑
r θrer(i)ēr(j)

is of order at most N−1/2−2κ, we see that its mean is
∑
θieie

∗
i and its covariance is close to 1/N .

We deduce as in Guionnet and Husson (2020, Subsection 5.1) and the BBP transition Baik et al.
(2005); Pizzo et al. (2013) that under this tilted law the outliers of XN are given by θi + θ−1

i : it is
therefore sufficient to choose θi = 1

2(xi ±
√
x2
i − 4). We refer the reader to Guionnet and Husson

(2020) for more details.

5.2. Universality of the large deviations for the k largest eigenvalues of Wishart matrices with sharp
sub-Gaussian entries. We here prove Theorem 2.4 and, as in the previous subsection, we will only
sketch the changes from the proof in Guionnet and Husson (2020). It is enough to study the largest
eigenvalues of the linearized matrix YN of the matrix N−1GL,MG∗L,M :

YN =
(

0L×L 1√
N

GL,M
1√
N

G∗L,M 0M×M

)
Up to a factor (N/L)1/2 = ((1 + α) + o(N−κ))1/2, YN is the linearization of WL,M . The main
difference with the proof for Wigner matrices will be that computing the asymptotics of the annealed
spherical integral requires more skill as it depends on the large deviations for the scalar products
of projections of vectors uniformly distributed on the sphere: we can not merely assume that they
are delocalized since this could a priori change the large deviations weight. To be more precise, let
ΛN be the annealed spherical integral given for θ̄ = (θ1, . . . , θk) ∈ (R+)k by



k-dimensional spherical integrals 789

ΛN (θ̄) = 1
N

logEYN

[
Ee
[

exp
(βN

2

k∑
i=1

θi〈ei,YNei〉
)]]

.

We shall prove that

lim
N→∞

1
N

log ΛN (θ̄) = Λ(θ̄) =
k∑
i=1

Λ(θi) (5.4)

with, if α′ = (1 + α)−1, and with α the limit of M/N ,

Λ(θ) = sup
a∈]0,1[

(
θ2a(1− a) + α′ log a

α′
+ (1− α′) log 1− a

1− α′
)
.

The above supremum is achieved at xθ,α, as defined in Lemma 3.4 of Guionnet and Husson (2020).
We first prove the upper bound in (5.4).

eNΛN (θ̄) = EeEY
[[

exp
(βN

2

k∑
i=1

θi〈ei,YNei〉
)]]

= EeEY
[[

exp
(β

2

k∑
i=1

∑
l=1,...,L

m=L+1,...,N

θi
√
N<(ei(l)ēi(m)Xl,m)

)]]

≤ Ee
[

exp
(βN

4
∑

l=1,...,L
m=L+1,...,N

k∑
i,j=1

θiθj<(ei(l)ēi(m)ēj(l)ej(m))
)]

where we used that the entries are sharp sub-Gaussian. Now, let us call e(1) the vector of CL whose
coordinates are the L first coordinates of e and e(2) the vector of CM whose coordinates are the M
last of e. If we let ψ(p)

l,m = 〈e(p)
l , e

(p)
m 〉, the upper bound gives :

ΛN (θ̄) ≤ 1
N

logEe
[

exp
(βN

2

k∑
i,j=1

θiθjψ
(1)
i,j ψ

(2)
j,i

)]
but since the ei are unitary and orthogonal , if we let Ψ(p) = (ψ(p)

i,j )1≤i,j≤k we have Ψ(1) +Ψ(2) = I2k

and so ψ(1)
i,j ψ

(2)
j,i = ψ

(1)
i,j (1i=j − ψ̄(1)

i,j ). Furthermore the Ψ(1) is an element of a Jacobi ensemble as
the following lemma states :
Lemma 5.1. The distribution of the matrix Ψ(1) when N > k is given by the following density for
the Lebesgue measure on the set of symmetric/Hermitian matrices :

1
Z

det(Ψ(1))β
L−k+1

2 −1 det(Ik −Ψ(1))β
M−k+1

2 −110≤Ψ(1)≤IkdΨ(1)

Proof : Let U be a orthogonal/unitary N × N Haar matrix, U1 its L × k top left block. Then
Ψ(1) has the same law as U∗1U1. If we denote Π the matrix diag(1, ..., 1︸ ︷︷ ︸

L times

, 0, ...0) and Π′ the matrix

diag(1, ..., 1︸ ︷︷ ︸
k times

, 0, ...0), then U∗1U1 = Π′U∗ΠUΠ′. Then we can apply Collins (2005, Theorem 2.2) (up

to adapt this theorem to the real case). �

Therefore, using Laplace’s method, we see that the distribution of Ψ(1) satisfies a large deviations
principle with rate function I :

I(M) =

−
β
2

[
1

1+α log det(M) + α
1+α log det(Ik −M)

]
− C if 0 ≤M ≤ Ik,

+∞ otherwise.
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where C is such that min I = 0. As a consequence, Varadhan’s lemma implies that

lim sup
N→∞

ΛN (θ̄) ≤ Λ(θ̄)

where :

Λ(θ̄) = sup
0≤M≤Ik

[f(M)− I(M)]

with f(M) = β
4
∑k
i,j=1 θiθjMi,j(Ik −M)j,i. We notice by taking M = α′Ik that

Z ≤ −kβ2
(
α logα′ + (1− α′) log(1− α′)

)
.

On the other hand, because det(A) ≤
∏
Aii for any positive self-adjoint matrix A, for all matrix

M such that 0 ≤M ≤ Ik:

I(M) ≥ −β2
[ k∑
i=1
{α′ log(Mi,i) + (1− α′) log(1−Mi,i)}

]
+ Z

whereas f(M) ≥ β
4
∑k
i=1 θiθjMi,i(Ik −M)i,i since the off-diagonal terms are non-positive (because

M is symmetric and the θi’s non-negative). We deduce (with Mi,i = ai) that

Λ(θ̄) ≤ β

2 sup
(ai)ki=1∈]0,1[k

k∑
i=1

(
θ2
i ai(1− ai) + α′ log ai

α′
+ (1− α′) log 1− ai

1− α′
)

=
k∑
i=1

Λ(θi)

To obtain the lower bound on lim infN ΛN (θ̄) as in Guionnet and Husson (2020), it is enough to
find a sequence of events V κ

N independent of Ψ(1) such that on these events |ei(l)| ≤ CN−1/4−κ for
some κ > 0 and all i and l since then we will be in the regime where the sharp sub-Gaussian bound
is also a lower bound. Note here that Ψ(2) is determined by Ψ(1), so we only condition on Ψ(1). To
do that let us denote U the k × L matrix with column vectors (e(1)

i , 1 ≤ i ≤ k). Then

U = (Ψ(1))1/2V

and conditionally to Ψ(1), V = (v1, . . . , vk) follows the uniform law on the set of k orthonormal
vectors on the sphere SL. We can then let V κ

N = {maxi maxl |vi(l)| ≤ N−1/4−κ}. On this set,
maxi maxl |ei(l)| ≤ CN−1/4−κ so that

ΛN (θ̄) ≥ Ee
[
1e∈V κN exp

(βN
4 (1 + o(1))

∑
l=1,...,L

m=L+1,...,N

k∑
i,j=1

θiθj<(ei(l)ēi(m)ēj(l)ej(m))
)]

= Ee
[
1e∈V κN exp

(βN
2

k∑
i,j=1

θiθjψ
(1)
i,j ψ

(2)
j,i

)]
where we expended the Laplace transform of the entries close to the origin. We finally notice that
V κ
N is independent of Ψ(1) and with probability going to one. We can therefore apply the large

deviations principle to deduce that

lim sup
N→∞

ΛN (θ̄) ≥ sup
0≤M≤Ik

[f(M)− I(M)] .

We finally conclude by taking M diagonal that the above right hand side is bounded below by∑
Λ(θi), which completes the proof of (5.4). To deduce the large deviations principle for the k

largest eigenvalues of Wishart matrices, we first obtain a large deviations upper bound by tilting
the measure by the k-dimensional spherical integral. Because it factorizes as well as Λ(θ̄) the upper
bound has a rate function given by the sum of the rate functions for each outliers. To obtain
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the large deviations upper bound, we tilt again the measure by exp(βN2
∑k
i=1 θi〈ei,YNei〉) with

ei ∈ V ε
N . Under this tilted measure, we have the following expectations :

E(e,θ)[YN ] =
k∑
i=1

θi
(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
)

( where we identify CL and CM respectively with CL × {0}M and {0}L ×CM ). We can then write

YN = ỸN +
k∑
i=1

θi
(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
)

+ o(1)

where ỸN has the same form as YN under the original measure. Then to identify the eigenvalues
of YN outside the bulk of the limit measure we need to solve the following equation

det
(
IN + (ỸN − z)−1

k∑
i=1

θi
(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
))

= 0

Note that the above arguments also show that in Pθ̄-probability Ψ(1) converges towards the diagonal
matrix with entries (xθi,α)1≤i≤k. We also have local laws for (z − ỸN )−1 under Pθ̄. Therefore, if
we denote λ̃+ =

√
(1 + α)−1λ+ (which is the rightmost point of the support of the limit measure

of YN ), the left hand side converges uniformly on any band {z ∈ C : λ̃+ + ε ≤ <z ≤ A, |=z| ≤ 1}
toward :

g : z 7→
k∏
i=1

(
1− θ2z2xθi,α(1− xθi,α)(1 + α)2GMP (α)((1 + α)z2)GMP (1/α)((1 + α)z2)

)
where MP (α) is the Marchenko-Pastur distribution of parameter α. Using the fact the these
functions are holomorphic, we have the k largest eigenvalue converges toward zθ1,α ≥ zθk,α where
zθ,α is defined as the unique solution of

1− θ2xθ,α(1− xθ,α)(1 + α)2z2GMP (α)((1 + α)z2)GMP (1/α)((1 + α)z2) = 0

on ]λ̃+,+∞[ (see Guionnet and Husson (2020) for details).

5.3. Universality of the large deviations for the k largest eigenvalues of Hermitian matrices with
variance profiles and sharp sub-Gaussian entries. We consider in this section the setting of Theorem
2.6, which generalizes the previous subsection. We will proceed as in Husson (2020) and we will
first deal with the piecewise constant case with the supplementary technical assumption that the
variance profile is non-negative.

The main point is to prove the following estimate for the annealed spherical integral.

Lemma 5.2. Let

ΛσN (θ̄) = 1
N

logEX,e[exp(N
k∑
i=1

θi〈ei,Xσ
Nei〉)]

Then, let σ be piecewise constant and under the assumptions of Theorem 2.6, for all θi ∈ R+

lim
N→∞

ΛσN (θ̄) =
k∑
i=1

Λσ(θi)

with, if Rij := σ2
ij and S := {ψ ∈ (R+)p : ψ(1) + ...+ ψ(p) = 1} and denoting for an element ψ of

S, ψ(i) its i-th coordinate in Rp,

Λσ(θ) = β

2 sup
ψ∈S

[θ2

2 〈ψ,Rψ〉+
p∑
i=1

αi log ψ(i)
αi

]
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Indeed, let us define for e ∈ SβN−1 and j ∈ [1, p], e(p) the vector of Cαi(N) whose coordinates
are the coordinates of e whose indices lie in IiN . We then define for j = 1, ..., p the random matrix
Ψ(j) = (〈e(j)

l , e
(j)
m 〉)1≤l,m≤k. Following the same computations as before and using the sharp sub-

Gaussian character of the entries, we have :

ΛσN (θ̄) ≤ Ee
[

exp
(βN

4

k∑
l,m=1

p∑
i,j=1

θlθmΨ(i)
l,mΨ̄(j)

l,mσ
2
i,j

)]
Notice that the Ψ(j) are Gram matrices (hence self-adjoint and positive) and that their sum is Ik.

There again we will use a slightly improved version of the Lemma 5.1 to determine the distribution
of the Ψ(j) :

Lemma 5.3. The joint distribution of the matrices Ψ(1), ...,Ψ(p−1) when α1(N), ..., αp(N) > k is
given by the following density for the Lebesgue measure on the set of symmetric/Hermitian matrices
:

1
Z

p−1∏
i=1

(
10≤Ψ(i) det(Ψ(i))β

αi(N)−k+1
2 −1

)
det(Ik −

p−1∑
i=1

Ψ(i))β
αp(N)−k+1

2 −11∑p−1
i=1 Ψ(i)≤Ik

p−1∏
i=1

dΨ(i)

Proof : Here we need an improved version of Collins (2005, Theorem 2.2) which states as follows.
Let U be a N ×N Haar-distributed orthogonal or unitary matrix, n0 = 0 < n1 < ... < np = N a
p-uplet of integers and for i ∈ [1, p], π̃i the orthogonal projection on the vector span of the columns
of U with indices between ni−1 + 1 and ni. Let π be a constant projection of rank k. Then, if we
identify πSN (R)π (respectively πHN (C)π) to Sk(R) (respectively Hk(C)), the joint distribution of
(M1, ...,Mp−1) = ππ̃1π, ..., ππ̃p−1π has the following density on SN (R)p−1 ( resp. HN (C)p−1) :

1
Z

p−1∏
i=1

(
10≤Mi det(Mi)β

mi−k+1
2 −1

)
det(Ik −

p−1∑
i=1

Mi)β
mp−k+1

2 −11∑p−1
i=1 Mi≤Ik

p−1∏
i=1

dMi

where mi = ni − ni−1.
The proof of this result is the same as the proof of Collins (2005, Theorem 2.2). The difference

is that one needs to prove that (ππ̃iπ)1≤p−1 has the same law as (Σ−1/2XiΣ−1/2) where the Xi are
independent GaussianWishart of parameters (k,mi) and Σ = X1+...+Xp. Once we have this result,
we take a Haar-distributed unitary matrix U and we denote Ui the αi(N)×k matrix extracted from
U by taking its k first columns and its rows of indices in IiN . We denote Π′ = diag(1, ..., 1︸ ︷︷ ︸

k times

, 0, .., 0)

and Πi the diagonal matrix with entries equal to 1 for indices in IiN and 0 elsewhere. Then, since
(Ψ(i))1≤p−1 has the same law as (Π′U∗ΠiUΠ′)i≤p−1, we can use the previous theorem. �

We deduce from this explicit distribution of the p − 1-uplet (Ψ(i))1≤i≤p that it follows a large
deviations principle with rate function :

I((Mi)1≤i≤p−1) =

−
β
2

[∑p
i=1 αi log det(Mi)

]
− C if ∀i ∈ [1, p], 0 ≤Mi ≤ Ik, and

∑p
i=1Mi = Ik

+∞ otherwise.
Then we have using Varadhan’s lemma :

lim sup
N

ΛσN (θ̄) ≤ Λσ(θ̄)

where :

Λσ(θ̄) = sup
(Mi)1≤i≤p

[f((Mi))− I((Mi))]
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with f((Mi)) = β
4
∑k
i,j=1 θiθj〈M i,j , RM i,j〉 where R is the p × p matrix (σ2

i,j) and M i,j is the
vector (M1(i, j), ...,Mp(i, j)). But, as before, if d(M) represents the diagonal matrix with entries
(Mii)1≤i≤k we have that

I((Mi)) ≥ I((d(Mi))) and for i 6= j〈M i,j , RM i,j〉 ≤ 0

where the last inequality is due to Assumption 2.5 which implies
∑p
i=1Mi = Ik and therefore that

for i 6= j
∑p
l=1M

i,j(l) = 0. Therefore we can again restrict the sup to diagonal matrices and it
then decouples into

Λσ(θ̄) = β

2 sup
(ψi)1≤i≤k∈Sk

[ k∑
j=1

θ2
i

2 〈ψj , Rψj〉+
k∑
j=1

p∑
i=1

αi log ψi(j)
αi

]
=

k∑
j=1

Λσ(θj)

where we remind that S := {ψ ∈ (R+)p : ψ(1) + ... + ψ(p) = 1}. In particular, since the function
ψ 7→ 〈ψ,Rψ〉 is concave on S thanks to Assumption 2.5, the function optimized is strictly concave
and thus is maximum at a unique ψ. Furthermore ψj only depends on θj so that we will denote ψj =
ψθj . Using again the strict concavity and the implicit function theorem, we have that the function
θ 7→ ψθ is analytic in θ. Furthermore, if we tilt our measure by EX[exp(N

∑
θi〈ei,Xσ

Nei〉)], the
Ψ(i)’s follow a large deviations principle and converges respectively toward diag(ψθ1(i), ..., ψθk(i)).
For the lower bound we restrict the integral as in the preceding subsection to delocalized vectors
with fixed Ψ and conclude similarly.

To prove the large deviations principle, we first observe that the large deviations upper bound
is direct after a tilt by spherical integrals and decoupling of the annealed spherical integrals. For
the large deviations lower bound, we tilt by exp(N

∑k
i=1 θi〈ei,Xσ

Nei〉). Under this tilted measure
Pe,θ̄, we have the following expectation Ee,θ̄[Xσ

N ] =
∑k
i=1 θi

∑p
l,m=1 σ

2
l,me

(l)
i (e(m)

i )∗. Using the BBP
transition phenomenon, the local law for XN as in Husson (2020, Lemma 5.3) and the fact that the
Ψ(k) converges in Pθ̄ - probability, we have that the eigenvalues outside the bulk are asymptotically
solution of the following equation in z :

k∏
i=1

det(Ip − θiRD(θi, z)) = 0

where D(θ, z) is defined as in Husson (2020, Section 5). To conclude, it suffices to prove that
for any z1 > ... > zk > rσ, there exists θ1 ≥ ... ≥ θk ≥ 0 such that zi is the unique solution of
det(Ip − θRD(θ, z)) = 0 on ]rµ,+∞[. We already know thanks again to the proof of the large
deviations lower bound in Husson (2020) that there is for every z, a θ such that z is the largest
solution. Let us prove that with Assumption 2.5, this solution is unique on ]rσ,+∞[. First, one can
notice that this assumption implies that the quadratic form whose matrix is R has signature (1, p−1)
and so it is also true for the quadratic form whose matrix is

√
D(θ, z)R

√
D(θ, z). Therefore, if we

denote ρ(θ, z) the largest eigenvalue of
√
D(θ, z)R

√
D(θ, z), the equation det(Ip− θiRD(θi, z)) = 0

is equivalent for θ > 0 and z > rσ to θρ(θ, z) = 1. Since z 7→ ρ(θ, z) is strictly decreasing, the result
is then proved.

For the continuous case, we can as in Husson (2020, Section 6) approximate our continuous
variance profiles by piecewise constant ones. This approximation step is in fact easier than in the
more general case of Husson (2020) since if σ satisfy Assumption 2.5 then we can approximate Xσ

N

by the X(p)
N defined as follows :

X(p)
N = σ

(p)
N (i, j)Xi,j√

N
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where σ(p)
N (i, j) =

∑p
k,l=1 σ

(p)
k,l 1IkN×I

l
N

(i, j) if I1
N = [0, N/p] and IiN =]N(i− 1)/p,Ni/p] for i = 2...p

and

σ
(p)
i,j =

√
p2
∫ i/p

(i−1)/p

∫ j/p

(j−1)/p
σ2(x, y)dxdy .

Since σ satisfy Assumption 2.5, it is easy to check that σ(p) also satisfies Assumption 2.5 for all p
and therefore if we denote λ(p),1

N , ..., λ
(p),k
N its k largest eigenvalues, they satisfy a large deviations

principle with rate function I(p)(x1, ..., xp) =
∑
I(p)(xi). If we denote λ1

N , ..., λ
k
N the k largest

eigenvalues of XN , we have for all i = 1, ..., k, |λiN − λ
(p),i
N | ≤ ||XN − X(p)

N ||. Using Husson
(2020, Lemma 6.6), we have that ||XN − X(p)

N || can be neglected at exponential scale once p is
large enough. And using again Husson (2020, Lemma 6.4 and Lemma 6.5), we have that the rate
function converges toward the sum of the rate functions for one eigenvalue. Therefore, λ1

N , ..., λ
k
N

satisfy a large deviations principle and the rate function is the sum of the rate functions for one
eigenvalue.

Remark 5.4. Contrary to the Wigner case where we can see that asymptotically the positive and
negative eigenvalues deviate independently from one another, this is not the case for matrices
with variance profiles. An example is the linearization of a Wishart matrix where the negative
eigenvalues are always exactly the opposite of the positive ones.

5.4. Large deviations for the k largest eigenvalues for the Gaussian ensembles with a k-dimensional
perturbation. We next prove Proposition 2.7. We first observe that the result is well known when
θ̄ = 0, see e.g. Theorem 2.3. We next remark that the joint law of the eigenvalues of Xθ

N is given
by

dPθN (λ) = 1
ZN

∆(λ)β
∫

exp{−β4NTr|UD(λ)U∗ −
k∑
i=1

θieie
∗
i |2}dU

∏
1≤i≤N

dλi

where U follows the Haar measure on the unitary group (resp. the orthogonal group) when β = 2
(resp, β = 1). ∆(λ) =

∏
i<j |xi−xj | is the Vandermonde determinant and D(λ) is a diagonal matrix

with entries given by λ = (λ1, . . . , λN ). Expanding the integral under the unitary (or orthogonal)
group, we find that

dPθN (λ) = 1
Z̃N

Ee[e
β
2N
∑k

i=1 θi〈ei,D(λ)ei〉]dP0
N (λ) ,

where (e1, . . . , ek) follows the uniform law on k orthonormal vectors in dimension N . Hence the
density is exactly given by the spherical integral. Using that Assumption 2.2 holds under P0

N (see
e.g Guionnet and Zeitouni (2000)), we see that the empirical measure of λ is close to the semi-circle
law with overwhelming probability. Assume that θ1 ≥ θ2 · · · ≥ θp ≥ 0 ≥ θp+1 · · · ≥ θk. Then,
on the set where the extreme eigenvalues λNN ≥ · · ·λNN−p and λN1 ≤ · · · ≤ λNk−p+1 are close to
x1 ≥ x2 ≥ · · · ≥ xp ≥ 2 ≥ −2 ≥ x−k+p ≥ · · · ≥ x−1, Theorem 4.1 and Varadhan’s Lemma give the
result.

5.5. Large deviations for k extreme eigenvalues for Gaussian Wishart matrices with a k-dimensional
perturbation. The proof of Proposition 2.8 is similar to the previous one. Again the proof is based
on the explicit joint law of λN,γ1 ≥ λN,γ2 ≥ · · ·λN,γM given by the law on (R+)M

dPγ̄M,N (dλ) = 1
ZN

∆(λ)β
∫
e−

β
2NTr(UD(λ)U∗Σ−1)dU

∏
1≤i≤M

λ
β
2 (N−M+1)
i dλi
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Noticing that

Σ−1 = I +
k∑
i=1

γi
1− γi

eie
∗
i

we recognize again that the density with respect to the case γ = 0 is given by a spherical integral.
The result follows as for the Wigner case.

6. Appendix

In this Appendix we investigate the continuity property of spherical integrals. First we need to
prove the continuity of the deterministic limit itself :

Theorem 6.1. Let d be a distance compatible with the weak topology on the set P(R) and ||.|| any
norm on Rk+`, and for M > 0, KM the subset of E = Rk+` × (R+)k × (R−)` × P(R) defined by

KM := {(λ̄, θ̄, µ) ∈ E|M ≥ θ1 ≥ ... ≥ θk ≥ 0 ≥ θ−` ≥ ... ≥ θ−1 ≥ −M
M ≥ λ1 ≥ ... ≥ λk ≥ rµ ≥ lµ ≥ λ−` ≥ ...θ−1 ≥ −M}

where rµ and lµ are respectively the rightmost and the leftmost point of the support of µ. We endow
KM with the distance D given by D((λ̄, θ̄, µ), (λ̄′, θ̄′, µ′)) = d(µ, µ′) + ||λ̄− λ̄′||+ ||θ̄− θ̄′||. Then KM
is a compact set and the function J

J(µ, θ̄, λ̄) =
k∑

i=−`, 6=0
J(µ, θi, λi)

is continuous on KM .

Proof : It is clear that we only need to prove the continuity of (θ, λ, µ) 7→ J(µ, θ, λ) where either
θ ≥ 0 and λ ≥ rµ or θ ≤ 0 and λ ≤ lµ. We assume without loss of generality that we are in the first
case. Furthermore since J(µ, θ, λ) = J(θ ∗ µ, θλ, 1) we only need to prove the continuity for the
first two arguments with the third being fixed equal to 1. Let us take a sequence (µn, λn) such that
∀n ∈ N, lµ ≥ −M, rµn ≤ λn and limλn = λ and limn µn = µ. First, since |J(µn, λn, 1)− J(µn, λ+
ε, 1)| ≤ |λn − λ| + ε for n large enough so that λ + ε ≥ rµn , and |J(µ, λ, 1) − J(µn, λ + ε, 1)| ≤ ε
we can restrict ourselves to proving lim J(µn, λ+ ε, 1) = J(µ, λ+ ε, 1). But, when we differentiate
J(µ, λ, 1) on the variable λ, we find

∂

∂λ
J(µ, λ, 1) = 1[G−1

µ (1),+∞[(λ)(1−Gµ(λ))

On [λ + ε,+∞[, since rµn ≤ λ + ε it is in fact easy to see that the weak convergence of µn imply
the uniform convergence of ∂/∂λJ(µn, λ, 1). The we conclude by choosing Λ > λ + ε so that
Gµ(Λ) ≤ 1/2 so that v(µn, 1,Λ) = Λ for n large enough and then using the weak convergence and
the fact that x 7→ log(Λ− x) is bounded on [−M,λ+ ε], we have that J(µn, 1,Λ) converges toward
J(µ, 1,Λ). �

With this continuity and the compactness of KM , we can prove the following theorem of uniform
continuity, which generalizes Maïda (2007) :

Theorem 6.2. Let k, ` ∈ N, θ̄ ∈ (R−)` × (R+)k and

JN (XN , θ̄) = 1
N

logE
[

exp
(βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

Let us denote λN−1 ≤ ... ≤ λN−` the smallest outliers of XN and λN1 ≥ ... ≥ λNk the largest outliers.
We will denote this k + `-tuple λ̄N . Then for every M > 0 and ε > 0, there is N0 ∈ N so that for
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every N ≥ N0, for any matrix XN such that (λ̄N , θ̄, µXN ) ∈ KM

|JN (XN , θ̄)− J(µXN , λ̄N , θ̄)| ≤ ε

Proof : We first notice that in the proof of Proposition 4.1 we approximated JN (XN , θ̄) by JN (Xε
N , θ̄)

with an error depending only on ε. Hence we may and shall replace in the above statement XN by
Xδ
N for some small enough δ = δ(ε). Xδ

N has the same extreme eigenvalues than XN and otherwise
eigenvalues λN−` + jδ with multiplicity bNµ̂N ([λN−` + jδ, λN−` + (j + 1)δ])c. Therefore, we see that
JN (XN , θ̄) is a function of the extreme eigenvalues and the empirical measure, hence a function on
KN . By the previous uniform approximation and the continuity of the limit, we deduce that it is
uniformly continuous on KN , hence the result. �
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