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Abstract. A Quasi-Stationary Distribution (QSD) for a Markov process with an almost surely
hit absorbing state is a time-invariant initial distribution for the process conditioned on not being
absorbed by any given time. An initial distribution for the process is in the domain of attraction of
some QSD ν if the distribution of the process a time t, conditioned not to be absorbed by time t
converges to ν as t tends to in�nity. We study Brownian motion with constant drift on the half line
[0,∞) absorbed at 0. Previous work by Martínez and San Martín (1994) and Martinez et al. (1998)
identi�es all QSDs and provides a nearly complete characterization for their domains of attraction.
Speci�cally, it was shown that if the distribution a well-de�ned exponential tail (including the case
of lighter than any exponential tail), then it is in the domain of attraction of a QSD determined
by the exponent. In this work we expand the discussion regarding the dependence on the initial
distribution through
(1) Obtaining a new approach to existing results, explaining the direct relation between a QSD

and an initial distribution in its domain of attraction; and
(2) Considering a wide class of heavy-tailed initial distributions, where non-trivial limits are ob-

tained under appropriate scaling.

1. Introduction

Here we review the origin and some well-known results of the study of QSDs. In section 1.1, we
will present the general de�nition of QSD and related theorems. In section 1.2, we will introduce
the speci�c model we work in this paper, and present some previous results on the model.

1.1. De�nitions and General Results. Consider X = (Xt : t ≥ 0), a Markov process on R+ = [0,∞)
with 0 as a unique absorbing state. Let

τ = inf{t ≥ 0 : Xt = 0}.
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We will work under the assumption

Px(τ < ∞) = 1, for all x ∈ R+. (1.1)

The notation Px is a shorthand for the distribution of X with initial distribution, the distribution
of X, equal to the Dirac-delta measure at x.

If π is a stationary distribution for X, then (1.1) guarantees that π = δ0, (Collet et al., 2013
Section 2.2). While this result is not very interesting, the distribution of the process and particularly
of Xt conditioned on {τ > t}, is in general far from trivial. This naturally leads to the following
�conditional� analog for a stationary distribution:

De�nition 1.1. The probability distribution π is a Quasi-Stationary Distribution (QSD) for X if

Pπ(Xt ∈ · | τ > t) = π for all t > 0.

A seemingly more relaxed de�nition, in the spirit of ergodic theorems for Markov Chains, is the
following:

De�nition 1.2. A probability distribution π is a Quasi-Limiting Distribution (QLD) for X if for
some µ,

lim
t→∞

Pµ(Xt ∈ · | τ > t) = π, in distribution, (1.2)

where, as usual, Pπ and Pµ are shorthand for the distribution of X with initial distribution equal
to π or µ, respectively. QLDs corresponding to an initial distributions which are Dirac-delta (or,
more generally, compactly supported initial distributions) are known as Yaglom limits.

Of course, a QSD is a QLD. A partial converse holds under a standard regularity assumption
(the Feller property):

Proposition 1.3. Suppose that for every t > 0 and continuous and bounded function f on (0,∞),
the function x → Ex[f(Xt), τ > t] is continuous. Then every QLD for X is a QSD for X.

For the sake of completeness, we provide a proof in Appendix A.1.

We comment that QLDs are very often de�ned by requiring a pointwise limit rather than limit
in distribution. That is (1.2) in De�nition 1.2 is replaced by

lim
t→∞

Pµ(Xt ∈ A|τ > t) = π(A) for all measurable A ⊆ (0,∞). (1.3)

With this de�nition the conclusion of Proposition 1.3 holds without the additional regularity con-
dition we imposed. See De�nition 1 and Proposition 1 in Méléard and Villemonais (2012).

As in the sequel we will only work with processes satisfying the condition in the proposition, we
always consider QLDs as QSDs. In light of the above, when µ and π are as in De�nition 1.2, we
say that µ is in the domain of attraction of the QSD π. Of course, the domain of attraction of any
QSD contains itself.

Figure 1.1 illustrates the di�erence between the unconditioned process, the process that is required
to be positive only at the given time, and the process that is required to never hit 0 up to the given
time.

Unlike uniqueness of stationary distribution under irreducibility assumptions, QSDs are in general
not unique, and typically a continuum of QSDs exists. Notable exceptions of this are Markov chains
on �nite state spaces (with a unique absorbing state) and certain di�usion processes on bounded
domains absorbed at the boundary. One strategy of �nding QSDs is to study the quasi-limiting
behavior under di�erent initial distributions. When the class of QSDs is known it is natural to ask
what is the domain of attraction of each.
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(a) Sample paths of 1-dimensional Brow-

nian Motion with constant negative drift

−0.02, with �xed initial state X0 = 2000

(b) PDF plot of 1-dimensional Brownian

Motion with same drift and initial state, at

t = 100000. Sample size is 10000. As ex-

pected, X10000 follows a Gaussian distribu-

tion.

(c) Sample paths of same processes, condi-

tioned not to be absorbed by t = 100000

(d) PDF plot of the same sample processes

and same condition. Unlike above, this dis-

tribution has exponential tail. Also, the

density near 0 drops signi�cantly in this set-
ting.

Figure 1.1. Illustration between unconditioned stochastic process and process con-
ditioned not to be absorbed by a given time

The concept of QSD is fairly intuitive and straightforward, as the idea was �rst introduced as
early as Wright (1931), and the terms related to QSD have been crystallized in Bartlett (1957) and
Bartlett (1960). Mathematically, Yaglom (1947) �rst showed an explicit solution to a limiting con-
ditional distribution for the for the subcritical Bienaymé-Galton-Watson branching process. In the
discrete setting there are detailed results for some speci�c models; for example, explicit description
of QSDs are known for certain birth-and-death processes (Collet et al., 2013, Theorem 5.4). As
for uniqueness, a necessary and su�cient conditions for birth-and-death processes were obtained
by van Doorn (1991), and Martínez, San Martín and Villemonais later generalized the result to
countable state processes Martínez et al. (2014). For other discrete state space models, Buiculescu
(1975) studied QSDs for multi-type Galton-Watson processes, and Ferrari and Mari¢ (2007) dis-
cussed QSDs approximated by Fleming-Viot processes. A survey of results provided by van Doorn
and Pollett (2013) gives a comprehensive view of the progress on the discrete space models.

Our work is on Brownian Motion with constant drift, which is one among a few models where
a lot is known explicitly, in part because it is a Gaussian process. Our main object of interest
is the dependence on the initial distribution, and is in continuation to the works of Martínez and
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San Martín (1994) who identi�ed all QSDs for the model, and later identi�ed the domain of attrac-
tion for each QSD in Martinez et al. (1998). Rates of convergence to Yaglom limits are also studied
by Polak and Rolski (2012), and Oçafrain (2020). Another di�usion - notably also a Gaussian pro-
cesses - where explicit results are known is the Ornstein-Uhlenbeck process: Lladser and San Martín
(2000) classi�ed QSDs through their domains of attraction. Ye (2008) identi�ed the Yaglom limit
for fractional-dimensional radial Ornstein-Uhlenbeck processes. As for general theory for di�usion
processes, there has been much work and progress on conditions for existence and uniqueness of
QSDs and on convergence to the Yaglom limit. Here is a partial list of references: Pinsky (1990)
(smooth bounded domains with absorption on the boundary), Cattiaux et al. (2009), Steinsaltz and
Evans (2007), Kolb and Steinsaltz (2012), and Hening and Kolb (2019) (uniqueness and convergence
for one dimensional di�usions) and Champagnat and Villemonais (2017) (rates of convergence for
one-dimensional di�usions).

We close this section with the well-known properties related to QSDs and QLDs.

Theorem 1.4. (Collet et al., 2013, Theorem 2.2) Suppose that π is a QSD. Then under Pπ, τ is
exponentially distributed with parameter λπ > 0.

Proposition 1.5. Let the assumption of Proposition 1.3 hold. Let µ is in the domain of attraction
of the QSD π. Then for every ϵ > 0,

Pµ(τ > t) = o(e−(λπ−ϵ)t),

where λπ is as in Theorem 1.4.

We give an elementary proof in Appendix A.2. See also Proposition 5 in Méléard and Villemonais
(2012) for a sharper result under slightly stronger assumptions.

1.2. Quasi Stationarity for Drifted BM. In this section and the sequel we will work under the
following:

Assumption 1.6. X is Brownian Motion (BM) with constant negative drift −α, α > 0, on R+

absorbed at 0.

Analytically, BM with constant drift −α on R+ absorbed at 0 is the sub-Markovian process
generated by Lα, which for each u satisfying u ∈ C2(R+) and u(0) = 0,

Lαu =
1

2
u′′ − αu′.

The works by Martínez and San Martín (1994) and Martinez et al. (1998) studied QSDs for this
class of models. The formal derivation for densities of the QSDs, as presented in their main results,
will be given in Appendix A.3.

Theorem 1.7. (Martínez and San Martín, 1994, Proposition 1) Every QSD for X is of the form
πγ for some γ ∈ [0, α).

Theorem 1.8. (Martinez et al., 1998, Theorem 1.3) The probability measure µ is in the domain of
attraction of π0 if

lim inf
x→∞

lnµ([x,∞))

x
≤ −α.

Theorem 1.9. (Martinez et al., 1998, Theorem 1.1) Let ρ ∈ (0, α). The probability measure µ is
in the domain of attraction of πα−ρ if

lim
x→∞

lnµ([x,∞))

x
= −ρ.

We note the following:
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(1) Theorem 1.9 was proved under the assumption that µ has a smooth density.
(2) The limit condition in Theorem 1.9 is not merely technical. The authors constructed an

example (Martinez et al., 1998, Theorem 1.4) with initial distribution with tail which alter-
nates between two exponential decay rates and which is not in the domain of attraction of
any QSDs. We comment that the method we develop in this paper can provide a simpler
construction of such initial distribution.

1.3. Organization. We present our main results in Section 2, split according to the tail of the initial
distribution, considering initial distributions in the domain of attraction on QSDs in Section 2.1 and
heavy tails in Section 2.2. Our proofs are given split across three sections: In Section 3, we present
some general tools we will use. In Section 4 we prove the results from Section 2.1. In Section 5 we
prove the results from Section 2.2, along with some concrete examples in Section 5.4.

2. Main Results

In this section we will state our main results, by �rst proposing a principle which we think can
help the readers to envision the general classi�cation of quasi-limiting behavior, and then provide
the theorems based on the principle. We recall that we are working under Assumption 1.6.

Our goals are twofold:

(1) Develop a method that would yield alternate proof to Theorems 1.8 and 1.9, which can be
generalized to other models, as well as leading to complete characterization of the domain
of attraction of every QSD. Our results are presented in Section 2.1.

(2) Characterize the asymptotic behavior when the initial distribution has tails which are heavier
than exponential. It is not hard to show, see Lemma 2.5, that this class of initial distributions
is not in the domain of attraction of any QSD. Our results are presented in Section 2.2.

2.1. Domain of Attraction of QSDs. As at its core, the concept of quasi-stationarity concerns con-
ditional probabilities under events with diminishing probabilities, namely the events {τ > t}. It is
therefore natural to study the rate at their probabilities, Pµ(τ > t), tend to zero. One of the nice
properties of our model is that through Girsanov theorem and the re�ection principle (or formulas
for Brownian bridges) a closed form formula for these probabilities is readily available. We have:

Proposition 2.1.

Pµ(Xt ∈ dy, τ > t) =
1√
2πt

∫
exp

(
αx− α2t

2
− αy

)(
e−

(x−y)2

2t − e−
(x+y)2

2t

)
dµ(x). (2.1)

Our approach to the problem is to obtain for each initial distribution µ a family of probability
measures (νt : t ≥ 0), such that

Principle 2.2.

lim
t→∞

νt = δγ =⇒ lim
t→∞

Pµ(Xt ∈ · | τ > t) = πγ (2.2)

The measure νt is de�ned through its cumulative distribution function Fνt :

Fνt(z) = Ct

∫
[0,zt]

e−x2/(2t)eαxdµ(x) (2.3)

where Ct is the normalization constant. Table 2.1 is the summary of our result; it shows the relation
between µ, νt and the QLD of µ.

The key idea in the method is to �decouple� the initial distribution from the asymptotic distribu-
tion, then identifying the relevant QSD as a member of a one-parameter family selected according
to the value of γ. Indeed, in our model, observe that the mapping γ → πγ , γ ∈ [0, α) as given in
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ρ lim νt QLD (= QSD) Example distributions

ρ ≥ α δ0
π0

(Theorem 2.3)
Half-normal distribution

Delta distribution

α > ρ > 0 δα−ρ
πα−ρ

(Theorem 2.4)
Exponential distribution

with rate λ < α

ρ = 0 δα

QLD does not exist:
scaling is necessary.
See Section 2.2
and Table 2.2

Pareto distribution
Half-Cauchy distribution

Table 2.1. Domain of attraction classi�ed by parameter ρ = lim
x→∞

− lnµ([x,∞))

x

(A.11) is an explicit function, with the case γ = 0 is merely a removable singularity and is de�ned
as limγ→0+ πγ .

We believe that this method has a number of advantages:

(1) It is more intuitive, simpler and elementary than the previous approach. It lets us understand
how the initial distribution actually evolves over time, and at a speci�c time, which part
of the initial distribution have evolved to consist the absolute majority of the process not
absorbed.

(2) The method allows for expanded characterization of the domain of attraction of QSDs.
(3) Our approach simpli�es the analysis for the case of a distribution with alternating expo-

nential tails, given in Martinez et al. (1998), and opens the possibility of studying general
compound-tail distributions.

We expect this method to be applicable to other models and we hope it can be adopted as a general
framework for classifying domain of attraction of QSDs.

Our Principle 2.2 will be employed in two ways. We �rst observe that

lim
t→∞

νt =

{
δ0 ⇐⇒ lim supx→∞− lnµ([x,∞))

x ≥ α

δα−ρ ⇐⇒ limx→∞− lnµ([x,∞))
x = ρ < α

. (2.4)

Through application of the approach outlined above we obtain the following results:

Theorem 2.3. Suppose µ satis�es the following assumption.

ρ := lim inf
x→∞

− lnµ([x,∞))

x
≥ α. (2.5)

Then

Pµ(Xt ∈ ·|τ > t) → π0.

Theorem 2.4. Suppose µ satis�es the following assumption,

ρ := lim
x→∞

− lnµ([x,∞))

x
∈ (0, α) (2.6)
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and let the sequence of measure (νt : t ≥ 0) de�ned as (2.3). Then

lim
t→∞

νt = δα−ρ (2.7)

and moreover,

lim
t→∞

Pµ(Xt ∈ · | τ > t) = πα−ρ. (2.8)

We will refer to µ satisfying (2.5) as possessing �Critical and Super-critical� tails (with critical
being an equality), and will prove Theorem 2.3 in Section 4.1. We will refer to µ that satis�es (2.6)
as possessing �Sub-critical Exponential" tails and will prove Theorem 2.4 in Section 4.2.

2.2. Heavy Tails. A natural question to ask from Martinez et al. (1998) would be the following:
what happens if the initial distribution is too heavy to be in the domain of attraction of any QSDs?
A �rst step in this direction is to look for such initial distributions. In light of Theorems 1.8 and
1.9, the following is not surprising:

Lemma 2.5. Suppose

lim
x→∞

lnµ([x,∞))

x
= 0.

Then Pµ(τ > t) does not decay exponentially. As a consequence (Pµ(Xt ∈ · | τ > t) : t ≥ 0) is not
tight.

Thus, in order to obtain a non-trivial limit, one has to scale Xt as t → ∞. As we will see, the
scaling itself depends on µ. We comment that all of the cases covered in this section correspond to
νt → δα in (2.2).

The next step is to study long-time behavior under such heavier-tailed distributions, and this
is the main topic of this part of the project. In order to do so, we mainly rely on the theory of
regularly varying functions (Bingham et al., 1989).

Assumption 2.6. Suppose µ is a probability measure satisfying the following:

(1) µ([x,∞)) = e−F (x), with F smoothly varying (Bingham et al., 1989, Section 1.8) with index
parameter β < 1/2.

(2) There exists a positive function R(x, c) on R+ × R+ increasing in c, such that for all c > 0

lim
x→∞

F (x+R(x, c))− F (x) = c. (2.9)

Some comments are in order:

(1) Probability measures with regularly varying tails falls into the category β = 0. Some
distinguished cases are the Weibull distribution with 0 < k < 1, which has a uniform decay
rate with β = k, and the Pareto and Cauchy distributions, both having uniform decay rate
with β = 0.

(2) If F is smooth enough, then

R(x, c) =
c

F ′(x)
. (2.10)

So when β ̸= 0, R(x, c) is a regular varying function with index φ = 1− β.
(3) When β = 0 it is more natural to replace the identity function on the right-hand side of

(2.9) with a strictly increasing continuous and nonnegative function H satisfying H(0) = 0.

The main principle we developed to obtain results under Assumption 2.6 is the following.

Principle 2.7.

Assumption 2.6 ⇒ lim
t→∞

Pµ (Xt > R(t, c) | τ > t) = e−c (2.11)
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We note that the assumption β < 1 is vital for this to work, as otherwise the conclusion contradicts
the results of previous sections. This is due to the fact that β = 1 is the critical border where the
relation between the survival rate Pµ(τ > t) and the initial distribution µ changes. Also, although
Lemma 2.5 applies whenever 0 ≤ β < 1, Principle 2.7 only applies to 0 < β < 1/2. The remaining
half 1/2 ≤ β < 1 is left as an open problem; there is a di�culty in estimating the distribution of
the surviving processes in these cases. (See Proposition 5.2 and (5.12)) The following theorem is
the key result from the above principle.

Theorem 2.8. Suppose µ([x,∞)) = exp(−F (x)) where F (x) is strictly increasing smoothly varying
function with index β < 0.5. Then

lim
t→∞

Pµ

(
Xt >

c

F ′(αt)

∣∣∣∣ τ > t

)
= e−c. (2.12)

Table 2.2 summarizes our results by showing how β relates to some of the well-known distributions,
and how they lead to quasi-limiting behavior of such initial distribution. The table also lists a
number of concrete cases, all presented in Section 5.4.

Throughout the rest of the paper, we will be using some asymptotic notations; f(t) ∼ g(t) if

lim
t→∞

f(t)

g(t)
∈ (0,∞), and f(t) ≪ g(t) if lim

t→∞

f(t)

g(t)
= 0.

β Related result Example distributions

β > 1 Theorem 2.3

Half-normal distribution
Compactly supported distributions

Weibull distribution with
shape parameter k > 1

β = 1
ρ = limx→∞− lnµ([x,∞))

x
Theorem 2.3 if ρ ≥ α
Theorem 2.4 if ρ < α

Exponential distribution
Erlang distribution

1
2 ≤ β < 1 Unknown

Weibull distribution with
shape parameter 1

2 ≤ k < 1

0 < β < 1
2 Theorem 2.8

Weibull distribution with
shape parameter k < 1

2 , Example 5.5

β = 0
µ([x,∞)) is RV with index −κ:

Corollary 5.6 if κ ̸= 0
Corollary 5.8 if κ = 0

Pareto distribution
Half-Cauchy distribution, Example 5.7

Log-Cauchy distribution

Table 2.2. Distributions classi�ed by index parameter β of F (x) = − lnµ([x,∞))
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3. Proofs: Base Formula

In this section, we prove Proposition 2.1, which is the master formula we use throughout this
paper. We will also further explain the intuition behind the sequence of new measure νt. Finally,
we will introduce the variations of Sche�e's lemma (Sche�é, 1947), which is one of the tool for
Chapter 4.

3.1. Conditional transition density. When Xt is a drifted Brownian Motion with negative drift α,
(such that Xt + αt is a standard BM Bt)

Px(Xt ∈ dy) = exp

(
αx− α2t

2
+ αy

)
Px(Bt ∈ dy). (3.1)

We also want to enforce the condition τ > t, where τ is the hitting time at 0. We can apply the
re�ection principle to compute Px(Xt ∈ dv, τ > t).

Px(Xt ∈ dy, τ > t) = exp

(
αx− α2t

2
+ αy

)
Px(Bt ∈ dy, τ > t)

= exp

(
αx− α2t

2
+ αy

)
1√
2πt

(
e−

(x−y)2

2t − e−
(x+y)2

2t

)
︸ ︷︷ ︸

=f(t,x,y)

.
(3.2)

Integrating f(t, x, y) with respect to µ gives (2.1). Furthermore, we can get the survival rate from
the above formula as well:

Pµ(τ > t) =

∫ ∞

0

∫ ∞

0
µ(x)f(t, x, y)dydx. (3.3)

We wrap this section with the principle behind �nding the family of probability measures
(νt : t ≥ 0) in (2.2). From (3.3),

Pµ(τ > t) =

∫ ∞

0

∫ ∞

0
µ(x) exp

(
αx− α2t

2
+ αy

)
1√
2πt

(
e−

(x−y)2

2t − e−
(x+y)2

2t

)
dydx

=
e−

α2t
2

√
2πt

(∫ ∞

0
µ(x)e−

x2

2t eαx
∫ ∞

0
e−

y2

2t e−αy
(
e

xy
t − e−

xy
t

)
dydx

)
.

(3.4)

We substitute z = tx,

(3.4) =
e−

α2t
2 t√
2πt

(∫ ∞

0
µ(tz)e−

tz2

2 eαtz
∫ ∞

0
e−

y2

2t e−αy
(
etz − e−tz

)
dydz

)
. (3.5)

For convenience, we will use x instead of z for (3.5) in later parts.

From the above equations, the natural construction of νt would come from the terms that consist

the outer integral. Indeed, we will use νt(x) = µ(tx)e−
tx2

2 eαtx in Section 4.2. In Section 4.1, (3.4)
will be used with some modi�cation.

3.2. Sche�e's Lemma. From (2.1) and (3.3), we can consider the conditional density

Pµ(Xt ∈ dy | τ > t) =
Pµ(Xt ∈ dy, τ > t)

Pµ(τ > t)

=

∫∞
0 µ(x)f(t, x, y)dx∫∞

0

∫∞
0 µ(x)f(t, x, y)dydx

.

(3.6)
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When t is �xed, this is clearly a probability density which we will call µt(y). In order to prove
convergence of the probability distributions, we will use the following version of Sche�e's Lemma
(Williams, 1991, p. 55):

Lemma 3.1. Suppose that fn, f are probability densities on R+ satisfying lim inf fn ≥ f , a.e. Then∫
A fn(x)dx →

∫
A f(x)dx for any A.

Proof : Let dmn = fndx, and dm∞ = fdx. By Fatou's lemma, for every A,

lim infmn(A) ≥ m∞(A). (3.7)

Now
1− lim supmn(A) = lim inf(1−mn(A)) = lim infmn(A

c).

Thus, by (3.7) applied to Ac,

1− lim supmn(A) = lim infmn(A
c) ≥ m∞(Ac) = 1−m∞(A).

In other words lim supmn(A) ≤ m∞(A) and the �rst statement follows. □

4. Proofs: Exponential or Lighter Tails

4.1. Proof of Theorem 2.3 (Critical and Super-critical Tails). Throughout this section we will as-
sume that (2.5) holds.

De�ne

f(t, x, y) = ye−αye−
y2

2t
sinh(xy)

xy
and

h(t, x) =

∫ ∞

0
f(t, x, y)dy

and let

h(x) = lim
t→∞

h(t, x) =

∫ ∞

0
e−αy sinh(xy)

x
dy.

Note that h(x) is increasing,

h(0) := lim
x↘0

h(x) =

∫ ∞

0
ye−αydy =

1

α2

and h(x) = ∞ if and only if x ≥ α.

For every t, we de�ne two measures on [0,∞):

dγ(x) = xeαxdµ(x)

dνt(x) = e−
x2

2t dγ(x)
(4.1)

By assumption, there exists a function δ(x) → 0 such that

γ([0, x]) ≤ eδ(x)x

without loss of generality, we may also assume δ is decreasing.

Observe that

P (Xt ∈ dy|τ > t) =

∫
f(t, x/t, y)dνt(x)∫
h(t, x/t)dνt(x)

. (4.2)

We will now prove the theorem through the application of Lemma 3.1, where

ft(v) =

∫
f(t, x/t, y)dνt(x)∫
h(t, x/t)dνt(x)

and f(v) = α2ye−αy.
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Proof of Theorem 2.3: Let ϵ ∈ (0, 1) and let ηt = ϵαt. We begin by analyzing the behavior of the
denominator in the right-hand side of (4.2).

Observe that h(t, y) is bounded on [0,M ]× R+ and increases as t → ∞ to

h(x) =

∫ ∞

0
ye−αy sinh(xy)

xy
dy.

As a result, the convergence is uniform. From this it follows that

lim sup
t→∞

∫
[0,ηt]

h(t, x/t)dνt(x)

νt([0, ηt])
≤ h(ϵα). (4.3)

We turn to evaluation of the interval on [ηt, 0.9αt]. Since here
x

t
≤ 0.9α < α, h

(
t, xt
)
is uniformly

bounded by a constant depending only on α. Below C denotes a positive constant depending only
on α, ϵ, and whose value may change from line to line.

Integrating by parts,∫
[ηt,0.9αt]

h
(
t,
x

t

)
dνt(x) ≤ C

1

t

∫
[ηt,0.9αt]

xe−
x2

2t γ([ηt, x])dx.

Changing variables to z =
x√
t
, the last expression becomes∫

√
tα[ϵ,0.9]

ze−
z2

2 γ([ηt,
√
tz])dz.

Now

γ([ηt,
√
tz]) ≤ γ([0,

√
tz]) ≤ γ([0, ηt])e

δ(ηt)(
√
tz−

√
tϵ) ≤ γ([0, ηt])e

δ(ηt)
√
tz.

Putting this back in the integral gives an upper bound of the form

γ([0, ηt])

∫
√
tα[ϵ,0.9]

ze−
z2

2 eδ(ηt)
√
tzdz.

Since δ(ηt) → 0 as t → ∞, for all t large enough, we have

δ(ηt) ≤ min

(
α2ϵ2

4
, αϵ

)
. (4.4)

To obtain an upper bound on the integral, observe that as a function of z,

−z2

2
+ δ(ηt)

√
tz = −z

2
(z − 2δ(

√
t))

is decreasing on [δ(ηt)
√
t,∞), and by (4.4), if z >

ηt√
t
= ϵα

√
t, then z > δ(ηt)

√
t.

Therefore we have

−z2

2
+ δ(ηt)

√
tz ≤ −(ηt/

√
t)2

2
+ δ(ηt)

√
t

(
ηt√
t

)
≤ −α2ϵ2t

2
+

α2ϵ2t

4

= −(αϵ)2t

4
.

(4.5)
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Thus, ∫
[ηt,0.9αt]

h
(
t,
x

t

)
dνt(x) ≤ Ce−

(αϵ)2t
4 t

3
2γ([0, ηt])

≤ Ce

(
− (αϵ)2

4
+δ(ηt)ϵα

)
t
t
3
2 → 0.

(4.6)

Next we consider the behavior over the interval [0.9αt,∞). Observe that

h(t, x) ≤
√
2πt

x
E
[
e(x−α)

√
tZ
]

where Z is standard Gaussian, and therefore

h
(
t,
x

t

)
≤

√
2πt

x/t
e

x2

2t e
α2t
2 e−αx.

Hence ∫
[0.9αt,∞)

h
(
t,
x

t

)
dνt(x) ≤

√
2πt3e

α2t
2

∫
[0.9αt,∞)

dµ(x).

But µ([0.9αt,∞)) = e−0.9α2t(1+o(1)), and as a result∫
[0.9αt,∞)

h
(
t,
x

t

)
dνt(x) → 0. (4.7)

Since lim inft→∞ νt([0, ηt]) > 0, it follows from (4.3), (4.6) and (4.7), that

lim sup
t→∞

∫
h(t, x/t)dνt(x)

νt([0, ηt])
≤ h(ϵα). (4.8)

Repeating the argument leading to that gave (4.3) mutatis mutandis, we obtain

lim inf
t→∞

∫
[0,ηt]

f(t, x/t, y)dνt(x)

νt([0, ηt])
≥ ye−αy inf

x≤ϵα

sinh(xy)

xy

= ye−αy.

(4.9)

It therefore follows from (4.8) and (4.9), that

lim inf
t→∞

∫
f(t, x/t, y)dνt(x)∫
h(t, x/t)dνt(x)

≥ ye−αy

h(ϵα)

and this holds for every ϵ ∈ (0, 0.9).

Therefore since limϵ→0 h(ϵα) =
∫∞
0 ye−αydy, we obtain

lim inf
t→∞

∫
f(t, x/t, y)dνt(x)∫
h(t, x/t)dνt(x)

≥ ye−αy∫∞
0 ye−αydy

and the result follows from Lemma 3.1. □
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4.2. Proof of Theorem 2.4 (Sub-critical Tails). Throughout this section, we assume that (2.6) holds.
We �rst split (3.4) into three parts.

Pµ(τ > t) =
e−

α2t
2

√
2πt

(∫ M

0
e−

x2

2t eαxh
(
t,
x

t

)
dµ(x)︸ ︷︷ ︸

=J3(t)

+

∫ st

M
e−

x2

2t eαxh
(
t,
x

t

)
dµ(x)︸ ︷︷ ︸

=J1(t)

+

∫ ∞

st
e−

x2

2t eαxh
(
t,
x

t

)
dµ(x)︸ ︷︷ ︸

=J2(t)

) (4.10)

Where h(t, x) =

∫ ∞

0
e−

y2

2t e−αy sinh(xy)dy.

Here, M is chosen such that we have the following inequality

e−(ρ+ϵ)x

ρ+ ϵ
≤ µ([x,∞))

c
≤ e−(ρ−ϵ)x

ρ− ϵ
(4.11)

for each x > M and some arbitrary ϵ > 0 (c is the normalizing constant of µ). Also, we choose s
such that s = α− η for some α > η > 0 that depend on µ. Finally, since we are only interested in
the limiting behavior with respect to t, we write M < st which is always true for large enough t.

Proposition 4.1. Under assumption (2.6)

Pµ(τ > t) ∼ e−
α2t
2

√
2πt

J1(t)

∼ ce−
(2αρ−ρ2)t

2

(
1

ρ
− 1

2α− ρ

) (4.12)

where c is the constant in (4.11) which only depend on µ.

Proof : We �rst look at the region for J1(t). In this interval we have the following.

J1(t) =

∫ st

M
e−x2/(2t)eαxh

(
t,
x

t

)
dµ(x)

= t

∫ s

M/t
e−tx2/2eαtxh(t, x)dµ(tx).

(4.13)

Some observations on h(t, x) :

(1) h(t, x) is bounded in R+ × [0, s] since s < α.

(2) h(x) = lim
t→∞

h(t, x) =
1

α− x
− 1

α+ x
by dominated convergence theorem. Moreover, h(x) is

also bounded in [0, s].

We introduce a new sequence of measures (ν+t , ν
−
t , t ≥ 0) de�ned as

dν+t (x) = e−
tx2

2 eαtxe−(ρ−ϵ)tx =

√
2π

t
e

(α−ρ+ϵ)2t
2

√
t

2π
e−

t(x−(α−ρ+ϵ))2

2

dν−t (x) = e−
tx2

2 eαtxe−(ρ+ϵ)tx =

√
2π

t
e

(α−ρ−ϵ)2t
2

√
t

2π
e−

t(x−(α−ρ−ϵ))2

2 .

(4.14)
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For both cases notice that the latter part is a Gaussian density with mean α− ρ± ϵ and variance
1/t, therefore we have the following convergence of measure:

ν+t ⇀

√
2π

t
e

(α−ρ+ϵ)2t
2 δα−ρ+ϵ

ν−t ⇀

√
2π

t
e

(α−ρ−ϵ)2t
2 δα−ρ−ϵ.

(4.15)

Therefore,

lim sup
t→∞

J1(t) = lim sup
t→∞

c
√
2πt

∫ s

M/t
h(t, x)dν+t (x)

= c
√
2πte

(α−ρ+ϵ)2t
2

(
1

ρ− ϵ
− 1

2α− ρ+ ϵ

) (4.16)

lim inf
t→∞

J1(t) = lim inf
t→∞

c
√
2πt

∫ s

M/t
h(t, x)dν−t (x)

= c
√
2πte

(α−ρ−ϵ)2t
2

(
1

ρ+ ϵ
− 1

2α− ρ− ϵ

) (4.17)

and since ϵ is arbitrary, we conclude that

J1(t) ∼ c
√
2πte

(α−ρ)2t
2

(
1

ρ
− 1

2α− ρ

)
. (4.18)

For the second interval x ∈ (st,∞) we �rst study some bound for h(t, x/t). We start from the
obvious

h
(
t,
x

t

)
≤
∫ ∞

0
exp

(
−y2

2t
+ αy +

xy

t

)
. (4.19)

We can rewrite the exponent as

− y

2
√
t

(
y√
t
+ 2α

√
t− 2x√

t

)
= −1

2

y√
t

(
y√
t
+ 2φ

)
= −1

2
(w − φ)(w + φ),

(4.20)

where φ =

(√
tα− x√

t

)
, and w =

y√
t
+ φ. Therefore, after changing variables y → w, we obtain

h(t, x) ≤
√
te

φ2

2

∫ ∞

φ
e−

w2

2 dw

=
√
te

α2t
2 e

x2

2t e−αxL

(√
tα− x√

t

)
,

(4.21)

where L(z) =

∫ ∞

z
e−

w2

2 dw.

L has some nice properties:

(1) L(z) is strictly decreasing and bounded above by
√
2π.

(2) When z is negative, L(z) <
√
2π.

(3) When z is positive,

L(z) ≤ min
(e− z2

2

z
,

√
π

2

)
. (4.22)
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(4) More speci�cally, if z ≥ 1 then

L(z) ≤ e−
z2

2 . (4.23)

Using the bound above we get the following.

J2(t) ≤
√
t

∫ ∞

st
e

α2t
2 L

(√
tα− x√

t

)
dµ(x)

≤ c
√
2πte

α2t
2 e−ρst

= c
√
2πte

t
(

α2

2
−ρ(α−η)

)
.

(4.24)

We want J2(t) = o(J1(t)) = o

(√
te

(α−ρ)2t
2

)
. Indeed, if we pick η = ρ/4,

(α− ρ)2

2
−
(
α2

2
− γ(α− η)

)
=

ρ2

2
− ρη

=
ρ2

4
> 0

(4.25)

therefore we get the desired asymptotic.

For the last interval x ∈ [0,M ], we use the fact that for any ϵ > 0, we can �x t0 such that for
each t > t0, M/

√
t < ϵ. And for such t, we have

J3(t) =

∫ M

0
e−

x2

2t eαx
∫ ∞

0
e−

y2

2t e−αy sinh
(xy

t

)
dydµ(x)

≤
√
te

α2t
2

∫ M

0
µ(x)L

(√
tα− x√

t

)
dµ(x).

(4.26)

And since L is decreasing,

(4.26) ≤
√
te

α2t
2

∫ M

0
L
(√

tα− ϵ
)
dµ(x). (4.27)

Finally using (4.23) and that µ is a probability measure,

(4.27) ≤
√
t

∫ M

0
eαϵ

√
te−

ϵ2

2 dµ(x)

≤
√
teαϵ

√
t− ϵ2

2

= o

(√
te

(α−ρ)2t
2

)
= o(J1(t)).

(4.28)

□

We now turn to computing the limiting density.

Pµ(Xt ∈ dy, τ > t) =
e−

α2t
2

√
2πt

(∫ ∞

0
e−

x2

2t eαxe−
y2

2t e−αy sinh
(xy

t

)
︸ ︷︷ ︸

=g(x,y,t)

dµ(x)
)

=
e−

α2t
2

√
2πt

(∫ M

0
g(x, y, t)dµ(x)︸ ︷︷ ︸
=K3(t,y)

+

∫ st

M
g(x, y, t)dµ(x)︸ ︷︷ ︸
=K1(t,y)

+

∫ ∞

st
g(x, y, t)dµ(x)︸ ︷︷ ︸
=K2(t,y)

)

(4.29)
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where M, s are the same as (4.10).

Proposition 4.2. Under assumption (2.6),

Pµ(Xt ∈ dy, τ > t) ∼ e−
α2t
2

√
2πt

K1(t, y)

∼ ce−
(2αρ−ρ2)t

2 e−αy sinh((α− ρ)y)

(4.30)

where c is the constant in (4.11) which only depends on µ.

Proof : Using similar estimation method and sequence of measures (ν+t , ν
−
t , t ≥ 0) as before, we can

see that for each y ∈ R+

lim sup
t→∞

K1(t, y) = lim sup
t→∞

c
√
2πt

∫ s

M/t
e−

y2

2t e−αy sinh(xy)dν+t (x)

= c
√
2πte

(α−ρ+ϵ)2t
2 e−αy sinh((α− ρ+ ϵ)y)

(4.31)

lim inf
t→∞

K1(t, y) = lim inf
t→∞

c
√
2πt

∫ s

M/t
e−

y2

2t e−αy sinh(xy)dν−t (x)

= c
√
2πte

(α−ρ−ϵ)2t
2 e−αy sinh((α− ρ− ϵ)y)

(4.32)

and therefore

K1(t, y) ∼ c
√
2πte

(α−ρ)2t
2 e−αy sinh((α− ρ)y). (4.33)

For K2(t, y) we use the upper bound in (4.11) to get the following estimate,

K2(t, y) ≤ e−
y2

2t e−αy

∫ ∞

st
e−

x2

2t e(α−ρ+ϵ)xe
xy
t dx

=
√
te

(α−ρ+ϵ)2t
2 e(−ρ+ϵ)yL

(√
ts−

√
t(α− ρ+ ϵ)− y√

t

)
.

(4.34)

Since s − (α − ρ + ϵ) > 0 for small enough ϵ, the argument for L above is strictly positive and
increasing. Therefore by (4.23),

(4.34) ≤
√
te

(α−ρ)2t
2 exp

(
−(s− (α− ρ))2t

2
+ (2(α− ρ)− s)ϵt

)
e(s−α+2ϵ)y. (4.35)

Again, s − (α − ρ) > 0 and ϵ is arbitrarily small so the middle term above is exponentially
decaying. We conclude that

(4.35) = o

(√
te

(α−ρ)2t
2

)
= o(K1(t, y)). (4.36)

Finally for K3(t, y) we can directly apply the dominated convergence theorem.

K3(t, y) ∼
∫ M

0
eαxe−αy sinh(0)dµ(x)

= o(1) = o(K1(t, y)).

(4.37)

□

We can now prove Theorem 2.4.

Proof of Theorem 2.4: The fact that ϵ is arbitrarily small in (4.15) proves the �rst part of the
theorem. The second part follows from Proposition 4.1, Proposition 4.2 and Lemma 3.1. □
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5. Proofs: Heavy Tails

In Section 5.1 we will prove Lemma 2.5 to see that adequate scaling is necessary to obtain a
non-trivial quasi-limiting behavior. In Section 5.2 we obtain the scaling by estimating the tail
distribution of the surviving process, Proposition 5.2. In Section 5.3 we will use this to prove
Theorem 2.8. Finally, in Section 5.4 we present a number of concrete applications to Theorem 2.8.

5.1. Proof of Lemma 2.5.

Proof : Pick b > 0 such that sinh(αb) >
1

4
eαb then by Proposition 2.1 we have:

Pµ(τ > t) ≥ Pµ(X0 > αt,Xt > b, τ > t)

=
e−

α2t
2 t√
2πt

∫ ∞

α
µ(tx)e−

tx2

2 eαtx
∫ ∞

b
e−

y2

2t e−αy(exy − e−xy)dydx

≥ e−
α2t
2 t

4
√
2πt

∫ ∞

α
µ(tx)e−

tx2

2 eαtx
∫ ∞

b
e−

y2

2t e−αyexydydx

=
t

4
√
2π

∫ ∞

α
µ(tx)L

(
b√
t
+
√
t(α− x)

)
dx

≥ 1

8
µ([tα,∞)).

This implies that Pµ(τ > t) is at least as heavy as the tail distribution of µ. By Proposition 1.5,
any initial distribution µ that has heavier-than-exponential tail distribution cannot converge to a
QSD. □

5.2. Distribution of the surviving processes. The method we develop here works for a large class of
distributions µ, yet both scaling and limit distributions may depend on the choice of µ.

Recall that we work under the Assumption 2.6. We can write the density of µ as follows,

If β > 0 then µ(x) = F ′(x) exp(−F (x)) = F ′(x)µ([x,∞)). (5.1)

Note that by (Bingham et al., 1989, Proposition 1.8.1) , F ′(x) is smooth varying with index β−1.

We turn to the tail distribution. By the above assumption, µ has a continuous density, which we
also denote by µ.

Pµ(Xt > at, τ > t) =
e−

α2t
2

√
2πt

(∫ ∞

0
e−

x2

2t eαx
∫ ∞

at

e−
y2

2t e−αy
(
e

xy
t − e−

xy
t

)
dydµ(x)

)

=
e−

α2t
2 t√
2πt

∫ ∞

0
µ(tx)e−

tx2

2 eαtx
∫ ∞

at

e−
y2

2t e−αy(exy − e−xy)dydx

=
t√
2π

(∫ ∞

0
µ(tx)L

(
at√
t
+
√
tα−

√
tx

)
dx︸ ︷︷ ︸

=J1(t)

−
∫ ∞

0
µ(tx)e2αtxL

(
at√
t
+
√
tα+

√
tx

)
dx︸ ︷︷ ︸

=J2(t)

)
.

(5.2)
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We �rst notice that from the second term J2,

e2αtxL

(
at√
t
+
√
tα+

√
tx

)
dx ≤ e2αtx

e−
a2t /t+tα2+tx2+2atα+2atx+2αtx

2

at/
√
t+

√
tα+

√
tx

=
e−

t(α−x)2

2 e−a2t /(2t)e−at(α+x)

at/
√
t+

√
tα+

√
tx

.

(5.3)

If at ≫ ϵ
√
t then the term e−a2t /(2t) will let J2 decay faster (in exponential sense) than µ(tx).

In fact, unless at = o(
√
t) and x ∈ (α − t−1/2+ϵ, α + t−1/2+ϵ), J2 decays exponentially faster than

µ(tx).

Furthermore, when we de�ne J1,A(t), J2,A(t) to be integrated over some sub-interval A of R+

instead of the entire R+ as follows:

J1,A(t) =

∫
A
µ(tx)L

(
at√
t
+
√
tα−

√
tx

)
︸ ︷︷ ︸

=f(t,x)

dx

J2,A(t) =

∫
A
µ(tx)e2αtxL

(
at√
t
+
√
tα+

√
tx

)
dx

(5.4)

since Pµ(X0 ∈ ·, Xt ∈ ·, τ > t) ≥ 0 always, we can claim that J2,A = O(J1,A) on the same sub-
interval A ∈ R+.

For the �rst term J1, we split the integration.

J1(t) =

∫ α+at/t−ηt

0
f(t, x)dx︸ ︷︷ ︸

=J1,1(t)

+

∫ α+at/t+ϵt

α+at/t−ηt

f(t, x)dx︸ ︷︷ ︸
=J1,2(t)

+

∫ ∞

α+at/t+ϵt

f(t, x)dx︸ ︷︷ ︸
=J1,3(t)

(5.5)

where ηt, ϵt is to be picked depending on µ.

The goal now is to get an accurate asymptotic on the survival rate.

Proposition 5.1. Suppose µ satis�es Assumption 2.6. Then for any ηt ≫ tβ−1,

log J1,1(t) ≪ logµ([tα+ at,∞)). (5.6)

Proof : Suppose ηt ≫ t
β−1
2 . Then we have the following estimate

J1,1(t) ≤ L(
√
tηt)

∫ α+at/t−ηt

0
µ(tx)dx

≤ L(
√
tηt)

≤ exp

(
− t(ηt)

2

2

)
≪ exp

(
t−β

2

)
∼ µ([tα+ at,∞)).

(5.7)

Now suppose t
β−1
2 ≫ ηt ≫ tβ−1. Pick t(β−1)/2 ≪ η1t = tr1 such that by (5.7),∫ α+at/t−η1t

0
µ(tx)L

(√
tα+

at√
t
−
√
tx

)
dx︸ ︷︷ ︸

=J1,1,1(t)

≪ µ([tα+ at,∞)).
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Now we want to pick tr2 = η2t ≪ η1t such that∫ α+at/t−η2t

α+at/t−η1t

µ(tx)L

(√
tα+

at√
t
−
√
tx

)
dx︸ ︷︷ ︸

=J1,1,2(t)

≪ µ([tα+ at,∞)).

Using integration by parts,

J1,1,2(t) =

∫ α+at/t−η2t

α+at/t−η1t

µ(tx)L

(√
tα+

at√
t
−
√
tx

)
dx

= − 1

t
µ([tx,∞))L

(√
tα+

at√
t
−
√
tx

)∣∣∣∣α+at/t−η2t

α+at/t−η1t

+
1√
t

∫ α+at/t−η2t

α+at/t−η1t

exp

(
−t(x− (α+ at/t))

2

2

)
µ([tx,∞))dx

≤ 1

t

(
−µ(tα+ at − tη2t ,∞)L(

√
tη2t ) + µ(tα+ at − tη1t ,∞)L(

√
tη1t )

)
+

1

t
µ(tα+ at − tη1t ,∞)L(

√
tη2t ).

(5.8)

Since both µ([x,∞)) and L(x) are decreasing functions, the driving term of (5.8) is the last one.
And since µ(x,∞) = exp(−F (x)) where F is an increasing regularly varying function with index β,

1

t
µ(tα+ at − tη1t ,∞)L(

√
tη2t ) ∼

1

t
µ(tα+ at − tη1t ,∞)L(

√
tη2t )

≤ 1

t
exp

(
−F ((tα+ at)− t1+r1)

)
exp

(
− t1+2r2

2

)
∼ 1

t
µ(tα+ at,∞) exp

(
tβ+r1 − t1+2r2

2

)
.

(5.9)

If β + r1 < 1 + 2r2 we get the desired asymptotic. That is, we need r2 >
(β − 1) + r1

2
, and

combining with t(β−1)/2 ≪ η1t we can pick

η2t ≫ t
(β−1)+r1

2 ∼ t
3(β−1)

4

to get ∫ α+at/t−η2t

0
µ(tx)L

(√
tα+

at√
t
−
√
tx

)
dx = J1,1,1(t) + J1,1,2(t)

≪ µ([tα+ at,∞)).

(5.10)

Recursively, we can pick ηnt ≫ t(β−1)(1−(1/2)n) such that

J1,1,n(t) =

∫ α+at/t−ηnt

α+at/t−ηn−1
t

µ(tx)L

(√
tα+

at√
t
−
√
tx

)
dx ≪ µ([tα+ at,∞)).

So for su�ciently large n we have

ηt = ηnt ≫ t(β−1)(1−(1/2)n) ≫ tβ−1

J1,1(t) =
n∑

i=1

J1,1,i(t) ≪ µ([tα+ at,∞))

which completes the proof. □
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Proposition 5.2. Suppose µ satis�es 2.6 and β > 0. If at ≫
√
t,

Pµ(Xt > at, τ > t) ∼ t√
2π

J1,3(t) ∼ µ([tα+ at,∞)). (5.11)

Proof : Pick ηt and ϵt as follows:

tβ−1 ≪ ηt ≪ 1, ϵt = t−b, β < b < 0.5. (5.12)

This choice yields the following asymptotic

ηt → 0, ηt ≪ at/t, ϵt ≪ at/t,
√
tϵt → ∞, F ′(tα+ at)ϵt ≪ 1/t. (5.13)

For J1,2(t), we �rst observe that the interval (α + at/t − ηt, α + at/t + ϵt) close in to α + at/t.

Moreover, while L does vary between 0 and
√
π/2 within the interval, µ does not vary much from

µ(t(α + at/t)) inside the interval, and therefore we can use the intermediate value theorem. Also,
we split the integration to get the following bound for J1,2(t).

J1,2(t) ∼ µ(t(α+ at/t))

×

(∫ α+at/t

α+at/t−ηt

L

(
at√
t
+
√
tα−

√
tx

)
dx+

∫ α+at/t+ϵt

α+at/t
L

(
at√
t
+
√
tα−

√
tx

)
dx

)

≤ µ(tα+ at)

(
1√
t

∫ √
tηt

0
L(y)dy +

∫ ϵt

0

√
2πdx

)

≤ µ(tα+ at)

(
1√
t

∫ ∞

0
L(y)dy +

√
2πϵt

)
∼

√
2πµ(tα+ at)ϵt.

Note that the �rst integration is essentially the expected value of a half-normal distribution, and
second integration is estimated using the fact that L is bounded above.

To estimate J1,3(t), since
√
tϵt → ∞, it follows that L(

√
tϵt) →

√
2π and we can use IVT to get

the sharp estimate

J1,3(t) ∼
√
2π

∫ ∞

α+at/t+ϵt

µ(tx)dx

∼
√
2π

1

t
µ([tα+ at,∞)).

(5.14)

Proposition 5.1 shows that J1,1(t) = o(J1,3(t)).
For J1,2(t), we combine (5.1) and (5.13) to get the following asymptotic comparison

J1,2(t) ≤
√
2πµ(tα+ at)ϵt

≪
√
2π

t
µ([tα+ at,∞)) ∼ J1,3(t).

(5.15)

Finally from the choice of ϵt we have b < 0.5, and therefore

J2,3(t) ≤
∫ ∞

α+at/t+ϵt

µ(tx)e−
t(α−x)2

2 e−a2t /(2t)e−at(α+x)dx

≤ e−
tϵ2t
2 µ([tα+ at,∞)) = o(J1,3(t)).

(5.16)

We conclude that

Pµ(Xt > at, τ > t) ∼ (1 + o(1))
t√
2π

J1,3(t) ∼ µ([tα+ at,∞)). (5.17)

□
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We can extend this proposition to the cases where F is slowly varying. In such cases, we expect
the tail distribution µ(x,∞) itself to be smoothly varying.

Corollary 5.3. Suppose µ([x,∞)) = G(x), where G is smoothly varying function with index −κ <

0. Then Pµ(Xt > at, τ > t) ∼ t√
2π

J1,3(t) ∼ µ([tα+ at,∞)).

Proof : It su�ces to show that J1,2(t) = o(J1,3(t)). The smooth varying condition yields the follow-
ing relation (Bingham et al., 1989, 1.8.1')

tµ(tα+ at) ∼ µ([tα+ at,∞)). (5.18)

Since we have ϵt ≪ 1,

J1,2(t) ≤ µ(tα+ at)ϵt = o

(
1

t
µ([tα+ at,∞))

)
= o(J1,3(t)) (5.19)

so we have the desired asymptotic. □

5.3. Proof of Theorem 2.8 (Heavy-tailed initial distributions). Proposition 5.2 and Corollary 5.3
show why the second part of Assumption 2.6 is necessary. We need the right at that will yield
nontrivial result on the limit

lim
t→∞

Pµ(XT > at | τ > t) = lim
t→∞

Pµ(Xt > at, τ > t)

Pµ(τ > t)
. (5.20)

Due to Proposition 5.2 this boils down to comparing µ(tα,∞) and µ([tα+ at,∞)).

Proof of Theorem 2.8: If µ satis�es Assumption 2.6, setting at = R(t, c) gives the following

µ([tα+ at,∞)) = exp(−F (tα+R(t, c))

∼ exp(−(F (tα) + c))

= e−cµ([tα,∞)).

(5.21)

We make few comments on the observation (2.10). If smooth enough, F has the Taylor expansion

F (tα+R(t, c)) = F (tα) + F ′(tα)R(t, c) + o(F ′(t))

therefore by choosing R(t, c) =
c

F ′(tα)
, we get F (tα+R(t, c))− F (tα) = c+ o(F ′(t)). Since F has

index β < 1, F ′(t) = o(1) so condition (2.9) is satis�ed.

We further observe that with the choice R(t, c) =
c

F ′(tα)
,

F ′(tα+R(t, c)) = F ′(tα) + F ′′(tα)R(t, c) + o(F ′′(t))

= F ′(tα) +
cF ′′(tα)

F ′(tα)
+ o(F ′′(t))

= F ′(tα) + o(1).

(5.22)

Therefore we get F ′(tα+R(t, c)) ∼ F ′(tα), and consequently,

µ(tα+R(t, c)) = F ′(tα+R(t, c)) exp(−F (tα+R(t, c))

∼ F ′(tα) exp(−(F (tα) + c))

= e−cµ(tα).

(5.23)

Putting together Proposition 5.2, Corollary 5.3, (5.21), and (5.23) completes the proof. □
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5.4. Some Concrete Examples. We present some concrete results here.

Corollary 5.4. Suppose µ([x,∞)) = e−xβ
with β ∈ (0, 0.5). Then

lim
t→∞

Pµ

(
Xt

t1−β
> c

∣∣∣∣ τ > t

)
= exp(−βαβ−1c) (5.24)

that is, the limiting distribution is exponential with parameter βαβ−1.

Proof : From proposition 5.2 we get

Pµ(Xt > at, τ > t) ∼ µ([tα+ at,∞)). (5.25)

Pick at = c · t1−β . Then by the generalized binomial theorem,

(tα+ at)
β = (tα)β + cβαβ−1 + o(1).

Note that F ′(tα) = β(tα)β−1. By substituting c = ct1−β((αt)β)′ = cβαβ−1, Theorem 2.8 gives
us the desired result. □

Example 5.5. If µ is a Weibull distribution with scale parameter λ > 0 and shape parameter

0 < β < 0.5, the limiting distribution of Pµ

(
Xt

t1−β
> c

∣∣∣∣ τ > t

)
is exponential distribution with

rate β
(α
λ

)β−1
.

Corollary 5.6. Suppose µ([x,∞)) = G(x), where G is smoothly varying function with index −κ <
0. Then

lim
t→∞

Pµ

(
Xt

t
> c

∣∣∣∣ τ > t

)
=

(
α+ c

α

)−κ

(5.26)

that is, the limiting distribution is Lomax (shifted Pareto) distribution with shape parameter κ and
scale parameter α.

Proof : Since G(x) = exp(log(G(x))) and log(G(x)) is a slowly varying function (β = 0), the natural
choice for R(t, c) would be at = R(t, c) = tc. Indeed, by the uniform convergence theorem of regular
varying function, (Bingham et al., 1989, Theorem 1.5.2)

lim
t→∞

G(tα+ tc)

G(t)
= (α+ c)−κ. (5.27)

Therefore we have
Pµ(Xt > tc, τ > t)

Pµ(τ > t)
∼ (α+ c)−κG(t)

α−κG(t)
(5.28)

which gives us the desired result. □

Example 5.7. If µ is a Half-Cauchy distribution (Cauchy distribution supported on R+), the lim-

iting distribution of Pµ

(
Xt

t
> c

∣∣∣∣ τ > t

)
is Lomax distribution with shape parameter 1 and scale

parameter α.

Note that when β = 0, µ is a distribution with regular or slowly varying tail. In such cases it
is often more convenient to work with the asymptotic result Pµ(Xt > R(t, c), τ > t) ∼ µ([tα +

R(t, c),∞)) directly to �nd the right scaling factor R. We conclude this section with showing the
quasi-limiting behavior of µ which itself has slowly varying tail.

Corollary 5.8. Suppose µ([x,∞)) ∼ 1
lnx as x → ∞. Then

lim
t→∞

Pµ

(
lnXt

ln t
> c

∣∣∣∣ τ > t

)
=

{
1 c ≤ 1;
1
c c > 1.
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that is, the limiting distribution is Pareto distribution with shape parameter 1 and scale parameter
1.

Proof : µ([x,∞)) ∼ exp(− ln lnx) so we can apply Corollary 5.3. Since we have R(t, c) = tc,

Pµ(Xt > tc, τ > t)

Pµ(τ > t)
∼ ln(tα)

ln(tα+ tc)

∼


ln t+lnα
ln t+lnα → 1 c < 1

ln t+lnα
ln t+ln(α+1) → 1 c = 1
ln t+lnα
c ln t → 1

c c > 1

(5.29)

which gives us the desired result. □

Notice that in our last example with super-heavy tail initial distribution, the scaled limiting
distribution does not depend on the drift parameter α of the BM.

Appendix A. Appendix

A.1. Proof of Proposition 1.3.

Proof : Suppose π is a QLD for µ. Then for every and continuous function f we have Eµ[f(Xt)|τ >
t] →

∫
fdπ. That is, Eµ[f(Xt), τt] ∼ Pµ(τ > t)

∫
fdπ, provided

∫
fdπ ̸= 0. Fix such f and let

t1, t2 > 0. Then by the Markov property,

Eµ[f(Xt1+t2), τ > t1 + t2] = Eµ[ht2(Xt1), τ > t1]. (A.1)

where ht2(x) = Ex[f(Xt2), τ > t2]. By our assumption ht2(·) is continuous and bounded, and
therefore, Eµ[ht2(Xt1)|τ > t2] →

∫
ht2dπ. On rewriting (A.1) we have

Eµ[f(Xt1+t2)|τ > t1 + t2] = Eµ[ht2(Xt1)|τ > t1]×
Pµ(τ > t1)

Pµ(τ > t1 + t2)
.

By our assumption, as t1 → ∞ the lefthand side converges to the positive limit
∫
fdπ and the

�rst expression on the righthand side converges to
∫
ht2dπ. Therefore the ratio on the righthand

side converges to a nonzero limit we denote by R(t2). This limit is independent of the choice of f .
Therefore ∫

fπ = Eπ[f(Xt2), τ > t2]R(t2) = Eπ[f(Xt2)|τ > t2]R(t2)Pπ(τ > t2). (A.2)

Taking f ≡ 1, we obtain R(t2) = 1
Pπ(τ>t2)

, and plugging this in back into (A.2) gives proves the

claim. □

A.2. Proof of Proposition 1.5.

Proof : By the Markov property,

Pµ(τ > s+ t) = Pµ(τ > t, PXt(τ > s))

= Pµ(PXt(τ > s) | τ > t)Pµ(τ > t).
(A.3)

Write f(x) = Px(τ > s). π is a QSD and therefore the distribution of τ under Pπ is exponential
with a parameter λπ > 0. Since π is the QLD of µ, for arbitrary ϵ > 0 there is some t0 = (t0, µ, s)
such that for each t > t0, ∣∣∣Pµ(PXt(τ > s) | τ > t)− Eπ(f)

∣∣∣ < ϵe−λπs. (A.4)

Since Eπ(f) = Pπ(τ > s) = e−λπs, we have that

Pµ(PXt(τ > s) | τ > t) ≤ (1 + ϵ)e−λπs, t > t0. (A.5)
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Choose s = 1, and apply (A.5) repeatedly to obtain

Pµ(τ > t0 + 1) ≤ (1 + ϵ)e−λπPµ(τ > t0)

Pµ(τ > t0 + 2) ≤ (1 + ϵ)e−λπPµ(τ > t0 + 1) ≤ (1 + ϵ)2e−2λπPµ(τ > t0)

...

Pµ(τ > t0 + n) ≤ (1 + ϵ)ne−nλπPµ(τ > t0).

(A.6)

Since the choice of ϵ is arbitrary the result follows. □

A.3. QSDs for BM with constant drift. Here we provide a formal derivation for densities of the
QSDs under assymption 1.6. Recall that a BM with constant drift −α on R+ absorbed at 0 is the
sub-Markovian process generated by Lα, which for each u satisfying u ∈ C2(R+) and u(0) = 0,

Lαu =
1

2
u′′ − αu′.

The formal adjoint L∗
α of Lα, with respect to integration by parts, is given by

L∗v =
1

2
v′′ + αv′, v ∈ C2(R+), v(0) = 0.

Observe that for any f in the domain of Lα,

d

dt
Px(f(Xt), τ > t) = LαPx(f(Xt), τ > t)

⇒ Px(f(Xt), τ > t) = f(x) +

∫ t

0
LαPx(f(Xs), τ > s)ds.

(A.7)

Suppose a probability density function π satis�es L∗
απ = −λπ for some λ > 0. Notice that every

QSD must be smooth, since if π is a QSD then by de�nition we have the following density:

π(y) = Pπ(Xs = y | τ > s)

=
Pπ(Xs = y, τ > s)

Pπ(τ > s)
.

(A.8)

Then with integration by parts we have the following:

Eπ(f(Xt), τ > t) =

∫
f(x)π(x)dx+

∫ ∫ t

0
Lα (Ex(f(Xs), τs)) dsπ(x)dx

=

∫
f(x)π(x)dx+

∫ t

0

∫
Ex(f(Xs), τ > s)L∗

απ(x)dxds

=

∫
f(x)π(x)dx− λ

∫ t

0
Eπ(f(Xs), τ > s)ds.

(A.9)

Setting h(t) = Eπ(f(Xt), τ > t), (A.9) gives

h′(t) = −λh(t) ⇒ Eπ(f(Xt), τ > t) = e−λt

∫
f(x)π(x)dx. (A.10)

Therefore by monotone convergence,

Pπ(τ > t) = e−λt,

Eπ(f(Xt)|τ > t) =

∫
f(x)π(x)dx.

That is, π is a density of a QSD if and only if L∗
απ = −λπ. We can see that a density for a QSD

π is a solution to standard ODE and depends on the parameter λ. The range of λ for which such
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a density exists is λ ∈ (0, α2/2] and for each such λ corresponds a unique density. Fix such λ, set

γ =
√
α2 − 2λ, and let πγ be the corresponding density. Then

πγ(x) =

{
α2−γ2

γ e−αx sinh(γx) γ > 0

α2xe−αx γ = 0.
(A.11)
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