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Abstract. In this paper we show that stationary and non-stationary multivariate continuous-time
ARMA (MCARMA) processes have the representation as a sum of multivariate complex-valued
Ornstein-Uhlenbeck processes under some mild assumptions. The proof benefits from properties
of rational matrix polynomials. A conclusion is an alternative description of the autocovariance
function of a stationary MCARMA process. Moreover, that representation is used to show that
the discrete-time sampled MCARMA(p, q) process is a weak VARMA(p, p − 1) process if second
moments exist. That result complements the weak VARMA(p, p − 1) representation derived in
Chambers and Thornton (2012). In particular, it relates the right solvents of the autoregressive
polynomial of the MCARMA process to the right solvents of the autoregressive polynomial of the
VARMA process; in the one-dimensional case the right solvents are the zeros of the autoregressive
polynomial. Finally, a factorization of the sample autocovariance function of the noise sequence is
presented which is useful for statistical inference.

1. Introduction

A multivariate continuous-time ARMA (MCARMA) process is a continuous-time version of the
well-known vector ARMA (VARMA) process in discrete time. They are applied in diversified fields
as, e.g., signal processing and control (cf. Garnier and Wang (2008); Larsson et al. (2006)), high-
frequency financial econometrics (cf. Todorov (2009)) and financial mathematics (cf. Andresen
et al. (2014)). The driving process of a MCARMA process is a Lévy process L = (L(t))t≥0 which
is an Rm-valued stochastic process with L(0) = 0m P-a.s., stationary and independent increments
and càdlàg sample paths. The idea is then that a d-dimensional MCARMA(p, q) process (p > q
positive integers) is the solution of the stochastic differential equation

A(D)Y (t) = B(D)DL(t) for t ≥ 0, (1.1)
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where D is the differential operator with respect to t,

A(λ) := Idλ
p +A1λ

p−1 + . . .+Ap and B(λ) := B0λ
q + . . .+Bq−1λ+Bq (1.2)

is the autoregressive and the moving average polynomial, respectively with A1, . . . , Ap ∈ Rd×d and
B0, . . . , Bq ∈ Rd×m. The matrix Id denotes the d×d-dimensional identity matrix and 0d×m denotes
the d ×m-dimensional matrix whose entries are all zero in the following. In contrast, in discrete
time the differential operator is replaced by the backshift operator and the differential of the Lévy
process DL(t) is replaced by a weak white noise. Since a Lévy process is not differentiable, the
question arises what is the formal definition of a MCARMA process. We can interpret (1.1) via
linear continuous-time state space models as in Marquardt and Stelzer (2007). Therefore, define

A∗ :=


0d×d Id 0d×d · · · 0d×d

0d×d 0d×d Id
. . .

...
...

. . . . . . 0d×d
0d×d · · · · · · 0d×d Id
−Ap −Ap−1 · · · · · · −A1

 ∈ Rpd×pd, (1.3)

C∗ := (Id, 0d×d, . . . , 0d×d) ∈ Rd×pd and B∗ := (βT1 · · ·βTp )T ∈ Rpd×m with β1 := . . . := βp−q−1 :=
0d×m and

βp−j := −
p−j−1∑
i=1

Aiβp−j−i +Bq−j , j = 0, . . . , q.

Then the Rd-valued MCARMA(p, q) process Y := (Y (t))t≥0 is defined by the state space equation

Y (t) = C∗X(t) and dX(t) = A∗X(t) dt+B∗ dL(t). (1.4)

Note that, if we define

A# =


Id 0d×d · · · 0d×d

A1 Id
. . .

...
...

. . . . . . 0d×d
Ap−1 · · · A1 Id

 ∈ Rpd×pd, B# =


0(p−(q+1))d×m

B0
...
Bq

 ∈ Rpd×m, (1.5)

then

A#B∗ = B#. (1.6)

The class of MCARMA processes is very rich. Under the constrain of finite second moments,
Schlemm and Stelzer (2012a), Corollary 3.4, show that the class of stationary MCARMA processes
and the class of stationary state space models are equivalent (see Fasen-Hartmann and Scholz (2020)
for cointegrated MCARMA processes).

The aim of the paper is to present sufficient criteria for stationary and non-stationary
MCARMA(p, q) processes to have a representation as a sum of p multivariate Ornstein-Uhlenbeck
processes (which are MCAR(1) = MCARMA(1,0) processes). In the one-dimensional case d = 1,
under the assumption of distinct zeros r1, . . . , rp with strictly negative real parts of A(λ), it is
well-known that

Y (t) =

p∑
k=1

Yk(t) with Yk(t) =

∫ t

−∞
erk(t−u) B(rk)

A′(rk)
dL(u) (1.7)

is a stationary solution of the state space model (1.4) and hence, a CARMA process (see Brockwell
et al. (2011), Proposition 2). The term B(rk)/A

′(rk) is the residue of A(λ)−1B(λ) at rk. In the
present paper we extend this finding to the multivariate setup for both stationary and non-stationary
MCARMA processes. The zero rk of A(λ) in the one-dimensional case is replaced by a d×d matrix
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Rk in the multivariate case, which is as well a kind of multivariate ”zeros” of A(λ), the so called
right solvent satisfying AR(Rk) := Rpk + A1R

p−1
k + . . . + Ap = 0d×d; the statement is derived in

Theorem 3.2. Essential for our proof are basic principles from rational matrix polynomials coming
from linear algebra, which are not necessary in dimension d = 1. A main feature of our outcome is
that Y has a representation as a sum of multivariate Ornstein-Uhlenbeck processes and not only as
a linear combination of multivariate Ornstein-Uhlenbeck processes. Since matrix multiplication is
not commutative this is not trivial. That is different to the one-dimensional case where any linear
combination of stationary Ornstein-Uhlenbeck processes is as well a sum of stationary Ornstein-
Uhlenbeck processes. A straightforward consequence of our result is an alternative representation
of the autocovariance function of a stationary MCARMA process in Proposition 3.7.

Although we consider in this paper a continuous-time model, the corresponding discrete-time
models are of special interest. Despite having a continuous-time model, a reason for this is that one
often observes the process only at discrete time points as, e.g, in the context of high-frequency data.
Hence, we use the representation of a MCARMA(p, q) process as a sum of p multivariate Ornstein-
Uhlenbeck processes to derive a vector-valued ARMA (VARMA)(p, p−1) representation for the low
frequency sampled MCARMA process (Y (nh))n∈N (h > 0 fixed) in Theorem 3.9. For the proof of
this theorem a representation of Y as a linear combination of multivariate Ornstein-Uhlenbeck pro-
cesses is not sufficient. The statement is a direct extension of the ARMA(p, p− 1) representation of
discretely sampled CARMA processes in Brockwell et al. (2011, Proposition 3) whose autoregressive
polynomial

∏p
k=1(λ− e−rkh) of the ARMA representation has zeros e−r1h, . . . , e−rph. In analogy, in

the multivariate setup of this paper, the autoregressive polynomial of the VARMA representation
has right solvents e−R1h, . . . , e−Rph.

In the econometric literature, the VARMA(p, p − 1) representation of a discretely sampled
MCARMA process is well-known, see, e.g., Chambers and Thornton (2012), Corollary 1; a nice
overview on this topic is presented in Chambers et al. (2018). In contrast to us, Chambers and
Thornton (2012) assume some kind of observability and controllability conditions on submatrices
of eA

∗∗ , where A∗∗ is constructed form A∗ by reflecting the entries of A∗ at the diagonal from the
left lower corner to the right upper corner. There, the coefficients of the autoregressive polynomial
in the VARMA representation are complicated functions of these submatrices. The current paper
presents an alternative and simpler representation of the VARMA parameters and in particular,
it connects the autoregressive polynomial in the MCARMA representation to the autoregressive
polynomial in the VARMA representation due to the solvents. Our proof is an alternative proof
requiring only assumptions on the right solvents of A(λ). In the multivariate setting, Schlemm
and Stelzer (2012a), Proposition 5.1, proved that a MCARMA process has a representation as
a multivariate linear combination of pd dependent one-dimensional Ornstein-Uhlenbeck processes.
In the present paper, we will have multivariate Ornstein-Uhlenbeck processes and p instead of pd
Ornstein-Uhlenbeck processes.

Similarly, as in the above mentioned papers our conclusions are advantageously for statistical
inference of MCARMA processes. Brockwell and Lindner (2019) use the representation (1.7) to
solve both the sampling and the embedding problem for CARMA processes. In the first case, they
deduce the explicit parameters of the ARMA representation of (Y (nh))n∈N. In the second case,
they present conditions for an ARMA(p, q) process to be embedded in a CARMA(p, p− 1) process.
Therefore, we think that our results might be helpful for a multivariate version of the sampling
and embedding problem as well. But this is outside the scope of the present paper. Moreover,
our findings are helpful to derive probabilistic properties of a MCARMA process. Brockwell and
Lindner (2009), for example, use the ARMA(p, p−1) representation of a CARMA process to derive
necessary and sufficient conditions for the existence of a CARMA process.

The paper is structured on the following way. In Section 2, we present preliminary results on
matrix polynomials and rational matrix polynomials which lay the background for the upcoming
results. The main results of the paper are given in Section 3.
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2. Preliminaries

In this section, we review main results on matrix polynomials and rational matrix functions.
References about matrix analysis and matrix polynomials are, e.g., the textbooks of Bernstein
(2009), Horn and Johnson (2013) and Kailath (1980). The aim is to receive matrix valued ”roots”
of a matrix polynomial which help to define linear factors of a matrix polynomial. However, a
challenge is that there does not exist the Fundamental Theorem of Algebra for matrix polynomials
and matrix multiplication is not commutative.

Definition 2.1.
(a) A λ-matrix A : C→ Cd×m of degree p and order (d,m) is defined as

A(λ) = A0λ
p +A1λ

p−1 + . . .+Ap−1λ+Ap, λ ∈ C,
where Ak ∈ Cd×m for k = 0, . . . , p. If additionally, d = m we say shortly that A(λ) is of
degree p and order d, and define the spectrum of A(λ) as σ(A(·)) := {λ ∈ C : det(A(λ)) = 0}.
If σ(A(·)) lies in the complement of the closed unit disc, then A(λ) is called Schur-stable.
The λ-matrix A(λ) is called monic λ-matrix of degree p and order d if A0 := Id.

(b) Suppose Z ∈ Cd×d and d = m. Then the right matrix polynomial AR : Cd×d → Cd×d of the
λ-matrix A(λ) is defined as

AR(Z) := A0Z
p +A1Z

p−1 + . . .+Ap−1Z +Ap.

Next, we extend the definition of a root to the matrix polynomial case.

Definition 2.2. For a monic λ-matrix A(λ) of degree p and order d we define

A(k)(λ) :=
dk

dλk
A(λ), k = 1, . . . p.

A matrix R ∈ Cd×d is defined to be a right solvent of A(λ) with multiplicity ν ∈ {1, . . . , p} if

AR(R) = 0d×d, A
(1)
R (R) = 0d×d, . . . , A

(ν−1)
R (R) = 0d×d and A

(ν)
R (R) 6= 0d×d.

If AR(R) = 0d×d we simply say that R is a right solvent of A(λ). A right solvent R of A(λ) is
called regular if σ(R)∩ σ(A(1)(·)) = ∅, where A(1)(λ) is a monic λ-matrix of degree p− 1 satisfying
A(λ) = A(1)(λ)(λId −R).

Definition 2.3. A set of right solvents R1, . . . , Rµ ∈ Cd×d of the λ-matrix A(λ) of degree p is called
complete if σ(A(·)) =

⋃µ
j=1 σ(Rj), where σ(Rj) = {λ ∈ C : det(λId −Rj) = 0} is the spectrum of

Rj .

The Vandermonde matrix is extended in the next definition.

Definition 2.4. Suppose R1, . . . , Rµ are a complete set of right solvents of the matrix polynomial
A(λ) with multiplicities ν1, . . . , νµ, respectively. We define the confluent Vandermonde matrix
W := W (R1, . . . , Rµ) ∈ Cpd×pd by W = [W1, . . . ,Wµ], where for k = 1, . . . , µ,

Wk =



Id 0d . . . 0d

Rk Id
...

R2
k 2Rk

. . . 0d
...

... Id
...

...
...

Rp−1
k (p− 1)Rp−2

k . . .
(
p−1
νk−1

)
Rp−νkk


∈ Cpd×νkd.

In the case µ = p and ν1 = . . . = νp = 1, the confluent Vandermonde matrix reduces to the
classical block Vandermonde matrix V (R1, . . . , Rp) = W (R1, . . . , Rp).
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Lemma 2.5 (Maroulas (1985), Theorem 3.4). Let R1, . . . , Rµ be right solvents of a monic λ-matrix
A(λ) of multiplicities ν1, . . . , νµ, respectively. Then W (R1, . . . , Rµ) is non-singular if and only if

σ(A(·)) =

µ⋃
j=1

σ(Rj) and σ(Rj) ∩ σ(Ri) = ∅ for j, i = 1, . . . , µ, j 6= i.

Thus, we have the following relation between the solvents of the λ-matrix A(λ) and the coefficient
matrices A1, . . . , Ap of A(λ).

Lemma 2.6 (Maroulas (1985)). Let R1, . . . , Rp be a complete set of regular right solvents of the
monic λ-matrix A(λ) = Idλ

p +A1λ
p−1 + . . .+Ap−1λ+Ap. Then

[Ap, . . . , A1] = −[Rp1, . . . , R
p
p]V
−1(R1, . . . , Rp) and

A(λ) = (λId −R∗p) · · · (λId −R∗2)(λId −R1), (2.1)

where for k = 2, . . . , p,

R∗k = Mk(Rk)RkM
−1
k (Rk) and Mk(Rk) = (λId −Rk−1) · · · (λId −R1).

Interesting is that in the multivariate setting R∗k is not necessarily equal to Rk for k = 1, . . . , p,
as in the one-dimensional case d = 1. Moreover, not every monic λ-matrix has a linear factorization
of the kind (2.1). Necessary and sufficient criteria for linear factorizations of λ-matrices are given
in Beitia and Zaballa (1989).

Definition 2.7. A strictly proper rational left λ-matrix F (λ) with degree p and order (d,m) has
the representation

F (λ) = A(λ)−1B(λ),

where A(λ) is a monic λ-matrix of degree p and order d, and B(λ) is a λ-matrix of degree p− 1 and
order (d,m). The rational λ-matrix F (λ) is called irreducible if A(λ) and B(λ) are left coprime. If
F (λ) is irreducible and R is a regular right solvent of A(λ) then the residue of the rational λ-matrix
F (λ) at R is defined by

Res[F,R] :=
1

2πi

∮
ΓR

F (λ) dλ,

where ΓR is a simple closed contour such that σ(R) is contained in the interior of ΓR and σ(A(·)) \
σ(R) is contained in the exterior of ΓR.

The next result characterizes a rational left matrix function. However, although Tsay and Shieh
(1982) assume that d = m, it is straightforward to extend the result to the case d 6= m (cf. Leyva-
Ramos (1991)).

Theorem 2.8 (Tsay and Shieh (1982), Theorem 4.1). Let F (λ) = A(λ)−1B(λ) be a irreducible
strictly proper rational left λ-matrix of degree p and order (d,m), and A(λ) has a complete set of
regular right solvents {Rk : k = 1, . . . , p}. Then

F (λ) =

p∑
k=1

(λId −Rk)−1 Res[F,Rk].

Theorem 2.8 assumes that the right solvents are regular which excludes right solvents with mul-
tiplicities.

A formula for the calculation of a matrix residue is given in Leyva-Ramos (1991, Section 6, eq.
(6.13)): Suppose the strictly proper left λ-matrix F (λ) = A(λ)−1B(λ) is irreducible and A(λ) has a
complete set of regular right solvents {Rk : k = 1, . . . , p}. Notice, the matrix A# as defined in (1.5)
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is non-singular because A# has the only eigenvalue 1. Then, due to Lemma 2.5, the Vandermonde
matrix V (R1, . . . , Rp) is non-singular (cf. Leyva-Ramos (1991, Definition 4)) andRes[F,R1]

...
Res[F,Rp]

 = V (R1, . . . , Rp)
−1[A#]−1B#. (2.2)

Finally, the question arises how to calculate the right solvents of the λ-matrix A(λ). A possibility
to characterize a right solvent is by right latent roots and latent vectors as is done in Dennis et al.
(1976).

Definition 2.9. Let A(λ) be a λ-matrix of order d. If λi ∈ C satisfies det(A(λi)) = 0, then λi is
called latent root of A(λ). A vector pi ∈ Cd satisfying A(λi)pi = 0d is called right latent vector of
A(λ) associated to the latent root λi.

Theorem 2.10. Suppose the monic λ-matrix A(λ) has distinct latent roots λ1, . . . , λpd with corre-
sponding right latent vectors p1, . . . , ppd, respectively. Define Pk := (p(k−1)d+1, . . . , pkd) ∈ Cd×d and
Λk := diag(λ(k−1)d+1, . . . , λkd) for k = 1, . . . , p.

(a) Then Rk := PkΛkP
−1
k for k = 1, . . . , p is a complete set of regular right solvents of A(λ).

(b) Suppose the strictly proper left λ-matrix F (λ) = A(λ)−1B(λ) is irreducible, then the residue
of F (λ) can be calculated as in (2.2) and

F (λ) =

p∑
k=1

(λId −Rk)−1 Res[F,Rk].

Proof : (a) is proven in Dennis et al. (1976), Theorem 4.5. (b) follows from (a) and Theorem 2.8.
�

3. Results

In this section we present criteria for a MCARMA process to be a sum of multivariate Ornstein-
Uhlenbeck processes. For the rest of the paper we will assume the following:

Assumption A. Let A(λ), B(λ) be defined as in (1.2) and F (λ) = A(λ)−1B(λ) be irreducible.
Assume further that A(λ) has a complete set of regular right solvents {Rk : k = 1, . . . , p}.

We want to comment on the severity of Assumption A.

Remark 3.1.
(a) Instead of assuming that the right solvents {Rk : k = 1, . . . , p} are complete and regular,

it is equivalent to assume that V (R1, . . . , Rp) is non-singular (see Lemma 2.5). A sufficient
condition for A(λ) to have a complete set of regular right solvents is that A∗ as defined in
(1.3) has distinct eigenvalues. Indeed, σ(A∗) := {λ ∈ C : det(A∗ − λIpd) = 0} = σ(A(·)),
due to Marquardt and Stelzer (2007), Lemma 3.8, such that by Theorem 2.10 the statement
follows.

(b) In general it is possible to approximate the λ-matrix F (λ) = A(λ)−1B(λ) by a sequence
of λ-matrices F (n)(λ) = A(n)(λ)−1B(n)(λ) where the λ-matrices A(n)(λ) have pd different
latent roots and hence, a complete set of regular right solvents satisfying Assumption A.
But the degree of the λ-matrix B(n)(λ) is not necessarily q anymore. We will give some
examples.

(c) Let the λ-matrix A(λ) has the form A(λ) = (λId−Rp) · · · (λId−R1) with R1, . . . , Rp ∈ Cd×d.
Then there exists a sequence of matrices R(n)

1 , . . . , R
(n)
p ∈ Cd×d where

⋃p
j=1 σ(R

(n)
j ) has pd

different elements λ(n)
1 , . . . , λ

(n)
pd different to the latent roots of B(λ) and maxk=1,...,p ‖Rk −
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R
(n)
k ‖ → 0 as n → ∞. Define A(n)(λ) := (λId − R

(n)
p ) · · · (λId − R

(n)
2 )(λId − R

(n)
1 ). Then

σ(A(n)(·)) = {λ(n)
1 , . . . , λ

(n)
pd }. A conclusion of Theorem 2.10 is that A(n)(λ) has a complete

set of p different regular right solvents. Of course, A(n)(λ) converges uniformly to A(λ)

as n → ∞ on a compact set. Finally, F (n)(λ) = A(n)(λ)−1B(λ) converges uniformly to
F (λ) = A(λ)−1B(λ) as n→∞ on a compact set and F (n)(λ) satisfies Assumption A.

(d) Suppose the λ-matrix A(λ) has a complete set of regular right solvents {R1, . . . , Rµ} with
multiplicities ν1, . . . , νµ and W (R1, . . . , Rk), k = 1, . . . , µ is invertible. As notation we use
R̃1,. . . , R̃p for R1, . . . , R1, R2, . . . , Rµ taking the multiplicities of the right solvents into
account. Due to Maroulas (1985) there exist matrices R∗1 . . . , R∗p with R∗k similar to R̃k
such that A(λ) = (λId − R∗p) · · · (λId − R∗1). Then the assumptions in (c) are satisfied
and F (λ) = A(λ)−1B(λ) can be approximated by a sequence F (n)(λ) = A(n)(λ)−1B(λ)

uniformly on a compact set as n→∞, where A(n)(λ) has a complete set of p regular right
solvents satisfying Assumption A.

Theorem 3.2. Define for k = 1, . . . , p the multivariate complex-valued Ornstein-Uhlenbeck process

Yk(t) = eRktYk(0) +

∫ t

0
eRk(t−u) Res[F,Rk] dL(u), t ≥ 0, (3.1)

with some initial condition Yk(0) in Cd such that V (R1, . . . , Rp)[Y1(0)>, . . . , Yp(0)>]> ∈ Rpd. Then
Y (t) =

∑p
k=1 Yk(t) is an Rd-valued solution of the state space model (1.4) and hence, a

MCARMA(p, q)-process.

Proof : Of course,

Y (t) = C∗eA
∗tX(0) +

∫ t

0
C∗eA

∗(t−u)B∗ dL(u)

is an Rd-valued solution of the state space model (1.4) with some initial condition X(0) ∈ Rpd.
Define

E∗ := [Id, . . . , Id] ∈ Rd×pd, F ∗ =

 Res[F,R1]
...

Res[F,Rp]

∈ Cpd×d and R∗ := diag(R1, . . . , Rp) ∈ Cpd×pd

as a block diagonal matrix. Due to (2.2) and (1.6) the relation

F ∗ = V (R1, . . . , Rp)
−1[A#]−1B# = V (R1, . . . , Rp)

−1B∗

holds. A further inspection of the matrices give

A∗V (R1, . . . , Rp) = V (R1, . . . , Rp)R
∗ and C∗V (R1, . . . , Rp) = E∗,

where we used that Rk is a right solvent of A(λ). Therefore, define T := V (R1, . . . , Rp), Y ∗(0) :=

[Y1(0)>, . . . , Yp(0)>]> and X∗(0) := TY ∗(0) ∈ Rpd such that

A∗ = TR∗T−1, B∗ = TF ∗ and C∗ = E∗T−1.
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In particular, eA
∗t = T eR

∗tT−1, t ∈ R. Then for t ≥ 0,

Y (t) = C∗eA
∗tX∗(0) +

∫ t

0
C∗eA

∗(t−u)B∗ dL(u)

= E∗eR
∗tT−1TY ∗(0) +

∫ t

0
E∗eR

∗(t−u)F ∗ dL(u)

=

p∑
k=1

[
eRktYk(0) +

∫ t

0
eRk(t−u) Res[F,Rk] dL(u)

]

=

p∑
k=1

Yk(t)

is Rd-valued. �

Remark 3.3.
(a) If σ(A∗) has only distinct eigenvalues then Theorem 2.10 gives the possibility to calculate a

complete set of regular right solvents. Due to Section 2 we are able to calculate the residues
as well. Thus, we obtain via (3.1) a representation of the MCARMA process as sum of
Ornstein-Uhlenbeck processes.

(b) Since the solvents R1, . . . , Rp are not unique, the representation of Y as sum of Ornstein-
Uhlenbeck processes is not unique as well (cf. Example 3.6), only in the case d = 1 we have
uniqueness.

(c) Any linear combination
(∑p

k=1 αkYk(t)
)
t≥0

of Rd-valued multivariate Ornstein-Uhlenbeck
processes Y1, . . . , Yp, where α1, . . . , αp ∈ Rd×d, is a MCARMA(p, p − 1)-process. But the
exponent Rk in the definition of Yk is not necessarily a right solvent of the autoregressive
polynomial of the MCARMA process. But this is essential to derive a VARMA representa-
tion of the discrete-time sampled MCARMA process later on.

Corollary 3.4. Suppose σ(A(·)) ⊂ {(−∞, 0) + iR} and E[log(max(1, ‖L(1)‖))] < ∞. Define for
k = 1, . . . , p the multivariate complex-valued Ornstein-Uhlenbeck processes

Yk(t) =

∫ t

−∞
eRk(t−u) Res[F,Rk] dL(u), t ∈ R,

Then Y (t) =
∑p

k=1 Yk(t) =
∫ t
−∞

∑p
k=1 eRk(t−u) Res[F,Rk] dL(u), t ∈ R, is a stationary Rd-valued

solution of the state space model (1.4) and hence, a MCARMA(p, q)-process.

Due to Sato and Yamazato (1984), Theorem 4.1, the stationary Ornstein-Uhlenbeck processes Yk
are well-defined.

Remark 3.5.
(a) Let Γk be a simple closed contour such that σ(Rk) lies in the interior of Γk and the residuary

spectrum σ(A(·)) \ σ(Rk) lies in the exterior of Γk and Γ :=
⋃p
k=1 Γk. Due to Cauchy’s

integral formula (see Lax (2002), Theorem 17.5), and Theorem 2.8 we obtain for t ≥ 0,
p∑

k=1

etRk Res[F,Rk] =
1

2πi

p∑
k=1

∮
Γ

etλ(λId −Rk)−1 Res[F,Rk]dλ =
1

2πi

∮
Γ

etλF (λ) dλ.

In particular, if σ(A(·)) ⊂ {(−∞, 0) + iR} then the kernel function satisfies
p∑

k=1

etRk Res[F,Rk] =
1

2π

∫ ∞
−∞

etiωF (iω) dω, t ≥ 0.
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(b) In the case of repeated right solvents, Y has not the representation as a sum of mul-
tivariate Ornstein Uhlenbeck processes. Indeed, due to the representation of F (λ) =∑µ

k=1

∑νk
j=1(λId −Rk)−jFk,j in Shieh et al. (1986), in general we have

p∑
k=1

etRk Res[F,Rk] 6=
1

2πi

∮
Γ

etλF (λ) dλ

(cf. Brockwell and Lindner (2009), Lemma 2.4, in the case of one-dimensional CARMA
processes).

Example 3.6. Let

A(λ) = Idλ
2 +

(
−11 22
−12 21

)
λ+

(
−42 52
−36 44

)
and B(λ) = Id, λ ∈ C,

be given. Then

R1 =

(
0 −1
2 −3

)
, R2 =

(
−3 −2

0 −4

)
, R3 =

(
−7 6
−3 2

)
, R4 =

(
−3 0.5

0 −2

)
are right solvents of A(λ). The pair R1, R2 and the pair R3, R4, respectively build a complete set of
regular right solvents of A(λ). Then Theorem 3.2 and the formula for the residues (2.2) give that
both Y1(t) + Y2(t) with

Y1(t) = eR1tY1(0) +

∫ t

0
eR1(t−u)

(
1 −1
−2 3

)
dL(u),

Y2(t) = eR2tY2(0) +

∫ t

0
eR2(t−u)

(
−1 1

2 −3

)
dL(u),

and Y3(t) + Y4(t) with

Y3(t) = eR3tY3(0) +

∫ t

0
eR3(t−u)

(
8 −11
6 −8

)
dL(u),

Y4(t) = eR4tY4(0) +

∫ t

0
eR4(t−u)

(
−8 11
−6 8

)
dL(u),

are MCARMA(2, 0) processes with AR polynomial A(λ) and MA polynomial B(λ).

For the rest of the paper we assume:

Assumption B. Y has the representation as given in Theorem 3.2, E‖L(1)‖2 <∞ and EL(1) = 0m.

Now, we are able to present an alternative representation of the covariance function of a stationary
MCARMA process. As notation we write ZH for the transposed complex conjugated of a matrix
Z ∈ Cd×d.
Proposition 3.7. Suppose the setting of Corollary 3.4. The covariance function (γY (l))l∈N0 =
(Cov(Y (t+ l), Y (t)))l∈N0 of Y has the representation

γY (l) =

p∑
i=1

elRiΣi, l ∈ N0, where Σi :=

p∑
j=1

∫ ∞
0

euRi Res[F,Ri]ΣL Res[F,Rj ]
HeuR

H
j du.

Proof : An application of Corollary 3.4 gives

γY (l) =

p∑
i,j=1

Cov

(∫ t+l

−∞
eRi(t+l−u) Res[F,Ri] dL(u),

∫ t

−∞
eRj(t−u) Res[F,Rj ] dL(u)

)

=

p∑
i,j=1

elRi
∫ ∞

0
euRi Res[F,Ri]ΣL Res[F,Rj ]

HeuR
H
j du,
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which completes the proof. �

A final aim is to derive a VARMA representation for a MCARMA process observed at discrete
time-points. To distinguish the notation between the continuous-time process and the sampled
discrete-time process, we write Y (h)

n for Y (nh) in the following and accordingly Y (h)
k,n for Yk(nh) for

some fixed h > 0. Let us first state an auxiliary lemma.

Lemma 3.8. For any k = 1, . . . , p, n ≥ p, l = 0, . . . , n and any matrices C1, . . . , Cl ∈ Cd×d it holds
that

Y
(h)
k,n =

l∑
r=1

CrY
(h)
k,n−r +

(
ehlRk −

l∑
r=1

Cre
h(l−r)Rk

)
Y

(h)
k,n−l +

l−1∑
r=0

ehrRk −
r∑
j=1

Cje
h(r−j)Rk

N
(h)
k,n−r,

where N (h)
k,n =

∫ nh
(n−1)h eRk(nh−u) Res[F,Rk] dL(u).

Proof : The proof goes in the same vein as the proof of equation (2.8) in Brockwell and Lindner
(2009) for scalars c1, . . . , cl instead of matrices C1, . . . , Cl, since Yk is a multivariate Ornstein-
Uhlenbeck process. �

Eventually, we obtain a VARMA(p, p − 1) representation for the sampled version of a
MCARMA(p, q) process based on the ideas of Brockwell and Lindner (2009), Lemma 2.1, for
CARMA(p, q) processes.

Theorem 3.9. Define

Ψ0 := Id, [Ψp, . . . ,Ψ1] := −[e−phR1 , . . . , e−phRp ]V −1(e−hR1 , . . . , e−hRp) ∈ Cp×pd

and the λ-matrix Φ(λ) := Id −Φ1λ− . . .−Φpλ
p of degree p and order d with Φj := −Ψ−1

p Ψp−j for
j = 1, . . . , p. Then there exists a λ-matrix Θ(λ) = Id + Θ1λ + . . . + Θp−1λ

p−1 of degree p − 1 and
order d such that

Φ(B)Y (h)
n = Θ(B)ε(h)

n , n ≥ p, (3.2)

where B denotes the backshift operator (i.e. BjY
(h)
n = Y

(h)
n−j for j ∈ N) and (ε

(h)
n )n≥p is a d-

dimensional weak white noise. Thus, (Y
(h)
n )n≥p admits a weak V ARMA(p, p− 1) representation.

Proof : First, we will show that Φ(λ) is well-defined and has the complete set of regular right
solvents e−hR1 , . . . , e−hRp . Due to Assumption A and Lemma 2.5, the Vandermonde matrix
V (e−hR1 , . . . , e−hRp) is non-singular and finally, Ψ1, . . . ,Ψp is well-defined. A conclusion of As-
sumption A and Lemma 2.6 is then that e−hR1 , . . . , e−hRp is a complete set of regular right solvents
of Ψ(λ) = Idλ

p+Ψ1λ
p−1 + . . .+Ψp. Note that Ψp = (−1)pe−hR

∗
p · . . . ·e−hR∗

2 ·e−hR1 where R∗2, . . . , R∗p
are defined as in Lemma 2.6. Since the eigenvalues of e−hR

∗
k , k = 2, . . . , p and e−hR1 are non-zero,

the matrix Ψp is non-singular. Finally, Φ(λ) = Ψ−1
p Ψ(λ) is well-defined and has the complete set

of regular right solvents e−hR1 , . . . , e−hRp .
Due to (3.1) we obtain Y (h)

n =
∑p

k=1 Y
(h)
k,n for n ≥ p, where

Y
(h)
k,n = ehRkY

(h)
k,n−1 +N

(h)
k,n and N

(h)
k,n =

∫ nh

(n−1)h
eRk(nh−u) Res[F,Rk] dL(u)

(cf. Schlemm and Stelzer (2012a), Lemma 5.2). An application of Lemma 3.8 with l = p and
Cr = Φr for r = 1, . . . , p gives

Y
(h)
k,n =

p∑
r=1

ΦrY
(h)
k,n−r +

[
ehpRk −

p∑
r=1

Φre
h(p−r)Rk

]
Y

(h)
k,n−p +

p−1∑
r=0

ehrRk −
r∑
j=1

Φje
h(r−j)Rk

N (h)
k,n−r.
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The fact that e−hRk is a right solvent of Φ(λ) implies that

ehpRk −
p∑
r=1

Φre
h(p−r)Rk = Φ(e−hRk)ephRk = 0d×d, k = 1, . . . , p.

Hence, we obtain

Φ(B)Y
(h)
k,n = Y

(h)
k,n −

p∑
r=1

ΦrY
(h)
k,n−r =

p−1∑
r=0

ehrRk −
r∑
j=1

Φje
h(r−j)Rk

N (h)
k,n−r =: U (h)

n . (3.3)

Define for r = 0, . . . , p− 1 the iid sequence (W
(h)
r,n )n∈Z in Cd as

W (h)
r,n :=

∫ nh

(n−1)h

p∑
k=1

ehrRk −
r∑
j=1

Φje
h(r−j)Rk

 eRk(nh−u) Res[F,Rk]dL(u). (3.4)

Summation over k and rearranging leads to

Φ(B)Y (h)
n = U (h)

n =

p−1∑
r=0

W
(h)
r,n−r, n ≥ p. (3.5)

Since ([W
(h)>
0,n , . . . ,W

(h)>
p−1,n]>)n∈Z is a sequence of iid random vectors, the d-dimensional sequence

(U
(h)
n )n∈Z :=

(∑p−1
r=0 W

(h)
r,n−r

)
n∈Z

is (p− 1)-dependent. Define

ε(h)
n := U (h)

n − PMn−1U
(h)
n , n ∈ Z,

where PMn−1 denotes the orthogonal projection on Mn−1 := sp{U (h)
j : −∞ < j ≤ n − 1} and

the closure is taken in the Hilbert space of square integrable complex random vectors with inner
product (U1, U2) 7→ E(UH

1 U2) for random vectors U1, U2 in Cd. Then Θ1, . . .Θp−1 is given as the
solution of the equation

Psp{ε(h)n−p+1,...,ε
(h)
n−1}

U (h)
n = Θ1ε

(h)
n−1 + . . .+ Θp−1ε

(h)
n−p+1.

As in the proof of Brockwell and Davis (2006), Proposition 3.2.1, for one-dimensional (p − 1)-
dependent processes we can follow then the statement. �

Remark 3.10.
(a) The λ-matrix Ψ(λ) has the complete set of right solvents e−hR1 , . . . , e−hRp but due to

Lemma 2.6, Ψ(λ) has not necessarily the representation as
∏p
k=1(λId − e−hRk). Thus, the

λ-matrix Φ(λ) is not necessarily ψ−1
p

∏p
k=1(λehRk − Id). This differs to the one-dimensional

case where multiplication is commutative and Φ(λ) =
∏p
k=1(λ− e−hrk) where r1, . . . , rp are

the one-dimensional zeros of A(λ). However, Ψ(λ) is the unique λ-matrix with right solvents
e−hR1 , . . . , e−hRp and Ψ(0) = Id.

(b) If σ(A(·)) ⊂ {(−∞, 0) + iR} holds then

σ(Ψ(·)) =

p⋃
k=1

σ(e−hRk) = {e−hλ : λ ∈
p⋃

k=1

σ(Rk)} = {e−hλ : λ ∈ σ(A)},

is outside the closed unit disc. Hence, Ψ(λ) is Schur-stable.

Remark 3.11. Suppose the assumptions of Corollary 3.4 hold such that Y is stationary. Then Φ is
Schur-stable and there exist matrices Kj ∈ Cd×d, j ∈ N, with

Y (h)
n = U (h)

n +
∞∑
j=1

Kn−jU
(h)
j , n ∈ Z. (3.6)
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Finally, (3.5) and (3.6) imply thatMn−1 = sp{Y (h)
j : −∞ < j ≤ n− 1} and

ε(h)
n = U (h)

n − PMn−1U
(h)
n = Y (h)

n − PMn−1Y
(h)
n , n ∈ Z.

This means that the white noise process (ε
(h)
n )n∈Z are the real-valued linear innovations of (Y

(h)
n )n∈Z.

Schlemm and Stelzer (2012a) present sufficient criteria for (ε
(h)
n )n∈Z to be exponentially completely

regular.

Finally, we state the covariance function of the series U (h) := (U
(h)
n )n≥p given in (3.3). The

second-order properties of the series U (h) are of interest for indirect estimation as is done, e.g., in
Fasen-Hartmann and Kimmig (2020) for CARMA processes. The basic idea of the indirect estima-
tion approach is that the VARMA parameters of (Y (nh))n∈N are estimated by standard techniques.
Taking identifiability issues into account the autoregressive parameters of the continuous-time pro-
cess are then estimated from the autoregressive parameters of the discrete-time VARMA process.
Finally, a comparison of the autocorrelation function of U (h) for the estimated and the parametric
model gives the moving average parameters of the MCARMA process.

Identifiability problems may arise because different equidistantly sampled MCARMA processes
may have the same VARMA representation. However, Schlemm and Stelzer (2012b), Section 3.4,
present sufficient criteria for the MCARMA process to be identifiable from its discrete-time obser-
vations and hence, from the VARMA(p, p− 1) parameters in (3.2).

Proposition 3.12. Let (U
(h)
n )n≥p be the d-dimensional time series defined as Φ(B)Y

(h)
n = U

(h)
n , and

(γU(h)(l))l∈N0 = (Cov(U (h)
n+l, U

(h)
n ))l∈N0 denotes the autocovariance function. Then for l = 0, . . . , p−

1:

γU(h)(l) =

p∑
ν=1

ehlRν

p−l−1∑
r=0

p∑
µ=1

(
ehrRν −

r+l∑
j=1

Φje
h(r−j)Rν

)
Σ(h)
ν,µ

(
ehrRµ −

r∑
j=1

Φje
h(r−j)Rµ

)H
 ,

and γU(h)(l) = 0d×d for l ≥ p, where

Σ(h)
ν,µ := Cov

(
N

(h)
ν,1 , N

(h)
µ,1

)
=

∫ h

0
eRνu Res[F,Rν ] ΣL Res[F,Rµ]HeR

H
µu du.

Proof : For lag l ∈ {0, . . . , p− 1} we receive due to (3.4):

γU(h)(l) = Cov
(
W

(h)
0,n+l + . . .+W

(h)
p−1,n+l−p+1,W

(h)
0,n + . . .+W

(h)
p−1,n−p+1

)
=

p−l−1∑
r=0

Cov
(
W

(h)
r+l,n−r,W

(h)
r,n−r

)

=

p−l−1∑
r=0

[
p∑

ν=1

p∑
µ=1

(
eh(r+l)Rν −

r+l∑
j=1

Φje
h(r+l−j)Rν

)

·Cov
(
N

(h)
ν,n−r, N

(h)
µ,n−r

)(
ehrRµ −

r∑
j=1

Φje
h(r−j)Rµ

)H
]
,

where Cov
(
N

(h)
ν,n−r, N

(h)
µ,n−r

)
= Σ

(h)
ν,µ, and finally, the assertion follows. �
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